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Signatures of Systems with Non-exchangeable
Lifetimes: Some Implications
in the Analysis of Financial Risk

Roy Cerqueti and Fabio Spizzichino

Abstract We review the basic aspect of the concept of signature for a coherent
system. The cases of exchangeability and non-exchangeability are compared in view
of possible applications to the analysis of financial risk. The case of a special class
of basket option is finally analyzed.
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1 Introduction

The concept of signature, introduced by [12], is a simple and useful tool for the
analysis of a reliability system. Since its first inception, the relevance of this concept
when dealing with “coherent systems™ (see [2]) became evident. For a wide review
of this topic we address the reader to the references cited in the bibliography and, in
particular, to [3, 5, 6, 13].

One basic problem in system reliability lies in the analysis of the relationship
between the reliability of a system and that of each of its single components. The
concept of signature produces, in a sense, a change of perspective and focuses on the
(random) number of components’ failures that lead the system to its own failure.

Initially, signature has been employed under the condition of components with
independent and identically distributed lifetimes. Such a concept, in fact, is spe-
cially relevant in that case, where a large part of the casualty in the system’s lifetime
is induced by the casuality in the temporal order in which the different compo-
nents fail. Systems with i.i.d. components, on the other hand, do not always fit with
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2 R. Cerqueti and F. Spizzichino

real-world applications. It has then been noticed that the definition of signature can
be extended, in a completely natural way, to the case of exchangeable components
(see [9, 10]). This extension is particularly important, because it allows us to consider
components’ lifetimes that are conditionally i.i.d. rather than just i.i.d.

As a further generalization, more recent studies dealt with the concept of signa-
ture even in cases of non-exchangeability (see e.g. [8, 11, 15]). The case of non-
exchangeability leads to two different concepts of signature: the first one is only
related to the structure of the system, while the other one is related to both the struc-
ture of the system and to the joint distribution of the components lifetimes. The
former is concerned with the symmetry properties of the system [15], while the latter
can play a role in the computation and approximation of the system reliability in
particular (see e.g. [8, 11, 15]).

To the best of our knowledge, the concept of signature has been employed so
far exclusively in the field of reliability systems. The case of non-exchangeable
components provides however a realistic representation of a wider family of systems
and networks appearing in the applied sciences. The possibility of extending this
concept to non-exchangeable cases, open then the path to applications to other fields.
In particular we think that signature can play a useful role in the field of Economics
and financial risk even if this path remains unexplored.

As a preliminary task in the direction of filling this gap, it is important to under-
stand the differences, as far as properties and meaning of signatures are concerned,
between the two cases of exchangeability and non-exchangeability.

In this note we deal with some aspects of this issue and point out some relevant
implications. Some of such implications will be also demonstrated by considerations
of financial character.

More precisely, the remaining part of the paper is organized as follows. In Sect.2
we briefly recall the concepts of signatures and present preliminaries and notation.
In Sect.3 we discuss the main differences between the cases of exchangeable and
non-exchangeable lifetimes. A discussion about some related aspects from the point
of view of financial applications, will be presented in the Sect. 4, with a specific focus
on basket options.

2 Preliminaries, Notation, and Definitions of Signatures

We consider a reliability system S formed by n components Cy, ..., C,. Given
j=1,...,nand atime t > 0, the status of the jth component at time ¢ is a binary
variable Y;(z) defined by

Y () = 1 if Cj is working at time t
72710 if G is down at time t.

Each component is assumed to be working at time t = 0, and hence Y;(0) = 1, for
cach j =1, ..., n. The status of the system can analogously be defined by letting
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Signatures of Systems with Non-exchangeable Lifetimes ... 3

Ys(t) = 1 if S is working at time t
S 710 if S is down at time t,
Fix t > 0. One assumes that Yg(#) is exclusively determined by Y1 (7), ..., Y, (?)

and defines the structure function of the system as the function ¢g : {0, 1} — {0, 1}
such that:

Ys(t) =ps (Y1 (2),.... Y (1).
@s is usually assumed to be coherent, i.e. the following conditions are satisfied:

e ¢5(0,...,0)=0,ps(l,...,1)=1;
e g is non-decreasing with respect to its components;
e cach component of S is relevant

Now, denote by ¥ the set of the path vectors of the system, i.c.

G ={y {0, 1}'|ps (y) =1}.

Trivially y = (1, ..., 1) is a path vector and thus Yg(0) = 1.
The lifetime of S and that of the jth component are respectively given by X g and
X j, where

Xs = inf{t > 0| Ys(t) = 0} = inf{r > O] (Y1(2), ..., Yu(1)) ¢ ¥},

and
Xj=inf{r>0]Y;() = 0}.

Furthermore, Rg(7) denotes the reliability function of the system at time ¢, namely:
Rs(t) = P{Xs > t}, vVt >0. (1)

The term Rg(t) depends both on the structure function ¢g and on the joint distribu-
tions of the components’ lifetimes. As we are going to discuss in the following, the
concept of signature provides an insight about the structure of such dependence.
We first recall the formal definitions of structure signature and probability signa-
ture. For this purpose we need the following further assumptions and notation.
First of all, it is convenient to imagine that each component continues to work
until its own failure, even if the system has already failed, so that all the lifetimes

X1, ..., X, are well defined and can be eventually observed. We assume furthermore
that the joint distribution of the elements of the vector X = (X1, ..., X},) is such
that

PIXi#--- # X)) = 1. @)
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4 R. Cerqueti and F. Spizzichino
By considering the order statistics X (1), ..., X(») of the vector X we thus have:
P{Xs =X} 3)

foroneand only one k =1, ..., n.

Before continuing, let us remark that the failures of the subsequent components
give rise to the progressive observation of a permutation of {1, ..., n}. All the n!
possible permutations can be observed and each permutation describes a possible
temporal order in which the different components fail.

Consider the events Ey, defined by

Er={Xs=Xuw}, k=1,...,n. 4)

E1, ..., E, form then a partition of the sample space, i.e. one and only one of them
will be observed.

Denote by Z the set of all the permutations of {1, . .., n} and consider the random

vector (J1, ..., J,) defined by:
Ji =i when X = X;, Vk=1,...,n, (5)

i.e. Ji indicates the identity of the component which fails in correspondence of the
kth observed failure. We also set

Ar={(1,....jpeZlh=j1,c...Jn=jn = Xs=Xp}

While theevents Eq, .. ., E, forma partition of the sample space, thesets Ay, ..., A,
form a partition of the set &7 and we have

n
D 1A =n!.
k=1

As to the logical relation between these two partitions, we can write
{(J1.o o) € Ay = {Xs = Xy} = Ek.

One basic remark is that (A1, ..., A,) is determined by the structure function ¢g.
We can now recall the definitions of two different notions of signatures

Definition 1 e The structure signature of Sis p = (p1, ..., pn), Where
[ Akl
Pk = ——, =1,...,n.
n!
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Signatures of Systems with Non-exchangeable Lifetimes ... 5
e The probability signature of Sis p = (p1, ..., pn), where
pr = P(Ep), k=1,...,n.

See [8, 10-12, 15]. Concerning the events { Ex }x=1
4),

» We can write, by recalling

.....

n

Xs =D Xalg,. (6)
k=1

and, by applying the law of total probabilities and by (1), (4) and (6), we can conclude:

Rs(t) = > P (Ex) - P{Xq) > t|Ex). (7)
k=1

In view of the definitions above, the decomposition (7) can be rewritten in terms of
the probability signature:

n

Rs(t) =" pi - P{X@y > t|Ex). ®)
k=1

3 Two Different Scenarios and Different Roles of Signatures

Concerning the two concepts of probability signature and of structure signature we
observe different properties depending on the type of joint distribution that is assessed
for the lifetimes of the components. As mentioned above, the scenario obtained under
the condition of exchangeability is fairly special and it is rather different from the
one that emerges in the non-exchangeable cascs. Even the relations existing between
the two concepts and their roles in applied problems are generally different in the two
cases. These differences will be briefly outlined in this section, where the cases of
exchangeability and non-exchangeability will be treated separately. The condition (2)
is however assumed in any case, since it is necessary for the definitions of signatures
to be meaningful. More arguments on this topic can be found in the cited references;
some potentially useful examples are discussed in [16].

Before starting our discussion here, it is useful to pay attention to a couple of
simple remarks. First, we notice that, from a purely mathematical viewpoint, both the
vectors p and p can be seen as probability distributions over the space {1, ..., n}. The
probability signature P, in particular, can be seen as the probability distribution of the
random variable M, defined as follows: M is the number of the observed component
failures up to the failure of the system. A very special class of coherent systems is
relevant in the reliability field and in a signature-based analysis, in particular. This
is the class of systems of the type k : n (fork = 1,...,n). A system k : n is one
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6 R. Cerqueti and F. Spizzichino

which is able to work as long as at least k of its components are working, namely it
fails at the instant of the (n — k 4 1)th components’ failure. In particular, a parallel
system is a system 1 : n and a series system is an : n system. In the case of a k : n
system we have P(M = n —k + 1) = 1 and both p, p are degenerate probability
distributions, with p,—x+1 = Pn—r+1 = 1. Nolice also that, in these cases, the
structure of the system is perfectly symmetric. In other words all the components in
the system contribute in a same way in maintaining the system in its working state.

3.1 The Exchangeable Case

We first consider the case where the components’ lifetimes X1, . .., X, are exchange-
able random variables. Namely the joint distribution of X is invariant with respect to
permutations of the variables. As an immediate consequence of this assumption, the
random permutation (Ji, ..., Jy,), defined in (5), is distributed uniformly over 22,

ie.
B
P{(J19-'-aJII)EB}:|n_'|, VBE@

This entails the following simple result (see e.g. the discussion in [15]).

Proposition1 /. Fork =1,...,n, one has
Pk = Pk:

2. the events (X k) > t) and Ey are independent;
3. the reliability function of the system is:

Rs(t) =D pxP{X) > 1}. ©)
k=1

We notice that item 3. is an immediate consequence of 1. and 2. and of the total
probability formula (8). Moreover, items 1. and 2 are immediate consequences of
the assumption that all the permutations (ji, ..., j,) are equally probable as values
for (Jq, ..., J,). Werecall that each permutation describes a different temporal order
in which the different components fail.

The statements in Proposition 1 are relevant from an applied point of view. From
1. we see that, in the exchangeable case, structure signature and reliability signature
collapse into one and the same concept. Thus the probability distribution of the
random variable M only depends on the structure of the system and it is not influenced
by the joint probability law of the lifetimes X1, ..., X,,. This lack of interaction is
confirmed by item 2.

Let us now examine item 3.1in details. It is clear that Rg(¢) generally depends on
the pair (¢s, Fx) where @g is the structure of the system and Fx denotes the joint
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Signatures of Systems with Non-exchangeable Lifetimes ... 7

probability distribution function of the lifetimes X1, ..., X,,. Such dependence may
turn out to be rather complex, in some cases. The special form (9) of the formula
of total probabilities (8) has then the following interpretation: when X1, ..., X, are
exchangeable (9) shows that Rg(f) depends on ¢g only through the system signature
p (which is only a function of ¢g and is it is not influenced by Fx). On the other
hand, Rg () is influenced by Fx only through the vector of the marginal distributions
of the order statistics X (1), ..., X()-
These facts entail the following implications:

1. Consider two coherent systems S’ and S” formed with different sets of compo-
nents Cq, ..., C,and C{, ..., CJ respectively, and such that they share the same
structure functions, i.e. gog = <pg . Then, as long as the vectors of the components’
lifetimes are exchangeable, S” and S” share the same (probability and structure)
signature, even if the joint distributions are different.

2. Think of a coherent system S, all the components of which play similar roles as
to the system’s capability to work. In such a case, we are allowed to interchange
the respective positions of any two components in the system. This situation is
met, for instance, in a network where all the components are just transmission
nodes, possibly with different capacities but similar in nature. For such a system
S, consider a permutation 7 € 2 and denote by S;; the system obtained by
permuting the components through 7. Then the reliability functions Rs(¢) and
Rs, (1) coincide, for any ¢.

3.2 The Non-exchangeable Case

In this subsection we consider the case when X, . . ., X, are notexchangeable, so that
we cannot rely anymore on Proposition 1. As a first consequence, the structure sig-
nature and the reliability signature do not necessarily coincide. We can still consider
the structure signature p which, by definition is a combinatorial invariant, only deter-
mined by the structure ¢s. But this vector does not carry complete information about
the probabilities py, ..., p,. Actually, the vector p is influenced also by the choice
of the joint distribution function Fx. Moreover, the formula (8) cannot be reduced
to (9). Generally both the vectors p and (P{X () > f|E1}, ..., P{X() > t|En}),
whose scalar products produce Rg(¢), depend on both the data ¢g, Fx.

It is now interesting to briefly point out the different roles of p and p in reliability
problems.

P can be applied in different ways. It can be used in particular for defining the pro-
Jjected system, which provides in a sense the best approximation of the original system
[8, 11]. Furthermore it could be used for extending to the non-exchangeable case
comparisons, between two systems, that have been developed for i.i.d components
and that are based on the structural signature. See also below.

For the purpose of analyzing the possible role of p, it is again convenient
to consider a coherent system S whose components have similar roles, so that
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8 R. Cerqueti and F. Spizzichino

interchanging the respective positions of any two components makes sense. For
these cases we would like to investigate what happens if we permute, according to
some permutation 7 € £, the positions of the components.

Fix a permutation 7w and recall that S; denotes the new system, obtained by
applying  on the components of S. The structure function of Sy is just given by

0 (y) =0 (yn) . (10)

Since the reliability function depends on the probability signature and the latter
depends on the joint distribution function of the lifetimes then, generally, Rs_ (f) #
Rgs (1), for t > 0. We denote by R*(¢) the symmetrized reliability function defined
as follows: |

R0 = — > Ra (). (1n
ne?

Notice that we implicitly identified R
permutation.

It is also useful to adopt the notation RgF) (1), in order to stress the dependence of
the reliability function on the joint law F' of the components lifetimes X1, ..., X,,.
Furthermore we denote by F;; the joint law of the permuted vector X;. One can see
that

n) with Rg, where {1, ..., n}is theidentical

.....

Fr
R (1) = R?l.,.?,n}(t)'

Denote now by /71 a random permutation of {1, ..., n}, uniformly distributed over
P, and set
(XT,....X3) = (Xm..... Xn,) -

Finally we denote by F* the joint distribution function of (X*¥,..., X}) and by

R §F*) (1) the reliability function of the system S when the lifetimes of its components
are (X’lk o X,’;) The random vector (X’lk e, X;l“) is exchangeable and it is such

that the vectors of the order statistics (Xfl), e XZ‘H)) and (X(1), ..., X(n)) share
the same joint law. All these properties and positions lead us to the following result.

Proposition 2 All the systems Sy, for m € &, share the same structure signature p.
Furthermore

RS (1) =D peP (X > 1), (12)
k=1

F*
R*(t) = R§ ) (1. (13)
See [15] for details. Thus we see that R*(¢) can be interpreted as the reliability

function of a fictitious system (the average system), having the same structure of S
and same components of S; but such that the components are distributed at random
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Signatures of Systems with Non-exchangeable Lifetimes ... 9

among the different positions. As shown by (12) R*(¢) is, typically, more easily
computed than R(¢). Even ifits meaning is fictitious it can still be of interest. Consider
in this respect the function

(1) = RSO (1) — R*(1)). (14)

We expect that Rgx) (t) — R*(t) > 0 when the system is correctly designed. The
function p(t) expresses a sort of distance between the reliability function and the
symmetrized reliability function R*(¢) for the system S. It is related to the amount of
asymmetry of the system S: the larger the symmetry level of the structure function
@s, the smaller the difference in the left-hand side of (14). On the other hand, it can be
argued that the more the structure signature is a concentrated probability distribution,
the smaller is the asymmetry of the system. Recall in this respect that, as we had
noticed above, degenerate signatures, in particular, correspond to the completely
symmetric structures of the type k : n. We then see that the structure signature has
a double role: it allows us to compute R*(¢) by means of (12) and provides us with
some information about the error that arises, in the computation of the reliability
function, when we approximate R(t) by R*(t), namely when we replace the “true”
distribution of X1, ..., X,, with the exchangeable distribution which gives rise to the
same joint distribution for the order statistics.

Let S, S” be two systems with the same number of components and let p’, p” be
their structural signatures respectively. As already mentioned p’, p” also permitone to
compare ', S” in the following sense: different types of stochastic orderings between
the probability distributions p’, p” imply corresponding stochastic orderings between
the reliability functions of S, S”, when a vector of the same i.i.d. components is
installed in the two systems (sce [6]). This can be a good way to compare the two
systems, even for cases when the components are not exchangeable. Furthermore
one can conjecture that results similar to those in [6] could be extended to non-
exchangeable case, in terms ol p’, p”.

4 A Special Class of Basket Options and Implications
of Non-exchangeability

In this section we focus attention on financial applications and, more precisely, on
the risk associated to the so-called basket options. On one hand we point out that the
topic of signature can be of some interest also in this field. On the other hand we
further discuss, just from an economic viewpoint, the implications related with the
difference between exchangeability and non-exchangeability, as far as signature is
concerned.

Basket options constitute one of the most popular and traded structured products,
and belong to the wide family of exotic options (see [17]). The success of this
financial product lies in low prices, in the management of the risk profile through
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10 R. Cerqueti and F. Spizzichino

an appropriate selection of correlated assets in the basket and in the reduction of
the transaction costs. The payoff of this product is linked to the performance of a
collection (basket) of assets. On such a basis, the option may be of various typologies
in nature. We will consider here a particular model of basket options, where the basket
is composed of a set of n assets, formed with a subset of r “important” assets and
a set of s “standard” assets, n = r + s. For all the assets, irrespectively of whether
they are important or not, a lower barrier is considered which should not be crossed
until the maturity time of the option (see e.g. [1, 4, 7]).

We can think of an important asset as one for which a very big amount of stocks
is traded on the market. We can then expect that its volatility is smaller than that of
the assets with less stocks and this may reflect in a lower riskiness.

Let T > 0 be the expiration time (or time to maturity) for the option and o > 0
be the common barrier for all the assets in the basket. Furthermore, for + > 0 and
J =1,...,n,let A;(t) be the stochastic process describing the evolution of the return
of the jth asset. We consider then the n-dimensional vector of (random) failure times
X = (X1, ..., X,) such that:

X; =inf{t > 0] A;(@) < a). (15)

X j will be then interpreted hereafter as the lifetime of the jth asset and it can be also
convenient to set Y,
Y@ = 0 othe;wise. '
A basket option will be viewed as a coherent system S whose n components
Cq, ..., C, are the assets in the basket. Once the financial structure of the option has
been fixed, one defines the failure time of the option a random variable X g, suitably
defined as a function of X1, ..., X,,.

At the expiration time 7 the holder of the option obtains a return Retr > 0, under
the condition

X s > T.

For ¢t > 0, the reliability function of the option at time ¢ is
Rs(t) = P{Xg > t}.

Generally, the price of a financial product is clearly related with its risk level. For our
basket option, an appropriate measure of riskiness is the value Rg(7"), which then
plays a relevant financial role.

In order to exactly define the very nature of the options that we consider or, in
other words, to describe the structure function of the system, we in particular focus
attention on financial models defined in terms of a nonincreasing function

p:f{l,....n} = {0, 1,....r+1},
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Signatures of Systems with Non-exchangeable Lifetimes ... 11

satisfied the condition with a meaning described as follows: the option has a fatal
default at the first time in which the failures of k assets are observed, with k such that
at least p (k) failures are due to the more important assets. It is natural to assume that
the function p (k) is nonincreasing. A few more precise details about its definition
are however in order.

The condition p (k) = 0 obviously means that the failure of k standard assets is
cnough to determine the default of the option. The position p(k) = r + | means
that k is so small that the failure of k assets cannot produce the option’s default,
even in the case when all the failed assets are important ones. The minimum number
of failures able to determine the default is the minimum value of k that satisfies
the condition p(k) < k. The maximum possible number of failures that can be
conceptually observed up to the default coincides with the minimum value of k such
that p(k) = 0.

Let us now proceed to formally define the option’s default time Xg.

Set

r

Ne=2 (1= (X))

J=1

Ny then denotes the number of assets that have already failed at the moment of the
kth overall failure. We let
Xs = Xw

if and only if
Ni = p(k), Np < p(h),

forh=1,...,k—1.
In other words, the family of the path vectors of the systems is defined by

r n
YEO W r=D yi<pln=2 vt (16)
j=1 j=1

We notice that such a system manifests the following structure of partial symmetry:
all the important assets share a common role and also all the standard assets share
a common role of their own. In a sense this structure could be seen as a natural
generalization of the famous k-out-of-n models. To designate our models, we may
use the term (n — p(k))-out-of-n systems.

Remark 1 Inthe field of basket options, a further generalization could be sometimes
more realistic: one may admit that the above numbers p (k) are replaced by numbers
p(k; J) also depending on the subsets J C {1, ..., s} of standard assets that failed
up to the time X ). The assumption that p(k) is a non-decreasing function of k,
should be replaced by a new condition involving also the monotonicity with respect
to J. Models of this type are also related to the concept of system with weighted
components, analyzed in [ 14].
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12 R. Cerqueti and F. Spizzichino

To the best of our knowledge, coherent systems of the type (n — p(k))-out-of-n
have not been considered so far from the point of view of a signature analysis. The
following result shows the form of their structure signature p = (py, ..., pn). Denote
by I, theset {k € {1,...,n}|0 < p(k) < k}.

Proposition 3 (a) Letk € I,. Then:

v ()(270) ()
= . -2 S (D
) E 0

(b) px=0ifptk) =r+1;
(c) pr=0ifpk) =plk—1)=0;
(d) Let k be such that p(k) =0, p(k — 1) > 0. Then

pre=1 _th-

h#k

Proof (a) First, we recall that the structure signature of a system coincides with the
probability signature, where the latter is computed under the assumptions that
the components are i.i.d. Thus we need to compute the probabilities

P(Xs=Xwp), k=1,....n,
under the assumption that the assets’ lifetimes X1, ..., X,, are i.i.d.

For k € 1,,, we consider the quantity Py = Dok 11 Ph» so that

plk)—1
Pp=P(Xs>Xp) =P Nk <plk)= > PWNe=j).
Jj=0

Then
B ) plk—1)—1 pk)—1
pi=Piii—Pr= D> PWNici=j)— > P(Ne=j).

j=0 j=0

In view of the assumption that the assets’ lifetimes X1, ..., X, are i.i.d., the
terms P (Ny = r) are given by hypergeometric probabilities. More precisely:

()G
()

P (N =j) =
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(b) The condition p(k) = r 4+ 1 means that the observation of k failures cannot
cause the default of the option. Thus py = 0.

(c) If p(k) = O then k failures cause the default of the option, if the latter had
not defaulted before. Thus the probability of a default at X, is null when
ptk—1)=0.

(d) It trivially follows from (a), (b) and (c), since ZZ=1 pr=1.

As already discussed in Sect. 2, the signature analysis of a system is strongly influ-
enced by the conditions of exchangeability or non-exchangeability among the com-
ponents.

In the present context, exchangeability of X, ..., X, is reflected by a symmetry
condition among the behavior of the assets’ returns Ay, ..., A, and the following
statement can in particular be made: at any fixed time ¢, the probability that 7 < n
returns are above the threshold «, while the remaining n — & returns are below «, is
independent on the specific selection of the 7 assets.

We are in the non-exchangeability case when such a statement is no longer true.
In this respect, non-exchangeability can be viewed as a condition of “heterogeneity”
among the assets of the basket. Specifically, in analyzing the joint behavior of the
assets at the expiration date 7', the identity of any single asset matters. This is actually
a typical circumstance in the above setting. Exchangeability is then only an extreme
and idealized condition, for us.

Let us briefly mention some relevant implications of non-exchangeability on the
signature analysis.

As a first remark, we can say that the special structure (n — p (k))-out-of-n is just
appropriate for the financial model of heterogeneity, where the assets can be of only
two “types”.

We can moreover recall that the probability signature is different from the structure
signature detailed in (17). When the important assets are more reliable than the other
ones, the probability signature is stochastically larger than the structure signature.
This circumstance would guarantee that the “projected system” is less risky than the
“average system”, where the “projected system” provides a better approximation of
the reliability of the system (of the option, in our case) than the “average system”
[11].

A further remark concerns the effect of some possible piece of new information
about the market. Suppose that short after time 0, an event A is observed that modifies
the evaluation of the future performance of the assets (such as e.g. the failure of an
important asset, outside the basket). This has a double effect on the terms in the r.h.s.
of Eq. (8). Not only the factors P{X ) > t|Ex} change into P{X ) > t|Ex N A}, but
also the weights py are influenced by the replacement of joint distribution (priorto A)
with a different one (posterior to A), when at least one of the two is not exchangeable.
This circumstance may have the following relevant consequence. On the basis of
a same set of assets, consider two different options O and O3, characterized by
different and non-comparable functions pj(k) and p(k). Compare then O1 and O;
in terms of their levels of riskiness and then in terms of their price: it can happen
that the ordering between O and O; posterior to A is the opposite of the ordering
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14 R. Cerqueti and F. Spizzichino

if the comparison had been made prior to A. In view of the validity of the formula
(9), this situation cannot manifest when the prior and posterior joint distributions are
both exchangeable.

The condition of non-exchangeability is even more intrinsic to the nature of the
option, when we consider the models mentioned in Remark 1. In such models a
character of heterogeneity is present and it makes sense to compare two different
options obtained by different arrangements in the system of a same set of assets.
The problem then arises of determining the most efficient permutation. It is useful to
recall in this respect that the structure signature and probability signature are of help
in such an analysis. The fact that probability signature can be influenced by arrival
of new information can be an interesting issue for further research.
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