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Abstract

There is a wide debate on the connections between pollution and COVID-19

propagation. This note faces this problem by exploring the peculiar case of the

correlation between outdoor light pollution and the ratio between infected peo-

ple and population. We discuss the empirical case of Italian provinces (NUTS-3

level), which represent an interesting context for the noticeable entity of conta-

gions and for the relevant level of outdoor light pollution. The empirical results,

based on a multivariate cross section model controlling for income, density, pop-

ulation ageing and environmental pollution, show that there is a positive relation

between outdoor light pollution per capita and the strength of COVID-19 infec-

tion. This effect is statistically more robust in a non linear specification than in

a linear one. We interpret our findings as a piece of evidence related to the im-

pact of outdoor light pollution on human health, thus suggesting policies aimed

at reducing this important source of pollution.
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1. Introduction

Light pollution is the direct or indirect introduction of artificial light into the

environment and is one of the most common forms of environmental alteration

(Cinzano et al. 2001). “It includes such things as glare, sky glow, and light

trespass” (Gallaway et al. 2009, 658).

Such a type of pollution is composed of indoor and outdoor light pollutions.

The World Atlas of Light Pollution (Falchi et al. 2016a, 2016b) brought the

problem of outdoor light pollution to the fore.

According to the Atlas, the countries with the populations least affected by

outdoor light pollution are Chad, the Central African Republic and Madagascar,

where more than three quarters of the inhabitants live in conditions of pristine

sky. On the other side, in Singapore, “the entire population lives under skies

so bright that the eye cannot fully dark-adapt to night vision.” (Falchi et al.

2016a, 5).

Sorting countries by polluted areas, Italy and South Korea are the most

polluted G20 countries, whereas Australia is the least polluted one.

According to the International Dark-Sky Association (2016), in one year in

the United States, outdoor lighting uses about 120 terawatt-hours of energy,

mostly to illuminate streets and parking lots. An amount of electricity that

would be sufficient to satisfy the electricity demand of a city like New York

for two years. About 50% of all this lighting is wasted. In terms of costs,

these are figures that are around 3.3 billion dollars, with 21 million tons of CO2

emissions per year. To compensate for these emissions, we should plant 875

million trees every year. Hence, light pollution gives a negative contribution to

climate change.

As discussed by Gallaway et al. (2009), light pollution causes many negative

externalities, as it affects the life cycle of plants, the animal behavior and the

human biorhythm. Moreover, outdoor light pollution also affects migration
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flows, mating rituals, hunting and many other processes essential for the life of

plants, insects, animals and the human biorhythm.

This latter, under normal conditions, is programmed to alternate between

day and night, the circadian rhythm. Depending on whether it is in light or

dark conditions, the organism behaves differently. The pineal gland produces

serotonin during the day and melatonin at night. A well synchronized circadian

rhythm is essential for psychophysical balance, otherwise the risk of some dis-

eases increases: depression, tumors, diabetes, obesity, depression of the immune

system. The World Health Organization (WHO) has found that night work-

ers – hence, those exposed to artificial light – have probably a higher onset of

cancer in that night work disrupts the circadian rhythm. In this context, the

exposure to artificial light is classified as probably carcinogenic (see IARC). For

this reason, light pollution may be considered related to probably carcinogenic

factors.

Based on data availability, this note aims at evaluating whether the specific

case of outdoor light pollution has an impact on the Population-Infected Ratio

(PIR) associated to SARS-CoV-2 (COVID-19) pandemic. The ground of the

study is the scientific evidence that outdoor light pollution may affect human

health (see e.g. Chepesiuk, 2009 and Kloog et al., 2008).

Our analysis is based on Italian provincial data. Italy is the fifth country

in the world by number of deaths (35,123) and the fifteenth nation by number

of infected people (246,488) with a fatality rate of 14.25% 1. Furthermore,

contagions and deaths in Italy are mainly concentrated in some regions of the

northern Italy (Lombardia, Piemonte and Emilia Romagna)with a high degree

of territorial heterogeneity.

Becchetti et al. (2020) find for Italy at a provincial level a statistically sig-

nificant positive correlation of the poor quality of air with COVID-19 outcomes.

In particular, provinces with high levels of PM10 or PM2.5 have a high number

of contagions and deceases for COVID-19.

1The data are updated to 28 July 2020 (WHO).
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We analyze another important source of pollution, i.e. outdoor light pollu-

tion, and we wonder whether it has a role in explaining COVID-19 contagions.

In words, due to the effects of light pollution on human health, in particular

way the weakening of immune system, in provinces with high levels of outdoor

light pollution is it more likely to have higher contagions?

We estimate a cross-section model for Italian provinces and we find that

there is a relation between some measures of outdoor light pollution and the

COVID-19 PIR.

To the best of our knowledge, this is the first paper dealing with the possible

effects of outdoor light pollution on COVID-19 contagions.

Following Falchi et al. (2019), we use three different measures of outdoor light

pollution: radiance (R), flux per capita (FC) and flux per dollar (FD). We find

strong evidence concerning the FC and FD measures of outdoor light pollution.

The positive relation between FC and PIR may confirm that high levels of

outdoor light pollution per capita exposure are connected with high COVID-

19 spread. The negative relation between FD and PIR is strongly influenced

by the effect of gross domestic product (GDP), according to which territories

with higher income are more likely to be exposed to COVID-19 contagions (see

Becchetti et al. 2020). The results hold after the introduction of control variables

concerning population density, income, population ageing and air pollution.

Moreover, we find that a relevant improvement of the goodness of fit of the

model is obtained using a nonlinear model.

The note is structured as follows. Section 2 describes the dataset and the

methods used for the empirical analysis. In Section 3 we present and discuss

the results. Section 4 concludes.

2. Data and methods

2.1. Data

Our sample concerns the 107 Italian provinces (NUTS-3 level). Different

light pollution measures have appeared in the literature. Following Falchi et al.
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(2019), we here consider three types of measures: flux per capita (FC), flux per

dollar (FD) and radiance (R). FC is the artificial light flux per capita (light flux

divided by population and multiplied by 103), FD is the artificial light flux per

GDP unit and multiplied by 106, with GDP measured in US$ using purchasing

power parity; the measures of artificial light incorporated in FC and FD are

related to R, but differ from it. The fluxes of artificial light (the numerators

of FC and FD) are a metrics of how much outdoor light is produced in each

pixel area from the Atlas, while R is a measure of artificial night sky bright-

ness at the zenith from the center of each pixel2. Data on FC, FD and R are

provided by Falchi et al. (2019) and are referred to 20143. The range of varia-

2“The two things are related, but not in a trivial way. As an example, the flux coming

from the Upper Bay in New York is essentially zero (no light sources are on the water), while

the night sky observed from the center of the bay is extremely light polluted, due to the

lights coming from the surrounding sources. In fact, the Atlas radiance data for each pixel

was computed taking into account the outdoor lights coming from a circle of 200 km radius.”

(Falchi et al. 2019, 2).
3We point out that 2014 is the last year in which the data at the provincial level (NUTS-3

level) are available. However, we are in the position of using such a dataset for describing

the reality of the Italian provincial outdoor light pollution also for the year 2020, basically for

two reasons. First, the data for the measurement of light pollution based on radiance both in

absolute and per capita terms have shown for Italy a slight increase in light intensity, almost

equal to 5.5%, between 2014 and 2020 (see

https://www.lightpollutionmap.info/LP Stats/country.html?country=Italy). Such an

increase is of a rather small entity so that one can state that outdoor light pollution in Italy

is substantially invariant from 2014 to 2020. Second, we have arguments for stating that also

the distribution of light pollution at a provincial level is invariant over the last quinquennium.

Indeed, light pollution is mainly due to human activities and can be reasonably linked to the

urbanization level of a territory. In this respect, the proportion of the urban population in

Italy moves from 69,27% in 2014 to 70,74% in 2019 – which is the last available year (see

https://www.statista.com/statistics/270471/urbanization-in-italy/). Thus, we have a

very small increase of the urbanization level in the considered period of about 2,1%, hence

pointing to a small variation of the distribution of the citizens in the Italian territory. To

conclude: Italy shows small variations either of light pollution as well as of urbanization level

from 2014 to 2019/2020. Therefore, the data related to 2014 – which, we repeat, are the most

recent ones of high quality at a provincial level – can be suitably used as a good proxy for
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tion of R is 0.0819 (Bolzano) - 3.63 (Monza Brianza) mcd/m2 (Millicandela per

square meter), while those of FC and FD are4 7.75 (Naples) - 23.9 (L’Aquila)

and 0.156 (Bolzano) - 1.11 (Siracusa), respectively. As control variables for the

multivariate analysis, we consider the population density of 2019 (ISTAT), the

value added per capita of 2017 (ISTAT), the fraction of the population over 65

years old of 2019 (ISTAT), the number of motor vehicles per 1,000 inhabitants

in 20125. PIR associated to COVID-19 is given by the ratio between the stock of

infected people and population; such a quantity is also computed at a provincial

level. The website from which the data on infected people are taken is the one

of the Italian Ministry of Health:

http://www.salute.gov.it/imgs/C 17 notizie 4922 1 file.pdf. The con-

sidered time span considered goes from 30th January 2020 to 21st June 2020.

The population is the one of 2019 and it is retrieved from ISTAT. For having a

clear view of the data, PIR is multiplied by 1,000.

2.2. Methods

To assess the relation between outdoor light pollution and PIR, we present

both a univariate (Section 3.1) and a multivariate (Section 3.2) analysis.

A descriptive analysis introduces the univariate study. Then, pairwise re-

lations between the PIR and outdoor light pollution variables are presented.

Both raw and ranked data have been analyzed. Such a twofold approach is

justified for two reasons. First, there are a few outliers that may affect the

overall study. Second, the two studies offer the opportunity to observe different

features of the relations. Indeed, in the former study, the average comovement

of the considered quantities is strongly affected by clusters of extreme values

provincial light pollution in Italy in 2020.
4“The units used for calculation are somewhat arbitrary, simply obtained by multiplying

the radiance of the VIIRS dataset (in nWcm2sr−1) by the pixel area measured in square

kilometers, obtaining the dimensions of a radiant intensity in 10−7Wsr−1.” (Falchi et al.

2019, 15).
5The last data publicly available for the provincial value added per capita are referred to

2017 whereas those for private motor vehicles are updated to 2012.
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and the presence of deviations within the samples; differently, the latter one

focuses only on regularities and dissonances between the positions of the indi-

vidual provinces in the overall rankings, so that the level of the ranked variables

is not taken into consideration.

In the ranked data approach, provinces are ranked in increasing order ac-

cording to the values of PIR, R, FC and FD, obtaining four series of ranks.

To deepen the analysis of the phenomenon, Section 3.2 presents a multi-

variate regression study. Various control variables are considered alongside the

outdoor light pollution measures. These variables are the population density

(Dens), the value added per capita (VAC), the fraction of the population over

65 years old (Over65), the number of motor vehicles per 1,000 inhabitants (Ve-

hicles). Dens may be relevant for the speed of spread of an outbreak due to the

increasing chances of social interactions, the VAC is a measure of the wealth

produced in each province, Over65 indicates the portion of the population more

sensitive to the contagion, Vehicles is a proxy of air pollution6.

Starting from the light pollution variables (R, FD, FC), a forward selection

procedure is applied to select the most appropriate model. Differently from what

the univariate analysis suggested, the variable R does not display a significant

relation with respect to PIR. Both the other two measures of light pollution, FC

and FD, result significant, with opposite effects: FC positively relates to PIR,

while FD shows a negative relation with PIR. Moreover, a nonlinear transforma-

tion is proposed, obtaining a better fit and some additional insights, preserving

the qualitative results obtained in the linear case.

6Our measure of environmental pollution differs from the one of Becchetti et al. (2020)

based on PM10 and PM2.5. Nevertheless, particulate data are only available where the

detection units are present (typically in the regions capitals) and provincial data are obtained

by distributing regional data according to population weights. In our case, Vehicles is already

available at a NUTS-3 level.
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3. Results and discussion

3.1. Univariate analysis

3.1.1. Descriptive

As a preliminary step, Table 1 presents a summary of the descriptive statis-

tics related to the considered datasets.

We can notice that, although of different magnitude, the variables share a

moderate coefficient of variation. They are generally positively skewed, except

FD which display a weak negative skewness. The extreme values produce a

strong excess kurtosis for R. The variability in our sample is the consequence

of the heterogeneity of the Italian provincial conditions, in many aspects. This

feature may be desirable, since this single country analysis may be representative

of different local frameworks. For what concerns the (significant) correlations,

R is negatively correlated with FC and FD, and display a strong link with Dens.

This latter relation follows from the fact that radiance increases with population

density, whereas the negative correlation of R with FC and FD is in line with

the inverse relation between outdoor light pollution in the big areas, such as the

metropolises, and outdoor light pollution per inhabitant or per unit of GDP.

FC and FD are positively correlated. The negative correlation between FC and

Dens can be explained because Dens is related with the denominator of FC.

For the same reason, FD negatively correlates with VAC. The large correlation

between VAC and Over65 deserves attention: the ageing of the population is

related with the level of income, and in Italy the income gap between provinces

is quite large. For a similar reason, we also notice that Over65 is positive

correlated to Vehicle. The two high correlation coefficients help in explaining

the collinearity issues presented in Section 3.2.

3.1.2. Relation between PIR and outdoor light pollution

Figures 1 and 2 present the link between the three indicators for outdoor light

pollution in our sample. For a better reading, the linear trend is juxtapposed,

when the slope of the line is statistically significant. Notice the inverse relation
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Variable Mean Median Minimum Maximum

PIRx1000 3.9875 2.5740 0.27085 18.354

R 0.59964 0.48500 0.081900 3.6300

FC 16.262 16.200 7.7500 23.900

FD 0.58713 0.55600 0.15600 1.1100

Variable Std. Dev. C.V. Skewness Ex. kurtosis

PIRx1000 3.7549 0.94167 1.3931 1.9205

R 0.52998 0.88382 3.4713 15.189

FC 3.5613 0.21900 −0.11806 −0.37358

FD 0.22303 0.37986 0.37606 −0.76405

PIR R FC FD VAC Over65 Dens Veh.

1.0000 0.1973∗ −0.0641 −0.4473∗ 0.3907∗ 0.1754 0.0693 −0.0259 PIR

. 1.0000 −0.3622∗ −0.3819∗ 0.1599 −0.0482 0.9231∗ −0.1638 R

. . 1.0000 0.6836∗ −0.1480 −0.0162 −0.4738∗ 0.0377 FC

. . . 1.0000 −0.2850∗ 0.0712 −0.3856∗ 0.1060 FD

. . . . 1.0000 0.8833∗ 0.1258 0.1602 VAC

. . . . . 1.0000 −0.0394 0.1969∗ Over65

. . . . . . 1.0000 −0.1126 Dens

. . . . . . . 1.0000 Veh.

Table 1: Summary of the descriptive statistics of the PIR and the three measures of outdoor

light pollution R, FC and FD, for the 107 Italian provinces. The correlation matrix between

the PIR and all the considered variables are also reported. A star indicates correlations that

are significant at 5% level.
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between R and the other two indicators, FC and FD, while FC and FD show a

clear positive relation.

Figure 2 (left panels) presents the scatter plots of the relations between PIR

and the outdoor light pollution measures. A positive relation is found between

R and PIR, while a negative one is found between FD and PIR – as expected.

These results are confirmed once some PIR outliers are removed: we have consid-

ered outliers for PIR those values greater than µ+ 2σ. The behaviors observed

with raw data are confirmed, once ranked data are considered (see Figure 2,

right panels). The analysis of ranked data allows to consider the observed re-

lations more robust, because ranked data are less sensitive to concentrated and

extreme values that can produce instability in the estimated relation. Due to

the wide range of local conditions, this stability appears welcome.

3.2. Multivariate analysis

To obtain a complete picture of the phenomenon, we proceed to a multivari-

ate analysis, setting as independent variable the PIR and using as regressors the

measures of the outdoor light pollution (R, FC, FD) and some control variable

(Dens, VAC, Over65, Vehicles). Table 2 presents the results of the estimates.7

First of all, we estimate the univariate model M1, relating the PIR to the

measure of radiance R (as suggested by Figure 2, first panel). From Table 2, R

appears significant with a positive coefficient.

We proceed to model M2, by adding to R the other two light pollution

measures, FC and FD. These added variables turn out to be significant with

opposite sign coefficients. We exclude multicollinearity issues between R, FC

and FD (VIFs lower than 2 for all variables).

The control variables Dens, VAC, Over65 and Vehicles are progressively in-

troduced, following a stepwise procedure. At each step the control variable

which is most correlated with the residuals of the previous model is added.

7This cross-section is run on a sample of 107 observations which is sufficient for the relia-

bility of the results (see Harrel 2015, Sect 4.4).

10



 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  0.5  1  1.5  2  2.5  3  3.5

F
C

R

FC versus R (with least squares ✁t)

Y = 17.7 - 2.43X

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5

F
D

R

FD versus R (with least squares �t)

Y = 0.684 - 0.161X

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.2  0.4  0.6  0.8  1

F
C

FD

FC versus FD (with least squares ✂t)

Y ❂ ✄☎✆✺ ✰ ✝✞☎✄✳
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M1 M2 M3 M4 M5

const 3.1493*** 2.8313* 1.1671 1.1315 0.4875

(0.0000) (0.098) (0.4987) (0.5349) (0.2384)

R 1.3977** 0.6134 0.6821 0.6875 0.1139

(0.042) (0.3339) (0.2644) (0.2676) (0.4162)

FC – 0.4955*** 0.5287*** 0.5291*** 0.1756***

– (0.0001) (0.0000) (0.0000) (0.0000)

FD – −12.3820*** −12.9729*** −12.9802*** −4.8374***

– (0.0000) (0.0000) (0.0000) (0.0000)

Over65 – – 6.1147*** 6.0911*** 2.0061***

– – (0.0027) (0.0034) (0.0000)

Vehicles – – – 4.3839e–5 −1.8415e–4

– – – (0.9498) (0.2436)

R2 0.0389 0.3159 0.3741 0.3741 0.6105

AdjR2 0.0298 0.2960 0.3496 0.3431 0.5912

AIC 585.5347 553.1609 545.6461 547.6419 229.5880

BIC 590.8804 563.8522 559.0102 563.6788 245.6250

Table 2: Estimation summary for different regression models (p-values between parentheses).

The dependent variable is PIRx1000 in models M1 to M4, while it is logPIRx1000 in model

M5. Some goodness of fit indicators are reported: R2, AdjR2, Akaike information criterion

(AIC), and Schwarz or Bayesian information criterion (BIC). Significance codes: * 10%, **

5%, *** 1%.
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Then, the multicollinearity is checked. If the additional variable introduces

multicollinearity to the set of regressors, it is discarded and the procedure con-

tinues to the next variable most correlated with the residuals.

Following this method, the variable Over65 is added, obtaining model M3.

From Table 2, we notice that Over65 is significant, with a positive coefficient,

and the coefficients of FC and FD variables remain stable and significant.

The next step, consists in adding Dens to the model, but this introduces

collinearity (VIFDens > 8 and unstable coefficient of R). Therefore, we dis-

card Dens and proceed including VAC. Also VAC introduces collinearity, even

stronger than Dens (VIFV AC > 14) and wide parameter instability. So the next

variable to add remains Vehicles, obtaining model M4. The new variable turns

out to have a non-significant coefficient, worsening the goodness of fit and in-

formation criteria. In conclusion, model M3 seems to be the most appropriate

one to describe the phenomenon, with an adequate goodness of fit.

3.2.1. Nonlinear model

Model M3 delivers an adequate description of the phenomenon. However, a

nonlinear transformation can better describe the relation between the variables.

For this reason, we report the estimation of the regression model M5, with the

log of PIR as independent variable:

log(PIRx1000) = α+ β1R + β2FC + β3FD + β4Over65 + β5Vehicles + ε. (1)

For sake of interest and space, we do not report the entire stepwise procedure,

but only the selected specification, i.e. model M5. M5 appears to be the best

model among the presented ones: the R2 and the information criteria attain

their best values, with a considerable improvement over M3. The qualitative

interpretation of the estimation results is consistent across all models. Moreover,

the nonlinear specification (1) allows to interpret the estimated coefficient as

semi-elasticities.

The empirical analysis presented above shows that outdoor light pollution

measured in terms of flux per capita positively relates to the spread of infection.
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Territories that are more exposed to outdoor light pollution per inhabitant are

more likely to develop COVID-19 contagions. This result supports the idea that

the depression of the immune system induced by the outdoor light pollution

makes the human body more vulnerable to attack from viruses such as Covid-

19. The negative relation between FD and PIR, instead, captures the positive

effect of income on COVID-19 outcomes. Economic activities generate social

interactions that increase the virus diffusion and for this reason lockdown policies

adopted by the Government have dealt with not only the households but also

the firms.

4. Conclusions

In this note we show that outdoor light pollution may have a role in explain-

ing COVID-19 contagions. Following Falchi et al. (2019), we consider three

measures of light pollution: FC, FD and R. In the multivariate analysis, in-

troducing some control variables, we find that FC positively affects the PIR

associated to COVID-19, whereas FD has a negative effect on contagions and

R does not exhibit any statistically significant relation with COVID-19 disease.

We think that the positive sign of FC, a metrics considering the incidence of the

outdoor light pollution on population, captures the effects of the outdoor light

pollution on human health, thus predisposing people to COVID-19 pandemic.

The negative relation of FD on PIR, instead, relates to the income effect incor-

porated in FD, according to which higher income is associated to an increase

of COVID-19 infections. Furthermore, we find that the explanatory power of

the model in log-linear form is better than the linear one, thus showing a non

linear effect in the relations between the measures of outdoor light pollution and

COVID-19 contagions.

Our analysis is intended to be seminal to further ones, considering in gen-

eral the alteration produced by outdoor light pollution on the ecosystem and

suggesting policies aimed at mitigating this source of pollution. In addition,

outdoor light pollution may also be related to night social activity (non directly
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related to population density or income). Therefore, our study provides some

suggestions on the existence of a link between night activity and COVID-19.

Moreover, it is important to give credit to two limitations of the study: the

nature of the employed data – which are not obtained by individual measurement

instruments, being of ecological type – and the lack of the analysis of indoor light

pollution. Further research can be carried out by removing such constraints.

Finally, we underline that our proposal has not the ambition to find the key

variables explaining the spread of the COVID-19. As we show in the paper, the

relation between some light pollution measures (namely FC and FD) and PIR is

supported by the data concerning the Italian provinces. This can be a suggestion

for the inclusion in future analysis and scientific research of the light pollution

for disentangling the patterns of pandemic diseases – including COVID-19, of

course. In this respect, we also carried out some preliminary elaborations on

the direct relation between air pollution – whose proxy is the number of private

vehicles per 1000 inhabitants – and PIR, exploring various models. Our results

do not support any significant relation between air pollution and PIR. Such

elaborations are not shown in this note; indeed this research theme deserves a

more focused future research.
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