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Abstract

There is a wide debate on the connections between pollution and COVID-19
propagation. This note faces this problem by exploring the peculiar case of the
correlation between outdoor light pollution and the ratio between infected peo-
ple and population. We discuss the empirical case of Italian provinces (NUTS-3
level), which represent an interesting context for the noticeable entity of conta-
gions and for the relevant level of outdoor light pollution. The empirical results,
based on a multivariate cross section model controlling for income, density, pop-
ulation ageing and environmental pollution, show that there is a positive relation
between outdoor light pollution per capita and the strength of COVID-19 infec-
tion. This effect is statistically more robust in a non linear specification than in
a linear one. We interpret our findings as a piece of evidence related to the im-
pact of outdoor light pollution on human health, thus suggesting policies aimed
at reducing this important source of pollution.
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1. Introduction

Light pollution is the direct or indirect introduction of artificial light into the
environment and is one of the most common forms of environmental alteration
(Cinzano et al. 2001). “It includes such things as glare, sky glow, and light
trespass” (Gallaway et al. 2009, 658).

Such a type of pollution is composed of indoor and outdoor light pollutions.

The World Atlas of Light Pollution (Falchi et al. 2016a, 2016b) brought the
problem of outdoor light pollution to the fore.

According to the Atlas, the countries with the populations least affected by
outdoor light pollution are Chad, the Central African Republic and Madagascar,
where more than three quarters of the inhabitants live in conditions of pristine
sky. On the other side, in Singapore, “the entire population lives under skies
so bright that the eye cannot fully dark-adapt to night vision.” (Falchi et al.
2016a, 5).

Sorting countries by polluted areas, Italy and South Korea are the most
polluted G20 countries, whereas Australia is the least polluted one.

According to the International Dark-Sky Association (2016), in one year in
the United States, outdoor lighting uses about 120 terawatt-hours of energy,
mostly to illuminate streets and parking lots. An amount of electricity that
would be sufficient to satisfy the electricity demand of a city like New York
for two years. About 50% of all this lighting is wasted. In terms of costs,
these are figures that are around 3.3 billion dollars, with 21 million tons of CO2
emissions per year. To compensate for these emissions, we should plant 875
million trees every year. Hence, light pollution gives a negative contribution to
climate change.

As discussed by Gallaway et al. (2009), light pollution causes many negative
externalities, as it affects the life cycle of plants, the animal behavior and the

human biorhythm. Moreover, outdoor light pollution also affects migration



flows, mating rituals, hunting and many other processes essential for the life of
plants, insects, animals and the human biorhythm.

This latter, under normal conditions, is programmed to alternate between
day and night, the circadian rhythm. Depending on whether it is in light or
dark conditions, the organism behaves differently. The pineal gland produces
serotonin during the day and melatonin at night. A well synchronized circadian
rhythm is essential for psychophysical balance, otherwise the risk of some dis-
eases increases: depression, tumors, diabetes, obesity, depression of the immune
system. The World Health Organization (WHO) has found that night work-
ers — hence, those exposed to artificial light — have probably a higher onset of
cancer in that night work disrupts the circadian rhythm. In this context, the
exposure to artificial light is classified as probably carcinogenic (see IARC). For
this reason, light pollution may be considered related to probably carcinogenic
factors.

Based on data availability, this note aims at evaluating whether the specific
case of outdoor light pollution has an impact on the Population-Infected Ratio
(PIR) associated to SARS-CoV-2 (COVID-19) pandemic. The ground of the
study is the scientific evidence that outdoor light pollution may affect human
health (see e.g. Chepesiuk, 2009 and Kloog et al., 2008).

Our analysis is based on Italian provincial data. Italy is the fifth country
in the world by number of deaths (35,123) and the fifteenth nation by number
of infected people (246,488) with a fatality rate of 14.25% E Furthermore,
contagions and deaths in Italy are mainly concentrated in some regions of the
northern Italy (Lombardia, Piemonte and Emilia Romagna)with a high degree
of territorial heterogeneity.

Becchetti et al. (2020) find for Italy at a provincial level a statistically sig-
nificant positive correlation of the poor quality of air with COVID-19 outcomes.
In particular, provinces with high levels of PM10 or PM2.5 have a high number
of contagions and deceases for COVID-19.

IThe data are updated to 28 July 2020 (WHO).



We analyze another important source of pollution, i.e. outdoor light pollu-
tion, and we wonder whether it has a role in explaining COVID-19 contagions.
In words, due to the effects of light pollution on human health, in particular
way the weakening of immune system, in provinces with high levels of outdoor
light pollution is it more likely to have higher contagions?

We estimate a cross-section model for Italian provinces and we find that
there is a relation between some measures of outdoor light pollution and the
COVID-19 PIR.

To the best of our knowledge, this is the first paper dealing with the possible
effects of outdoor light pollution on COVID-19 contagions.

Following Falchi et al. (2019), we use three different measures of outdoor light
pollution: radiance (R), flux per capita (FC) and flux per dollar (FD). We find
strong evidence concerning the FC and FD measures of outdoor light pollution.
The positive relation between FC and PIR may confirm that high levels of
outdoor light pollution per capita exposure are connected with high COVID-
19 spread. The negative relation between FD and PIR is strongly influenced
by the effect of gross domestic product (GDP), according to which territories
with higher income are more likely to be exposed to COVID-19 contagions (see
Becchetti et al. 2020). The results hold after the introduction of control variables
concerning population density, income, population ageing and air pollution.
Moreover, we find that a relevant improvement of the goodness of fit of the
model is obtained using a nonlinear model.

The note is structured as follows. Section B describes the dataset and the
methods used for the empirical analysis. In Section [3] we present and discuss

the results. Section M concludes.

2. Data and methods

2.1. Data

Our sample concerns the 107 Italian provinces (NUTS-3 level). Different

light pollution measures have appeared in the literature. Following Falchi et al.



(2019), we here consider three types of measures: flux per capita (FC), flux per
dollar (FD) and radiance (R). FC is the artificial light flux per capita (light flux
divided by population and multiplied by 10%), FD is the artificial light flux per
GDP unit and multiplied by 10®, with GDP measured in US$ using purchasing
power parity; the measures of artificial light incorporated in FC and FD are
related to R, but differ from it. The fluxes of artificial light (the numerators
of FC and FD) are a metrics of how much outdoor light is produced in each
pixel area from the Atlas, while R is a measure of artificial night sky bright-
ness at the zenith from the center of each pixeﬂ Data on FC, FD and R are
provided by Falchi et al. (2019) and are referred to 2014ﬂ The range of varia-

2“The two things are related, but not in a trivial way. As an example, the flux coming
from the Upper Bay in New York is essentially zero (no light sources are on the water), while
the night sky observed from the center of the bay is extremely light polluted, due to the
lights coming from the surrounding sources. In fact, the Atlas radiance data for each pixel
was computed taking into account the outdoor lights coming from a circle of 200 km radius.”

(Falchi et al. 2019, 2).
3We point out that 2014 is the last year in which the data at the provincial level (NUTS-3

level) are available. However, we are in the position of using such a dataset for describing
the reality of the Italian provincial outdoor light pollution also for the year 2020, basically for
two reasons. First, the data for the measurement of light pollution based on radiance both in
absolute and per capita terms have shown for Italy a slight increase in light intensity, almost
equal to 5.5%, between 2014 and 2020 (see

https://wuw.lightpollutionmap.info/LP_Stats/country.html?country=Italy). Such an
increase is of a rather small entity so that one can state that outdoor light pollution in Italy
is substantially invariant from 2014 to 2020. Second, we have arguments for stating that also
the distribution of light pollution at a provincial level is invariant over the last quinquennium.
Indeed, light pollution is mainly due to human activities and can be reasonably linked to the
urbanization level of a territory. In this respect, the proportion of the urban population in
Italy moves from 69,27% in 2014 to 70,74% in 2019 — which is the last available year (see
https://www.statista.com/statistics/270471/urbanization-in-italy/). Thus, we have a
very small increase of the urbanization level in the considered period of about 2,1%, hence
pointing to a small variation of the distribution of the citizens in the Italian territory. To
conclude: Italy shows small variations either of light pollution as well as of urbanization level
from 2014 to 2019/2020. Therefore, the data related to 2014 — which, we repeat, are the most

recent ones of high quality at a provincial level — can be suitably used as a good proxy for



tion of R is 0.0819 (Bolzano) - 3.63 (Monza Brianza) med/m? (Millicandela per
square meter), while those of FC and FD areﬂ 7.75 (Naples) - 23.9 (L’Aquila)
and 0.156 (Bolzano) - 1.11 (Siracusa), respectively. As control variables for the
multivariate analysis, we consider the population density of 2019 (ISTAT), the
value added per capita of 2017 (ISTAT), the fraction of the population over 65
years old of 2019 (ISTAT), the number of motor vehicles per 1,000 inhabitants
in 201@ PIR associated to COVID-19 is given by the ratio between the stock of
infected people and population; such a quantity is also computed at a provincial
level. The website from which the data on infected people are taken is the one
of the Italian Ministry of Health:
http://www.salute.gov.it/imgs/C_17_notizie 4922 1 file.pdf. The con-
sidered time span considered goes from 30" January 2020 to 215 June 2020.
The population is the one of 2019 and it is retrieved from ISTAT. For having a
clear view of the data, PIR is multiplied by 1,000.

2.2. Methods

To assess the relation between outdoor light pollution and PIR, we present
both a univariate (Section and a multivariate (Section analysis.

A descriptive analysis introduces the univariate study. Then, pairwise re-
lations between the PIR and outdoor light pollution variables are presented.
Both raw and ranked data have been analyzed. Such a twofold approach is
justified for two reasons. First, there are a few outliers that may affect the
overall study. Second, the two studies offer the opportunity to observe different
features of the relations. Indeed, in the former study, the average comovement

of the considered quantities is strongly affected by clusters of extreme values

provincial light pollution in Italy in 2020.
44The units used for calculation are somewhat arbitrary, simply obtained by multiplying

the radiance of the VIIRS dataset (in nWem?2sr—1!) by the pixel area measured in square
kilometers, obtaining the dimensions of a radiant intensity in 10~"Wsr—1.” (Falchi et al.

2019, 15).
5The last data publicly available for the provincial value added per capita are referred to

2017 whereas those for private motor vehicles are updated to 2012.



and the presence of deviations within the samples; differently, the latter one
focuses only on regularities and dissonances between the positions of the indi-
vidual provinces in the overall rankings, so that the level of the ranked variables
is not taken into consideration.

In the ranked data approach, provinces are ranked in increasing order ac-
cording to the values of PIR, R, FC and FD, obtaining four series of ranks.

To deepen the analysis of the phenomenon, Section [3.2 presents a multi-
variate regression study. Various control variables are considered alongside the
outdoor light pollution measures. These variables are the population density
(Dens), the value added per capita (VAC), the fraction of the population over
65 years old (Over65), the number of motor vehicles per 1,000 inhabitants (Ve-
hicles). Dens may be relevant for the speed of spread of an outbreak due to the
increasing chances of social interactions, the VAC is a measure of the wealth
produced in each province, Over65 indicates the portion of the population more
sensitive to the contagion, Vehicles is a proxy of air pollutionﬂ

Starting from the light pollution variables (R, FD, FC), a forward selection
procedure is applied to select the most appropriate model. Differently from what
the univariate analysis suggested, the variable R does not display a significant
relation with respect to PIR. Both the other two measures of light pollution, FC
and FD, result significant, with opposite effects: FC positively relates to PIR,
while FD shows a negative relation with PIR. Moreover, a nonlinear transforma-
tion is proposed, obtaining a better fit and some additional insights, preserving

the qualitative results obtained in the linear case.

60ur measure of environmental pollution differs from the one of Becchetti et al. (2020)
based on PM10 and PM2.5. Nevertheless, particulate data are only available where the
detection units are present (typically in the regions capitals) and provincial data are obtained
by distributing regional data according to population weights. In our case, Vehicles is already

available at a NUTS-3 level.



3. Results and discussion

3.1. Univariate analysis

3.1.1. Descriptive

As a preliminary step, Table [1| presents a summary of the descriptive statis-
tics related to the considered datasets.

We can notice that, although of different magnitude, the variables share a
moderate coefficient of variation. They are generally positively skewed, except
FD which display a weak negative skewness. The extreme values produce a
strong excess kurtosis for R. The variability in our sample is the consequence
of the heterogeneity of the Italian provincial conditions, in many aspects. This
feature may be desirable, since this single country analysis may be representative
of different local frameworks. For what concerns the (significant) correlations,
R is negatively correlated with FC and FD, and display a strong link with Dens.
This latter relation follows from the fact that radiance increases with population
density, whereas the negative correlation of R with FC and FD is in line with
the inverse relation between outdoor light pollution in the big areas, such as the
metropolises, and outdoor light pollution per inhabitant or per unit of GDP.
FC and FD are positively correlated. The negative correlation between FC and
Dens can be explained because Dens is related with the denominator of FC.
For the same reason, FD negatively correlates with VAC. The large correlation
between VAC and Over65 deserves attention: the ageing of the population is
related with the level of income, and in Italy the income gap between provinces
is quite large. For a similar reason, we also notice that Over65 is positive
correlated to Vehicle. The two high correlation coefficients help in explaining

the collinearity issues presented in Section [3.2

8.1.2. Relation between PIR and outdoor light pollution
Figures[I|and [2| present the link between the three indicators for outdoor light
pollution in our sample. For a better reading, the linear trend is juxtapposed,

when the slope of the line is statistically significant. Notice the inverse relation



Variable Mean Median ~ Minimum  Maximum
PIRx1000  3.9875 2.5740 0.27085 18.354
R 0.59964 0.48500 0.081900 3.6300
FC 16.262 16.200 7.7500 23.900
FD 0.58713 0.55600 0.15600 1.1100
Variable Std. Dev. C.V. Skewness  Ex. kurtosis
PIRx1000  3.7549 0.94167 1.3931 1.9205
R 0.52998 0.88382 3.4713 15.189
FC 3.5613 0.21900 —0.11806  —0.37358
FD 0.22303 0.37986 0.37606  —0.76405
PIR R FC FD VAC Over65 Dens Veh.
1.0000 0.1973* —0.0641 —0.4473* 0.3907* 0.1754  0.0693 —0.0259 PIR
1.0000 —0.3622* —0.3819* 0.1599 —0.0482 0.9231* —0.1638 R
1.0000  0.6836* —0.1480 —0.0162 —0.4738* 0.0377 FC
1.0000 —0.2850* 0.0712 —0.3856* 0.1060 FD
1.0000 0.8833*  0.1258 0.1602 VAC
1.0000 —0.0394  0.1969* Over65
1.0000 —0.1126 Dens
1.0000 Veh.

Table 1: Summary of the descriptive statistics of the PIR and the three measures of outdoor

light pollution R, F'C and F'D, for the 107 Italian provinces. The correlation matrix between

the PIR and all the considered variables are also reported. A star indicates correlations that

are significant at 5% level.



between R and the other two indicators, FC and FD, while FC and FD show a
clear positive relation.

Figure (left panels) presents the scatter plots of the relations between PIR
and the outdoor light pollution measures. A positive relation is found between
R and PIR, while a negative one is found between FD and PIR — as expected.
These results are confirmed once some PIR outliers are removed: we have consid-
ered outliers for PIR those values greater than p 4 20. The behaviors observed
with raw data are confirmed, once ranked data are considered (see Figure
right panels). The analysis of ranked data allows to consider the observed re-
lations more robust, because ranked data are less sensitive to concentrated and
extreme values that can produce instability in the estimated relation. Due to

the wide range of local conditions, this stability appears welcome.

3.2. Multivariate analysis

To obtain a complete picture of the phenomenon, we proceed to a multivari-
ate analysis, setting as independent variable the PIR and using as regressors the
measures of the outdoor light pollution (R, FC, FD) and some control variable
(Dens, VAC, Over65, Vehicles). Table [2| presents the results of the estimatesm

First of all, we estimate the univariate model M1, relating the PIR to the
measure of radiance R (as suggested by Figure [2| first panel). From Table 2] R
appears significant with a positive coefficient.

We proceed to model M2, by adding to R the other two light pollution
measures, FC and FD. These added variables turn out to be significant with
opposite sign coefficients. We exclude multicollinearity issues between R, FC
and FD (VIFs lower than 2 for all variables).

The control variables Dens, VAC, Over65 and Vehicles are progressively in-
troduced, following a stepwise procedure. At each step the control variable

which is most correlated with the residuals of the previous model is added.

7This cross-section is run on a sample of 107 observations which is sufficient for the relia-

bility of the results (see Harrel 2015, Sect 4.4).
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FC versus R (with least squares fit)
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Figure 1: Graphical representation of the relationship between the

pollution R, FC and FD.

11

measures of outdoor light



PIR versus R (with least squares fit)
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Figure 2: Graphical representation of the relationship between the PIR and the measures of

light pollution R, FC and FD: left panels raw data; right panels ranked data.
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M1 M2 M3 M4 M5

const 3.1493" 2.8313" 1.1671 1.1315 0.4875
(0.0000) (0.098) (0.4987) (0.5349) (0.2384)
R 1.3977° 0.6134 0.6821 0.6875 0.1139
(0.042) (0.3339) (0.2644) (0.2676) (0.4162)
FC - 0.4955™" 0.5287" 0.5291"" 0.1756™""
- (0.0001) (0.0000) (0.0000) (0.0000)
FD - —12.3820""  —12.9729""  —12.9802""" = —4.8374""
- (0.0000) (0.0000) (0.0000) (0.0000)
Over65 - - 6.1147" 6.0911°"* 2.0061°"*
- - (0.0027) (0.0034) (0.0000)
Vehicles - - - 4.3839¢-5 —1.8415e¢-4
- - - (0.9498) (0.2436)
R? 0.0389 0.3159 0.3741 0.3741 0.6105
AdjR? 0.0298 0.2960 0.3496 0.3431 0.5912
AIC 585.5347 553.1609 545.6461 547.6419 229.5880
BIC 590.8804 563.8522 559.0102 563.6788 245.6250

Table 2: Estimation summary for different regression models (p-values between parentheses).
The dependent variable is PIRx1000 in models M1 to M4, while it is logPTRx1000 in model
M5. Some goodness of fit indicators are reported: R?, AdjR?, Akaike information criterion
(AIC), and Schwarz or Bayesian information criterion (BIC). Significance codes: * 10%, **

5%, *** 1%.
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Then, the multicollinearity is checked. If the additional variable introduces
multicollinearity to the set of regressors, it is discarded and the procedure con-
tinues to the next variable most correlated with the residuals.

Following this method, the variable Over65 is added, obtaining model M3.
From Table |2, we notice that Over65 is significant, with a positive coefficient,
and the coefficients of FC and FD variables remain stable and significant.

The next step, consists in adding Dens to the model, but this introduces
collinearity (VIF pens > 8 and unstable coefficient of R). Therefore, we dis-
card Dens and proceed including VAC. Also VAC introduces collinearity, even
stronger than Dens (VIFy 4¢ > 14) and wide parameter instability. So the next
variable to add remains Vehicles, obtaining model M4. The new variable turns
out to have a non-significant coefficient, worsening the goodness of fit and in-
formation criteria. In conclusion, model M3 seems to be the most appropriate

one to describe the phenomenon, with an adequate goodness of fit.

3.2.1. Nonlinear model

Model M3 delivers an adequate description of the phenomenon. However, a
nonlinear transformation can better describe the relation between the variables.
For this reason, we report the estimation of the regression model M5, with the

log of PIR as independent variable:
log(PIRx1000) = a 4+ 51R + B2FC + B3FD + B40ver65 + 35 Vehicles + . (1)

For sake of interest and space, we do not report the entire stepwise procedure,
but only the selected specification, i.e. model M5. M5 appears to be the best
model among the presented ones: the R? and the information criteria attain
their best values, with a considerable improvement over M3. The qualitative
interpretation of the estimation results is consistent across all models. Moreover,
the nonlinear specification allows to interpret the estimated coefficient as
semi-elasticities.

The empirical analysis presented above shows that outdoor light pollution

measured in terms of flux per capita positively relates to the spread of infection.
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Territories that are more exposed to outdoor light pollution per inhabitant are
more likely to develop COVID-19 contagions. This result supports the idea that
the depression of the immune system induced by the outdoor light pollution
makes the human body more vulnerable to attack from viruses such as Covid-
19. The negative relation between FD and PIR, instead, captures the positive
effect of income on COVID-19 outcomes. Economic activities generate social
interactions that increase the virus diffusion and for this reason lockdown policies
adopted by the Government have dealt with not only the households but also
the firms.

4. Conclusions

In this note we show that outdoor light pollution may have a role in explain-
ing COVID-19 contagions. Following Falchi et al. (2019), we consider three
measures of light pollution: FC, FD and R. In the multivariate analysis, in-
troducing some control variables, we find that FC positively affects the PIR
associated to COVID-19, whereas FD has a negative effect on contagions and
R does not exhibit any statistically significant relation with COVID-19 disease.
We think that the positive sign of FC, a metrics considering the incidence of the
outdoor light pollution on population, captures the effects of the outdoor light
pollution on human health, thus predisposing people to COVID-19 pandemic.
The negative relation of FD on PIR, instead, relates to the income effect incor-
porated in FD, according to which higher income is associated to an increase
of COVID-19 infections. Furthermore, we find that the explanatory power of
the model in log-linear form is better than the linear one, thus showing a non
linear effect in the relations between the measures of outdoor light pollution and
COVID-19 contagions.

Our analysis is intended to be seminal to further ones, considering in gen-
eral the alteration produced by outdoor light pollution on the ecosystem and
suggesting policies aimed at mitigating this source of pollution. In addition,

outdoor light pollution may also be related to night social activity (non directly

15



related to population density or income). Therefore, our study provides some
suggestions on the existence of a link between night activity and COVID-19.
Moreover, it is important to give credit to two limitations of the study: the
nature of the employed data — which are not obtained by individual measurement
instruments, being of ecological type — and the lack of the analysis of indoor light
pollution. Further research can be carried out by removing such constraints.
Finally, we underline that our proposal has not the ambition to find the key
variables explaining the spread of the COVID-19. As we show in the paper, the
relation between some light pollution measures (namely FC and FD) and PIR is
supported by the data concerning the Italian provinces. This can be a suggestion
for the inclusion in future analysis and scientific research of the light pollution
for disentangling the patterns of pandemic diseases — including COVID-19, of
course. In this respect, we also carried out some preliminary elaborations on
the direct relation between air pollution — whose proxy is the number of private
vehicles per 1000 inhabitants — and PIR, exploring various models. Our results
do not support any significant relation between air pollution and PIR. Such
elaborations are not shown in this note; indeed this research theme deserves a

more focused future research.
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