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The Genomic Landscape of Actinic Keratosis

Jason Thomson1,2,3, Findlay Bewicke-Copley2,8, Chinedu Anthony Anene2,8, Abha Gulati1,3,
Ai Nagano4, Karin Purdie1, Gareth J. Inman5,6, Charlotte M. Proby7, Irene M. Leigh1,
Catherine A. Harwood1,3,9 and Jun Wang2,9
Actinic keratoses (AKs) are lesions of epidermal keratinocyte dysplasia and are precursors for invasive cuta-
neous squamous cell carcinoma (cSCC). Identifying the specific genomic alterations driving the progression
from normal skin to skin with AK to skin with invasive cSCC is challenging because of the massive UVR-induced
mutational burden characteristic at all stages of this progression. In this study, we report the largest AK whole-
exome sequencing study to date and perform a mutational signature and candidate driver gene analysis on
these lesions. We demonstrate in 37 AKs from both immunosuppressed and immunocompetent patients that
there are significant similarities between AKs and cSCC in terms of mutational burden, copy number alter-
ations, mutational signatures, and patterns of driver gene mutations. We identify 44 significantly mutated AK
driver genes and confirm that these genes are similarly altered in cSCC. We identify azathioprine mutational
signature in all AKs from patients exposed to the drug, providing further evidence for its role in keratinocyte
carcinogenesis. cSCCs differ from AKs in having higher levels of intrasample heterogeneity. Alterations in
signaling pathways also differ, with immune-related signaling and TGFb signaling significantly more mutated in
cSCC. Integrating our findings with independent gene expression datasets confirms that dysregulated TGFb
signaling may represent an important event in AK‒cSCC progression.

Journal of Investigative Dermatology (2021) 141, 1664e1674; doi:10.1016/j.jid.2020.12.024
INTRODUCTION
Actinic keratoses (AKs) are dysplastic epidermal keratinocyte
lesions resulting from chronic UVR exposure. It is generally
accepted that AKs are cutaneous squamous cell carcinoma
(cSCC) premalignancies (Siegel et al., 2016): at least two-
thirds of cSCC arise from AK, although fewer than 0.6% AK
per year will progress to cSCC (Criscione et al., 2009).

Identifying genomic alterations driving AK‒cSCC progres-
sion is challenging because of the high level of background
mutations in keratinocytes associated with UV exposure.
cSCCs have an average tumor mutational burden (TMB) of 50
mutations per megabase DNA, making them among the most
mutated of all human cancers (South et al., 2014).
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Epigenomic alterations and immunological factors (reviewed
in Bottomley et al. [2019]) add further layers of complexity in
characterizing this progression.

Several molecular genetic studies have examined AK and
cSCC at the levels of gene expression, chromosomal insta-
bility, and mutations in known cancer genes. These studies
generally show that AK and cSCC possess similar genetic
alterations with some conflict on whether AKs are more or
less genomically unstable (summarized in Supplementary
Table S1). However, most AK‒cSCC genetic studies have
used targeted techniques on fixed tissue, which have many
limitations and biases. Only three previous studies have used
whole-exome sequencing (WES) to study AK; these studies
have included �10 samples and reported similar mutational
spectra in AK and cSCC with frequent mutations in known
cSCC tumor suppressor genes TP53, NOTCH1, NOTCH2,
and FAT1 (Albibas et al., 2018; Chitsazzadeh et al., 2016;
Rodrı́guez-Paredes et al., 2018) (Supplementary Table S2).

In this study, we present the largest WES study of AK con-
ducted to date and include AK from both immunocompetent
(IC) and immunosuppressed (IS) patients. We demonstrate that
AKs are strikingly similar to cSCC at the genomic level with
similar patterns of driver genes and copy number alterations.
We also demonstrate mutational signature 32 in all samples
from patients exposed to azathioprine, providing further evi-
dence for its role in keratinocyte carcinogenesis at the pre-
cursor stage. By integrating our mutational pathway analysis
with independent gene expression datasets, we have identified
that the dysregulation of TGFb signaling may represent a
critical gatekeeper pathway resulting in AK‒cSCC progression.

RESULTS
Patients and samples

A total of 37 AKs from 37 patients (median age ¼ 70 years,
range ¼ 48e86 years) were included (Supplementary
s. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. This is
pen access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table S3): 23 AKs from IS patients and 14 AKs from IC pa-
tients. WES data from cSCC samples previously analyzed for
16 of these patients were also available for comparison
(Inman et al., 2018).

Mutational burden and mutational signatures

WES targeted 334,378 exons from 20,965 genes and yielded
a mean coverage of �53 with 83% of targeted bases covered
by �20 and 94% of them covered by �10. In total, 80,511
somatic mutations (range ¼ 12e8,326 per AK) were identi-
fied. Of these, 49,853 were nonsynonymous (range ¼
9e4,993 per AK) with a median of 1,676 total and 1,071
nonsynonymous mutations per AK (Figure 1a and
Supplementary Tables S4 and S5). This corresponds to a mean
TMB of 43.5 mutations per megabase DNA, similar to the
TMB of 50 mutations per megabase DNA we previously re-
ported in cSCC (Inman et al., 2018).

AKs from IS patients were significantly more mutated than
those from IC patients when comparing total nonsynonymous
mutations (median ¼ 1,609 vs. 729 mutations, respectively;
Wilcoxon test, P ¼ 0.03; Figure 1b). The results remained
significant when controlled for per sample read depth
(Supplementary Table S5). AKs from IS patients had a signif-
icantly higher median TMB than those from IC patients (55.9
and 22.3 mutations per megabase DNA, respectively; Wil-
coxon test, P ¼ 0.03). There was no significant difference in
nonsynonymous mutation rates from AK compared with
those from cSCC (median ¼ 1,070 vs. 912; Wilcoxon test,
P ¼ 0.32).

Nine single-base substitution mutational signatures
(Alexandrov et al., 2020, 2013) were identified (Figure 1c). A
total of 33 AKs (89%) displayed characteristic UVR signatures
(7a/b, 13e97%), mainly C > T transitions at dipyrimidine
sites. A total of 20 AKs (54%) harbored variable levels
(5e100%) of signature-5 mutations, and 35 AKs (95%) had
low levels of signature-1 mutations (1e13%). The etiologies
of signatures 5 and 1 are unknown, but both are commonly
found at low levels in most cancers and are clock-like
because the number of mutations correlates with age.

Signature 32 was detected in 22 AKs (59%), exclusively in
patients exposed to azathioprine (Figure 1c) (Fisher’s exact
test, P < 0.00001), reproducing our findings in cSCC. In
contrast to cSCC, the prevalence was not significantly asso-
ciated with the duration of azathioprine exposure (r ¼ 0.21,
P ¼ 0.33, Supplementary Table S6).

Somatic copy number aberrations

Copy number aberrations (CNAs) and loss of heterozygosity
(LOH) events were also examined (Figure 2 and
Supplementary Table S7). Across our AK cohort, a median of
9% (range ¼ 0e62%) of each AK genome was affected by
CNAs (Supplementary Table S8), similar to cSCC (Wilcoxon
test, P ¼ 0.68) and independent of immune status (Wilcoxon
test, P ¼ 0.26). There was no significant correlation between
mutational burden and the proportion of the genome affected
by CNAs (r ¼ 0.25, P ¼ 0.13).

Loss of chromosome region 9p (43%), 13q (32%), 3p
(24%), and 5q (24%) were the most frequent copy number
losses; gain of 3q (19%), 8q (19%), 5p (16%), chromosome
20 (16%), and 1q (14%) were the most frequent gains. The
most common AK CNAs correlated significantly with those of
cSCC (r ¼ 0.68, P ¼ 0.003, Supplementary Table S9).

GISTIC (Mermel et al., 2011) analysis identified 19 signif-
icantly deleted regions (q < 0.25) encompassing 859 genes,
including 27 known cancer genes (Catalogue Of Somatic
Mutations In Cancer database [Tate et al., 2019]). 9p21.3 was
the most significantly deleted segment in AK and harbors 10
cancer genes, including CDKN2A, JAK2, and MLLT3
(Supplementary Figure S1a and Supplementary Table S10).
Nine regions were significantly gained (q < 0.25) encom-
passing 59 genes, none known to be cancer related
(Supplementary Figure S1b and Supplementary Table S11).
Analysis in IC and IS subgroups did not resolve any major
differences because of the limited power within each group
(Supplementary Table S12).

Significantly mutated genes in AK

We used three methods to identify significantly mutated
genes (SMGs): MutsigCV (P < 0.01) (Lawrence et al.,
2013), OncodriveFM (q < 0.05) (Gonzalez-Perez et al.,
2012), and OncodriveCLUST (q < 0.05) (Tamborero
et al., 2013). A total of 44 SMGs were confirmed by at
least two methods (Figure 3a and b and Supplementary
Table S13) and included the tumor suppressor genes
consistently reported as mutated in cSCC (TP53,
NOTCH1, NOTCH2, FAT1, and KMT2C). HMCN1 was
also altered in 50% of AKs and cSCC, consistent with
previous smaller studies (Albibas et al., 2018; Durinck
et al., 2011; Pickering et al., 2014). Additional SMGs
included CHEK2, PBRM1, PTPRB, EBF1, STRN, and PAX3.
All of them are causally implicated in other cancers.
PIK3CA was the only oncogene significantly mutated us-
ing all the three methods: nonsynonymous mutations were
present in 12 AKs (32%), with several of them targeting
the N-terminal portion, including one nonsense and three
missense mutations in the PI3K_p85B domain and a hot-
spot splicing mutation (n ¼ 3) just downstream of this
domain (Figure 3d). Five AK mutations (including the
splice-site hotspot) are known gain-of-function oncogenic
mutations (Supplementary Table S14) (Chakravarty et al.,
2017).

Other SMGs (IGF1R, ATAD2, ABI3BP, MSR1, ADAMTS9,
ADAM19, KIF13B, DAB2, EIF4G3, GPR161, USP34,
KCNK5, ACSS1, TGFBRAP1, RAB22A, XAB2, PEG10,
IMPA1) have all been associated with other cancers: muta-
tions in all of them except in RAB22A are reported in cSCC in
the Catalogue Of Somatic Mutations In Cancer database
(https://cancer.sanger.ac.uk/cosmic [accessed 7 January
2020]) (Tate et al., 2019). The remaining 12 SMGs
(HEATR5B, KIF24, ANKRD17, AACS, MYEF2, GXYLT1,
CCDC71, EPB41L2, GPS1, SLC44A3, INSIG2, and RPUSD2)
have no known role in other cancers but are found mutated in
cSCC in the Catalogue Of Somatic Mutations In Cancer
database. The frequency of mutations in SMGs was inde-
pendent of the immune status, suggesting that AKs in both
groups have common drivers (Supplementary Table S15). The
majority of mutational signatures present in the 44 SMGs
were signature 32 (40%) and signature 7 (38%) (Figure 3c),
implicating azathioprine and UV exposure as key environ-
mental carcinogens.
www.jidonline.org 1665
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IS and IC subgroup analysis using our SMG pipeline
identified 23 SMGs (detected by both OncodriveFM and
MutsigCV, P < 0.05 cutoff was implemented because of
smaller sample sizes) in the IS group and 10 SMGs in the IC
group (Supplementary Tables S16 and S17). Onco-
driveCLUST was unsuccessful for this analysis. TP53,
NOTCH1, and NOTCH2 were the only SMGs common to IS,
IC, and the combined cohort.

Comparison between AK and cSCC SMGs

We integrated somatic mutations and CNAs to produce a
mutation OncoPrint for the 44 AK SMGs (Figure 3b) and
compared this with the OncoPrint for the 22 cSCC SMGs
from our previous series. TP53, NOTCH1, and NOTCH2
were the only shared SMGs, and 6 of the total 63 SMGs
showed differed frequencies between AK and cSCC
Journal of Investigative Dermatology (2021), Volume 141
(Supplementary Table S18). CCDC71L (chi-square test, P ¼
0.004) and STRN (P ¼ 0.014) were altered at higher fre-
quency in AK, whereas LCLAT1 (P ¼ 0.032), HERC6 (P ¼
0.029), MAP3K9 (P ¼ 0.043), and TMEM51 (P ¼ 0.048) were
altered at a higher frequency in cSCC. When adjusted for
multiple comparisons, none of the 63 SMGs were altered
significantly between AK and cSCC.

We also compared AK SMGs with well-differentiated and
moderately and/or poorly differentiated group-specific SMGs
(Inman et al., 2018). There were no significant differences
between SMGs in AK and those in well-differentiated cSCC,
but 10 moderately and/or poorly differentiated cSCC SMGs
were significantly more altered in cSCC than in AK (PRB1,
TMEM51, LRP1, POLH, ACVR2A, RPLP1, ZZEF1, VWF,
ICAM1, and HECTD4) (Supplementary Table S18). The mu-
tation distribution along the protein domains was similar for
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AK and cSCC SMGs (Supplementary Figure S2), with the
exception of the PIK3CA hotspot in AK, as described earlier.

Genes previously implicated in cSCC, such as CDKN2A
and HRAS, were found altered at similar rates between our
AK and cSCC cohorts (54.1% and 45% altered for CDKN2A,
respectively, and 16.2% and 22.5% altered for HRAS,
respectively; Supplementary Table S18).

We next compared the cancer cell fractions of non-
synonymous mutations between AK and cSCC across the 63
SMGs to assess their clonality and to identify whether mu-
tations in any genes are more clonally dominant in AK or
cSCC using synonymous and untranslated region mutations
as a negative control. Two genes (CACNA1C and KCNK5)
showed significant evidence that nonsynonymous mutations
in them were more clonally dominant in AK than in cSCC,
suggesting that these genes may be under direct selection in
the AK lineage (Supplementary Table S19 and Supplementary
Figure S3).

Inference of clonal evolution and order of genetic changes

To assess the levels of intrasample heterogeneity, we per-
formed clonality analyses using Expanding Ploidy and Allele-
frequency on Nested Subpopulations (Andor et al., 2014),
which estimates the number of clones and their proportions
within each sample. A total of 31 AKs (84%) had sufficient
numbers of somatic mutations (�200) for analysis. Variation
in intrasample heterogeneity was identified, with a median of
four (range ¼ 1e9) clones per AK (Figure 4a) compared with
a median of six in cSCC (Wilcoxon test, P < 0.01, Figure 4b).

For each of the 44 SMGs, we assessed the order of muta-
tion acquisition inferred from the aggregate frequencies at
which they were found to be clonal or subclonal. More than
70% of mutations in 22 SMGs (TP53, NOTCH1, FAT1,
ADAMTS9, CCDC71, RB1, PBRM1, ADAM19, CHEK2,
KIF13B, DAB2, ABI3BP, GPR161, XAB2, GPS1, IMPA1,
USP34, GXYLT1, EPB41L2, PAX3, KCNK5, and INSIG2)
were clonal, indicating that alterations in these genes are
more likely to be early events in AK development. Compared
with the 22 SMGs mentioned earlier, a relatively larger pro-
portion of subclonal nonsynonymous mutations, implying
later development, were found in the remaining 22 SMGs,
although more clonal than subclonal mutations were still
observed for most of them, except for PIK3CA, RAB22A, and
KIF24 (Figure 4c). For the three SMGs shared by both AK and
cSCC, patterns of clonality were similar, with a larger pro-
portion of clonal mutations observed in TP53 and NOTCH1
than in NOTCH2.

Seven AKs had more than one nonsynonymous mutation in
TP53, and we estimated the timing of multiple mutations in
these lesions. In four samples (AK05, AK33, AK34, and
AK35), all TP53 mutations appeared to be clonal and thus
likely early events on the basis of clonality analysis. Two
samples (AK04 and AK32) showed a mixture of early and late
(i.e., subclonal) events, and one sample (AK38) exhibited
both TP53 mutations as late events (Supplementary
Figure S4aed). These data suggest that although TP53 mu-
tations are commonly observed as early events, additional
mutations can occur later on in the development of AK.

Comparison of intrapatient AK with cSCC

A total of 16 AKs (43%) also had cSCC WES from the same
individual (mostly from anatomically distinct sun-exposed
fields) (Supplementary Table S20). There was a significant
positive correlation in the mutational signature profiles of
www.jidonline.org 1667
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71.4% (10 of 14) of the AK‒cSCC pairs for which data were
available (Supplementary Figure S5a and b). Seven AK‒cSCC
pairs had overlapping CNA segments involving a median of
20% of total CNA segments, most commonly present on
chromosomes 3, 9, and 17. The direction of CNAs was
largely concordant, although not statistically significant (chi-
square test, P ¼ 0.06) (Supplementary Table S21).

Mutational pathway analysis

We compared significantly mutated pathways between AK
and cSCC (Figure 5a and b). Many immune system signaling
pathways were significantly more mutated in cSCC than in
AK (TCR, Fc epsilon-RI, RIG-I-like receptor, and chemokine
signaling). TGFb, adipocytokine, GnRH, and insulin
signaling were also significantly more mutated in cSCC
Journal of Investigative Dermatology (2021), Volume 141
(Figure 5a). Several metabolism pathways were differentially
mutated: ether lipid, pyruvate, or a-linolenic among others
were significantly more mutated in cSCC (Figure 5b).
Integration of genomic drivers, CNAs, and gene expression
profiles

We integrated the existing gene expression profiles of normal
skin, AK, and cSCC to investigate the potential tumor-
suppressing or -promoting roles of AK SMGs through the
pattern of their expression in disease progression. We used
five independent datasets (described in the Materials and
Methods section). The SMG hierarchies across the datasets
were broadly concordant with two main clusters observed:
one consisting of SMGs upregulated in normal skin and
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progressively downregulated in AK and cSCC, and the other
cluster demonstrating the reverse pattern (Figure 6a).

In AK versus normal skin, five SMGs were significantly
downregulated in at least two datasets (KIF24, KCNK5,
EPB41L, INSIG2, and ABI3BP), suggesting a tumor suppressor
role (Figure 6 and Supplementary Figure S6a). NOTCH1 was
the only significantly upregulated SMG (Figure 6b). In cSCC
versus AK, IMPA1 was the sole SMG to be significantly
differentially expressed in at least two datasets, being upre-
gulated in cSCC, suggesting a tumor promoter role (Figure 6c
and Supplementary Figure S6b).
Because the TGFb signaling pathway was significantly
more mutated in cSCC than in AK, we examined the
expression patterns of TGFb pathway genes in normal skin, in
skin with AK, and in skin with cSCC. The datasets show two
clusters of progression-dependent dysregulation of TGFb
signaling (Figure 6d). One cluster showed an upregulation of
genes in the normal skin that become increasingly more
downregulated, progressing from AK to cSCC, and the sec-
ond cluster had the reverse pattern (Figure 6d).

We assessed the gene expression of significantly deleted and
gained regions identified by our GISTIC analysis, which
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revealed 55 genes in the deleted regions that were down-
regulated (in at least two datasets) and two genes in the gained
regions that were upregulated (in at least two datasets) in AK
compared with those in the normal control (Supplementary
Figure S7aec).

DISCUSSION
This study, the largest AK genomic dataset to date, demon-
strates that AKs and cSCC are strikingly similar at the
genomic level in terms of TMB, patterns of driver genes, and
CNAs. The AK TMB of 43.5 mutations per megabase DNA is
higher than previously reported (Albibas et al., 2018;
Chitsazzadeh et al., 2016), which is likely a consequence of
having a majority of the AKs from IS individuals because we
have demonstrated immunosuppression results in signifi-
cantly higher mutation rates. The TMB from the AKs of IC
patients (30.4) is similar to the 34.5 reported previously
(Albibas et al., 2018).

We detected the expected UV signature (7a/b) in most AKs.
Furthermore, signature 32 was present in all AKs from pa-
tients exposed to azathioprine, further implicating this drug in
the early stages of cSCC development (Inman et al., 2018).
The significant positive correlation in the matched AK‒cSCC
mutation profiles also provides further evidence that the same
underlying mutational processes are at play in both AK and
cSCC even when they are from different anatomical sites.

We identified 44 AK SMGs, including many classical tu-
mor suppressor genes (TP53, NOTCH1, NOTCH2, and
FAT1), that are consistently mutated in cSCC, but impor-
tantly, these genes are also mutated at low levels and under
strong positive selection in physiologically normal
Journal of Investigative Dermatology (2021), Volume 141
sun-exposed skin (Martincorena et al., 2015). However,
CDKN2A is not mutated in the normal skin, and we previ-
ously postulated that it may have a gatekeeper role in cSCC
(Inman et al., 2018). CDKN2A was not identified as an SMG,
but the loss of 9p21.3—a CDKN2A gene locus—was iden-
tified as the most significantly deleted CNA, and there was no
significant difference in the frequency of deletion in AK
compared with that in cSCC (54% vs. 45%, respectively, chi-
square test, P ¼ 0.43, Supplementary Table S18), suggesting
that this deletion is an early event and may play an important
role in AK pathogenesis. The oncogene PIK3CA was signifi-
cantly altered in almost half of all AKs and cSCC, a higher
frequency than seen in previous cSCC studies (Hafner et al.,
2010; Janus et al., 2017; Pickering et al., 2014). We also
identified a hotspot activating splice-site mutation in three
AKs. Activating mutations in PIK3CA result in the activation
of the phosphoinositide 3-kinases/protein kinase B/mTOR
pathway, which is commonly seen in other organs’ squamous
cell carcinomas (Vivanco and Sawyers, 2002).

Although we identified 16.2% AKs with alterations (all
CNAs, four losses, and two gains) in HRAS, no single-
nucleotide variants were detected in our cohort. This
aligns with other studies where oncogenic RAS mutations
are very rare in UV-exposed skin and AKs and/or squamous
cell carcinoma in situ (Chitsazzadeh et al., 2016;
Martincorena et al., 2015; Zheng et al., 2020). In our cSCC
cohort, 22.5% harbored alterations in HRAS, and this was
identified as a cSCC SMG, but only three cSCCs were pre-
dicted to have activating mutations. This provides further
evidence that human AKs and cSCCs are biologically
distinct from murine 7,12-dimethylbenz[a]anthracene/
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12-O-trtradecanoylphorbol-13-acetate model lesions where
activating HRAS mutations are common (Huang and
Balmain, 2014). Nevertheless, activating RAS mutations
still appear to play a functional role in cSCC development
for a subset of cSCC tumors rather than in AK‒cSCC in situ
development.
www.jidonline.org 1671
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HMCN1 was identified as an SMG, being altered in 19 AKs
(51%). Although not a confirmed cancer gene, its role war-
rants further investigation because it is frequently mutated in
cSCC (Durinck et al., 2011; Pickering et al., 2014) and AKs
(Albibas et al., 2018). It is postulated to be involved in cancer
cell invasion and metastasis (Timpl et al., 2003) through its
function as an extracellular matrix protein.

We show that AKs have the same levels of genomic
instability as cSCC with many shared CNAs between them,
notably loss of 9p, chromosome 13, and 5q. Apart from an
early study that suggested that AKs have more LOH than
cSCC (Rehman et al., 1996), our findings are contrary to
those of more recent studies that found that AKs have rela-
tively few CNAs (Garcı́a-Dı́ez et al., 2019; Hameetman et al.,
2013). However, most studies agree on the most common
sites of chromosomal instability, with 9p loss—the region
where CDKN2A is located—ubiquitous among AK studies
(Ashton et al., 2003; Garcı́a-Dı́ez et al., 2019; Kanellou et al.,
2008; Rehman et al., 1996).

Interrogating published expression datasets against our
SMG list found KIF24, KCNK5, EPB41L2, and ABI3BP
downregulated in AK compared with those in the normal
skin, suggesting tumor suppressor roles. ABI3BP was signifi-
cantly downregulated in cSCC compared with that in the
normal skin in one previous study (Prasad et al., 2014) and
similarly downregulated in the esophagus with squamous
cell carcinoma compared with that in the normal esophagus
(Jiang et al., 2018). It is a tumor suppressor in several cancers
where it functions to promote cellular senescence (Wakoh
et al., 2009) and has a role in cell‒substrate adhesion
(Hodgkinson et al., 2013; Latini et al., 2008). KCNK5, a two-
pore domain potassium channel, is in the top 1% of under-
expressed genes in melanoma and top 5% of underexpressed
genes in breast, colorectal, renal, and liver cancers, and there
is increasing interest in the role of potassium channels in
cancer (Williams et al., 2013). NOTCH1 mRNA was signifi-
cantly upregulated in AK compared with that in the normal
skin (in two datasets), suggesting tumor promoter function,
which contrasts with previous findings in cSCC where it is
inactivated early in cSCC pathogenesis (South et al., 2014).
We also observe early mutational inactivation of NOTCH1 in
AK, and subsequent loss of expression may facilitate pro-
gression from AK to cSCC. NOTCH proteins have opposing
tumor suppressor and promoter roles in different cancer types
and contexts (Ranganathan et al., 2011), and this requires
further investigation in AK to cSCC progression.

We have previously shown that the dysregulation of TGFb
signaling through inactivation of its receptors in stem cells is
an early driver event in cSCC pathogenesis and plays a likely
tumor suppressor role (Cammareri et al., 2016). TGFb
signaling pathway genes were significantly more mutated in
cSCC and were also dysregulated in expression datasets.
From the GSE45216 dataset (the largest dataset), TGFBR2
becomes progressively more underexpressed in the transition
from normal skin through AK to cSCC, consistent with the
previous studies that have demonstrated a key role for
TGFBR2 in TGFb tumor‒suppressive function (Han et al.,
2005). Taken together, these findings further support the hy-
pothesis that TGFb dysregulation is a critical step in AK‒
cSCC transition.
Journal of Investigative Dermatology (2021), Volume 141
Epigenomic alterations may also play a part in driving AK
progression, and this is supported by the significant differ-
ences we have observed in AK and cSCC expression profiles.
Recent work landscaping the methylomes of AK and cSCC
has directly addressed this hypothesis. A complex nonlinear
evolution of distinct DNA-methylation patterns during the
progression of AK to cSCC and metastasis has been demon-
strated by one group (Hervás-Marı́n et al., 2019), but others
failed to show any differences in AK and cSCC methylomes
(Rodrı́guez-Paredes et al., 2018). Epigenomic studies to date
are limited, and further research is needed.

A limitation of our study is that although we clinically
diagnosed and then histologically confirmed AK, we did not
specifically grade AK and analyze them according to grades,
that is, AK-I, -II, and -III. There is a possibility that each of
these AK grades might have a different molecular profile.
However, AKs are frequently heterogeneous histologically
and may include combinations of AK IeIII. Consequently,
there is a possibility that small foci of AK III and/or cSCC in
situ were included in these samples, and this may have
affected the results. Laser capture microdissection of samples
may have helped to minimize this risk.

In conclusion, our data demonstrate that AKs already
possess the majority of genomic alterations present in cSCC.
Significant molecular alterations, which we have uncovered
and which may contribute to evolution from AK to cSCC,
include alterations in key signaling pathways, particularly in
TGFb and immune system signaling; mutations in specific
genes, including ABI3BP and IMPA1; and differences in
intrasample heterogeneity. These will be the focus of future
investigations of the molecular pathogenesis of AK
progression.

MATERIALS AND METHODS
Collection of patient samples and clinical data

The 4 mm punch biopsies of AK diagnosed clinically and confirmed

histologically were obtained from participants after written informed

consent was obtained. Processing of AK and venous blood for

matched germline DNA and clinical data collection was done as

previously described (Inman et al., 2018). The study was approved

by the East of Scotland Research Ethics Service (reference: 08/S1401/

69) and the East London and City Health Authority Local Ethics

Committee and conducted according to the Declaration of Helsinki

Principles.

DNA extraction and genetic analysis

DNA extraction and genetic analysis were performed as previously

described (Inman et al., 2018).

WES data processing, somatic variant calling, annotation,
and visualization

WES data were analyzed and annotated using our established

pipeline (Inman et al., 2018). Maftools was used to summarize,

visualize, and compare AK and cSCC Mutation Annotation Format

files and to make lollipop plots of gene mutation distributions

(Mayakonda et al., 2018). Mutation signatures across the exomes

were identified on the basis of the nonnegative matrix factorization

approach previously described (Alexandrov et al., 2020, 2013) using

the Catalogue Of Somatic Mutations In Cancer mutational

signatures.
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Identification of CNA and LOH using WES data

Analyses for CNA and LOH events from WES data were based on a

combinational approach previously described (Okosun et al., 2016;

Tawana et al., 2015). Genes targeted by copy-gain, copy-loss, and

copy-neutral LOH in each sample were identified. Thresholds for

CNA calls were fully described in our previous study (Inman et al.,

2018).

Tumor subpopulation identification and clonality analysis

Expanding Ploidy and Allele-frequency on Nested Subpopulations

(Andor et al., 2014) was used to estimate clonal expansions and

cellular frequency of each clonal and subclonal population as pre-

viously described (Inman et al., 2018). Tumor purity was also esti-

mated on the basis of the cellular frequency of the dominant clone.

All somatic variants were assigned to their nested clones.

Gene expression data analysis and integration

Five sets of expression data of patient samples were selected (same

as our cSCC study) and downloaded from Gene Expression

Omnibus: GSE45216 (Lambert et al., 2014), GSE42677 (Mitsui

et al., 2014), GSE84293 (Chitsazzadeh et al., 2016), GSE2503

(Nindl et al., 2006; Padilla et al., 2010), and GSE32628 (Hameetman

et al., 2013). Differential expression analyses between different

groups were performed using limma R package (Ritchie et al., 2015).

The Differential expression genes were defined at adjusted P � 0.1.
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Supplementary Figure S1. Significantly (a) deleted and (b) gained regions across the 33 AK samples based on GISTIC2.0. Four samples were excluded from the

analysis because they have too few CNA segments. AK, actinic keratosis; CNA, copy number aberration.
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Supplementary Figure S7. Expression profiles of genes significantly gained (red) or deleted (black) in AK. (a) Expression heatmap of significantly gained,

upregulated genes (n ¼ 2, red) and deleted, downregulated genes (n ¼ 52, black) in the AK versus those in the normal skin that were also expressed across

normal skin, AK, and in situ and invasive cSCC samples from the GSE42677. (b) Venn diagram of overlap across the five gene expression datasets of significantly

deleted and downregulated genes in AK versus those in the normal skin. (c) LogFC of significant genes with the same direction in 2 of 5 datasets in pairwise

comparisons of AK with normal skin across the five datasets (Lambert, GSE42677, GSE84293, GSE2503, and GSE32628). The blue color indicates the

downregulation in AK compared with that in the normal skin, and the red color indicates the upregulation in AK relative to that in the normal skin. AK, actinic

keratosis; cSCC, cutaneous squamous cell carcinoma; LogFC, Log2 fold change.
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