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ABSTRACT Human bone microarchitecture is complex and density-based bone assessment modalities 

cannot fully capture bone strength or health. Ultrasound can be used to assess bone microstructure, but it is 

hindered by the dense and acoustically diverse nature of cortical bone. This study proposes a methodology 

for predicting cortical bone thickness and porosity through a novel approach utilizing convolutional neural 

networks (CNNs), processing multi-frequency radiofrequency (RF) data obtained from ultrafast ultrasound, 

and implementing a consensus mechanism to enhance accuracy. Received ultrasound RF signals are 

processed using a CNN with a mutual consensus mechanism, which is used to discard received RF data when 

measurement variation is over a certain threshold. The feasibility of the proposed method is demonstrated 

through realistic simulations and an ex vivo animal bone study using an ultrafast ultrasound scanner. The 

preliminary findings of this study demonstrate an enhancement in overall accuracy, with an increase from 

92% to 95.6% for thickness and an increase from 73.4% to 88.4% for porosity classification, without and 

with consensus respectively. The implemented mutual consensus mechanism increases the accuracy of the 

thickness and porosity estimations both in silico and ex vivo. Ultrafast ultrasound scanners can capture 

thousands of RF signals within seconds, which results in availability of large datasets for implementation of 

artificial intelligence and machine learning algorithms.  Here, we propose a new approach for ultrafast 

ultrasound data processing that values data quality over quantity by discarding noisy ultrasound 

measurements using a consensus mechanism to improve the final estimation accuracy. 

INDEX TERMS Bone Characterization, CNN, Consensus Mechanism, Multi-frequency Ultrasound, 

Ultrafast Ultrasound.

I. INTRODUCTION 

Bone is a living tissue that is constantly being remodelled, 

involving the breakdown of old bone tissue and replacement 

with new bone tissues [1-3]. As people age, the rate of bone 

breakdown can exceed the rate of bone formation, leading to 

medical conditions that cause bones to become weak, 

increasing the risk of fractures [4]. Cortical bone is the dense 

outer layer of all bones [5, 6], and has an important role in 

determining bone strength while withstanding various 

mechanical loads and stresses [7]. Bone health assessment is 

important to evaluate the risk of fractures or monitor the 

effectiveness of osteoporosis treatment plans [8-11]. 

The gold standard technique used in clinical routine exams 

is dual-energy X-ray absorptiometry (DXA), which 

measures bone mineral density (BMD) in the spine, hips, and 

other bones [12, 13]. However, DXA lacks detailed 

information about cortical thickness and porosity, which are 

important indicators of bone strength and fracture risk in 

bone health diseases and osteoporosis[14]. Quantitative 

computed tomography (QCT) and high-resolution peripheral 

quantitative computed tomography (HR-pQCT) can also be 

used to assess bone health, while measuring BMD [15, 16], 

as well as other bone parameters, such as cortical thickness 

and trabecular bone microarchitecture [17-19]. All of these 

modalities use ionizing radiation, X-rays. 

Bone strength refers to the ability of a bone to resist 

fracture. It is determined by various factors, including BMD, 

bone microarchitecture, and bone geometry. Ultrasound has 

emerged as a promising technique for assessing cortical bone 

microstructure [20-22], and can effectively identify bone 

abnormalities such as erosion, joint space narrowing, new 

bone formation, periarticular soft tissue swelling, and 
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periarticular osteoporosis [23-26]. It also can be used to 

assess cortical bone properties at various skeletal sites, 

including the tibia, radius, and phalanx [21, 27, 28]. 

Ultrasound offers a non-invasive approach, eliminating the 

need for ionizing radiation exposure, making it a safe and 

cost-effective alternative to X-ray-based techniques. 

Ultrasound portability enables convenient use at the bedside 

and in clinical settings. Ultrasound considerations that have 

been shown to be useful in assessing cortical bone include 

the speed of sound (SOS) [29-34], broadband ultrasound 

attenuation (BUA) [35], and other quantitative ultrasound 

(QUS) parameters such as stiffness and acoustic impedance 

[20, 36]. These parameters reflect various aspects of cortical 

bone microstructure, such as thickness, porosity, and 

collagen content, which are not fully captured by BMD [37, 

38]. Therefore, the importance of ultrasound in cortical bone 

assessment lies in its ability to provide information about 

bone geometry and strength via parameters like cortical 

thickness and porosity. 

Cortical bone assessment with ultrasound has several 

challenges due to the unique characteristics of cortical bone 

tissue. Unlike soft tissues, cortical bone is dense and 

acoustically heterogeneous, making it challenging for 

ultrasound waves to penetrate effectively [39, 40]. The SOS 

within bone, influenced by porosity, adds complexity to 

accurate measurements [31], and the high attenuation and 

scattering of ultrasound in cortical bone limit the penetration 

depth, which can result in poor image resolution and reduced 

sensitivity to subtle changes within the bone structure. 

Additionally, the anisotropic nature of cortical bone, with 

varying orientations of collagen fibres and mineralized 

matrix, contributes to anisotropic acoustic properties that 

complicate ultrasound signals’ interpretation. Relying on a 

single measurement to determine both thickness and porosity 

may lead to insufficient results as the relationship between 

porosity and the SOS in bone introduces variability, 

particularly as porosity changes, impacting the precision of 

assessment [41]. Moreover, the high variation between 

signals received from consecutive elements of the probe adds 

complexity to data interpretation. 

Ultrafast ultrasound imaging enables the capture of 

images at frame rates up to 100 times faster than 

conventional imaging. This is achieved through the use of 

plane or divergent waves instead of focused beams, allowing 

for rapid acquisitions [42, 43]. Additionally, parallel 

processing techniques enable ultrafast ultrasound systems to 

compute in parallel as many lines as requested, resulting in 

the capability to compute a full acquisition rapidly [44, 45]. 

This can be advantageous in clinical settings where quick 

and accurate assessments are essential. Furthermore, multi-

frequency ultrasound has emerged as a promising technique 

for assessing cortical bone properties, particularly for the 

evaluation of bone strength and fracture risk. The importance 

of multi-frequency ultrasound in cortical bone assessment 

lies in its ability to provide information about bone properties 

at multiple depth scales. Different frequencies of ultrasound 

waves penetrate to different depths in the bone tissue and 

interact with different structural components, such as pores 

with various sizes, and hence provide information about 

different aspects of bone microstructure, which can be used 

to estimate bone thickness and porosity more accurately than 

single-frequency ultrasound measurements [46]. 

The assessment of cortical bone health has witnessed 

significant advancements through the integration of deep 

learning and CNNs. In dental panoramic radiographs, where 

CNNs have demonstrated high accuracy for osteoporosis 

screening [47], and in applications such as predicting BMD 

and bone microarchitecture from non-contrast CT 

examinations [48], the adaptability of CNNs has been 

distinct. Further applications include the screening of 

primary osteopenia and osteoporosis based on lumbar 

radiographs [49], and predicting lumbar vertebrae BMD 

from unenhanced abdominal CT scans [50]. Moreover, a few 

recent studies have explored deep learning applications in 

ultrasound cortical bone analysis. A multichannel CNN 

(MCC-CNN) has been used to analyse ultrasonic guided 

waves pseudo images [51]. A real-time CNN architecture has 

been developed for ultrasound computed tomography 

(USCT) bone images segmentation [52], while a deep 

learning-based ultrasound computed tomography (UCT) 

approach has been introduced to reconstruct ultrasound 

images using backscattered information [53].  

Despite these advancements, the direct processing of 

ultrasound RF data using deep learning techniques remains 

relatively unexplored as most existing techniques focus on 

image-based approaches. This study introduces a novel 

approach for predicting cortical bone thickness and porosity, 

avoiding the necessity for ultrasound images beamforming 

and computationally intensive image-based tasks by directly 

processing multi-frequency RF data using CNNs with 

attention mechanism. To improve the CNNs accuracy, a 

consensus approach is employed to choose or discard RF 

datasets acquired from sequential ultrasound acquisitions. 

Thanks to ultrafast ultrasound, it is possible to record 

thousands of RF data acquisitions every second, which are 

later processed with the CNN and only the most appropriate 

datasets are selected for estimation of cortical bone thickness 

and porosity. The consensus uses cross-correlation analysis, 

which not only considers the inter-channel correlations but 

also reflects signal-to-noise ratio (SNR) variations. By 

integrating these factors, our approach surpasses simplistic 

majority voting methods, ensuring the retention of only the 

reliable data for accurate cortical bone thickness and porosity 

estimation. The feasibility of the proposed method is first 

demonstrated with a set of realistic simulations using Finite-

Difference Time-Domain (FDTD) method and then an ex 

vivo animal bone study is performed using an ultrafast 

ultrasound system. 
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II. METHODOLOGY 

A. SIMULATION FRAMEWORK FOR ULTRASOUND 
PROPAGATION 

Accurately simulating ultrasound propagation in cortical 

bone requires a complex environment which includes 

realistic geometries with varying thickness and porosity, 

which mimics most of human range of healthy and 

osteoporotic bones [54-56]. This allows for the accurate 

modelling of the interaction between ultrasound waves and 

different tissues. This environment begins with soft tissue 

modelling, simulating the nature of biological tissues and has 

similar acoustic impedance, followed by a highly detailed 

cortical bone model with a grid size of 5 micrometres, 

including bone boundaries curvature, pore weighting to 

simulate real human bone [57], and surface irregularities 

extracted from micro-CT scans of human bones as described 

in [58]. After that, these two layers are followed by a bone 

marrow layer to mimic long bone shafts such as tibia as 

shown in  FIGURE 1. Then, a 2D FDTD method, Simsonic 

[59], has been used for simulating ultrasound propagation in 

cortical bones. 

B. WAVEFORM AND MULTI-FREQUENCY 
ACQUISITIONS 

A 128 elements linear transducer array with 100 µm pitch 

was used in the simulations. To facilitate multi-frequency 

ultrasound measurements, chirp coded signals were designed 

as an excitation waveform featuring a frequency range that 

varies from 1 and 8 MHz, 60% fractional bandwidth (BW), 

and 2.5 µs pulse duration, which offer an improved SNR 

when compared to non-coded pulses. Additionally, a Tukey 

apodization was applied to mitigate edge wave effects. 

Plane-wave scanning has been employed to acquire echo 

patterns. FIGURE 2 shows a representation of RF data 

acquired from single channel at different frequencies. Each 

frequency reveals a specific layer of information, shaped 

significantly by numerous variables such as porosity, 

thickness, and frequency. 

 
FIGURE 1. A simulation environment featuring the transducer positioning 
and the bone model that includes realistic pores obtained from ex vivo 
bone specimens, curvature, pore weighting, and surface irregularities. 

 

FIGURE 2. An example received RF data from the same channel at 
different frequencies from 1-8 MHz shows how the frequency affects the 
distal side echo. 

C. SIMULATION DATASET OVERVIEW 

A dataset consisting of 10240 RF scans of cortical bone 

samples was used with diverse collection of RF signals 

obtained from tibial cortical bone ultrasound simulations 

with varying thickness (1-8 mm), porosity levels (1-20%) 

using the 128 elements of the ultrasound probe. Porosity and 

thickness values incremented in 1% and 1 mm steps, 

respectively, and the porosity levels were categorized into 

four groups, porosities ranging from 1 to 5% were classified 

as low, those from 6 to 10% as moderate, porosities within 

the range of 11 to 15% were considered elevated, and 

porosities falling between 16 and 20% were categorized as 

high porosity. 

D. EX VIVO VALIDATION AND POROSITY ASSESSMENT 

An ex vivo validation study was conducted using bovine and 

swine bone samples with varying thickness and porosity 

levels. The sample set has 14 samples extracted from tibias 

with range of 3.1-9.3 mm thickness and 5-9.23% porosity 

values. Thickness measurements were obtained manually 

using a calliper, as the cortical bone layer was only backed 

with bone marrow, and the experiments were conducted ex 

vivo. Microscopic imaging techniques were employed to 

capture high-resolution 2D images of cross-sectional bone 

samples with a resolution of 2.26 µm to capture low pores 

sizes, and to estimate the average porosity percentage within 

the bone samples after thresholding and applying k-

clustering to detect objects [60]. In addition, different 

morphological operations were applied to remove large 

voids originating from the specimen's extraction process and 

carefully removing sample cracks and minor scratches 

caused by bone dust during sample polishing. This 

estimation process was iteratively repeated 50 times for each 

sample to ensure robustness in porosity calculation. 

FIGURE 3 shows a transverse cortical bone section 

scanned using a Meiji Techno MT9930L microscope 

equipped with a 10x objective lens. Ultrasound 

measurements have been conducted using a ULA-OP 256 

ultrasound system [61] with 144 transducer elements, Esaote 

LA332. Chirp signals with spanning frequencies of 3-7 MHz 

were utilized, with a 3 MHz BW and a 2.5 μs duration. 
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FIGURE 3. Microscopic image of transverse section of cortical bovine 
bone with an average porosity of 7.3%. The image shows bone 
microstructure including Haversian canals (HC), Volkmann’s canals (VC), 
and Lacunae (L). 

E. CONVOLUTIONAL NEURAL NETWORKS 

Advances in neural networks, particularly attention 

mechanisms, enhance deep learning's appeal. These 

mechanisms dynamically adjust the significance of spectral 

ranges and spatial locations, improving the model's ability to 

capture discriminative features [62-64]. FIGURE 4 shows 

the proposed CNN architecture, which features distinct paths 

for dot product attention, each comprising convolutional 

layers with diverse kernel sizes, followed by batch 

normalization and ReLU activation. Outputs from the 

convolutional final stages are concatenated, subsequently 

processed through a max-pooling layer and a flatten layer. 

The flattened output is then directed into a multi-head self-

attention layer [46], to discriminate endosteal and periosteal 

features inherent within the multi-dimensional multi-

frequency RF data [65]. To mitigate overfitting, a dropout 

layer with a rate of 50% is applied between the last two fully 

connected layers. 

The given CNN input size is 8429 x 1 x 8 x 10240, 

indicating 8429 x 1 data points samples, and the data is 

organized in an 8 x 1 grid where each element represents a 

frequency, the fourth dimension is the dataset size where 

each element represents a single RF response from a single 

channel. The mathematical notation is expressed as follows: 

𝑋 ∈ ℝ8429 𝑥 1 𝑥 8 𝑥 10240 (1) 

Where, 𝑋 represents the input data, ℝ denotes the real 

numbers. The convolutional layers have different sizes of 

[1024,8,32], [512,8,32], [256,8,32], [32,1,32] which are used 

for building the structure. The parallel paths are used with 

different kernel sizes for the convolutional operation in each 

path, enabling the model to focus on different aspects 

simultaneously. A dot product attention is performed using 

the output of the four convolutional layers. All outputs are 

combined using concatenation to get a single output: 

𝐶 = 𝐿1. 𝐿2. 𝐿3. 𝐿4 (2) 

Where 𝐿1. 𝐿2. 𝐿3. 𝐿4 are the independent outputs from 

pathway 1, 2, 3, and 4 respectively. The concatenated output 

passes through a series of transformations throughout 

various layers, each serving a distinct and essential role in 

enhancing the model's capabilities. Max pooling aids in 

capturing the most salient features from the input data by 

selecting the maximum values within defined regions as: 

MaxPooling(𝑥) = max(𝑥) (3) 

Following max pooling, the processed information is 

forwarded to fully connected (fc) layers, to learn advanced 

complex hierarchical representations. The output of the fully 

connected layers is often passed through dropout layers, 

introducing a regularization mechanism that lessens 

overfitting. The dropout operation, denoted by 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥), 
randomly sets a fraction of input units to zero during training: 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) = 𝑥 ⊙ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (4) 

Where ⊙ represents element-wise multiplication, and 

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) is a binary mask with values sampled from a 

Bernoulli distribution with probability 𝑝. Subsequently, the 

flattened output joins a multi-head self-attention layer, a key 

component for capturing long-range dependencies within the 

data. This multi-head self-attention functions as an ensemble 

of attention mechanisms which calculates attention scores 

based on the input's own content [62]. The attention 

mechanism employed in the convolutional model for the 

input V can be mathematically described using the following 

equations for the query (Q), key (K), and value (V) 

transformations: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉  

 

(5) 

 

Where, 𝑑𝑘 is the dimension of the key vectors. Additionally, 

multi-head self-attention involves linearly projecting the 

input query, key, and value vectors multiple times and then 

concatenating the results as a further step. Given ℎ different 

sets of learned linear projections 𝑊𝑞
𝑖, 𝑊𝑘

𝑖, 𝑊𝑣
𝑖 for the 𝑖𝑡ℎ 

head, the multi-head self-attention is calculated as follows: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉)
= 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑒𝑎𝑑1, … , 𝐻𝑒𝑎𝑑ℎ).𝑊𝑜 

(6) 

Where, 𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑀𝑒𝑐ℎ𝑎𝑛𝑠𝑖𝑚(𝑄.𝑊𝑞
𝑖 , 𝐾.𝑊𝑘

𝑖 , 𝑉.𝑊𝑣
𝑖), 

and 𝑊𝑜 is the learned output projection and ℎ is the total 

number of heads. 
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FIGURE 4. The proposed CNN architecture used to extract features from echoes between the endosteum and periosteum for thickness and porosity 
classification. The structure includes convolutional layers with kernel sizes of 32, 256, 512, and 1024, followed by batch normalization and ReLU layers. 
Outputs from the second convolutional stages are concatenated and processed through pooling and flatten layers. The flattened output then through a 
multi-head self-attention layer, followed by fully connected layers, and a dropout layer with a rate of 50% to avoid overfitting.

F. CONSENSUS-BASED DECISION-MAKING 

A mutual agreement, referred to as a consensus mechanism, 

has been used to increase the collective agreement within a 

system, involving the majority of all selected channels in the 

decision-making process. The consensus approach in the 

context of this study is a method of combining information 

from multiple channels to improve the accuracy and 

reliability of the prediction. It is based on the principle that 

the majority of the transducer elements or channels agree on 

the same class or category of bone thickness or porosity. For 

example, if 64 channels are used during the scan, and 32 or 

more of them agree on a specific decision (e.g., 2 mm 

thickness and low porosity), then the consensus mechanism 

would classify the bone sample into this category. However, 

if the level of agreement is below a certain threshold, the 

consensus mechanism would not assign a class, and this 

measurement would be discarded. Assuming having 𝑁 

channels of transducer array involved in decision making, 

and each channel provides decision 𝐷𝑖 , the final decision 

𝐷𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠  is determined based on a majority vote, but with 

a threshold value for agreement. 
𝐷𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

=

{
 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑑∑ 𝜕(𝐷𝑖 , 𝑑)
𝑁

𝑖=1
, 𝑖𝑓 

∑ 𝜕(𝐷𝑖 , 𝐷𝑎𝑟𝑔𝑚𝑎𝑥)
𝑁
𝑖=1

𝑁
≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      

 (7) 

Where, 𝜕(𝐷𝑖 , 𝑑) is the Kronecker delta function, equal to 1 

if 𝐷𝑖 = 𝑑 and 0 otherwise. 𝑎𝑟𝑔𝑚𝑎𝑥𝑑 finds the decision 𝑑 

that maximizes the sum of votes. 𝐷𝑎𝑟𝑔𝑚𝑎𝑥  is the decision that 

received the most votes. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the calculated 

tolerance for agreement as shown in the following equation: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1 − 
𝑚𝑒𝑎𝑛 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

2
 (8) 

The 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value balances the 

𝑚𝑒𝑎𝑛 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 between channels to derive a 

suitable threshold value. For instance, if the cross-correlation 

between channels is high, indicating strong similarity, the 

threshold value will be relatively low. Conversely, if the 

cross-correlation is low, suggesting less similarity, the 

threshold will be increased to ensure robust decision-

making. This approach allows to filter and select relevant 

data points for further analysis or classification tasks, 

ensuring the reliability of the results. Therefore, the 

threshold value can be adjusted for accuracy and 

consistency; a higher threshold increases precision but may 

require more measurements for confidence. Additionally, the 

consensus mechanism adopted by the model is characterized 

by a conscious selection of measurements, rather than 

blindly following the majority. This strategy ensures that the 

model's decision-making process is based on cross-

correlation between the received signals acquired from 

different channels.
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Table I. Hyperparameters and fine-tuning options for CNN training 

Hyperparameter Options Description 

Learning Rate 0.001, 0.0001, 0.00001 Initial learning rate for optimizers 

Optimizer Adam, SGD, RMSprop Optimization algorithm used during training 

Batch Size 8, 16, 32, 64 Number of samples per training iteration 

Weight Decay 0.001, 0.0001, 0.00001 Coefficient for L2 regularization 

Epochs 20, 30, 40, 50, 100 Number of complete passes through the training set 

Activation Function ReLU, Leaky ReLU, Tanh Activation function applied to hidden layers 

Dropout 0.1, 0.3, 0.5 Dropout rate applied to prevent overfitting 

Kernel Size [32x8], [64x8], [128x8], 

[256x8], [512x8], [1024x8] 

Size of convolutional kernels 

Stride 8, 32, 64, 256 Step size for moving the kernel during convolution 

Padding Same, Valid, Zero Padding method to handle edge effects during convolution 

Pooling Max Pooling, Average Pooling Pooling method to down sample feature maps 

Initialization Zero, He, Glorot  Method for initializing weights in the network 

Early Stopping Patience 5, 10 Criteria for terminating training early to prevent 

overfitting after some epochs without loss change 

G. MODEL TRAINING AND OPTIMIZATION TECHNIQUES 

The models are trained on Intel i7-7700HQ CPU at 2.80GHz 

with 16 GB of RAM and a NVIDIA GeForce GTX 1060 

GPU. To ensure generalization and prevent overfitting, an 

independent set of simulations was generated for testing, 

with 12800 data points for training and validation and 10240 

for testing. Training spanned 40 epochs to allow the models 

to converge with a batch size of 16. ADAM optimizer with a 

dynamic learning rate of 0.0001, adjusted during training 

based on the gradients of the cross-entropy loss. It helped to 

mitigate the risk of overshooting or slow convergence for 

effective training dynamics. Additionally, L2 regularization 

was applied with a weight decay coefficient of 0.001 to 

prevent overfitting and improve model generalization. Table 

I shows hyperparameters used to fine-tune the CNN during 

training. 
 

III. RESULTS 

A. CHANNEL TO CHANNEL RF DATA VARIATION 

This section explains the main motivation behind the 

consensus mechanism. Consider FIGURE 5, which shows an 

example of the correlation coefficient (r) of all channels 

(from 1 to 128) at 5 MHz with respect to the received signal 

from the central element. The similarities between the 

signals received from different channels of the ultrasound 

array begins to decrease after a few wavelengths and 

consequently deteriorate at the border regions of the 

transducer array, as shown in FIGURE 5. This decay can be 

attributed to the physical properties of the medium through 

which the ultrasound signals propagate. As the signals 

traverse the medium, interference patterns may develop, 

leading to a loss of correlation among channels. This 

consistency between channels could be quantified using 

cross-correlation coefficients. 

Additionally, the choice of using an apodized ultrasound 

signal is another factor that reduced the correlation for the 

elements at the edge of transducer’s aperture during 

simulation. For this reason, a strategic decision was made to 

use only 64 middle channels out of 128 available channels 

for data analysis and implement consensus mechanism for 

data received from these channels. For the signals within this 

subarray, between channels 33-96 (vertical dashed 

boundaries), the correlation between received signals are 

usually larger than -3 dB (horizontal dashed levels), which 

shows that the received signals have similar information 

(r>0.7). However, decorrelation of the signal is observed for 

many cases, such as FIGURE 5 (bottom-right). The 

dissimilarity between the signals, indicated by low 

coherence, may potentially lead to inaccurate results when 

using a CNN or other processing methods. This issue was 

addressed by implementation of the consensus mechanism in 

this study. 

B. QUANTITATIVE ASSESSMENT AND PREDICTION 
OF THICKNESS 

1) THICKNESS CLASSIFICATION WITHOUT 
CONSENSUS 

FIGURE 6 shows the confusion matrix that reveals the 

model performance in classifying critical bone thickness 

values. For low cortical bone thickness values, 1-2 mm, the 

classifier exhibited a high accuracy, while reaching 100% in 

some cases. However, as the bone thickness increases, the 

classifier's accuracy decreases. While most of instances were 

correctly classified as 7 mm, some were slightly under or 

overestimated as 6 or 8 mm. 

2) THICKNESS CLASSIFICATION WITH CONSENSUS 

In the consensus approach, the results in FIGURE 7 shows 

the aggregation after combining information from all 64 

channels for each scan with a threshold value of 58% to make 

a decision. The threshold value is calculated from equation 8 
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based on the global cross-correlation average which is 0.844. 

The diagonal elements represent the true positives for each 

class, while off-diagonal elements indicate 

misclassifications. In the confusion matrix given in FIGURE 

7, most of the diagonal values are near 20, indicating that the 

consensus decision is consistent with the ground truth for the 

corresponding classes. The off-diagonal values, though 

present, are generally low, indicating minimal confusion 

between adjacent thickness classes of ±1 mm. The overall 

accuracy of consensus is 95.6%. Comparing this to the 

results before consensus, where the overall accuracy was 

92%, The consensus approach helped to reduce 

misclassifications and to increase the true positive counts. 

With consensus, the overall accuracy is 95.6% and 153 true 

positives out of 160, in which consensus has an impact on 

classification accuracy specifically for lower accuracies as 

for 7mm class. 

 

 
FIGURE 5. An example of the cross-correlation at 5 MHz for all 128 
channels with respect to the middle channel. The horizontal red line 
represents the -3dB level and the vertical red lines represent the 
apodization roll-off. The correlation (dB) starts to decay, and gradually 
deteriorate until reach low correlations at the boundaries (r<0.1). 

 

 

FIGURE 6. Confusion matrix showing the classification results of a 
cortical bone thickness classifier for thicknesses ranging from 1 to 8 mm 
without consensus. 

 

FIGURE 7. Confusion matrix showing the classification results of a 
cortical bone thickness classifier for thicknesses ranging from 1 to 8 mm 
with consensus. 

3) COMPARING CONSENSUS VERSUS NON-
CONSENSUS 

FIGURE 8 presents a comparison between performance 

metrics for both consensus and non-consensus models. For 

consensus, the overall accuracy is 92% with 9421 true 

positives. Classes 1 and 2 stand out with perfect precision, 

recall, and F1 Scores, signifying high accuracy. Class 3 has 

a high accuracy of 98.3%, with a relatively balanced 

precision and recall, indicating its ability to correctly identify 

most instances of this class but with occasional 

misclassifications. In contrast, Classes 4-7 show varying 

degrees of misclassification, suggesting a potential challenge 

in distinguishing. Class 7 suffers from the lowest recall of 

0.77, indicating frequent instances missed by the model, 

resulting in a relatively low F1 Score of 0.87. However, it is 

significant that even instances classified incorrectly exhibit a 

margin of error within the range of approximately ±1 mm. 

This variability happens due to the complex relationship of 

factors such as the speed of sound and porosity combinations 

within the dataset. The overall accuracy without consensus 

is 92%.  

 
FIGURE 8. Comparison of metrics for consensus and non-consensus 
(hatched) models for thickness classification. 

The scatter plot presented in FIGURE 9 visually 

demonstrates the association between the cortical bone 

thickness values predicted by the CNN model and their 

corresponding target values. Each scatter plot involves four 

distinct porosity levels (low, moderate, elevated, and high 

porosity) for various thicknesses. The dataset without 

consensus approach includes 10240 data points, 1280 for 

each thickness value, while the dataset with consensus 

includes 160 data points which is the combination of 64 

channels and the unique number of thickness vs porosity 
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combination. The scatter plot highlights the model's 

performance across different thickness categories and 

porosity levels. For certain values, particularly for thickness 

classes 6, 7, and 8 mm, shows an underestimation trend. This 

trend is particularly evident for instances characterized by 

low porosity levels, suggesting a potential influence of the 

faster speed of sound associated with lower porosity. 

 
FIGURE 9. (Left) the output of the CNN model against the actual target 
cortical bone thicknesses for all porosity levels without consensus, 
(Right) the output of the CNN model against the actual target cortical 
bone thicknesses for all porosity levels with consensus. 

C. QUANTITATIVE ASSESSMENT AND PREDICTION 
OF POROSITY 

1) POROSITY CLASSIFICATION WITHOUT 
CONSENSUS 

FIGURE 10 presents the confusion matrix illustrating the 

model's performance in classifying various porosity levels 

without consensus being used. For low porosity values, the 

classifier demonstrated an accuracy of nearly 83%. 

However, for moderate and elevated porosities, the classifier 

achieved an accuracy of around 67%. For high porosity, the 

classifier attained a relatively higher results compared to the 

former two classes with an accuracy of nearly 76%. 

 
FIGURE 10. Confusion matrix illustrating the classification results of a 
cortical bone porosity classifier for different porosity levels. 

2) POROSITY CLASSIFICATION WITH CONSENSUS 

In FIGURE 11, the model's performance is evaluated based 

on the diagonal elements representing true positive counts 

for each porosity class, while off-diagonal elements indicate 

instances of misclassification. The primary focus is on the 

model's ability to accurately identify samples within each 

porosity category by using consensus. Measurements that do 

not pass the threshold of the consensus mechanism are 

excluded to increase the reliability of the system. Upon 

closer examination, the classifier showed a significant 

increase in classifying all porosities levels with overall 

accuracies of 90.0%, 91.66%, 77.42%, 93.55% compared to 

83.2%, 67.0%, 67.5%, and 75.9% for all levels with and 

without consensus respectively, with an overall accuracy of 

88.4%. 

 
FIGURE 11. Confusion matrix illustrating the classification results of a 
cortical bone porosity levels classifier for with consensus mechanism. 

3) COMPARING CONSENSUS VERSUS NON-
CONSENSUS  

Further details the classification performance metrics for 

consensus is shown in FIGURE 12, where consensus 

mechanism outperforms the CNN-only results. 

 
FIGURE 12. Comparison of metrics for consensus and non-consensus 
(hatched) models for porosity classification, with the most significant 
impact of consensus observed at higher porosity levels. 

 
FIGURE 13 shows a scatter plot of the predicted porosity 

values using the consensus mechanism. The results include 

all porosity levels from 1-20% where each level also 

acquired from all thicknesses (1-8 mm), and each scatter is 

the average output of a group of 64 channels of the same 

sample. The vertical distances between each data point and 

the trend line represent the absolute residuals. Smaller 

residuals indicate a closer match between predictions and 

ground truth, while larger residuals suggest greater 

deviations. The average percentage error is 11.6%, and the 

percentage errors associated with each thickness are as 

follows: 0.0%, 11.2%, 27.28%, 6.67%, 5.89%, 15.8%, 5.0%, 

and 10.0% for thicknesses from 1-8mm respectively. 

However, it shows an overall accuracy of 73.4% and 7514 

true positive samples for classification without consensus. 

Class 1 stand out with higher precision, recall, and F1 Scores 

of 0.91, 0.83, and 0.87 respectively. Classes 2-4 have a 

comparable accuracy of around 84%, with a relatively 

imbalanced precision and recall, suggesting its suffering to 

correctly identify instances of this class.
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FIGURE 13. The classification output of the CNN model against the actual target cortical bone porosity. The coloured groups represent different levels 
of porosity: low, moderate, elevated, and high for green, yellow, orange, and red regions respectively. Estimated porosity levels falling within these 
coloured regions are considered correct. Undecided data points (22/160) are the results of the consensus mechanism. 

D. CNN TRAINING AND VALIDATION LOSSES 

FIGURE 14 shows the convergence behaviour of the CNN 

model during training for thickness and porosity 

classification tasks. The top plot shows the training and 

validation loss over 40 epochs for thickness classification. 

Both the training and validation losses exhibit an initial sharp 

decrease, indicating effective learning from the training data. 

However, as training progresses, the training loss continues 

to decrease steadily, reaching a minimum value of 0.0026. 

The validation loss demonstrates a stable plateau between 

epochs 12 and 26, accompanied by occasional fluctuations 

thereafter. These fluctuations closely mirror the trends 

observed in the training loss, indicating a coherent learning 

process. This synchronization suggests that the model 

effectively adapts to the training data, maintaining robust 

performance even as it encounters new patterns during 

validation. The training and validation losses for porosity 

classification, FIGURE 14 (bottom), show a different 

progression throughout the 40 epochs. Similarly, the 

validation loss matches, initially decreasing from 0.687 to 

0.088. However, after epoch 17, occasional slight 

fluctuations in the validation loss become apparent, though 

it remains relatively stable after epoch 35. In comparison to 

thickness classification, the gap between training and 

validation losses appears more obvious for porosity 

classification. This divergence could be attributed to the 

inherent complexity of cortical bone, where capturing and 

interpreting porosity information poses greater challenges. 

Furthermore, the close alignment between training and 

validation losses throughout epochs highlights a well-

balanced training regimen. The slight divergence observed 

between these losses implies minimal overfitting for both 

thickness and porosity classification. 

 
FIGURE 14. Training and validation losses for thickness and porosity 
classification tasks over the same number of epochs to monitor the 
model's performance during training. (Up) the loss curves for thickness 
classification, (bottom) the loss curves for porosity classification. 

E. EMPIRICAL VERIFICATION THROUGH EX VIVO 
SPECIMENS 

First, observations are done on ex vivo RF data to identify 

the variation between received signals, similar to section 

III.A. FIGURE 15 shows the channel correlation for an ex 

vivo sample with a 6.33±0.01 mm thickness and 5.45% 

porosity. Although, this sample had low thickness and 

porosity variation, the received RF data starts decorrelating 

after a few wavelengths.  
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FIGURE 15. Cross-correlation between received RF signals with respect 
to the middle channel is shown for an ex vivo bone sample scanned at 3 
MHz using ULA-OP system. The sample thickness is 6.33±0.01 mm with 
a porosity of 5.45%. 

In FIGURE 16, each point on the plot corresponds to a 

specific acquisition, with the actual measured thickness 

predicted value. The results show a reasonable alignment 

between the actual and classified thickness values for 

consensus results (blue). The error distribution graph 

highlights two scenarios: one with consensus (blue) and 

another without consensus (black). For consensus, the mean 

error, μ1, is -0.7 mm with a standard deviation, σ1, of 1.15 

mm. On the contrary, in the absence of consensus, the 

distribution has a μ2 of -1.15 mm and a σ2 of 2.06 mm. 

Additionally, in FIGURE 17, the results for porosity 

classification reveal a more varied distribution. For 

consensus, μ1 is 0.49 on a scale from 1 to 4 representing 4 

distinct porosity levels, with σ1 of 0.82. On the other hand, 

for non-consensus, μ2 is 1.2, with a σ2 of 1.38. The results 

demonstrate an improvement in thickness and porosity 

estimation using the consensus mechanism. 

 
FIGURE 16. (Left) Thickness classification output against the actual 
target thicknesses for the ex vivo bone measurements. Red diagonal 
lines show the confidence interval with a classifier error of one unit. 
(Right) Probability distribution (PD) of error values for consensus (blue) 
and non-consensus (black) cases, derived from the fitted histograms. 

 
FIGURE 17. (Left) Porosity classification output against the actual level 
for the ex vivo measurements. Red diagonal lines show the confidence 
interval with a classifier error of one unit. (Right) Probability distribution 
(PD) of error values for consensus, blue, and non-consensus, black, 
cases. Overlapping data points were jittered to reduce overplotting for 
better visualization. 

IV. DISCUSSION 

In the simulation study, the distribution and sizes of bone 

pores have been carefully engineered to align with the 

authentic human ranges observed in cortical bone with 25th 

and 75th percentiles ranging for different age groups [56]. In 

addition, covering both normal and abnormal cortical bone 

conditions [54-56, 66]. Our previous investigations 

employed various CNN models for the thickness 

classification [67], by applying continuous wavelet 

transformation of the received RF echoes. While these 

models have demonstrated good accuracy, it is important to 

note that their design was primarily oriented towards image 

classification. This includes computational expenses and 

long processing times. Furthermore, the utilization of these 

models required pre-processing to convert signals into 

images. In the light of these considerations, we have 

developed a novel model customised to seamlessly 

accommodate and adapt to multi-frequency RF signals with 

varying parameters [46]. We found that Adam consistently 

outperformed other optimization algorithms in terms of 

convergence speed and final model accuracy. Specifically, 

compared to stochastic gradient descent (SGD), Adam 

reduced the training time by approximately 20% while 

achieving a 3% improvement in validation accuracy. The 

training time for our model is approximately 30 times shorter 

than the reported time in [67]. Moreover, it is needed to 

acknowledge the limitations stemming from the dataset's 

generation process. The comprehensive coverage of 

thickness and porosity levels needed significant time, 

highlighting the challenges associated with data partitioning 

during training. 

The integration of multi-frequency ultrasound represents 

a progress in overcoming limitations associated with single-

frequency ultrasound [67]. The sensitivity of single-

frequency ultrasound to variations in soft tissue and the 

impact of surface roughness on measurements have been 

well-documented challenges in the ultrasound bone imaging 
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field [68]. By employing multi-frequency ultrasound, these 

limitations can be mitigated, leading to more robust 

diagnostic capabilities. The best overall accuracy for 

classification prediction is 95.6%. Some misclassified data 

points fall within the range of ±1 mm, which is likely to be 

the results of varying speed of sound values in bone tissue at 

different porosity levels or variations across different section 

of the same bone sample [69]. For porosity classification, 

precision in numerical measurements may not always be the 

primary goal. Instead, the significance often lies in the ability 

to classify bones into distinct categories [70], where the 

proposed model showed an overall accuracy of 88.4%. 

A novel concept proposed in this study is the 

implementation of a collective consensus mechanism for 

ultrafast ultrasound scans, which has shown to enhance the 

reliability and accuracy of the overall decision-making 

process. Specifically, our findings indicate a reduction in the 

variability of ultrasound interpretation, coupled with an 

increase in confidence and an improvement in diagnostic 

quality. For thickness classification, the consensus approach 

led to an accuracy increasing by approximately 3.5%. For 

porosity classification, the influence of consensus was even 

more substantial, raising the overall accuracy from 73.4% to 

88.4%. These specific numerical improvements highlight the 

impact of the collective decision strategy. This emphasizes 

the strategy's pivotal role not only in enhancing the accuracy 

of detecting true positives but also in providing a valuable 

assessment of data sufficiency and determining the adequacy 

of data for decision making as in FIGURE 13. In a dataset of 

160 cases, 22 inaccurate predictions were discarded by the 

consensus mechanism, which did not meet the preset 

consensus threshold value. 

While previous studies have made significant 

developments in utilizing deep learning for cortical bone 

ultrasound scanning and thickness classification, they 

primarily focus on image-based approaches[51-53]. The 

study in  [51] used a directly contacted transmitters and 

receivers on bone surfaces, making it unsuitable for in vivo 

human measurements and neglecting the influence of soft 

tissue. Moreover, it fails to account for irregularities in bone 

geometry and surface topology, potentially limiting its 

applicability in real-world scenarios. The absence of porosity 

variation assessment in the same study complicates the 

accurate characterization of cortical bone properties. 

The experimental results showed that the transformation 

from in silico study to real-life measurements is possible, 

FIGURE 16 and FIGURE 17. The decorrelation observed in 

FIGURE 15 corresponds with the simulated data illustrated 

in FIGURE 5, both measured at the -3 dB level. Moreover, 

our current study is limited to experimental samples 

categorized as having low and medium porosities due to 

unavailability of bone samples with higher porosities. 

However, extending real measurements and re-training, 

would increase the portability of the system to be further 

examined on human measurements. 

Integration of multi-frequency ultrasound and the 

adoption of a consensus approach represent promising 

opportunities for refining ultrasound bone characterisation. 

It is essential to acknowledge that the determination of the 

consensus threshold level remains an area not well explored, 

and the lack of a standardized method poses challenges in its 

implementation. These factors include the number and type 

of transducers or channels, the establishment of thresholds or 

criteria for agreement, tissue properties, the choice of 

algorithm or technique for information integration. Despite 

the challenges associated with standardization and 

implementation, the benefits in terms of improved reliability, 

accuracy, and diagnostic quality are evident. Future research 

should address these challenges to promote the wider 

adoption of the consensus approach, ultimately contributing 

to enhanced clinical outcomes. 

V. CONCLUSION 

This study presented a consensus mechanism to classify 

cortical bone thickness and porosity using muti-frequency 

RF data acquisitions processed by a CNN. Consensus 

mechanism was used to accept or discard the recorded 

ultrasound acquisitions. The utilization of ultrasound plane 

waves in both simulation and experimental studies, proved 

instrumental in overcoming challenges related to practicality 

of the consensus mechanism, where thousands of 

measurements can be performed within a second. The 

effectiveness of the proposed method was verified using in 

silico and ex vivo studies across various cortical bone 

thickness (1-8 mm) and porosity values (1-20%). In addition, 

the integration of a consensus strategy in decision-making, 

coupled with access to a large simulation dataset, resulted in 

improvements in the cortical bone assessment with 

ultrasound. 
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