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Abstract. In today’s manufacturing landscape, digital twin-enabled
smart factories are revolutionising traditional practises by leveraging
cutting-edge technologies such as Internet of Things (IoT) devices, ad-
vanced analytics, machine learning, and artificial intelligence (AI). These
factories create virtual replicas, or digital twins, of their physical coun-
terparts, enabling real-time monitoring, analysis, and control of manu-
facturing operations. One area of innovation within smart factories is the
role of energy condition monitoring and data analytics, which has gained
significant attention due to the challenges of interoperability in indus-
trial environments and the emerging need for sustainable manufacturing
systems. This paper proposes an energy monitoring and visualisation
solution architecture and example data visualisation dashboards at mul-
tiple user levels. The proposed solution architecture is deployed on a case
study that included robotic material handling, and the results showed
that the proposed solution can provide valuable insights to the users re-
garding the energy consumption of shop-floor components and provide a
cost-efficient solution for energy analytics that can be used within SMEs.

Keywords: Industry 4.0; Big Data Analytics; Energy Analytics; Indus-
trial Robotics; Data Visualisation; OPC-UA; InfluxDB; Grafana.

1 Introduction

Smart factories are at the forefront of modern manufacturing, leveraging cutting-
edge technologies to integrate physical and digital systems for optimised produc-
tion processes. These factories digitally transform their physical counterparts, en-
abling real-time monitoring, analysis, and control of manufacturing operations.
By doing so, smart factories can achieve unprecedented levels of operational
efficiency, predictive maintenance, and product quality [1]. Enabled by a wide
array of technologies, including Internet of Things (IoT) devices, advanced an-
alytics, machine learning, and artificial intelligence (AI), to enable data-driven
decision-making and automation [2]. This transformative approach is reshaping
the manufacturing landscape, driving innovation, and revolutionising traditional
manufacturing practises towards wide adoption Industry 4.0.
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In the context of Industry 4.0, energy condition monitoring and data ana-
lytics are areas of innovation that have gained significant attention due to the
challenges of interoperability in industrial environments and the increasing need
for sustainable manufacturing systems [3]. Resman et al. [4] propose a five-step
approach for data-driven digital twins (DT) in discrete assembly scenarios. Their
effective use of digital models and shadows allows for inline process monitoring
at different time intervals for each state of the physical system, enabling com-
munication of adapted processes from the DT to the physical world. This ap-
proach facilitates targeted monitoring of energy-related data through levels of
integration. Franceschi et al. [5] aim to implement a DT for flexible coordination
between workers and machines. Their proof-of-concept assembly of an aircraft
fuselage’s interior includes Human Machine Interface (HMI) dashboards that
extend to mobile and Mixed Reality (MR) systems, enabling close monitoring of
processes and task allocations for workers and machines. This work emphasizes
the importance of interoperability between workers and systems. Dall’Ora et al.
[6] further highlight the need for interconnected and interoperable ecosystems
within smart factories for effective data analytics. Their DT-enabled power con-
sumption condition monitoring of a production line identifies network design as
a key enabler for strategic decision-making and real-time monitoring. Their DT
implementation aims to detect discrepancies between real-time data and digital
twin data for early intervention in maintenance.

Rocha et al. [7], address challenges of interoperability and propose an event-
driven ecosystem for energy consumption management. Using a message broker
system with Apache Kafka, the solution integrates tools from different vendors
and technologies. Tested in automotive industry robotic cells, it stores energy
consumption data in a Postgres database with a user-friendly interface. Promis-
ing results demonstrate the potential for sustainable operations and advanced
solutions like production scheduling for energy optimisation. Further technical
aspects of energy condition monitoring can be seen [8], where further key issues
of data establishment and aggregation, data processing and analysis, scalabil-
ity and performance, and further applications of data-driven energy management
are addressed. Alternatively, Zhong et al. [9], introduce an IoT-enabled real-time
machine status monitoring approach for Cloud Manufacturing (CMfg) with the
aim of achieving ultimate service sharing and circulation among different man-
ufacturing parties. The contributions of this research include presenting a SOA
architecture for organising a CMfg shop floor, demonstrating a systematic de-
ployment scheme for IoT facilities in a typical manufacturing shop floor, and
presenting re-engineered and rationalised production operations in a CMfg en-
vironment. However, their approach to multi-level analytics revolves around the
use of RFID and specialised handheld monitoring devices, which may provide
limitations in terms of deployment and usage efficiencies.

However, introducing such solutions are generally expensive, with require-
ments for compatible or updated infrastructure to work alongside energy condi-
tion monitoring and data analytics platforms. Therefore, the need for low-cost
and lightweight solutions are apparent for digital transformations, especially with
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small and medium-sized enterprises (SMEs) [10]. This paper proposes an inter-
operable n-tier energy monitoring and visualisation solution architecture and
example dashboards at multiple user levels, providing insights from the process
of data acquisition to visualisation. The boundaries of the scope of this study
are carefully defined as being limited to the monitoring and visualisation of data
pertaining to energy. However, network gateways and data analytics, which are
included in the proposed solution architecture, were considered out of scope for
this study. Therefore, this study can serve as a tangible demonstration of the
potential insights that can be gained from granular and real-time data, with a
key emphasis on data visualisation.

2 The Implementation of the Proposed Architecture

2.1 An overview of the approach

Within the scope of this study, a proposed n-tier solution architecture and im-
plementation are discussed in relation to energy monitoring and analytics within
industrial robotic assembly. Figure 1 displays a high-level overview of an n-tier
solution architecture used within industrial robotic assembly. The proposed so-
lution architecture is primarily designed to aid machine-level energy monitoring
and analytics in SMEs. Within the proposed architecture, the information flow
starts with acquiring raw-process data from shop floor components such as robots
and conveyors. Next, the acquired data are organised and managed through a
network gateway to ensure data integrity while being transferred. After being
passed through the network gateway, data management and storage are needed
for adequate time series data collection and identification. The final two layers
are aimed at data analytics and visualisation. Gaining valuable insights from
the collected data and visualising them in a manner that is usable and useful is
where the value of this solution architecture can be seen.

In the following sub-sections, we will explain the implementation of the pro-
posed architecture through the use of a case study that includes a small scale
collaborative robotics system for low-volume high variety discrete assembly pro-
cesses.

2.2 Test set-up

To demonstrate the proposed data-driven energy monitoring and visualisation
solution architecture, a brief overview of the information flow and test bed is set
up. Figure 2 shows the information flow and technologies used to acquire and
visualise energy-related information. In the test setup, real-time energy con-
sumption data was collected from a simple pick and place operation from a
collaborative robot, i.e., the Niryo Ned robot. Figure 3 displays the performed
operation where the robot was in an idle position before and after (4 mins each)
the pick and place operation, lasting 18 minutes in total.
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Fig. 1: The proposed architecture for industrial robotic assembly.

Fig. 2: Energy-related information flow and implemented technologies (Layers
that are outlined with a dashed line are not considered within the scope of this
study.).

2.3 Data Acquisition Layer

To acquire real-time energy data from the robotic manipulator, a power analyser
was used. The analyzer sits in between mains power and the robot’s PSU, thus
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Fig. 3: The experimented material handling operations.

measuring total power. Acquired data consists of Vrms (V), Arms (mA), power
(W), and power factor (%).

2.4 Network Gateway

The network gateway acts as a central communication hub that enables connec-
tivity between different devices and protocols. It serves as an interface between
the robot manipulator, connected via hotspot, and the power analyzer, connected
via Ethernet. The network gateway facilitates data exchange and communica-
tion between these devices using OPC-UA (Open Platform Communications -
Unified Architecture) server, which is a widely used industrial communication
protocol for interoperability in industrial automation and control systems.

The network gateway plays a critical role in aggregating, processing, and
routing data between the robot manipulator, power analyser, OPC-UA server,
database, and visualisation tool. It ensures that data from the robot manipu-
lator and power analyser is securely transmitted throughout architecture. The
network gateway may also handle protocol conversions, data filtering, and data
transformation tasks to ensure seamless integration and interoperability among
the different components of the energy monitoring and visualisation system.

2.5 Data Storage and Management Layer

The energy analytics and visualisation require a proper data management and
storage approach and platform. Within industrial scenarios, the ability to acquire
multiple sources of data while storing the timestamp of their measurements
can provide valuable insights into production processes, leading to data-driven
decisions. In this research work, the combination of OPC-UA and InfluxDB was
used to address the requirements for data storage and management.

OPC-UA is a widely used protocol for industrial communication and data
exchange. It allows for the exchange of data between different devices and sys-
tems in an industrial environment, regardless of the manufacturer or platform.
InfluxDB, on the other hand, is a time-series database that is designed to handle
large volumes of time-stamped data. It provides a scalable and efficient way to
store and retrieve time-series data, making it well-suited for industrial scenarios
where data is generated at a high frequency.
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Within this study, a custom OPC-UA server was developed in Python to
facilitate interoperability between the power analyser and Niryo Ned Modbus
interface. To continue, each node within OPC-UA can be given a namespace and
identifier. As this study is primarily focusing on monitoring energy consumption,
all energy measurements are labelled within the same namespace with separate
identifiers. The server then stores all OPC-UA nodes within an InfluxDB through
a Telegraf plugin. The Telegraf plugin allows further management between OPC-
UA and InfluxDB, where a data sampling rate of 100 ms was configured.

2.6 Data Analytics Layer

This layer is where the actual analysis of the data takes place. It involves using
machine learning/deep learning algorithms and statistical techniques to extract
meaningful insights from the operational data. The analysis may involve iden-
tifying trends, anomalies, or patterns in the energy consumption data that can
aid in the optimisation of the robotic assembly system’s energy usage [11]. For
real-time analysis, Apache Flink or Apache Spark can be used for analysing the
data as it arrives, enabling the response of anomalies and events quickly. For
batch processing, Apache Hadoop can be used to process large volumes of data
in parallel, enabling complex analyses that lead to deeper insights [12].

2.7 Data Visualisation Layer

The final tier within the proposed architecture visualises all the stored and pro-
cessed energy-related data. Depending on the target user, multiple dashboards
with modular displays can be utilised to view different KPIs and metrics through-
out the value chain and product life cycles. Within this study, the Grafana data
visualisation platform was used to display energy-related data conditions tar-
geted towards manufacturing technicians. Grafana allows creating custom dash-
boards that display the energy consumption data in various forms, such as charts,
graphs, tables, and gauges, which can be useful for identifying trends, anomalies,
and patterns in the data. Alerting features can also be used in Grafana to receive
notifications when energy consumption levels exceed a certain threshold or when
anomalies are detected. The configuration of Grafana was conducted in a way
that interfaces with InfluxDB, allows viewing the dashboard remotely or within
a handheld device, and uses OAuth2 to securely authenticate users. To continue,
the Grafana dashboards were designed with interactive features to improve the
user experience. Users could filter the data by selecting specific time periods.
Zooming and panning functionalities were implemented in the line charts to al-
low users to focus on specific time intervals or data points of interest. Drill-down
capabilities were also provided, allowing users to click on specific elements in
the visualisations to access detailed information. These interactive features were
designed to enable users to explore the data and gain insights more effectively.
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2.8 Information Flow between Layers

Figure 4 further highlights the information flow within the use case of this study.
The diagram shows the high level functions and data from data acquisition to
visualisation, further supporting the previous subsections. The key enabler of
within this architecture is the OPC-UA server acquiring, mapping, and sending
the energy data. Then, within the storage and visualisation layers, appropriate
queries are needed to display and convert into metrics and Key Performance
Indicators (KPIs).

Fig. 4: High level system information flow.

3 Energy-related Data Visualisation

This section provides insights into the dashboards presented for monitoring and
managing the energy performance of the robotic manipulator under consider-
ation. The section discusses the usefulness and benefits of these dashboards,
including the dashboard designed for real-time data and alerts to technicians
and the dashboard offering managerial-level insights and visuals for informed
decision-making by managers. The customisation features, alerts, and compre-
hensive approach towards energy management are highlighted, showcasing how
these dashboards serve as valuable tools for optimising energy usage, improving
operational efficiency, and promoting sustainability in the assembly line opera-
tions.

3.1 Key Performance Indicators and Metrics

Energy-related KPIs are essential to properly gauging the most useful data vi-
sualisations that will be used by the users. The first dashboard design in this
study is a shop-floor condition monitoring dashboard that can be most useful
for maintenance technicians and shop-floor engineers. This dashboard consists
of the following: RMS voltage and current measurement provides an indication
of the quality of the electrical supply and helps in identifying any voltage and
current fluctuations or deviations from standard levels. These measurements are
important to ensure that the manufacturing cell is receiving a stable and reliable
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electrical supply. Power (Watts) measurement is a key parameter that provides
information about the amount of electrical energy being used by the manufac-
turing cell. Monitoring power consumption is important to identify areas where
energy efficiency can be improved or to detect any abnormal or unexpected
power usage. Power factor measurement is also important for electricity condi-
tion monitoring. The power factor indicates how efficiently the manufacturing
cell/component is using the electrical power supplied to it. A low power fac-
tor indicates that the cell/component is drawing more power than required,
which can lead to higher energy costs and the inefficient use of electrical power.
However, these KPIs may not be appropriate for higher-level energy consump-
tion insights. Zimmerman [13] provides a comprehensive list of KPIs and metrics
used within robot performance and manufacturing processes. Utilising their pro-
posed distinctions between metrics and KPIs, with hierarchical considerations,
the second design will include further KPI metrics.

For a dashboard to be useful at the managerial level, it is necessary to in-
clude additional energy-related KPIs and metrics in order to provide additional
economic and sustainability insights. These particular KPI metrics have been
selected to be included in this dashboard:

– Current power (W): Raw value in Watts.
– Total power usage (Wh): At each time interval, the power value is multiplied

by the total time, E = W · t.
– Current energy cost (£): power conversion to kWh then multiplied by the

current UK energy cost per kWh, W/1000× 0.34.
– Utilisation (%): The percentage of power consumption from current power

measurement, against the max power rating, W/66.6
– Carbon footprint(kgCO2/kWh): The total power and time are multi-

plied by the UK carbon intensity, kgCO2/kWh = (KW total × T total) ×
carbonIntestiy.

3.2 Dashboard Designs

The first dashboard presented is targeted towards maintenance technicians and
shop-floor engineers who would need to quickly and easily identify energy-related
fluctuations as they monitor the field-devices on the shop floor. Figure 5 dis-
plays the metrics of power (W), represented as a gauge, with colour coded power
thresholds. The power factor is represented as a percentage. Voltage and current
(Vrms & mArms), represented both over time, within a graph, and as a single
value from the latest measurement, Figure 5 further illustrates the clear identi-
fication between the robots working and idle conditions by looking at the current
and power visualisations. Further state and alert indicators are presented to eas-
ily display the state of the machine and if any energy spikes have been identified.
The alerts can be communicated via email or SMS and are displayed within the
same dashboard, indicating the date and time of the occurrence. Finally, a key
deployment requirement was to display this dashboard on a handheld device, as
displayed in Figure 6.
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Fig. 5: Energy-related data monitoring and visualisation dashboard for shop-
floor engineers and maintenance technicians.

Fig. 6: Energy-related data monitoring and visualisation dashboard on a hand-
held device.

The second dashboard that was presented aims for higher level insights and
allows managerial roles to view additional KPI metrics. The strategy that was
implemented to address this issue consisted of providing visualisations for the
purpose of forecasting energy consumption from the shop floor.

Figure 7 displays a proposed concept of some managerial insights, utilis-
ing the same acquired data, within an alternative higher level dashboard. By
providing visualisations of real-time data on current power consumption, power
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Fig. 7: Energy-related data monitoring and visualisation dashboard for manage-
rial decision-making.

usage, carbon footprint, and utilisation, the dashboard enables a comprehensive
overview of the energy performance of the robotic manipulator. The combi-
nation of these energy KPIs across the shop-floor decisions enables informed
decision-making regarding the optimisation of energy usage, the identification
and resolution of potential energy inefficiencies, and the reduction of the carbon
footprint caused by the assembly line operations.

4 Discussions

The presented dashboards offer benefits for monitoring and managing the en-
ergy performance of field devices in manufacturing systems. They can facilitate
proactive energy management and help optimise energy performance, leading
to improved operational efficiency and reduced energy costs. Furthermore, the
state and alert indicators on energy dashboards allow for timely notifications of
energy spikes or abnormal conditions. This enables maintenance engineers and
technicians to quickly respond and take the necessary actions to mitigate any
energy-related issues, minimising downtime and optimising energy usage. The
handheld device deployment also offers mobility, allowing technicians to mon-
itor energy performance while on the go, providing convenience and flexibility
in managing energy resources. The energy dashboards that are designed to offer
higher-level insights and visualisations for managers allow making informed de-
cisions on energy optimisation strategies, identify potential energy inefficiencies,
and reduce the carbon footprint of the assembly line operations. This promotes
sustainable practises and aligns with eco-friendly initiatives, contributing to the
overall environmental sustainability goals of the organisation. The ability to cus-
tomise the dashboards according to the specific requirements and preferences of
the users further enhances their usability. The alerts and notifications feature en-
sures that operators and managers are promptly informed of any energy-related
issues, enabling timely response and action. The comprehensive approach to en-
ergy management offered by the dashboards, covering multiple energy metrics,
provides a holistic view of the energy performance of the robotic manipulator,
allowing for effective energy resource utilisation and cost savings.
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To further gauge the effectiveness of the proposed platform and visualisation
implementations, comparative approaches are also discussed. Zheng et al., [14],
proposed a platform that incorporates acquisition of a multitude of devices,
controllers, machines, and sensors towards AR-based visibility and real-time
machine status visualisations. Their approach does consider multiple ways of
gaining valuable insights towards the energy conditions of each system, however
efforts towards the interoperability of such a platform was not widely addressed.
Saqlain et al., [15], propose a IIoT-based management and monitoring approach,
with similar complexity in terms of data acquisition and management, but in-
clude cost considerations. Their justification towards the feasibility is from a
perspective forecasting of the decrease in IIoT infrastructure cost and potential
growths within organisations that use such platforms. However, the comparison
of speculation and complexity being viewed by SMEs with costs and interop-
erability may deter the prospect of implementing and operating such platforms
within their own organisations. Thus, the platform proposed within this study
aims to appeal towards SMEs by adhering to industrial communication proto-
cols and open source custom client-servers and data visualisations tools, that
targets the overall cost and interoperability of such ecosystems. In conclusion,
there are some limitations that need to be addressed in this study’s compar-
ison. Firstly, the scalability compatibility issue may arise when implementing
this architecture in larger scale manufacturing shop floors. Despite proposing an
interoperable solution, the performance and capability of the OPC-UA server
may not yield the same results with data mapping and real-time data transfer
in the same infrastructure. Secondly, cost considerations need to be taken into
account, as the increased volume of sampled data will require additional band-
width, storage, and computational resources for a big data platform, building on
the previous point.

5 Conclusion and Future Works

This study proposed an n-tier energy-related data monitoring and visualisation
solution architecture. With the implementation of dashboards, real-time energy-
related data was collected, analysed, and visualised in a series of user-friendly
interfaces. The proposed solution architecture facilitated real-time monitoring,
analysis, and visualisation of energy consumption data, providing manufacturers
with the information needed to optimise their operations and make data-driven
decisions.In future works, efforts can be directed towards integrating advanced
data analytics techniques, such as machine learning algorithms and deep learning
techniques, to enable predictive analytics, anomaly detection, and the optimisa-
tion of energy consumption in real-time. Furthermore, the network layer of the
proposed solution architecture will be further developed to support efficient and
secure data communication between the different tiers of the architecture. Also,
further benchmarking and performance analytics will be conducted to forecast
the potential of scaling this architecture within further smart manufacturing
scenarios.
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