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Abstract: 

Due to the increased awareness of issues ranging from green initiatives, sustainability and occupant 

well-being buildings are becoming smarter, but with smart requirements come increasing complexity 

and monitoring, ultimately carried out by humans. Building heating ventilation and air-conditioning 

(HVAC) units are one of the major units that consume large percentages of a building’s energy, for 

example through their involvement in space heating and cooling, the greatest energy consumption in 

buildings. By monitoring such components effectively entire energy demand in buildings can be 

substantially decreased. Due to the complex nature of building management systems (BMS), many 

simultaneous anomalous behaviour warnings are not manageable in timely manner, thus many energy 

related problems are left unmanaged which causes unnecessary energy wastage and deteriorate 

equipment’s lifespan. This study proposes a machine learning based multi-level automatic fault 

detection system (MLe-AFD) focusing on remote HVAC fan coil unit (FCU) behaviour analysis. The 

proposed method employs sequential two-stage clustering to identify abnormal behaviour of FCU. The 

model’s performance has been validated by implementing well-known statistical measures and further 

cross-validated via expert building engineering knowledge. The method has been experimented on 

commercial building based in central London, UK as a case study and allows to remotely identify three 

types of FCU faults appropriately and inform building management staff proactively when it occurs; 

this way the energy expenditure can be further optimized. 
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1. Introduction: 

 

With the increasing demands of smart building infrastructure and plant maintenance, automatic fault 

detection has gained attention in both academic and industrial fields [1]. There is a growing importance 

placed upon the  development and execution of smart grids and smart buildings in order to encounter 

electricity demands and building material sustainability in an efficient and cost-effective manner whilst 

minimizing CO2 emissions, which account for around three-quarters of total greenhouse gas emissions 

[2]. Commercial buildings are responsible worldwide for approximately 41% of primary energy 

consumption including United States, Europe, and Asia, however experts anticipate that will rise over 

the next 20 years [3]. Improved demand and control strategies require incorporation into the existing 
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infrastructure to sustain the collective electricity demand of commercial buildings. One of the feasible 

and well accepted moves is to extract the information from historic electricity consumption data of 

different units and identify the causes that widely effect the demand/supply scale. This efficient 

functioning of such systems is expected to improve the economy and deliver sustainable solutions for 

energy production in smart buildings [4, 5]. A significant amount of energy is misused by 

malfunctioning or poorly maintained building units and often building operators are unaware that units 

are malfunctioning and wasting energy. A building’s energy consumption is a complex system which 

comprises several elements such as heating ventilation and air-conditioning (HVAC) unit, lighting, 

elevation, security, etc. Figure 1 shows a pie chart which depicts the different areas that are responsible 

for extensive energy consumption within a building. It has been found that the HVAC consumes 

approximately 41% energy of the building’s total energy consumption, whereas lighting is the second 

highest energy consumable unit, which expends around 29% of the total energy. Subsequently, water 

heating, office equipment, and others consumes 9%, 13%, and 8% respectively of the building’s total 

energy [7]. Faults relating to HVAC systems represent between 1% and 2.5% of total commercial 

building consumption [6]. Multi-agent based systems depends on the specific areas of the buildings 

such as, demand response, human behaviour and it has great effect on energy optimisation [35]. Typical 

building performance monitoring and fault identification are performed by building experts which is a 

slow process and leaves many problems undetected or worse, ignored. The efficient integration of 

automatic and remote fault detection methodologies able to detect faults immediately when they occur 

would be a game changer. Also, it is communicating the fault to the owner or maintenance personnel 

with an agreed simple language describing the fault, if they are of enough severity, is highly desirable. 

This system pipeline would eliminate the scheduled maintenance costs, reduce diagnostic labour, reduce 

wasted energy, reduce peak electricity demand, and minimize downtime. 

 

 
Figure 1: Energy consumption by different HVAC units 

 

 

 

The paper is outlined as follows; Section 2 presents the literature review on published HVAC fault 

detection methods. Section 3 overviews the structural details of FCU units and their associated faults. 

Section 4 illustrates the proposed technical framework and methodology that have been developed to 

deal with real building problems. The outcomes of the proposed method are then detailed in Section 5. 

Finally, the conclusions and impact of this study are discussed in Section 6. 

 



 

2. Literature review: 

 

Automatic fault detection and diagnosis methodologies for HVAC systems have evolved with notable 

advancements implementing data mining and machine learning (ML) techniques. However, practical 

limitations, such as scalability and complexity of HVAC systems have made fault detection extremely 

challenging since the beginning of dynamic research and exploration in 1980’s [8, 9]. Fault detection 

and diagnosis (FDD) research is classified into quantitative models, process history, and rule based 

groups, as shown in Figure X. This proposed FDD study focusses on employing machine learning 

techniques to improve building performance which is a part of process history based FDD which is 

categorised into two further groups: knowledge based and data-driven based [new ref- Kim et.al-34.] 

Knowledge based methods require vast amounts of prior information to process the data whereas the 

data-driven model precludes the need of any prior information,  but discovers this information buried 

within the data itself. In this study, data-driven based automatic fault detection (AFD) has been 

performed on  historic FCU datasets (highlighted within the red box shown in Figure X) where the prior 

label information of the FCU data are unavailable. The relevant literature of both the groups is discussed 

in the following sections. 

 

 
 

2.1. Knowledge based method for AFD 

 

Zhao et. al. reviewed artificial intelligence (AI) based fault detection and diagnosis (FDD) systems of 

building energy systems (BES) and published work [10] describing FDD trends between the years 1998 

and 2018. The authors detail the benefit and pitfalls of the existing AI based FDD methods and highlight 



possible future research directions in the field. The review classifies FDD into two categories i.e., data 

driven and knowledge driven FDDs. Data driven FDDs mainly rely on the available training data as 

they are abundant, include supervised, unsupervised, and regression-based learning practices but, 

problems arise in terms of reliability and robustness. Knowledge-based methods influence the 

diagnostic process employing human expert’s knowledge or expertise to support the decision making. 

However, in the era of automation engineers and maintenance staff are required to handle the huge tasks 

that require both human expertise and derived knowledge to supervise an AI based algorithm (i.e., 

supervised ML). An adaptive Gaussian mixture model (AGMM) approach applying time-varying 

probabilistic ML model for non-linear systems has been proposed by Karami et. al. [11]. An Unscented 

Kalman filter (UKF) is integrated with Gaussian mixture model regression for adjusting the model 

parameters with the help of feedback of residuals between observation and model prediction which is 

limited only to chiller fault identification. An automatic fault detection technique assembling rapid 

centroid estimation (ERCE) has been proposed to select illustrative features automatically that are 

unique in nature to the faults of HVAC system and is able to address different types of air-handling unit 

(AHU) faults in commercial buildings [12]. Recently, Ranade et. al. proposed a fault diagnosis scheme 

for FCUs by applying a grey-box model. The work follows a systematic procedure to obtain a simplified 

model of a heat exchanger coil using polynomial regression to generate residuals. The method shows 

that the residuals from this model facilitate fault diagnosis by certain rules [36]. 

 

2.2. Data-driven based method for AFD 

 

Two-stage data-driven FDD strategy has been modelled with linear discriminant analysis (LDA) 

followed by a multi-class classification procedure. The LDA reduces the dimension of the in-hand data 

and clustered faults using the predefined Manhattan distance range to detect and diagnose chiller faults. 

The clustered information is further used to make fault identification decision solving multi-class 

classification problem. The method experimented in ASHRAE Research Project 1043 (RP-1043) data 

for identifying seven types of chiller faults [13]. Gao et. al. proposed association rule-based approach 

for six different types of air handling units (AHU) behaviour analysing time series data which are 

instrumented in several buildings of United States of America. Here, twelve performance and 

assessment rules (APAR) have been inferred for rule based FDD application in AHU and 75% accuracy 

has been obtained for new or unseen data [14]. A hybrid multi-label classification algorithm assembling 

clustering and generalized linear mixed model (GLMM) has been proposed by the researchers. Here, 

clustering groups the available data and reduce the computational complexity of manual labelling 

whereas, the GLMM figures out the dependency of a subject with multi-labels in training data. The 

results indicate its suitability towards the large number of labelled information [15]. A laboratory 

generated air-water heat pump data and their series of features have been analysed with different ML 

approaches. The fault detection results show that the method performs well with laboratory generated 

training data set but failed to with real-world data set [16]. Austin et. al. presented a model to estimate 

air-side capacity based on the specific parameters such as, airflow rate, cooling capacity, system 

efficiency, and refrigerant mass flow of air handling systems. The sensitivity has been compared with 

other existing models. Additionally, the model is able to evaluate the uncertainty of input parameters 

and their sensor requirements. But the model is limited to commercial air-handling units only [17]. A 

machine learning based anomaly detection and irregular building energy consumption tracking 

framework has been proposed by Xu and Chen. Here, the recurrent neural network (RNN) has been 

executed to identify the faulty interval and its energy consumption and the outcomes have been 

evaluated by the quantile regression range. The framework has been only applied to three different 

residential houses. This is an unsupervised framework where no prior knowledge is required to detect 

anomalous behaviours and building managers are benefitted to assess the level of anomalies and spot 



opportunities in energy conservation [18]. Lee et. al. proposed a real-time deep learning (DL) supported 

fault diagnostic model for AHUs. Initially, the EnergyPlus simulation software has been employed to 

establish different types of fault references for DL implementation and behaviour learning. The 

successful execution of this method shows improvement in the diagnostic process with 95.16% 

accuracy but has not been tested on real data which lacks the reliability of the model [19]. Zhao et. al. 

fused wavelet transformation (WT) followed by principle component analysis (PCA) to discover 

behavioural knowledge and diagnose the HVAC AHU [20]. Beghi et. al. encountered the high 

dimensional data space problem of buildings and performed a dimensionality reduction technique that 

maps the data to the lower interested space. The reduced building data have been fed into hybrid model 

to make an efficient FDD solution for large buildings. However, the work demonstrates that in practice 

the FDD technique is more appropriate for fault detection rather than fault diagnosis [21]. Magoules et. 

al. developed an artificial neural network (ANN) utilising recursive deterministic perceptron (RDP) to 

implement FDD for an entire building level. Remarkably, this new FDD prototype detects and ranks 

the faulty equipment according to the fault risk [22]. A recent prototype has been developed by Shang 

and You exercising stochastic model predictive control (SMPC) that provides promising solution to the 

complex control problems under uncertain disturbances. The SMPC approach actively learns the 

uncertainty from data driven pipeline involving ML framework [23]. A similar type of energy 

optimisation pipeline has been implemented by Sonta et. al. along with learning the occupant's 

behaviour in buildings to improve energy efficiency [24]. 

 

2.3. Problem Statement 

 

The literature of building management and its energy handling demonstrate that the researchers have 

devoted great effort in identifying and developing proficient methods to resolve the real challenges in 

buildings to optimise their behavioural performance and save the energy wastage mostly at acomponent 

level via smart building systems. However, many problems are left undetected/unresolved due to large 

amount of data and complex nature of building management systems (BMSs). The BMS produces vast 

amounts of data at every minute time interval, most of which have not been analysed and understood 

due to the lack of building experts increaseing overhead costs as well as time complexity. Thus, the 

employability of data mining and ML methods are attracting attention for BMS data analysis, but it is 

complex pathway to discover effective methods due to the fact that learning and knowledge discovery 

methods are comprehensively data dependent where each type of data represents specific behaviour. 

This makes the field a highly interesting and vast are for more focused research. Pivotally, although the 

most numerous units used in building, the fan-coil unit (FCU) has not been explored compared to other 

major units such as, AHU, chillers, boilers.  

2.4. Contribution 

The authors have focused on this this small but influential fan-coil unit (FCU)unit and created a method 

that can be adopted for different buildings and equipment. The proposed work has been performed on 

a real building based in London, UK as a case study. A FCU is a specific sub-unit of a HVAC system 

and the main unit of interest for this investigative research work. A machine learning based multi-level 

automatic fault detection (MLe-AFD) framework is proposed and developed for FCU fault 

identification and their performance analysis. The study emphasizes the successful utilization of 

machine learning provided by two-stage learning in the presented multi-level framework. This proposed 

model allows to utilise the unstructured and unlabelled building data in such a way that fits with this 

model in the experiment stage. The results of this study show the ability of the presented work to 

improve the fault identification while having limited amount of information about the FCU behaviour. 



 

3. Overview of FCU and associated faults 

 

A FCU is a ceiling-mounted unit commonly found inside rooms, corridors, open space areas and 

controlled by local thermostats. It comprises heating coil, cooling coil, and a fan or damper. The return 

air recirculates internal air or fresh air along with recirculated air and release fresh air to the room 

depending upon the thermostat. An outer structure and the schematic of FCU are shown in Figure 2. 

Commonly, the central chiller and boiler plant distributes cold water to all the cooling coils and hot 

water to all the heating coils. If the environment becomes too warm, the local thermostat senses the rise 

of temperature and signals the chilled water valve to flow cold water through the cooling coil then cool 

air being blown by the fan. If the room temperature becomes too cold (depending on the local set point 

or the user preferred temperature setting), the heating coil starts working in similar way and blows the 

hot air until the room temperature reaches the anticipated level or set point.  

 

 

Figure 2: (a) FCU inner and outer structure, (b) Schematic of FCU 

 

Due to dirty plenums, filters, and coils, the resistance increases lowering the air volume causing 

inappropriate cooling or heating. There are several problems related to air distribution creating 

performance issues. Thus, three types of FCU performance issues: (a) saturation, (b) on-ness, and (c) 

hunting have been investigated in the proposed work. These three malfunctioning behaviours have been 

thoroughly examined and learned by ML methods for fault detection that aims fast maintenance 

response. Figure 3 visually illustrates the three types of faults that shows raw control temperature and 

related power demands during different types of faults. Each subfigure has been divided into two parts, 

the upper part denotes the control temperature variation in degrees centigrade and the lower part 



displays the associated power demand in kilowatt. Here, the pink and blue dotted lines in the control 

temperature graphs denote the heating and cooling setpoints respectively. Similarly, the blue colour in 

the power demand represents cooling power whereas the pink colour represents the heating power. 

These graphs show the control temperature and corresponding power consumption of a single unit for 

a whole day, where it is observed that the control temperature could not reach any of the set points 

(heating/ cooling) though the power demand was continuously high. Figure 3(a) shows the ‘saturation’ 

type of heating (indicated by pink colour) power trends where the temperature was still struggling to 

reach its set point. Though, the high-power consumption is found the temperature couldn’t achieve the 

set point for that instance, illustrating the occurrence of fault which needs to be identified and addressed. 

Figure 3(b) shows the ‘on-ness’ behaviour in the cooling (indicated by blue colour) power trend. In 

general, the FCUs are enabled during the daytime of 6:00 am to 6:00 pm to cover the office hours but 

in this case the power consumption is continuously high and saturated even in the out of operational 

hours due to this defective behaviour. It wastes significant amount of energy in building operation. 

Figure 3(c) shows the third type of fault case here, the heating trends and ‘hunting’ nature of the FCU 

behaviour reveals in terms of power and temperature, while the unit is on even after the operational 

hours. These three faults of FCU behaviour have been addressed and analysed here using the proposed 

multi-level clustering (MLC) to learn and identify the fault patterns automatically. The data have been 

collected in every 10 min timestamp with the control temperature, heating power, cooling power, set 

point, dead band, and enable signal information from the FCUs of the case study building. 

 

 

 

 



 

Figure 3: The control temperature and associated power behaviour of three types of FCU faults 

4. Proposed multi-level automatic fault detection: 

 

The multi-level automatic fault detection (MLe-AFD) model has been proposed performing three 

stages, feature extraction from the raw FCU data, first-level clustering to separate faulty and non-faulty 

data, and second-level clustering to identify different types of faults. The performance of the proposed 

work has been evaluated in each clustering level using statistical validation. It notifies the building 

engineer about the faults and their types automatically so they can proactively perform guided 

maintenance. The flowchart of the proposed method has been shown in Figure 4 and described in the 

following sections. 

 

Figure 4: Flow diagram of proposed AFD method 

4.1 Data Collection Process: 

 

The data are gathered through the data acquisition device (DAD) installed in the building, which acts 

as a gateway to connect an existing/resident BMS to a secure internet service by the Demand Logic 

(DL) team (London). The data gathering process is completed within 24 to 48 hours and creates a virtual 



asset model (VAM) of all the equipment installed in that BMS network, considering each data point as 

BMS data.  

 

The BMS data is extracted through a single embedded PC Engine 2D13 ALIX connected through a 

mobile network router. The embedded PC contains embedded software that is used to: (i) obtain a map 

of the BEMS network. This includes all the BEMS internetworks and consists of multiple local area 

networks, devices on a LAN (a single device may relate to one or many services equipment), and data 

points on a device. These can be binary or analogue control signals, feedback signals or settings. The 

text label and numerical ID are obtained for each of the LAN, device and data point, (ii) pulling the data 

points (typically at i 10 minute intervals), (iii) store/buffer the data if the internet connection is lost, and 

(iv) securely send the data to the cloud servers. 

 

 

4.2 Feature extraction 

 

An ‘intelligent’ feature extraction method was proposed and applied by the authors [25, 26] to deal with 

the high dimensional data and project into reduced data dimension. The feature extraction process 

generated informative and non-redundant information facilitating subsequent learning and improved 

the performance of the entire framework. This feature extraction method is performed on the six FCU 

parameters: control temperature, set point, dead-band, heating power, cooling power, and enable signal. 

These FCU data are collected at every 10 minute interval from the time series data on a daily basis via 

a secured gateway. The proposed feature extraction method has been employed to discover different 

events: event start, respond delay, goal achieved, and event end based on their temperature and power 

flow during a day (24hrs). The area (AE) under temperature and power curve (f(xi)) at each time interval 

(Δx) is calculated event wise. This area under the curve calculation is carried out for both heating (H) 

and cooling (C) actions. There are six different features are measured from each of the heating and 

cooling events employing the event area calculation, 

𝐹𝐻𝑘
=

1

𝑛
∑ ∑ (𝐹𝐻𝑘𝑖

)
6

𝑘=1

𝑛

𝑖=1

                         (1) 

  

𝐹𝐶𝑘
=

1

𝑛
∑ ∑ (𝐹𝐶𝑘𝑖

)
6

𝑘=1

𝑛

𝑖=1

                               (2) 

Where, FH represents heating and FC represents cooling features, n is the number of occurrences of each 

event type (heating or cooling) on a day, k is the number of features generated by measuring the area of 

each events (AE). The feature extraction method transforms and represents heating-cooling events of a 

whole day by the twelve-dimensional (12-D) feature vector. On a day there are (
24∗60

10
) = 144 data point 

have been collected for each FCU parameter at 10 minute intervals. Six different parameters have been 

considered for each FCU, thus altogether (144*6) = 864 data points exist for each FCU, subsequently 

converted into 12 meaningful features employing the cooling and heating operation information. These 

feature vectors have further considered for clustering to automatically detect and identify the faults. 

4.3 Multi-level clustering: 

 



The faulty and non-faulty behaviour ground truths of the FCUs were unavailable to the authors during 

this investigation, thus, the unsupervised learning approach i.e., clustering has been incorporated here 

to discover the FCU behavioural patterns without any prior knowledge. The clustering algorithm 

categorises the similar types of FCU behaviours into same cluster based on dissimilarity found in the 

feature space. Thus, the MLe-AFD has been implemented into two stages. The first level clustering has 

been performed to separate faulty and non-faulty FCU patterns (obtained two clusters), the obtained 

clusters have been thoroughly analysed to understand each group. The second level clustering has been 

applied into a faulty cluster to identify further faulty groups (three groups obtained). Three well-known 

clustering algorithms have been implemented for multi-level application: k-means [27, 28], average 

linkage hierarchical clustering [28], and Gaussian mixture model (GMM) clustering [29] depending 

upon the data characteristics.  

 

The objective function of k-means is defined in Eq. (3), where ||Xi
(j) - µj||2 is the Euclidean distance 

between the data point Xi
(j) and the cluster centre µj. The distance between the n number of data points 

from their respective cluster centres are defined as ‘k’ for each cluster. Each data point is assigned to 

the group that has the nearby centroid. After all the data points are assigned, the positions of the k 

centroids are recalculated. The steps are re-iterated until the centroids no longer move. 

J = ∑ ∑ ||Xi
(j)

− μj||
2

n

i=1

k

j=1

                                     (3) 

 

Hierarchical clustering creates a grading of clusters in the FCU dataset measured by linkage criteria 

between the sets or the groups of observations. It is the function to measure the pairwise distances 

between the observations in each set. The objective function for average linkage hierarchical clustering 

is defined in Eq. (4), where, a and b are the object which belong to the set A and B. 

 

maxd(a, b): a ∈ A, b ∈ B                                          (4) 
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The GMM follows the soft clustering technique for assigning the FCU behaviour data points to the 

Gaussian distributions. The GMM decides k number of clusters calculating the mean (µ), covariance 

(∑ 𝑘) and the density of the distribution (πi). The working principle of GMM doesn't rely on the shape 

of distribution, is shown in Eq. (5), 

𝑝(𝑥) = ∑ π𝑖𝑁

𝑘

𝑖=0

( 𝑥 ∣∣ μ𝑘 , ∑ 𝑘 )                           (5) 

 

The compactness of clustering outcomes has been evaluated in each level measuring statistical metrics 

to be confident about the inter-cluster separation and intra-cluster coherence.  

 

4.4 Validation 

 

Three standard clustering validation techniques have been implemented; Gap [30], Silhouette indexing 

(SI) [31], Davies-Bouldin (DB) [32] to analyse and compare performance. These measures are 

performance indicators used where the class labels (or, ground truths) are not available. These 

performance indicators determine the degree of intra-cluster cohesion and inter-cluster separation. Each 



of these methods has its own numeric range to illustrate the compactness of the clusters where, loosely 

coupled clusters are required further investigation. The Gap approach is expressed in Eq. (6) as, 

 

𝐺𝑛(𝑘) = 𝐸𝑛
∗𝑙𝑜𝑔(𝑊𝑘) − 𝑙𝑜𝑔(𝑊𝑘)                            (6) 

 

Where, En* denotes expectation under the sample size of n from the distribution, considering as uniform 

data points with k centres, and the gap statistic measures the deviation of the observed Wk value from 

its expected value under the null hypothesis. The k is the optimal cluster number where the gap measure 

maximises. The Silhouette indexing (SI) defined in Eq. (7), 

SI =
1

𝑛𝑘
∑

bi − ai

max(ai,bi)
i∈k

                                        (7) 

 

Where ai is the average distance from the ith point to the other points in the same cluster, and bi is the 

minimum average distance from the ith point to the points in different clusters. The silhouette value 

ranges from -1 to +1. A high value indicates that i is well-matched to its own cluster. The clustering 

solution is considered appropriate if most points have a high silhouette value. The Davies-Bouldin (DB) 

measure is denoted in Eq. (8), 
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1

𝑘
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k
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                              (8) 

 

Where, Δi,j is the cluster’s distance ratio for the ith and jth data points within and to the other cluster. The 

∂i and  ∂j are the average distances between each point in the cluster from the centroid of that ith cluster 

and the average distance between each point in the jth cluster and the centroid of the jth. The value ranges 

from -1 to +1 and a low DB value consider the clustering solution is appropriate. 

 

4.5 Hypothesis Test: Two-sample t-test 

A Hypothesis test has been performed to be confirm between the relationships of the FCU behavioural 

clusters. Two FCU groups have been tested at a time thus a two-sample t-test has been performed here. 

Here, the null hypothesis (Ho) indicates that the two FCU clusters come from independent random 

samples from a normal distributions using the two-sample t-test and the alternative hypothesis (H1) is 

vice versa. The Ho has been accepted or rejected at the 5% significance level (α=0.05).  

5. Experimental result analysis: 

The proposed MLe-AFD has been examined on a real case study building. The details of the case study 

building, and outcomes have been discussed in the following section. 

5.1 Case study description 

 

The case study building is London based, built in 1960 and renovated in 2009. It covers 149,000 sq. ft. 

for offices and 8,000 sq. ft. of retail space. The building has seventeen (17) floors with seven hundred 

and thirty-one (731) FCUs distributed across the different floors. A total of 723 FCUs were operating 

out of a total of 731. The proposed MLe-AFD has been experimented on using building data gathered 

since 2015 and continued to 2020. Thus, the 723 FCUs for each day and consecutively 3615 FCUs have 



been monitored for one week with thorough analysis performed to understand the behavioural patterns 

of faulty and non-faulty FCUs of the building so that it could useful for future fault anticipation.  

These data are then accessed in the University lab for research purposes. The experiment has been 

carried out using MATLAB R2018b tool on an Intel(R) Core (TM) i5 processor@ 3.30 GHz running 

Windows 7 Enterprise 64-bit operating system with 7856-MB NVIDIA Graphics Processing Unit 

(GPU). 

5.2 Feature correlation 

 

The correlation between the features obtained from the proposed feature extraction method has been 

analysed here calculating the Pearson correlation coefficient (PCC) [33]. Pearson's correlation 

coefficient is known as the best test statistical method for measuring the association and relationship 

between two continuous variables of interest and is based on the covariance. The coefficient values 

range between -1 to +1, where +1 defines a perfect correlation between the FCU features. The first six 

features are related to the heating trends and the next six features are related cooling trends. 

Additionally, the each FCU features represent the control temperature and power behaviour events [25, 

26].  The heating features have the negative correlation with cooling features that represents inverse 

relationship with each other. It is found from the colour map in Figure 5 that feature variables are 

perfectly correlated with their own pair and moderately correlated with pair variables where the value 

ranges from -0.0003234 to +1.  

 

Figure 5: Feature correlation colour map 

5.3 Clustering results 

 

The proposed MLe-AFD has been performed in two stages using three different methods and the results 

compared to identify the best fitted clusters with the case study FCU dataset. The first-level clustering 

has been performed on each day using 12-D feature vector for all the one day and one week FCUs and 

clustered them into two groups, faulty and non-faulty. Three different clustering algorithms have been 

performed here two find these two groups. The results have been verified using two methods, i) by 

applying statistical metrics (describe in Section 4.3) and ii) through analysis by building engineers 

where, they have confirmed the identified faulty and non-faulty FCU patterns (described in Section 

4.3). The number of faulty and non-faulty FCUs found from each clustering model are shown in Table 

1 which displays the numbers in each category obtained from the models. The non-faulty groups 



obtained from all three clustering techniques contained more FCUs than the faulty groups. The 

outcomes indicated that, most of the FCUs were working properly which has been confirmed later by 

the building engineers.  

 

Table 1: The number of data points accumulate into each cluster after employing first-level 

clustering  

A day FCU 

data 

outcomes 

Methods Non-faulty Faulty 

k-means 598 125 

Linkage 592 131 

Gaussian mixture 596 127 

A week FCU 

data 

outcomes 

k-means 3185 430 

Linkage 3190 425 

Gaussian mixture 3177 438 

 

Now, these two clusters obtained from each model have been validated through the internal evaluation 

schemes and results are displayed in Table 2. The validation schemes assess how well the clustering 

has been performed using the quantities and features inherited from the FCU dataset. In the case of the 

Gap algorithm, it finds the optimal number of clusters first which might provide a best fit for the FCU 

data in hand and a maximal Gap metric score to indicate the clustering performance. The number of 

FCU behaviours are known to the authors from building engineers i.e., two and three groups 

respectively in first and second level clustering. The first two groups (faulty and non-faulty) are 

common but, three types of faults in the next level have been informed by engineers collaborating on 

this research and this information was particularly supportive towards the optimal number of clusters. 

It was found from the k-means clustering that there were 598 non-faulty and 125 faulty FCUs, where 

the Gap criterion achieved 1.10 and expresses very good compactness of the faulty and non-faulty FCU 

clusters. The SI measure scores 0.9649 which is very near to +1 also defines decent clustering outcomes 

and 0.2582 from k-means. The DB scored 0.2582 where the metrics close to 0 indicates promising 

outputs from k-means. There are 592 FCUs found in non-faulty cluster and 131 FCUs into faulty cluster. 

Here, the Gap index scores are found same as of k-means, but less SI score achieved than the k-means 

and Gaussian mixture clustering. Also, the obtained DB index is 0.1595 which is moderately low and 

indicates good linkage clustering performance. In case of GMM clustering, 596 and 127 FCUs have 

been identified in non-faulty and faulty groups respectively and all the considered indexes indicate 

decent clustering outcome. Similarly, the experiment has been tested on a week’s worth of data that 

comprises 3616 FCUs altogether. Table 1displays how many of these week long FCUs have been 

assigned into two groups by the chosen algorithms. It can be observed that a greater number of data that 

has been grouped together belongs to the non-faulty behavioural group. Also, in Table 2 the internal 

validation results from the three measures have been incorporated to investigate the compactness of 

these clustering algorithms and it was found that all three methods achieved optimal scores based on 

their evaluation criteria.  

 

Table 2: The validation score of different methods obtained by first level clustering  

 

 Methods Gap Silhouette Davis 

Boulding 

A day FCU data 

outcomes 

k-means 1.100 0.9649 0.2582 

Linkage 1.100 0.9421 0.1595 

Gaussian mixture 1.090 0.9652 0.2517 

A week FCU 

data outcomes 

k-means 2.248 0.970 0.3279 

Linkage 2.369 0.9715 0.3138 



Gaussian mixture 2.246 0.9715 0.3138 

 

Figure 6 shows the bar plot to compare all the first level clustering performances for daily and weekly 

FCUs. In the daily data, it has been found that GMM performed better than other two clustering methods 

in first level clustering to identify faulty and non-faulty FCUs. All the methods achieved good 

performance criteria in the weekly data analysis. However, the Linkage and GMM clustering achieves 

the same score in the Silhouette and Davis Boulding indexing calculations. Our partner building 

engineers have verified the clustering outcomes. Subsequently, the faulty FCU groups have been further 

clustered using corresponding algorithms to categorise different types of faults in the second level 

clustering.  

 

 
Figure 6: Bar plot for first level clustering validation comparison 

The second level clustering has been performed only on the faulty FCU groups, i.e., 125 FCU patterns 

for k-means clustering, 131 FCU patterns for linkage, and 127 FCU patterns for GMM clustering have 

been considered at this stage for day FCU experiment. Subsequently, 430, 425, 438 FCU patterns have 

for second level clustering using k-means, linkage, GMM clustering respectively in week data 

investigation. As the building engineers informed previously there are three types of faults, hunting, 

saturation, and on-ness noted in FCU behaviour. Thus, the clustering aimed to break each faulty cluster 

into three more groups. The allocation of FCUs into each fault type are tabulated in Table 3 with the 

corresponding clustering algorithm. These clusters also further verified through the expert building 

engineers to understand and map their categories into the obtained faults. The faults included in Table 

3 denotes, fault-1 as hunting, fault-2 as saturation, and fault-3 as on-ness patterns. Alike the first level, 

this second-level clustering also validated statistically and through engineers to check their compactness 

and system performance, is tabulated in Table 4. 

 

Table 3: The number of FCU data accumulated from each clustering to perform second-level 

clustering 

Experimental 

Time Frame 
Methods 

Total no of 

FCU data 
Fault-1 Fault-2 Fault-3 

A whole day 

k-means 125 35 24 66 

Linkage 131 37 25 69 

Gaussian mixture 127 38 27 62 

A whole week 

k-means 430 175 47 208 

Linkage 425 174 46 205 

Gaussian mixture 438 177 51 207 

 



It has been found from daily data analysis employing k-means that 35, 24, 66 FCUs were identified as 

displaying hunting, saturation, and on-ness, respectively. Linkage demonstrated that, 37, 25, 69 FCUs 

were grouped as displaying hunting, saturation, on-ness respectively. The GMM identified that, 38, 27, 

62 FCUs displayed hunting, saturation, and on-ness in nature respectively. Similarly, it has been 

observed from the weekly data analysis that k-means separated 175, 47, 208 FCUs into three distinct 

faulty behaviours, whereas linkage grouped 174, 46, 205 FCUs into different clusters, and 177, 51, 207 

FCUs wereseparated by GMM algorithm.  The validation scores have been summarized in Table 4. The 

k-means and linkage clustering models achieved identical scores for Gap criterion, whereas linkage and 

GMM achieved better scores than k-means for both SI and DB indexing for daily analysis. In the case 

of weekly analysis k-means achieves different performance score for all the validation methods whereas 

linkage and GMM achieve similar scores for silhouette and Davis Boulding. All these implemented 

methods have achieved good performance scores for all the internal validation criteria which are 

acceptable and considered as good clustering for these FCU behaviour analysis. 

 

Table 4: The validation score obtained from different methods in second level clustering 

 

Experimental 

Time Frame 
Methods Gap Silhouette Davis Boulding 

A whole day 

k-means 1.310 0.9517 0.207 

Linkage 1.310 0.9527 0.1925 

Gaussian mixture 1.300 0.9527 0.1925 

A whole week 

k-means 2.720 0.9877 0.2443 

Linkage 4.281 0.9930 0.2440 

Gaussian mixture 4.157 0.9930 0.2440 

 

Figure 7 shows the bar plot comparison of internal validation scores obtained from all three clustering 

methods for day and week FCU data analysis. It has been realised from second-level cluster analysis 

that GMM provides optimal performance for FCU automatic fault detection of s over the other two 

algorithms tested. Henceforth, the proposed MLe-AFD employing GMM have been considered to 

capable of detecting distinct FCU fault patterns automatically and without any prior information. 

 

 

 

 
Figure 7: Bar plot for second level clustering validation comparison 

 

5.4. Hypothesis test  

 



A Hypothesis test has been performed for trusting the relationship between different types of FCU 

populations that have been separated through clustering, this test gives precise criteria for rejecting or 

accepting a null hypothesis i.e., the obtained results within a significance level [37]. The proposed MLe-

AFD has been employed to detect anomalously behaving FCUs and pivotally their types of anomalies 

without the label information. One day and oneweek data have been initially considered totest the 

outcomes of the proposed MLe-AFD. Hence, the paired t-test has been implemented to discover the 

correlation between the predicted FCU clusters and to confirm the FCUs belongingness to a particular 

cluster. Table 5 shows the comparison of p-values obtained by the MLe-AFD where, the first two 

clusters obtained from first level clustering represent the non-faulty and faulty patterns considering 

control temperature and corresponding power variation. Another three clusters have been obtained from 

the second level clustering representing the different faulty FCU patterns. The significance level 0.05 

has been considered for the FCU cluster to justify the null hypothesis. The null hypothesis has been 

accepted for a predicted cluster where the p-value is greater than the significance level. From the table 

below, it has been seen from both the daily and weekly data that the first and second level clustering 

obtained a p-value less than the significance level (p-value < 0.05). Thus, it depicts the null hypothesis 

is rejected, indicating that the proposed MLe-AFD could cluster the data into appropriate distinct 

patterns. 

 

 

Table 5: Hypothesis test obtained for daily and weekly data including the p-value of first and second 

level clustering populations 

 Level-1 clustering Level – 2 clustering 

 p-value for faulty and 

non-faulty population 

p-value for fault-1 

and fault-2 

population 

p-value for fault-1 

and fault-3 

population 

p-value for fault-

2 and fault-3 

population 

Day test 0.0176 0.0464 0.0184 0.0196 

Week test 0.0239 0.0242 0.0508 0.0349 

 

 

6. Discussions and Conclusions: 

 

It has been concluded from this study that the multi-level machine learning framework is an effective 

solution for the automatic detection of FCU fault patterns in commercial buildings. The proposed AFD 

method was developed to illustrate how predictive machine learning methods can be influential in 

creating useful smart buildings with inherent and automated fault identification in heating and cooling 

FCUs as is the case investigated here. This study has described the benefits of the proposed approach 

to identify faults remotely and importantly anticipate their behaviour automatically. Although, it has 

been realised from the clustering application that, all the FCUs are identified as faulty, some may not 

actually be faults but a result human interference such as open windows etc where the FCU cannot cope 

with sudden changes in temperature.  Other natural, but not considered changes also cause “faults”, e.g. 

when the sun shines in a room creating a temperature level that the FCU set point cannot cope with.  

Again, these are issues that can be identified via the method proposed but text can inform managers of 

these non- fault issues, reducing workloads and informing building design efforts. Creating systems that 

can identify, predict and categorise faults and non-faults by costs (determined by the building manger 

are pivotal to future smart building) will be pivotal to building sustainability, occupant well-being and 

green efforts. The proposed work has obtained statistically acceptable indexing scores. 



The proposed method has a significant impact on energy savings as well. Identification of the faulty 

behaving units directly affects  energy consumption performance of the built environment. This 

automatic approach will be the first step to reduce building energy wastage. The automatic fault findings 

would be beneficial for future fault anticipation, ensuring appropriate preventative maintenance 

strategies . This could significantly reduce the operational energy consumption and cost of the HVAC 

units.  

The proposed MLe-AFD strategy has been executed in two stages, the feature extraction method 

followed by unsupervised learning techniques. The feature extraction considers the temperature, set 

point, and corresponding power for FCU characterisation, where three distinct FCU faults have been 

remotely identified. Further, this investigation has been validated through engagement with building 

engineer to understand the effectiveness of the proposed framework. This method can reduce the manual 

workload of fault finding and identification and provides the necessary leap towards useful and applied 

AFD that can assist in predictive maintenance where necessary. Additionally, this method would help 

building engineers to look at a single FCU unit along with the whole cluster where they can take 

necessary actions for all the affected units belonging to that cluster without looking into each of them. 

Thus, the proposed MLe-AFD method optimizes the building’s operational workload identifying 

abnormally behaving equipment reducing the large amount of energy loss in smart buildings. The 

method developed and deployed for this paper is currently focuses on a specific type of HVAC unit 

(Fan Coil Unit) of a single building, but will be extended to different types of units such as air handling 

unit (AHU), variable air volume (VAV) and chilled beam etc. for widespread and applied validation. 

Author Contributions: 

 

M.D. has performed the data collection, analysis, proposed and design the algorithms, and wrote the 

paper, S.P.R. has conducted the experiments, guided to develop algorithm and wrote the paper, S.D. 

has supervised this work throughout and instigated the research and the collaborative work on this paper 

between teams at DL and LSBU. All authors reviewed the manuscript. 

 

Acknowledgement: 

 

This research project is funded by Innovate UK (EP/M506734/1). The authors are grateful to the 

Demand Logic team for providing us the data and feedback on building services and related 

performance issues. 

 

Conflict of Interest:  

 

The authors declare no conflict of interest. 

 

References  

 

1. Robust ensemble learning framework for day-ahead forecasting of household based energy 

consumption. 

2. Dionysia Kolokotsa. The role of smart grids in the building sector. Energy and Buildings, 

116:703-708, 2016. 



3. Building energy databook.<https://openei.org/doe-opendata/dataset/buildingsenergy-data-

book>[last accessed: 2017-11-23]. 

4. Clastres C. Smart grids: Another step towards competition, energy security and climate change 

objectives. Energy Policy 2011;39:5399–408. 

5. Yu X, Cecati C, Dillon T, Simões MG. The new frontier of smart grids. IEEE Ind Electron 

Magaz 2011;5:49–63. 

6. Roth, K.W., et al, 2005. “Energy Impact of Commercial Building Controls and Performance 

Diagnostics: Market Characterization, Energy Impact of Building Faults and Energy Savings 

Potential.” TIAX. http://tinyurl.com/TIAX2005. 

7. Yang Zhao, Tingting Li, Xuejun Zhang, and Chaobo Zhang. Artificial intelligence-based fault 

detection and diagnosis methods for building energy systems: Advantages, challenges and the 

future. Renewable and Sustainable Energy Reviews, 109:85-101, 2019. 

8. PB Usoro, IC Schick, and S Negahdaripour. An innovation-based methodology for hvac system 

fault detection. Journal of dynamic systems, measurement, and control, 107(4):284-289, 1985. 

9. D Anderson, L Graves, W Reinert, JF Kreider, J Dow, and H Wubbena. A quasi-real-time 

expert system for commercial building hvac diagnostics. ASHRAE Transactions (American 

Society of Heating, Refrigerating and Air-Conditioning Engineers); (USA), 95(CONF-

890609), 1989. 

10. Zhao, Yang, et al. "Artificial intelligence-based fault detection and diagnosis methods for 

building energy systems: Advantages, challenges and the future." Renewable and Sustainable 

Energy Reviews 109 (2019): 85-101. 

11. Karami, Majid, and Liping Wang. "Fault detection and diagnosis for nonlinear systems: A new 

adaptive Gaussian mixture modeling approach." Energy and Buildings 166 (2018): 477-488. 

12. Guo, Ying, et al. "Real-time HVAC sensor monitoring and automatic fault detection system." 

Sensors for Everyday Life. Springer, Cham, 2017. 39-54. 

13. Li, Dan, Guoqiang Hu, and Costas J. Spanos. "A data-driven strategy for detection and 

diagnosis of building chiller faults using linear discriminant analysis." Energy and Buildings 

128 (2016): 519-529. 

14. Gao, Jingkun, and Mario Bergés. "A large-scale evaluation of automated metadata inference 

approaches on sensors from air handling units." Advanced Engineering Informatics 37 (2018): 

14-30. 

15. Lin, Sung-Chiang, Chih-Jou Chen, and Tsung-Ju Lee. "A multi-label classification with hybrid 

label-based meta-learning method in Internet of Things." IEEE Access (2020). 

16. Bode, Gerrit, et al. "Real-world application of machine-learning-based fault detection trained 

with experimental data." Energy (2020): 117323. 

17. Rogers, Austin, Fangzhou Guo, and Bryan Rasmussen. "Uncertainty analysis and field 

implementation of a fault detection method for residential HVAC systems." Science and 

Technology for the Built Environment 26.3 (2020): 320-333. 

18. Xu, Chengliang, and Huanxin Chen. "A hybrid data mining approach for anomaly detection 

and evaluation in residential buildings energy data." Energy and Buildings (2020): 109864. 

19. Lee, Kuei-Peng, Bo-Huei Wu, and Shi-Lin Peng. "Deep-learning-based fault detection and 

diagnosis of air-handling units." Building and Environment 157 (2019): 24-33. 

20. Yang Zhao, Shengwei Wang, and Fu Xiao. Pattern recognition-based chillers fault detection 

method using support vector data description (SVDD). Applied Energy, 112:1041-1048, 2013. 

21. A Beghi, R Brignoli, L Cecchinato, G Menegazzo, M Rampazzo, and F Simmini. Data-driven 

fault detection and diagnosis for hvac water chillers. Control Engineering Practice, 53:79-91, 

2016. 



22. Frederic Magoules, Hai-xiang Zhao, and David Elizondo. Development of an RDP neural 

network for building energy consumption fault detection and diagnosis. Energy and Buildings, 

62:133-138, 2013. 

23. Chao Shang and Fengqi You. A data-driven robust optimization approach to scenario-based 

stochastic model predictive control. Journal of Process Control, 75:24-39, 2019. 

24. Andrew J Sonta, Perry E Simmons, and Rishee K Jain. Understanding building occupant 

activities at scale: An integrated knowledge-based and data-driven approach. Advanced 

Engineering Informatics, 37:1-13, 2018. 

25. Dey, Maitreyee, et al. "A pid inspired feature extraction method for hvac terminal units." 2017 

IEEE Conference on Technologies for Sustainability (SusTech). IEEE, 2017. 

26. Dey, Maitreyee, Soumya Prakash Rana, and Sandra Dudley. "Smart building creation in large 

scale HVAC environments through automated fault detection and diagnosis." Future 

Generation Computer Systems (2018). 

27. Dey, Maitreyee, et al. "Unsupervised learning techniques for HVAC terminal unit behaviour 

analysis." 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted 

Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet 

of People and Smart City Innovation. IEEE, CA, USA, 2017. 

28.  Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition. 2003. Elsevier Inc, 

2009. 

29. McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons, Inc., 

2000. 

30. Tibshirani, R., G. Walther, and T. Hastie. “Estimating the number of clusters in a data set via 

the gap statistic.” Journal of the Royal Statistical Society: Series B. Vol. 63, Part 2, 2001, pp. 

411–423. (For gap) 

31. Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster 

analysis. Journal of computational and applied mathematics, 20:53-65, 1987. 

32. David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on 

pattern analysis and machine intelligence, (2):224-227, 1979. 

33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in C, 

2nd Ed., Cambridge University Press, 1992. (for correlation) 

34. Woohyun Kim and Srinivas Katipamula. A review of fault detection and diagnostics methods 

for building systems. Science and Technology for the Built Environment, 24(1):3{21, 2018. 

35. González-Briones, Alfonso, et al. "Multi-agent systems applications in energy optimization 

problems: A state-of-the-art review." Energies 11.8 (2018): 1928. 

36. Ranade, A., Provan, G., Mady, A. E. D., & O'Sullivan, D. (2020). A computationally efficient 

method for fault diagnosis of fan-coil unit terminals in building Heating Ventilation and 

Air Conditioning systems. Journal of Building Engineering, 27, 100955. 

37. González-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., & Corchado, J. M. 

(2018). Energy optimization using a case-based reasoning strategy. Sensors, 18(3), 865. 

38. Igor Sartori, Assunta Napolitano, Karsten Voss, Net zero energy buildings: A consistent 

definition framework, energy and buildings, vol 48, 2011, Pages 220-232; 

 


