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Abstract—This paper studies the feasibility of estimating vital
signs exploiting commercially available Impulse Radio Ultra
Wideband (IR-UWB) radar. The focus is on extracting breathing
and heart beat rates following the consideration of a nonstation-
ary analytical model for the reflected signal from the human
body. The Hilbert-Huang Transform (HHT), which is adaptive
to nonlinear and nonstationary signals, is proposed and applied
to the intrinsic mode functions of the received signal providing
frequency information evolving with time and quantifying the
amount of variation due to different signal content contribution.
Experimental results are presented demonstrating the effective-
ness of the proposed technique for determining respiration and
heartbeat rates.

I. INTRODUCTION

Impulse Radio Ultra Wideband (IR-UWB, referred to as
UWB is the remainder of this paper) is a type of wireless
technology that uses very short baseband (carrierless) pulses,
typically in the order of nanoseconds [1]. Such wireless sys-
tems provide low system complexity, low cost and low power
consumption. There are numerous advantages in exploiting
UWB for biomedical applications because of its low radiation
power, good coexistence with other wireless systems, and
robustness to interference and multipath [1], [2]. A number of
studies have investigated using UWB-based wireless sensing
devices to detect vital signs for health care applications [3]–
[6]. Microwave Doppler radar was proposed as non-invasive
vital signs estimation technique [7]. However, Doppler radar
techniques present two problems: 1) The difficulty in pene-
trating material and 2) the null point problem (occurring when
the received signal and the radar local oscillator are either in-
phase or 180o out of phase which would severely decrease the
detection accuracy) [8]. Fourier analysis has become the most
valuable tool in spectral data analysis and has consequently
been applied to all kinds of data in many scientific or engineer-
ing disciplines; although it is strictly limited to linear systems
and stationary data series [9]. Therefore, the Fourier spectrum
can only be regarded as the coefficient function obtained by
expanding a signal x(t) into a family of an infinite number of
waves generally in the form exp(iωt), which are completely
unlocalised in time typifying the signal mathematically from
global point of view. Thus, the Fourier spectrum essentially
defines which spectral components, as well as their corre-
sponding time-invariant amplitudes and phases, are embedded
in the signal over the whole time span in which the signal was
recorded.

In order to introduce a time-dependency in the Fourier

transform technique, a simple and intuitive solution consists
of pre-windowing the signal around a particular instant in
time, calculating its Fourier transform, and repeating that
procedure for each time step (with the assumption the signal
being stationary in all windows). The resulting time-dependent
spectrum (spectrogram) is called the short time Fourier trans-
formation (STFT) and was first introduced by Gabor [10].
To localise an event precisely in time, the window width
must be narrow, alternately the frequency resolution requires
longer time spans. This leads to conflicting requirements
(Heisenberg-Gabor inequality) and restrains this method from
many practical applications, although it is still the most widely
used technique in time-frequency analysis.

To avoid these restrictions, wavelet analysis, in continuous
and discrete representation, was developed [11]. The central
idea of the wavelet transform is to correlate a signal x(t) with
a family of zero-mean functions derived from an elementary
function (mother wavelet), e.g. the complex-valued continuous
Morlet mother wavelet derived from a plane wave modu-
lated Gaussian envelope. In principle, the wavelet transform
provides an amplitude spectrum of the signal x(t) in time
and frequency domain. But, even the wavelet analysis has
certain limitations. Firstly, the chosen mother wavelet will
significantly influence the result of the analysis, as the basic
functions of wavelet transformation are fixed and do not nec-
essarily match the shape of the considered data series in every
time instant. Moreover, spectral wavelet analysis certainly
underlies an uncertainty principle, indicating that a time or
a frequency dependent information cannot be classified by the
same accuracy, simultaneously. A high frequency component
is precisely resolved in time domain, but at the same time
inexact in frequency domain and vice versa for low frequency
components.

A technique that overcomes the aforementioned limitations
comprises exploiting the Hilbert-Huang Transformation (HHT)
[12], [13]. The HHT decomposes any time-dependent signal
into its individual embedded modes with the so-called Em-
pirical Mode Decomposition (EMD). Applying the Hilbert
Transformation (HT) to any of these disintegrated Intrinsic
Mode Functions (IMF) subsequently generates distinct time-
dependent Hilbert amplitude or energy spectra. This implies,
in all probability, that the HHT is capable of revealing entirely
new physical insights for any nonlinear and non-stationary
signal.

The paper is organised as follows. The problem formulation
and modelisation along with the signal processing techniques
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used to estimate the respiration and heart rates are described in
Section II. The proposed measurement setup and experimental
results are presented and discussed in Section III. Concluding
remarks are given in Section IV.

II. SIGNAL MODEL

The aim of this paper is to estimate the breathing rate
and heartbeat frequency. For this purpose, a mathematical
model is developed so that the spectrum of the detected signal
can be obtained and understood. This model is an extension
of that proposed in [6] with the inclusion of heart motion.
This permits a deep analysis of both harmonics and cross
products (intermodulation). The sections below demonstrate
the importance of making this complete analysis, since the
large amplitude of breath harmonics and frequently that of
cross products make heart rate measurement a challenge,
especially when they are close to the heart frequency range.
When the transmitted pulse hits the human target, part of it
is reflected due to the high reflectivity of the human body
[3], [4]. The time-of-arrival (ToA) of this pulse is denoted
by τ0 and depends on the antenna-to-target distance, d0. Due
to respiration and heart motion, the chest cavity expands and
contracts periodically, so the distance traveled, d(t), varies
periodically around the nominal distance d0. For vital signs
monitoring, the body movement caused by both respiration
and heartbeat must be detected:

d(t) = d0+m(t) = d0+mb sin(2πfbt)+mh sin(2πfht) (1)

where mb and mh are the respiration and heartbeat displace-
ment amplitudes, fb and fh are the respiration and heartbeat
frequencies, respectively. In this situation, the received signal
can be represented as the sum of the responses of the channel,
and the variation due to the respiration and heartbeat:

r(t, τ) =
∑
i

Aip(τ − τi) +Ap(τ − τd(t)) (2)

where p(t) is the normalised received pulse, Ai is the ampli-
tude of each multipath component, τi its delay, and A is the
amplitude of the pulse reflected from the human body. From
(2) it is evident that respiration and heart movements modulate
the received signal. The time delay τd associated with the vital
sign is modeled as the sum of TOA τ0 plus two sinusoidal
delays associated to respiration and heartbeat displacements:

τd(t) = 2d(t)/c = τ0 + τb sin(2πfbt) + τh sin(2πfht) (3)

where c is the light velocity, and τb and τh are the respiration
and heartbeat displacements, respectively. The received wave-
forms are measured at discrete instants in slow time t = nTs
with n = 1, 2, . . . , N . N discrete-time sequences are stored
after the received signal is sampled and these values are stored
in a matrix R, the elements of which are:

R[n,m] = r(τ = nTf , t = mTs) (4)

where Tf is the sampling period in fast-time. In a static
environment, the resulting clutter can be considered as a DC-
component in the slow-time direction. Consequently, the only
movement is caused by the person’s respiration and heart
activity, from (2) it is clear that background clutter does not
depend on slow-time t. Thus, the background clutter can be
removed by filtering the signal. This can be performed by

subtracting the average of all received waveforms from the
original signal (a new matrix X will be obtained by subtracting
the average of all the rows in R from each row).

x(t, τ) = r(t, τ)− lim
T→∞

1

T

∫ T

0

r(t, τ)dt

= Ap(τ − τd(t))− r0(τ) (5)

The DC component r0(τ) is canceled by subtracting the
average of all samples in fast-time (the result is saved in a
new matrix Y that is obtained by subtracting the average of
all columns in X from each column). The signal of interest
is:

y(t, τ) = x(t, τ)− x0(τ) = Ap(τ − τd(t)) (6)

The goal is to obtain the breathing frequency fb and heart
rate fh. To this end, the concept of empirical mode decom-
position (EMD) and the Hilbert spectrum (HS) is applied to
further process the resulting y matrix.

The key feature of EMD is to decompose a signal into
so-called intrinsic mode functions (IMFs). Furthermore, the
Hilbert spectral analysis of intrinsic mode functions provides
frequency information evolving with time and quantifies the
amount of variation due to oscillation at different time scales
and time locations. The essential step extracting an IMF is to
identify an oscillation embedded in a signal from local time
scale. A component for a given time scale can be regarded
as the composition of repeated intrinsic oscillation which is
symmetric to its local mean, zero. Thus the first step to define
intrinsic oscillation is to detect local extrema or zero-crossings.
Once local extrema is obtained, the intrinsic mode function is
derived through a procedure called sifting procedure.

Huang et al [12] suggested a data-adapted algorithm ex-
tracting a sinusoidal wave or equivalently a frequency from
a given signal. First, identify the local extrema and gen-
erate two functions namely the upper envelope and lower
envelope by interpolating local maxima and local minima,
respectively. Second, take their average, which will produce
a lower frequency component than the original signal. Third,
by subtracting the envelope mean from the original signal, the
highly oscillated pattern is separated. Huang et al defined an
oscillating wave as an intrinsic mode function if it satisfies two
conditions: (1) the number of extrema and the number of zero-
crossings differs only by one and (2) the local average is zero.
If the conditions of IMF are not satisfied after one iteration
of aforementioned procedure, the same procedure is applied
to the residue signal until properties of IMF are satisfied. This
iterative process is called sifting. Once the highest frequency
is removed from a signal, the same procedure is applied to the
residue signal to identify next highest frequency. The residue
is considered a new signal to decompose and the procedure is
repeated on this latter.

When a signal is subject to non-stationarity so that the
frequency and amplitude change over time, it is necessary
to have a more flexible and extended notion of frequency.
The concept of instantaneous frequency is then exploited
through the use of the Hilbert transform (For a comprehensive
explanation of the Hilbert transform, refer to Cohen [14]).
Following decomposing a signal into IMFs with EMD thereby
preserving any local property in the time domain, we can
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Fig. 1. PulsON P410 UWB tranceiver.

Fig. 2. Transmitted waveform in frequency (Left) and time (Right).

extract localised information in the frequency domain with
the Hilbert transform and identify hidden local structures
embedded in the original signal. The local information can
be described by the Hilbert spectrum which is amplitude and
instantaneous frequency representation with respect to time.

III. MEASUREMENT SETUP AND EXPERIMENTAL
RESULTS

The UWB radar system comprises two Broadspec antennas
and one PulsON P410 transceiver provided by TimeDomain
[15] (see Figure 1). Pulses are transmitted via one antenna
and the target reflected signal is received by the second
antenna. The raw data samples are then sent to a host PC for
processing. TimeDomain exploits coherent signal processing
with low duty cycle transmissions and pulse repetition rates of
10MHz. The UWB transmissions typically consist of a packet
of between several thousand and a few hundred thousand
coherently transmitted pulses. The signal energy can be spread
over multiple pulses thanks to coherent mode of transmission,
hence providing an increase in the energy per bit and thereby
the signal to noise ratio (SNR) [15]. The waveform generated
by the transceiver is a Gaussian modulated sinusoidal pulse
with the following analytical model:

s(t) = exp[−t2/2σ2] sin(2πfct) (7)

It is centred at fc = 4.3 GHz, occupies more than 2 GHz
of bandwidth and achieves an effective RF bandwidth of 1.4
GHz (Figure. 2).

Fig. 3. IMFs 1-5.

The antennas have the following characteristics [14]: very
good time response where they can transmit and receive UWB
pulses effectively with minimum distortion, little ringing and
small reflection, compact size and low profile, omnidirectional
radiation beam and good reflection coefficient. Note that it
is a requirement that the target should be a certain distance
away from the antennas for this radar system to have accurate
measurements, because then the human body reflected pulse
can be distinguished clearly from the direct coupling pulse
between the antennas. Since the pulse used in this work has a
width of about 1 ns (Figure 2), the distance between the target
and the antennas should be larger than 300 mm. It is then set
in this work that this minimum distance should be 750 mm.

In the experimental results, 1024 waveforms are acquired,
sampled and averaged to improve the signal-to-noise ratio. The
recorded duration is 30 s. The actual heart beat rate was 1.22
Hz corresponding to 73 beats per minute, while the breathing
rate was 0.42 Hz corresponding to 25 breaths per minute
(Typically, in relaxed human beings the heart can cause chest
displacements of 0.08 mm, and respiration displacements of
between 0.1 mm and several millimeters, depending on the
person [16]).

Figure 3 illustrates the IMFs up to the fifth one where by
observing IMF4 and IMF5 one can identify the separate con-
tributions of the heart beat and respiratory rates, respectively.

Figure 4 shows the Hilbert energy spectrum following
the extraction of the IMFs of the received UWB signal, and
illustrating an estimation of the heart beat and respiratory rate
(with actual frequencies of 1.22Hz and 0.42Hz, respectively).

It is important to clarify that within the experimental setup
the measurements were taken on a subject instructed to remain
static during the measurement period. Approaches for cance-
lation of unwanted motion, as a pre-processing step of the raw
data, will be investigated in future work to make this approach
applicable to more practical scenarios. Similarly, future effort
will consider the case of simultaneously monitoring multiple
subjects.
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Fig. 4. Hilbert energy spectrum.

IV. CONCLUSION

Breathing and heart beat rate estimation were successfully
performed exploiting commercially available UWB radar op-
erating within the FCC mask. IMFs through EMD offered
a multi-resolution tool and spectral analysis provided local
information with time-varying amplitude and phase according
to actual component scales. the HHT is proving a powerful
tool to analyzing nonlinear and non-stationary vital sign signals
in the time-frequency plane and providing a more physically
meaningful interpretation.
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