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ABSTRACT In recent years, a variety of supervised manifold learning techniques have been proposed to
outperform their unsupervised alternative versions in terms of classification accuracy and data structure
capturing. Some dissimilarity measures have been used in these techniques to guide the dimensionality
reduction process. Their good performance was empirically demonstrated; however, the relevant analysis
is still missing. This paper contributes to a theoretical analysis on a) how dissimilarity measures affect
maintaining manifold neighbourhood structure and b) how supervised manifold learning techniques could
contribute to the reduction of classification error. This paper also provides a cross-comparison between
supervised and unsupervised manifold learning approaches in terms of structure capturing using Kendall’s
Tau coefficients and co-ranking matrices. Four different metrics (including three dissimilarity measures and
Euclidean distance) have been considered alongwithmanifold learningmethods such as Isomap, t-Stochastic
Neighbour Embedding (t-SNE), and Laplacian Eigenmaps (LE), in two datasets: Breast Cancer and Swiss-
Roll. This paper concludes that although the dissimilarity measures used in the manifold learning techniques
can reduce classification error, they do not learn well or preserve the structure of the hidden manifold in the
high dimensional space, but instead, they destroy the structure of the data. Based on the findings of this paper,
it is advisable to use supervised manifold learning techniques as a pre-processing step in classification.
In addition, it is not advisable to apply supervised manifold learning for visualization purposes since the
two-dimensional representation using supervised manifold learning does not improve the preservation of
data structure.

INDEX TERMS Classification error, structure capturing, manifold learning, supervised manifold learning,
visualization.

I. INTRODUCTION
Manifold learning is a group of algorithms that seek to
learn low dimensional representation embedded in a high
dimensional space data. Linear manifold learning tech-
niques such as Principal Component Analysis (PCA) [1]
and Multidimensional Scaling (MDS) [2] assume that the
low dimensional representation lies in linear manifold(s),
and as a result, linear manifold learning methods can be
successfully applied to linear data.1 Conversely, nonlinear
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1Linear/nonlinear data are called data in which their low dimensional

representation locates on linear/nonlinear manifold(s).

manifold learning techniques seek to learn the nonlinear
manifold(s) in high dimensional space data [3]. There are
some widely used nonlinear manifold learning techniques
including Isomap [4], Local Linear Embedding (LLE) [5],
Laplacian Eigenmaps (LE) [6], Hessian Eigenmap [7], [8],
Local Tangent Space Analysis (LTSA) [9], Maximum Vari-
ance Unfolding (MVU) [10], Diffusion Map [11], [12],
t-Stochastic Neighbour Embedding (t-SNE) [13], Topolog-
ically Constrained Isometric Embedding [14], Local Coor-
dinates Alignment (LCA) [15], and Uniform Manifold
Approximation and Projection (UMAP) [16].

In general, linear manifold learning methods aim to main-
tain the global structure of the data [3] (far away (close) high
dimensional space data samples to be located far away (close)
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in a low dimensional representation). Conversely, nonlinear
manifold learning methods seek to preserve the local struc-
ture of data [3]; however, the maintained data structure of
the above-mentioned methods depends on the number of
neighbours considered [17]. Subsequently, tuning the number
of neighbours has a crucial impact on the data structure
maintained.

Manifold learning methods have been commonly applied
in different fields, including medical images [18], [19] and
financial markets [20], to visualize high dimensional data or
as a pre-processing step of classification. However, the main
focus of manifold learning techniques is on preserving data
structure; thus, they may not be useful in classification.
Accordingly, Geng et al. [21], Hajderanj et al. [22], Vla-
chos et al. [23], and Wei et al. [24] have proposed supervised
manifold learning techniques that use dissimilarity mea-
sures2 to improve the classification accuracy. Furthermore,
they have used supervised manifold learning techniques to
improve the data structure preservation of their unsuper-
vised versions. The experimental findings in [21]–[25] have
illustrated the effectiveness of supervised manifold learning
techniques in gaining a better classification model and cap-
turing the data structure more accurately. However, these
studies lack theoretical analysis on how a dissimilarity mea-
sure affects the classification error and the preservation of
manifold neighbourhood structure.

This paper aims to provide a theoretical analysis of the
impact of dissimilarity measure on manifold learning meth-
ods regarding the preservation of data structure and classi-
fication performance. In addition to a theoretical analysis,
structure preservation is assessed byKendall’s Tau coefficient
and co-ranking matrix. As follows, this paper contributes:
1) to prove that the considered dissimilarity measures could
decrease the classification error (radial basis function (RBF)-
based classifiers), and 2) to analyze theoretically and to
demonstrate experimentally that supervised dimensionality
reduction could worse the visualization of high dimen-
sional data in a low dimensional space in terms of structure
capturing.

In this paper, a high dimensional data XN×D is considered
with N observations and D features (dimensions), and YN×d

is considered the low dimensional represenation (manifold)
with N samples and d features, where d � D. xi and yi rep-
resents the ith data samples in the high and low dimensional
spaces, respectively, and li represents the ith observation of
the class variable L. dis(a, b) signify the Euclidean distance
between data samples a and b.
The remainder of this paper is organized as follows:

Section II presents a brief review of supervised and unsu-
pervised manifold learning techniques. Section III illustrates
the impact of dissimilarity measures on structure capturing,
and Section IV presents some experimental results. Section V
and Section VI provide the impacts of dissimilarity measures

2Dissimilarity measures are called metrics that include class information
to calculate the similarity between data samples.

on classification error and some concluded remarks,
respectively.

II. MANIFOLD LEARNING METHODS
Manifold learning is a group of algorithms that aim to recover
the manifold lied in a high dimensional space data. In man-
ifold learning, a low dimensional representation, which lies
in a high dimensional space data, is assumed to be a linear
or a nonlinear manifold. A linear manifold can be imagined
as a plane, whereas a nonlinear manifold can be conceived
as a sphere or torus. PCA and MDS are linear manifold
learning techniques that assume that the low dimensional rep-
resentation has a linear shape. In contrast, nonlinear manifold
learning techniques, such as Isomap, LLE, LE, t-SNE, and
UMAP, assume that the low dimensional representation is
embedded in nonlinear manifold(s). A brief review of the
manifold learning techniques is provided below.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a linear manifold learning method that intends to
find a linear projection M of data X to maximize the cost
function (1)

max trace(MT cov(X )M ), subject to MMT
= I (1)

where cov(X ) is the covariance matrix of the dataset X , and I
is an identity squared matrix with 1s in the main diagonal and
0s elsewhere. The low dimensional representation describes
the variance of high dimensional space data X , in which the
highest variance is represented by the first principal compo-
nent. PCA fails to perform well in nonlinear data. Further-
more, PCA tends to capture the global data structure, and as
a result, it may ignore some local information that may be
useful for classification [26].

B. MULTIDIMENSIONAL SCALING (MDS)
MDS is another linear manifold learning technique, which
utilizes the cost function (2)

min
√∑

i,j

(dis(xi, xj)− dis(yi, yj))2 (2)

to learn the low dimensional representation lied in a high
dimensional space data. The main steps of MDS are as
follows:

1) Compute the pairwise Euclidean distance matrix D.
2) Convert the distance matrix D to a kernel matrix K by

K = − 1
2HDH , whereH = I− 1

nee
T and e is a columns

vector of 1.
3) Compute the spectral decomposition of K : K =

UAUT , where A is the diagonal matrix and diagonal
values are eigenvalues of XTX , and U is the matrix of
eigen vectors of XTX .

4) Form A+ by setting [A+]ij = max{Aij, 0}.
5) Set Y =

√
A+U .

6) Return [Y ]n×d .
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Like PCA, MDS also does not perform well in maintaining
the structure of nonlinear data. Furthermore, MDS favours
preserving global data structure because its cost function
relates to the pairwise distances, in which large distances have
more impact than small ones.

C. ISOMAP
Isomap is a method similar to MDS, but it employs Geodesic
distance (Geo) instead of Euclidean distance. The pseu-
docode of Isomap is shown as below:

1) Construct the k-nearest neighbour graph using
Euclidean distance.

2) Use Dijkstra’s or Floyd’s algorithms to calculate the
shortest path distances between all data samples, square
distances and then store in Geo.

3) Apply MDS algorithm with the distance Geo as calcu-
lated above.

Since Isomap uses Geodesic distance to compute the distance
between high dimensional space data samples, it minimizes
the following cost function (3):

min
√∑

i,j

(ρGeo(xi, xj)− ρdis(yi, yj))2 (3)

where ρ is the parameter defined as ρ(D) = −HSH/2, Sij =
dis(xi, xj)2, and H is the centring matrix. Isomap is con-
sidered a global method due to the approximation of the
Geodesic distancesGeo, which refers to the distance measure
that preserves the global geometry of the nonlinear manifold
(s) embedded in a high dimensional space data [3].

D. LOCAL LINEAR EMBEDDING (LLE)
LLE is a nonlinear method that reconstructs every data sam-
ple as a linear combination of its nearest neighbours. The
main steps of LLE are shown as following:

1) Calculate the nearest neighbours based on Euclidean
distance.

2) Calculate the reconstruction error as shown below:

min
N∑
i=1

∥∥∥∥∥xi − N∑
j=1

wijxj

∥∥∥∥∥
2

.

3) Compute the low dimensional data Y that best pre-
serves the local geometry, represented by the recon-
struction weights.

The low dimensional representation is calculated using the
cost function (4).

min
N∑
i=1

∥∥∥∥∥∥yi −
N∑
j=1

wijyj

∥∥∥∥∥∥
2

(4)

Because LLE requires that every sample and its neighbours
lie on a linear manifold; subsequently, it favours the preser-
vation of the local data structure.

E. LAPLACIAN EIGENMAPS (LE)
LE favours local data structure by calculating the similarity
between data samples xi and xj, and weight them by providing

higher values for close data samples and low values for far
away data samples. The main steps of LE are as follows:

1) Nearest neighbour search using Euclidean distance.
2) Define weighted matrix

wij =

{
exp(− dis(xi,xj)2)

2σ 2
) if xj ∈ Neigi

0 otherwise

}
.

3) Define with Neigki the neighbourhood of xi with k
neighbours, D = (dij) is a N ×N diagonal matrix with
elements dii =

∑
i∈Ni

wij, and with L = D−W the graph

Laplacian matrix.
The low dimensional representation Y calculates by minimiz-
ing the cost function (5)

argmin trace(YLY T ) (5)

where
∑
i

∑
j
wijdis(yi, yj) = YLY T .

F. T-STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)
t-SNE favours local structure preservation by weighting the
pairwise Euclidean distances in the high dimensional space
data using Gaussian distribution, and in the low dimensional
space data using Student -t distribution. Themain steps t-SNE
are concluded as below:

1) Calculate paiwise Euclidean distances dis(xi, xj), for
i, j := 1 : N .

2) Calculate pij =
pi|j+pj|i
2N , where pi|j =

exp(
−dis(xi,xj)

2

2σ2i
)∑

k 6=i
exp(−dis(xi,xk )

2

2σ2i
)

is the conditional probability between data samples xi
and xj using Gaussian distribution with variance σ .

3) Calculate qij =
(1+dis(yi,yj)2)−1∑

k 6=l
(1+dis(yi,yj)2)−1

between data samples

yi and yj in the low dimensional space using Student
t-distribution with degree of freedom 1.

t-SNE minimizes the similarity of the high and low dimen-
sionality space data using Kullback-Leibler cost function (6).

min
∑
i6=j

pij log
pij
qij

(6)

The similarity pij is large for close data samples and smoothly
decreases as the distance becomes greater; thus, t-SNE
favours data local structure capturing.

G. UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION (UMAP)
UMAP, which is a method similar to t-SNE, has the following
main steps:

1) Calculate paiwise Euclidean distances dis(xi, xj), for
i, j := 1 : N .

2) Calculate similarities vij = (vi|j + vj|i) − vi|jVj|i,
where vi|j = exp(−dis(xi, xj) − ρ)/σi],
and ρ and σ are defined as below:
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ρi = min (dis(xi, xj), 1 ≤ j ≤ k, dis(xi, xj) ≥ 0)
k∑
j=1

exp(−max 0,dis(xi,xj)−ρi
σi

) = log2 k . The value v‘ij is cal-
culated as v‘ij = (1 + a||yi − yj||2b2 )−1, where a are b
positive parameters defined by the user.

The low dimensional representation is corresponding Y that
minimizes the cost function (7)

min
∑
i6=j

vij log
vij
v‘ij
+ (1− vij) log

(1− vij)

(1− v‘ij)
(7)

Like t-SNE, UMAP favours small distance preservation.
In general, the main focus of manifold learning techniques

is on preserving data structure; thus, they may not be use-
ful in classification. Their supervised versions have been
proposed to improve specific manifold learning techniques
in terms of classification accuracy. Furthermore, supervised
manifold learning techniques have also been proposed to
capture better the high dimensional data structure than their
unsupervised versions. But considering that the purpose of
this study is to assess how dissimilarity measures affect clas-
sification accuracy and the data structure capturing, in the fol-
lowing, we have considered only those supervised manifold
learning techniques that use dissimilarity measure instead of
Euclidean distance to calculate the similarity between data
samples.

H. SUPERVISED MANIFOLD LEARNING
Supervised manifold learning techniques employ dissimilar-
ity measures (dis1, dis2, dis3) instead of Euclidean distance
to define the pairwise distance matrix or construct the neigh-
bourhood graph as shown below:

dis1 =


√
1− e

−dis(xi,xj)2)
β li = lj√

e
dis(xi,xj)2)

β − α li 6= lj

(8)

dis2 =


1
ψ
dis(xi, xj) li = lj

dis(xi, xj) li 6= lj
(9)

dis3 =

{
dis(xi, xj) li = lj
dis(xi, xj)+ µmax(dis(xi, xj))λij li 6= lj

(10)

The main difference between supervised and unsupervised
manifold learning techniques lies in the first step of each
algorithm, and the rest of the steps are the same for both
versions. Dissimilarity measures enforce the same class data
samples to be close and different class data samples to be far
away.

A supervised version of Isomap was proposed by
Geng et al. [21], in which a neighbourhood graph was
designed concerning dissimilarities between data samples,
and each data sample xi ∈ X chooses k neighbours with dis-
similarity measure dis1 less than a given threshold ε. Super-
vised Isomap was tested in two datasets, Face Images and
Swiss Roll [21]. The authors claimed that using dissimilarity

measure dis1 (8) to Isomap enhanced visualization in terms of
structure capturing and achieved a more accurate and robust
classification model. Dissimilarity measure dis1 was also
applied to calculate the pairwise distances between data sam-
ples in supervised t-SNE [22]. The difference between t-SNE
and supervised t-SNE is that in supervised t-SNE, the pair-
wise distance is calculated using dis1 instead of Euclidean
distance that t-SNE uses. Supervised t-SNE was tested in
datasets such as MNIST [27], SEER Breast Cancer [28]
and Chest X-ray [29] and achieved lower classification error
compared with unsupervised t-SNE. Dissimilarity measure
dis1 was also implemented to construct the neighbourhood
graph at the first step of LLE (ESLLE [30]) to achieve a
higher classification accuracy in Swiss Roll data.

Other dissimilarity measures such as dis2 and dis3
have been implemented to Isomap (WeightedIso [23]) and
LLE(SLLE [25]). WeightedIso was implemented in datasets
Iris, Liver, Lung Sonar, Glass, and Image, to achieve lower
classification error. SLLE calculated the neighbourhood
graph using dis3, where µ ∈ [0, 1] and λij is 0 if data samples
i and j are from the same class, and 1 otherwise. Yu et al. [31]
and Cheng et al. [32] proposed supervised versions of t-SNE,
where the distance between different classes data samples is
defined in (11)

dis4 =

{
dis(xi, xj)e

v(xi)−v(xj)
li = lj

dis(xi, xj) li 6= lj
(11)

where v(xi) refers to the angle information [31] and the silhou-
ette frame information [32] of the sample xi. Although it is not
a published article, a supervised version of UMAP3 has also
been proposed, with the purpose of capturing the structure of
high dimensional space data. Furthermore, a recent preprint
article [33] suggests using label information to produce a bet-
ter visualization in terms of retaining the manifold structure.

Overall, supervised manifold learning techniques have
been proposed to improve classification accuracy and
improve visualization in terms of data structure preservation.
However, there lacks theoretical analysis on the impact of
dissimilarity measures on classification error. Furthermore,
supervised manifold learning has been widely used to visu-
alize high dimensional data assuming to retain the manifold
structure better, which is not true. In the following sections,
we provide analysis based on some theoretical foundations
to confirm that dissimilarity measures in manifold learning
techniques do not help capture the manifold structure better
but destroy it. In other words, the use of dissimilarity mea-
sures in manifold learning techniques generate low dimen-
sional visualizations that do not represent the real structure of
the manifold embedded in the high dimensional space data.

III. THE IMPACT OF DISSIMILARITY MEASURE ON
STRUCTURE CAPTURING
In most of the manifold learning techniques, the nearest-
neighbour search is the first step, where a distance measure

3https://umap-learn.readthedocs.io/en/latest/supervised.html
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is employed to find data samples that are neighbours in a
manifold [34]. The integrity of a manifold learning technique
depends on the goodness of maintaining the neighbourhood
structure of the manifold hidden in a high dimensional space
data. Preserving the neighbourhood structure means close
(far away) data samples of the original space embed close
(far away) in a lower dimensional space. Thus, the best
manifold learning technique is a method that generates the
low dimensional space data that maintains the best neigh-
bourhood structure of high dimensional space data. To bet-
ter understand which of the distance measures (dissimilarity
measures) should be applied, we should first explain the
manifold concept.

A manifold Md , also known as topological manifold,
is a topological space that is locally a Euclidean space
and a Second Countable space. A Euclidean space is a
space with a finite number of dimensions, where coordi-
nates present each data sample (one per each dimension).
The distance between any two data samples is calculated
using the Pythagorean theorem, where the distance between
the data sample a with n coordinates (a1, . . . , an) and data
sample b with n coordinates (b1, . . . , bn) is calculated using√
(a1 − b1)2 + . . .+ (an − bn)2, which corresponds to an

Euclidean distance.
Unsupervised manifold learning techniques use the

Euclidean or Geodesic distance to calculate each data sam-
ples nearest neighbours in a manifold. On the other hand,
supervised manifold learning techniques employ dissimilar-
ity measure to calculate the nearest neighbours of each data
sample. Dissimilarity measures dis1 (8), dis2 (9), and dis3
(10) search the nearest neighbours by forcing the same class
data samples to be close and/or forcing the different class
data samples to be far away. As a consequence, for a given
data sample, different neighbours set may be produced when
using various measures such as Euclidean distances (dis),
dis1, dis2, and dis3. Each manifold learning technique seeks
to keep the neighbourhood structure (neighbours set) defined
in the high dimensional space data. Thus, four different low
dimensional representationswill be generated if four different
neighbours sets have been defined in the high dimensional
space data. However, the local neighbourhood structure of a
manifold is determined using the Euclidean distance because
a manifold is conceived to be a locally Euclidean space.
A theoretical analysis of the impact of dissimilarity measure
on data structure capturing will be illustrated in the following
section, which is also supported by a practical demonstration.

A. THEORETICAL ANALYSIS
Let RO be the order set which contains the Euclidean dis-
tance of each data sample and its k-nearest neighbours of
the high dimensional space data. Based on the manifold
definition, Euclidean distance is the metric that calculates
the local4 neighbours for each data sample. Alternatively,
we define RO1, RO2, and RO3 as order sets that contain the

4Define with local k-nearest neighbours.

distances of data samples and their k-nearest neighbours in
the high dimensional using the dis1, dis2, and dis3, respec-
tively. We also define ro1, ro2, and ro3 as order sets that
contain distances of the low dimensional data samples and
their k-nearest neighbours using the dis1, dis2, and dis3,
respectively. To simplify our analysis, we consider that every
manifold learning approach has perfectly embedded data,5

and as a result, ro = RO, ro1 = RO1, ro2 = RO2, and
ro3 = RO3.
A manifold learning technique maintains the manifold

structure (the one that is locally Euclidean space) if the
order set RO is the same with ro. To determine whether
the neighbourhood structure has been captured, we must
prove whether dis, dis1, dis2, and dis3 are order isomorphism
functions. In accordance with that, we use Proposition 1,
Definition 1, andDefinition 2 that defines a function as order-
isomorphism, bijective, and order-preservation, respectively.
Proposition 1 Let I and J be two order sets, then the

function f : I− > J is called an order-isomorphism function
if f is:

1) bijective, and
2) order-preservation (for all a, b ∈ I we have

a ≤ b⇔ f (a) ≤ f (b)).

Definition 1Abijective function should be: 1) injective and
2) surjective. Let be I and J two sets, then the function f :
I− > J is injective if and only if whenever f (a) = f (b) then
a = b for a, b ∈ I , and is surjective if and only if for every
d ∈ J , there is at least one c ∈ I such that f (c) = d .
Definition 2 Let I and J be two order sets, then the function

f : I− > J is called an order-preservation function if for all
elements a, b ∈ I , and f (a), f (b) ∈ J , a ≤ b ⇐⇒ f (a) ≤
f (b).
Consider dis : RO− > RO, dis1 : RO− > RO1, dis2 :

RO− > RO2, and dis3 : RO− > RO3. We can re-write
functions dis, dis1, dis2, and dis3 as: dis : dis(xi, xj)− >

dis(xi, xj),

dis1 : dis(xi, xj)− >


√
1− e

−dis(xi,xj)2)
β li = lj√

e
dis(xi,xj)2)

β − α li 6= lj,

dis2 : dis(xi, xj)− >


1
ψ
dis(xi, xj) li = lj

dis(xi, xj) li 6= lj,

dis3 : dis(xi, xj)− >


dis(xi, xj)
li = lj

dis(xi, xj)+max(dis(xi, xj))µ
li 6= lj.

Proposition 2 dis is an order-isomorphism function
whereas, dis1, dis2, and dis3 are not order-isomorphism
functions.

5Themanifold learning loss function has achieved its optimal value (zero).
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Proof: Based on Proposition 1, a function is order-
isomorphism if it is: 1) bijective and 2) order-preservation.
To check if dis, dis1, dis2, and dis3 are order-isomorphism
functions, we firstly have to check if they are bijective and
order-preservation functions.

The first condition checks whether dis, dis1, dis2, and dis3
are bijective functions.

1) dis is a bijective, because it is injective and surjec-
tive. Suppose a = dis(x1, x2), l(x1) = l(x2), b =
dis(x1, x3), l(x1) 6= l(x3), and a = b = 2. Since
dis : dis(xi, xj)− > dis(xi, xj), then dis(dis(x1, x2)) =
dis(x1, x2) = 2, and dis(dis(x1, x3)) = dis(x1, x3) =
2 ⇔ dis(dis(x1, x2)) = dis(dis(x1, x3)) ⇒ dis is
an injective function. dis is also surjective, because
dis(dis(xi, xj)) = dis(xi, xj) ⇔ for every dis(xi, xj),
there exist at least one dis(xi, xj) that dis(dis(xi, xj)) =
dis(xi, xj).

2) The function dis : RO− > RO is an
order-preservation function because the identity map
is an order-preservation function.

In conclusion, dis is a bijective and an order-preservation
function; thus, it is an order-isomorphism function.

Let check if dis1 is bijective and order-preservation func-
tion.

1) Let a = dis(x1, x2), l(x1) = l(x2), b =

dis(x1, x3), l(x1) 6= l(x3), where a = b = 2. We can
prove that dis1(a) 6= dis1(b). Let consider β =
1 and α = 0.5, then we have dis1(dis(x1, x2)) =√
1− e

−22
1 = 0.9908 and dis1(dis(x1, x3)) =

√
e
22
1 −

0.5 = 6.8890. As a result dis1(dis(x1, x2)) 6=
dis1(dis(x1, x3)).

2) To check if dis1 is an order-preservation function,
the order-preservation condition between each two
order sets RO and RO1 must be satisfied. Sup-
pose RO = {dis(x1, x2), dis(x1, x3)} and RO1 =

{dis1(x1, x2), dis1(x1, x3)}, where dis(x1, x2) = 4, and
dis(x1, x3) = 4.1, thus, RO = {4, 4.1}. Conversely, x1
and x2 have different classes, and as a result, data sam-
ples x1 and x2 have been enforced to be far away with
dis1(x1, x2) = 13.8919. By contrast, data samples x1
and x3, which have the same class, have been enforced
to be closer with dis1(x1, x3) = 0.9975 for α = 0.5,
and as a conclusion, dis1 is not an order-preservation
function.

Since dis1 is not injective function, it is not bijective func-
tion. Furthermore, dis1 is not order-preservation function;
as a conclusion it is not order-isomorphism function. Like
dis1, dis2 and dis3 are not bijective and order-preservation
functions. Note that dis2 favours the same class neighbours by
decreasing their Euclidean distance with a positive value ψ .
On the other hand, dis3 favours the same class data samples by
increasing the distance between data samples from different
classes. As a result, the local manifold structures defined
by dis2 and dis3 are not the same as the manifold structure

FIGURE 1. The visualisation of worse perimeter and worse smoothness
variables from Breast Cancer dataset (a), and the neighbourhood rank
indexes between ten randomly selected patients (b).

defined by Euclidean distance, which is the distance that a
manifold is assumed to use.

Overall, dis is a bijective and an order-preservation func-
tion, such that it is an order-isomorphism function. On the
other hand, dis1, dis2, and dis3 are neither bijective functions
or order-preservation functions, and subsequently they are
not order-isomorphism functions. Thus, the low dimensional
visualization produced by a manifold learning using dissim-
ilarity measure is not the best representation of the high
dimensional data structure. �

To better understand the impact of dissimilarity measure
on manifold learning techniques in terms of structure captur-
ing, we apply Breast Cancer data in Isomap (uses Euclidean
distance) and Supervised Isomap (uses dis1), illustrated in the
next subsection.

B. PRACTICAL ANALYSIS
Breast Cancer data has been selected to demonstrate practi-
cally the impact of dissimilarity measure on structure cap-
turing. To simplify the demonstration, we have considered
two variables worse perimeter and worse smoothness of
the Breast Cancer data6 and then have been considered ten

6Breast Cancer with 569 samples and 30 variables from Sklearn, Python.
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FIGURE 2. The visualization of low dimensional representation of Isomap
(a) and the visualization of low dimensional representation of Supervised
Isomap.

randomly-selected data samples. Each data sample corre-
sponds to a patient, and we have built the neighbours rank
indexes7 for each selected patient, as shown in Fig. 1. Consid-
ering patient 1; the nearest neighbour of patient 1 is patient 4
(rank 2), followed by patient 3 (rank 3), patient 6 (rank 4),
patient 9 (rank 5), patient 2 (rank 6), patient 5 (rank 7),
patient 8 (rank 8), patient 7 (rank 9), and patient 10 (rank 10).

To evaluate which of the methods has retained the
data structure better, we have constructed a difference
matrix named Retained-Structure that contains the differ-
ence between the neighbourhood rank matrix of the high
and the low dimensional space data. In an ideal case,
the Retained-Structure matrix contains only element 0 (zero).
Nonzero elements, which indicate a failure in retaining the
neighbourhood structure, are positive or negative numbers.
A positive number Pij = +in indicates that the method has
jumped+in positions closer the jth data sample to the ith data
sample. By contrast, a negative number Pij = −in indicates
that the method has been forced the ith data sample to be in
positions further away from the jth data sample. In terms of
medical interpretation, we can say that worse perimeter and

7The neighbourhood ranking index demonstrates the neighbourhood rank-
ing index among patients.

FIGURE 3. The neighbourhood rank indexes of the low dimensional
space data generated by Isomap (a), and Supervised Isomap (b).

worse smoothness variables of patient 1 are the most similar
to patient 4 and the least similar to patient 10. Thus, if apply-
ing any manifold learning technique to the above-considered
data, the best manifold learning (dimensionality reduction)
method is the one that maintains the neighbourhood structure.
In other words, patient 1 should maintain the neighbours rank
in the following order: patient 4, patient 3, patient 6, patient
9, patient 2, patient 5, patient 8, patient 7, and patient 10 from
the closest to the most distant patient.

To demonstrate the impact of a dissimilarity measure on
structure capturing, we apply dis1 to Isomap and have com-
pared with the standard Isomap. Visually, supervised Isomap
with dis1 seems better, as samples of the same class are closer,
and samples of different classes have becomemore separated.
However, the visualization of standard Isomap seems more
similar to the visualization of the original data, which is
discussed below.

The Retained-Structure matrices generated by Isomap and
Supervised Isomap are showed in Fig. 3(a) and Fig. 3(b),
respectively. Fig. 3 shows that the method that has cap-
tured the neighbourhood structure entirely is Isomap, as its
Retained-Structure matrix Fig. 4(a) contains only elements 0.
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FIGURE 4. Retained-Structure matrix of Isomap (a), and Supervised
Isomap (b).

Contrastingly, the supervised Isomap has failed to maintain
the neighbourhood structure, demonstrated by nonzero ele-
ments in the Retained-Structure matrix Fig. 4(b). Patients
are organized into two classes where patient 1, patient 2,
patient 3, patient 5, and patient 10 are patients diagnosed with
malignant, whereas patient 4, patient 6, patient 7, patient 8,
and patient 9 are patients diagnosed with benign. We can spot
from the Retained-Structure matrix Fig. 4(b) that the same
class samples have been forced to be closer, demonstrated
by negative values in the Retained-Structure matrix, shown
in Fig. 4(b). Different class patients have been forced to be
further away, illustrated by positive values in the Retained-
Structure, matrix shown in Fig. 4(b). We conclude that forc-
ing data samples to be closer or further away impacts the
scale of maintaining the neighbourhood structure. As shown
in Fig. 2(b), patient 1 was more similar to patient 4 in terms of
worse perimeter and worse smoothness variables. However,
using supervised Isomap, the nearest patient to patient 1 is
patient 3, shown in Fig. 3(b). Consequently, we can assume
that patient 1 and patient 3, which are very close in the
visualization of low dimensional representation, may need
the same treatment. However, patient 1 and patient 3 have
different corresponding values of worse perimeter and worse

TABLE 1. Kendall’s tau for methods (columns) using metrics (rows) in
breast cancer data.

smoothness in the original data. As a result, the aforemen-
tioned decision for the same treatment may be wrong.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Isomap, t-SNE, and LE are three manifold learning tech-
niques considered in this paper. They have been tested with
two datasets, Breast Cancer and Swiss Roll, using Euclidean
distance and three dissimilarity measures dis1 (8), dis2 (9),
and dis3 (10). The selectedmanifold learning techniques were
implemented in Python using the corresponding Sklearn ver-
sions and the same number of iterations (2000). Supervised
manifold learning methods were also implemented using
their Sklearn versions, but by selecting the pre-computed
metric, where we pre-computed the dissimilarity measures,
separately. Their performance in maintaining the neighbour-
hood structure of data in a manifold has been evaluated by
Kendall’s Tau coefficients and co-ranking matrices [35]. Fur-
thermore, we have tuned the number of neighbours for each
method from 1 to N − 1, because the number of neighbours
considered has a substantial impact on the scale of preserving
the neighbourhood structure of a manifold.

A. BREAST CANCER
Breast Cancer data with 569 data samples (patients),
thirty variables and two classes is the first dataset con-
sidered. The thirty-dimensional data will be transformed
to two-dimensional space data (visualization in Fig. 7) by
employing four different metrics, such as Euclidean distance,
dis1, dis2, and dis3 to Isomap, t-SNE, and LE. Their perfor-
mances have been evaluated by Kendall’s Tau coefficients
presented in Table 1, and co-ranking matrices demonstrated
in Fig. 8. The experiments conducted on Breast Cancer data
show that Euclidean distance helps Isomap (k: 515) to capture
the best data structure as demonstrated by a nearly diagonal
co-ranking matrix demonstrated in Fig. 8(a), and Kendall’s
Tau coefficient with 0.9977, as shown in Table 1. The dis1,
dis2, and dis3 used in Isomap are less useful in capturing
the neighbourhood structure, estimated by Kendall’s Tau
coefficients (Table 1), and the co-ranking matrices (Fig. 8).
The Euclidean distance has resulted in the best metric for
t-SNE, regarding the maintenance of the data structure, with
a Kendall’s Tau coefficient of 0.8150. However, dis3 demon-
strated excellent performance by competing with Euclidean
distance for t-SNE. Note that the Gaussian distribution
becomes broader because if σ increases and the broader the
Gaussian distribution is, the more sensitive it becomes to
more distant neighbours. This conclusion is supported by the
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FIGURE 5. Two Gaussian distributions.

FIGURE 6. Swiss Roll data.

result of the co-ranking matrix of t-SNE using dis3, which
has fewer off-diagonal entries. Contrastingly, dissimilarity
measure dis2 enforces the data samples of the same class
to have a smaller distance; and as such, the number of data
samples with small distances becomes higher. As a result,
the Gaussian distribution(s), which relates to the density of
data σ , becomes sharp when the density is small. Having
a sharp Gaussian distribution means that the distribution is
more sensitive at small distances than large ones, as shown
in Fig. 5. Thus, the number of entries that are part of the sen-
sitive distribution section is higher, which means an improve-
ment in capturing the local data structure.

LE using the Euclidean distance preserves the data struc-
ture better than using other metrics, supported by their
co-ranking matrices and Kendall’s Tau coefficients. The dis-
similarity measure dis1 employed to LE reduces Kendall’s
Tau coefficient by 0.3878, as demonstrated in Table 1. The
deterioration of the structure preservation can be seen in
the respective co-ranking matrices, as shown in Figs. 8 (j),
in which the supervised LE has more off-diagonal entries.

B. SWISS ROLL
The second dataset considered is the three-dimensional
Swiss Roll data with 1600 data samples (shown in Fig. 6),
which will be transformed into two-dimensional space data,
by using four different metrics including dis, dis1, dis2, and
dis3 in Isomap, t-SNE, and LE. Performances of Isomap,
t-SNE, and LE using dis (Euclidean distance), dis1, dis2, and
dis3 with Swiss Roll data, were estimated using Kendall’s
Tau coefficients as shown in Table 2, and co-ranking matrices
illustrated in Fig. 10. The two-dimensional data visualiza-
tions are demonstrated in Fig. 9. Based on Kendall’s Tau
coefficient values and co-ranking matrices, manifold learning
techniques that employ Euclidean distance, have preserved
better Swiss Roll data than three other metrics (dis1, dis2,
and dis3). Among unsupervised manifold learning methods,

TABLE 2. Kendall’s tau for methods (columns) using metrics (rows) in
swiss roll data.

Isomap (Euclidean distance) captures the best Swiss Roll
data structure, with Kendall’s tau 0.9121. The LE with dis1
captures the best data structure across supervised methods,
with Kendall’s tau 0.8508.

Unlike with Breast Cancer data, in Swiss Roll data
t-SNE managed to capture the highest data structure by using
Euclidean distance and not a dissimilarity measure. How-
ever, among dissimilarity measures, dis3 resulted in capturing
global data structure the best (t-SNE shown in Fig. 10(h)).
As previously noted, the broader the distance range of data,
the broader the Gaussian distribution and the more sensitive
to large distances it is, the more it improves the data structure
capturing.

Overall, employing a dissimilarity measure in a manifold
learning technique does not improve data structure preserva-
tion. However, in some scenarios, dis3 helps t-SNE to capture
a more global data structure, but it may lose some local
information.

V. THE IMPACT OF DISSIMILARITY MEASURE ON
CLASSIFICATION PERFORMANCE
A manifold learning technique can be employed as a
pre-processing step for classification. However, the priority
of a manifold learning technique is to capture data structure
instead of separate data samples of different classes. Con-
sequently, researchers have proposed class information in
calculating the similarity between data samples (dissimilarity
measures), i.e., dis1, dis2, and dis3, in manifold learning to
achieve a lower classification error. This section discusses
how the dissimilarity measure affects a classification model
to achieve a lower classification error.

Consider a manifold learningM that generates low dimen-
sional data Y , Y1, Y2, and Y3 using metrices dis (Euclidean
distance), dis1, dis2, and dis3, respectively. To simplify our
analysis, we consider that the manifold learning method M
has performed perfectly (the loss function employed in the
manifold learning has reached i.e., its minimal value (zero)),
such that the neighbourhood structures defined in the high
dimensional space using Euclidean distance (dis), dis1, dis2,
and dis3 are preserved completely. Note that the neighbour-
hood structures defined using dis, dis1, dis2, and dis3 are the
same with the neighbourhood structure defined using dis in
the low dimensional data Y , Y1, Y2, and Y3, respectively. Our
theoretical analysis is based on the work of Balcan et al. [36]
who proposed the (ε, γ ) good similarity function based on
intuitive and sufficient conditions that allow a similarity func-
tion to learn well, supported by Definition 3, Definition 4,
Theorem 1, and Theorem 2.
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FIGURE 7. Visualization of two-dimensional breast cancer data generated by ISOMAP, t-SNE and LE using as metric euclidean distance, DIS1,
DIS2, and DIS3.

FIGURE 8. Co-ranking matrixes of two-dimensional breast cancer data generated BY ISOMAP, t-SNE and LE using as metric euclidean distance,
DIS1, DIS2, and DIS3.

Definition 3 (Balcan et al. [36]) A similarity function over
Y is any pairwise function K : X × X− > [−1, 1].
Definition 4 (Balcan et al. [36]) K is a strongly (ε, γ )

good similarity function, if at least a- (1 − ε) probability
mass of examples y satisfy: Ey−Y [dis(y, y′)|l(y′) 6= l(y)] >
Ey−Y [dis(y, y′)|l(y′) = l(y)]+ γ .

Theorem 1 (Balcan et al. [36]) If K is a valid kernel func-
tion, and is (ε, γ )-good similarity for some learning problem,
then it is also (ε, γ )-kernel-good for the learning problem.
Theorem 2 (Balcan et al. [36]) If dis is a strongly (ε, γ ) -

good similarity function, then 4
γ 2

ln( 2
δ
) positive S+ examples,

and S− negative examples are sufficient, so with probability
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FIGURE 9. Visualization of two-dimensional swiss roll data generated by ISOMAP, t-SNE and LE using as metric euclidean distance, DIS1, DIS2,
and DIS3.

FIGURE 10. Co-ranking matrixes of two-dimensional swiss roll data generated by ISOMAP, t-SNE, and LE using similarity measures euclidean
distance, DIS1, DIS2, and DIS3.

p ≥ 1 − δ, the above algorithm produces a classifier with a
maximum error of ε + δ

2 .
In the work of Balcan et al. [36], a learning problem was

specified by a labelled example (x, y) drawn from a distri-
bution of P over X × {−1, 1}, where X is an abstract space.

In this study, the learning problem is defined by providing the
low dimensional space data (y, l), (y1, l), (y2, l), and (y3, l)
generated by a manifold learning method M over data X ×
{−1, 1} using the dis, dis1, dis2, and dis3, respectively. The
objective of a learning algorithm is to produce a classification
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function gi : Yi → {−1, 1}, i = 0 : 3 to produce a low
classification error.

In this study, we seek to discover the goodness of a sim-
ilarity function in a particular learning problem. In other
words, we use the same similarity function K , but in different
data distribution (the low dimensional data Y , Y1, Y2, and Y3
generated by the manifold learning M employing dis, dis1,
dis2, and dis3) having the same label l. Note that for a given i,
l(xi) = l(yi) = l(y1i) = l(y2i) = l(y3i). Consider that K is the
radial basis function (RBF) kernel with formula, K (x, x ′) =
exp(− dis(x,x ′)2

2σ 2
), Theorem 1 states that a kernel function is a

good similarity function; as such the theorems and defini-
tions applied for similarity functions can also be applied for
kernel functions. Standard algorithms such as Support Vector
Machine (SVM) and Perceptron have used kernel functions to
learn linear separations via computing dot products on pairs
of examples. The main idea of applying kernel function is to
map nonlinear data in a very high dimensional space to find
a hyperplane to separate data. This study employed the RBF
kernel, which is usefully used in an SVM-based classifier.

The neighbourhood structure of Y , Y1, Y2, and Y3 is the
same as the neighbourhood structure of X using dis, dis1,
dis2, and dis3, since the manifold learningM has assumed to
perfectly maintain the neighbourhood structure. Thus, the K
function that is assumed to be applied to the low dimensional
space Y , Y1, Y2, and Y3 using the squared Euclidean distance
dis, can be equally applied to the high dimensional data X ,
but using dis, dis1, dis2, and dis3, respectively. As a result,
four RBF kernel functions K (y, y′), K (y1, y′1), K (y2, y′2), and
K (y3, y′3) can be reformulated as follows:

1) K (y, y′) = exp(− dis(x,x ′)2

2σ 2
)

2) K (y1, y′1) = exp(− dis1(x,x ′)2

2σ 2
)

3) K (y2, y′2) = exp(− dis2(x,x ′)2

2σ 2
)

4) K (y3, y′3) = exp(− dis3(x,x ′)2

2σ 2
)

We aim to prove that the RBF kernel can produce a lower
classification error using low dimensional data Y1, Y2, and
Y3 than using low dimensional data Y . Let U represents
the set of y that satisfy Ey′∼Y [K (y, y′)|l(y) = l(y′)] ≥
Ey′∼Y [K (y, y′)|l(y) 6= l(y′)]+ γ , and P(U ) = 1− ε.
Proposition 3RBF kernelK achieves a lower classification

error using the low dimensional data Y1 than using the low
dimensional data Y .

Proof:
Let U1 denotes the set of y1 that satisfy: Ey′1∼Y1 [K (y1, y′1)
|l(y1) = l(y′1)] ≥ Ey′1∼Y1 [K (y1, y′1)|l(y1) 6= l(y′1)]+ γ .

Since K (y1, y′1) = exp(− dis1(x,x ′)2

2σ 2
), then

Ex ′∼Xe
−

1−e
−dis(x,x′)

β

2σ2 |l(y) = l(y′) ≥ Ex ′∼Xe
−( e

dis(x,x′)2
β

2σ2
−α)

|l(y) 6= l(y′)+ γ .

For α ≥ 0.5, we obtain e
dis(x,x′)2

β −α ≥ 1, and 1−e−
dis(x,x′)2

β ∈

[0, 1[, as such Ex ′∼X [e
−

1−e
−dis(x,x′)

β

2σ2 |l(y) = l(y′)] ≥

Ex ′∼X [e
−
dis(x,x′)2

2σ2 |l(y) = l(y′)] ≥ Ex ′∼X [e
−
dis(x,x′)2

2σ2 |l(y)] 6=

l(y′) ≥ Ex ′∼X [e
−
e
−dis(x,x′)2

β

2σ2
−α
|l(y) 6= l(y′)]+ γ .

Finally, U1 = U ∪ R1, where R1 contains data sam-

ples x that satisfy Ex ′∼Xe
−

1−e
−dis(x,x′)

β

2σ2 |l(y) = l(y′) ≥

Ex ′∼Xe
−
dis(x,x′)2

2σ2 |l(y) = l(y′), and data samples x that satisfy

Ex ′∼Xe
−
dis(x,x′)2

2σ2 |l(y) 6= l(y′) ≥ Ex ′∼Xe
−
e
−dis(x,x′)2

β −α

2σ2 |l(y) 6=
l(y′)+ γ .
Therefore, P(U1) = P(U ∪R1) = P(U )+P(R1) as U ∩R1 =
∅. Let’s define P(R1) = ρ1, as such P(U1) = 1− ε + ρ1.
Based on Definition 4, RBF kernel in the low dimensional

data Y1 is a strongly (ε − ρ1, γ )-good similarity function,
whereas RBF kernel in the low dimensional data Y is strongly
(ε, γ )-good similarity function. Under the conditions of The-
orem 2, the classification error of RBF kernel using the low
dimensional data Y1 is ε − ρ1 + δ

2 which is lower than ε + δ
2

produced by RBF kernel low dimensional data Y .�
Proposition 4RBF kernelK achieves a lower classification

error using the low dimensional data Y2 than using the low
dimensional data Y .

Proof:
Let’s define U2 as the set of y2 that satisfy:

Ey′2∼Y2 [K (y2, y′2)|l(y2) = l(y′2)] ≥ Ey′2∼Y2 [K (y2, y′2)|l(y2) 6=
l(y′2)]+ γ .

Since K (y2, y′2) = exp(− dis2(x,x ′)2

2σ 2
), we have

Ex ′∼Xe
−
dis(x,x′)2

ψ22σ2 |l(y) = l(y′) ≥ Ex ′∼Xe
−
dis(x,x′)2

2σ2 |l(y) 6=
l(y′)+ γ .

e
−

(dis(x,x′))2

2ψ2σ2 = (e−
dis(x,x′)2

2σ2 )1/ψ
2
, (e−

dis(x,x′)2

2σ2 )1/ψ
2

≥ e−
dis(x,x′)2

2σ2 , ψ ≥ 1.

As a result Ex‘∼X [(e
−
dis(x,x′)2

2σ2 )1/ψ
2
|l(y) = l(y′)] ≥

Ex‘∼X [e
−
dis(x,x′)2

2σ2 |l(y) = l(y′)] ≥ Ex‘∼X [
e
−
dis(x,x′)2

2σ2

c |l(y) 6=
l(y′)]+ γ .
On the other hand, U2 = U ∪ R2, where R2 contains data

samples x that satisy Ex‘∼X [(e
−
dis(x,x′)2

2σ2 )1/ψ
2
|l(y) = l(y′)] ≥

Ex‘∼X [e
−
dis(x,x′)2

2σ2 |l(y) = l(y′)].
Thus, we obtain P(U2) = P(U ∪ R2) = P(U ) + P(R2)) as
U ∩ R2 = ∅. Let’s define P(R2) = ρ2, such that P(U2) =
1− ε + ρ2.
Based on Definition 4, we can say that RBF kernel in

the low dimensional data Y2 is a strongly (ε − ρ2, γ )-good
similarity function, and RBF kernel in the low dimensional
data Y is a strongly (ε, γ )-good similarity function. Under
the conditions of Theorem 2, the classification error of RBF
kernel using the low dimensional data Y2 is ε − ρ2 +
δ
2 , which is lower than ε + δ

2 produced by RBF kernel
using Y . �
Proposition 5RBF kernelK achieves a lower classification

error using the low dimensional data Y3 than using the low
dimensional data Y .
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Proof:
Suppose that U3 is the set of all y3 that satisfies:

Ey′3∼Y3 [K (y3, y′3)|l(y3) = l(y′3)] ≥ Ey′3∼Y3 [K (y3, y′3)|l(y3) 6=
l(y′3)]+ γ .

Because K (y3, y′3) = exp(− dis3(x,x ′)2

2σ 2
), then

Ex ′∼Xe
−
dis(x,x′)2

2σ2 |l(y) = l(y′) ≥ Ex ′∼Xe
−

(dis(x,x′)+dis(x,x′)µ)2

2σ2

|l(y) 6= l(y′)+ γ .

On the other hand, e−
(dis(x,x′)+maxdis(x,x′)µ)2

2σ2 = e−
dis(x,x′)2

2σ2

e−
(maxdis(x,x′)µ)2

2σ2 .

Let be c = e
(maxdis(x,x′)µ)2

2σ2 , and c ≥ 1, then

Ex‘∼X [e
−
dis(x,x′)2

2σ2 |l(y) = l(y′)] ≥ Ex‘∼X [
e
−
dis(x,x′)2

2σ2

c |l(y) 6=
l(y′)]+ γ .
On the other hand, U3 = U ∪ R3, where R3 contains the x

data samples that satisy Ex ′∼X [
e−dis(x,x

′)2

2σ2
c |l(y) 6= l(y′)]+ γ ≤

Ex ′∼X [e
−
dis(x,x′)2

2σ2 |l(y) = l(y′)] ≤ Ex ′∼X [e
−
dis(x,x′)2

2σ2 |l(y) 6=
l(y′)]+ γ .
As a result, P(U3) = P(U ∪ R3) = P(U ) + P(R3)) as

U ∩ R3 = ∅. We define P(R3) = ρ3, such that P(U3) =
1− ε + ρ3.
Based on Definition 4, we have proved that RBF kernel

in the low dimensional data Y3 is strongly (ε − ρ3, γ )-good
similarity function, whereas RBF kernel applied in the low
dimensional data Y is strongly (ε, γ )-good similarity func-
tion. Under the conditions of Theorem 2, the classification
error of RBF kernel using the low dimensional data Y3 is
ε − ρ1 +

δ
2 , which is lower than ε + δ

2 produced by RBF
kernel using the low dimensional data Y .�
Overall, RBF kernel applied in the low dimensional data

generated by a manifold learning M8 using dissimilarity
measures dis1, dis2, and dis3 can help a learning problem to
achieving lower classification errors than RBF kernel applied
in the low dimensional data generated by the manifold learn-
ing M using the Euclidean distance dis.

VI. CONCLUSION AND FURTHER WORKS
Supervised manifold learning has been used in many sce-
narios to achieve higher classification accuracy and pro-
vide better visualization. This paper provides a theoretical
analysis of the impact of dissimilarity measure on manifold
learning regarding classification error. Dissimilarity measure
forces relocating data samples using class information, but
it does not improve data structure capturing. Following the
theoretical analysis and supported by experimental results,
we can conclude that the dissimilarity measure in Isomap,
t-SNE and LE worsens data structure capturing. Therefore,
it would be more useful to use Euclidean distance than
dissimilarity measures. However, dissimilarity measure dis3
has a positive impact on t-SNE, which can help preserve
global data information better. In addition, a dissimilarity

8Note that manifold learning M perfectly preserves the neighborhood
structure using dis, dis1, dis2, and dis3.

measure can be usefully incorporated in manifold learning
techniques to achieve a better RBF-based classifier, and
the class-separation achieved by supervised dimensionality
reduction methods can reduce the classification error.

Overall, supervised manifold learning can be used for clas-
sification purposes with the advantage of classification error
reduction. In visualization, the class information involved
in dissimilarity measure can destroy data structure captur-
ing. As a result, incorrect information can be obtained from
two-, three-dimensional visualizations, which can lead us to
make a wrong decision. However, we strongly advise against
using supervised manifold learning/dimensionality reduction
techniques as a pre-processing step of classification. Still,
we strongly advise not using supervised manifold learning
for visualization purposes as the two-dimensional represen-
tation using supervised manifold learning does not improve
the preservation of neighbourhood structure, but instead,
destroys it.

Proving that a dissimilarity function could help any clas-
sification method (kernel-based or not) to achieve a lower
classification error is an objective for further work.
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