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Abstract— By considering the geometry of the Bennett 3R
open-chain linkage it is possible to predict the possible configu-
ration spaces of 6R closed loop mechanisms formed by joining
pairs of Bennett linkages. Attention is confined to cases where
the configuration space can be described by the intersection of
three quadric surfaces in a three-dimensional projective space.
There are just five possibilities which contain a component
of dimension one. Two of these possibilities correspond to
well-known constructions for forming mobile overconstrained
6R mechanisms from Bennett linkages. The geometry shows
that these configuration spaces must also contain a number of
isolated configurations, a result we believe to be new. Finally we
are able to show that one of the other five geometric possibilities
cannot occur as the configuration space of a double Bennett
mechanism.

I. INTRODUCTION

It is well known that the molecular structure for cyclohex-
ane (C6H12) can be modeled by the line-symmetric Bricard
mechanism. The molecule’s carbon-carbon back-bone can
be approximated by the 6R mechanism. The molecule has
two conformational isomers, that is two possible assembly
modes. These are known as the “boat” and “chair” config-
urations. As a mechanism the chair configuration is mobile
but the boat is rigid, see [1]. The configuration space of this
mechanism thus consists of two components with different
dimensions, a one-dimensional mobile component and a
zero-dimensional point.

In this work we find similar 6R mechanisms with assembly
modes of different dimensions. In general the configuration
space of these mechanisms is an algebraic variety defined
as the intersection of a number of polynomial equations.
Such an algebraic variety can have components of different
dimensions only if it is not a complete intersection.

The overconstrained mechanisms that we construct are
well-known combinations of Bennett mechanisms. However,
we are able to give very simple derivations of the configura-
tion spaces of the mechanisms based on intersecting planes
and quadrics with the Study quadric. These derivations and
the discovery of the isolated rigid assemblies is, we believe,
novel.

1J.M. Selig is with the School of Engineering, London South Bank
University, London SE1 0AA, U.K. seligjm@lsbu.ac.uk

2Z. Li is with the Institute of Discrete Mathematics and
Geometry, Vienna University of Technology, Vienna, Austria
zijia.li@tuwien.ac.at

`1

`2

`3

y

x
z h

d1

d2

α2

α1

Fig. 1. The standard position for a general 3R linkage.

II. THE BENNETT LINKAGE

In [9], it was shown that the Bennett linkage describes a
three dimensional variety in the Study quadric. This variety
is the projection of the Segre variety P1×P1×P1, and was
shown to be the complete intersection of the Study quadric,
a P5 and another quadric hypersurface.

The Study quadric is a six-dimensional quadric in P7,
writing the homogeneous coordinates of the P7 as (a0 : a1 :
a2 : a3 : c0 : c1 : c2 : c3), the equation of the Study
quadric is given by,

a0c0 + a1c1 + a2c2 + a3c3 = 0.

Now consider the standard or home position for a general
3R linkage shown in Fig. 1. The Bennett conditions are
imposed by requiring that h = 0 and

d1
sinα1

=
d2

sinα2
= d,

where d is this common ratio sometimes called the Bennett
ratio of the linkage, see [6]. In fact there are two possible
forms for the Bennett condition d1/ sinα1 = d2/ sinα2, as
above, and d1/ sinα1 = −d2/ sinα2. Both the equations
give the Bennett condition when h = 0.

We can eliminate d1 and d2 now since,

d1 = d sinα1, and d2 = d sinα2

when the Bennett conditions are satisfied.
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With the coordinates given in Fig. 1 ,the P5 that the con-
straint variety lies on is determined by a pair of hyperplanes,

d sin(α1 + α2)a2 − (sinα1 + sinα2)c2

− (cosα1 − cosα2)c3 = 0,

d(sinα1 + sinα2))a1 + (cos(α1 + α2)− 1
)
c0

− sin(α1 + α2)c1 = 0,
(1)

see [9]. The explicit form of the other quadric hypersurface
was not found in [9], we look at this now.

The standard Segre variety P1 × P1 × P1 satisfies the 9
quadrics, in a P7. Writing the homogeneous coordinates of
this P7 as (X0 : X1 : X2 : X3 : Y0 : Y1 : Y2 : Y3) the 9
quadrics can be written,

Q1 : X0Y1 +X2X3 = 0,
Q2 : X0Y2 −X1X3 = 0,
Q3 : X0Y3 +X2X3 = 0
Q4 : X1X0 + Y2Y3 = 0,
Q5 : X2Y0 − Y1Y3 = 0,
Q6 : X3Y0 + Y1Y2 = 0,
Q7 : X0Y0 +X1Y1 = 0,
Q8 : X0Y0 −X2Y2 = 0,
Q9 : X0Y0 +X3Y3 = 0,

(2)

see [9] and theorem 3 in [6]. The general 3R linkage
determines a transformed version of this variety. The trans-
formation is given by the matrix M such that,

a0
a1
a2
a3
c0
c1
c2
c3


=M



X0

X1

X2

X3

Y0
Y1
Y2
Y3


Where the columns of M are given by, 1, `1, `2, . . . ,−`1`2,
where `i is the dual quaternion representing the axis of the
ith joint. The (transposed) columns of M are ,

1T = (1, 0, 0, 0, 0, 0, 0, 0)

`T1 = (0, 0, sinα1, cosα1, 0, 0, d1 cosα1,−d1 sinα1)

`T2 = (0, 0, 0, 1, 0, 0, 0, 0)

`T3 = (0, 0,− sinα2, cosα2, 0, h sinα2,

−d2 cosα2,−d2 sinα2)

(`1`2`3)
T = (0, 0, sin(α2 − α1),− cos(α2 − α1),

−h sinα1 sinα2, −h cosα1 sinα2,

(d2 − d1) cos(α2 − α1), (d2 − d1) sin(α2 − α1))

−(`2`3)
T = (cosα2, − sinα2, 0, 0,−d2 sinα2,−d2 cosα2,

−h sinα2, 0)

(`1`3)
T = (− cos(α1 + α2), sin(α1 + α2), 0, 0,

(d1 + d2) sin(α1 + α2), (d1 + d2) cos(α1 + α2),

h cosα1 sinα2,−h sinα1 sinα2)

−(`1`2)
T = (cosα1,− sinα1, 0, 0,−d1 sinα1,

−d1 cosα1, 0, 0).

Now the matrix M is singular if the Bennett conditions
are imposed. So let us simplify thing a little by imposing,

d1 = d sinα1, and d2 = d sinα2

but not h = 0. It is also possible to do this calculation
the other way around, setting h = 0 but not d1/ sinα1 =
d2/ sinα2 until the end. Geometrically this can be interpreted
as defining a family of maps, parameterised by h. For each
h the map is invertible but when h = 0 the inverse is the
closure of the map. A more prosaic way to look at this is to
consider the the inverse as given by M−1 = 1

det(M)Adj(M)

where Adj(M) denotes the adjugate of M . Now since the
corank of M is 2, both the determinant and adjugate become
zero when h = 0. This is essentially an indeterminate form
and we can take the limit as h→ 0 by dividing Adj(M) by
h and then setting h = 0. This gives a matrix,(

Adj(M)

h

)
h=0

whose entries can be computed explicitly. However there
isn’t enough space to write this out in full. Rather, consider,

X0

X1

X2

X3

Y0
Y1
Y2
Y3


=

(
Adj(M)

h

)
h=0



a0
a1
a2
a3
c0
c1
c2
c3


.

Now we can write,

X0 = d(sinα1 − sinα2)a2 +

sin(α2 − α1)c2 + (1− cos(α1 − α2))c3,

X1 = d sin(α2 − α1)a1 +

(cosα2 − cosα1)c0 + (sinα1 − sinα2)c1,

X2 = −d(sinα1 + sinα2)a1 +

(1− cos(α1 + α2))c0 + sin(α1 + α2)c1,

X3 = d sin(α1 − α2)a1 +

(cosα1 − cosα2)c0 + (sinα2 − sinα1)c1,

Y0 = −d(sinα1 + sinα2)a1 +

(1− cos(α1 + α2))c0 + sin(α1 + α2)c1,

Y1 = −d sin(α1 + α2)a2 +

(sinα1 + sinα2)c2 + (cosα1 − cosα2)c3,

Y2 = d(sinα1 − sinα2)a2 +

sin(α2 − α1)c3 + (1− cos(α1 − α2))c3,

Y3 = d sin(α1 + α2)a2 −
(sinα1 + sinα2)c2 + (cosα2 − cosα1)c3.

A few other common factors have been cancelled in the
above.

This can be used to substitute for the coordinates
X0, . . . , Y3 in the nine quadrics (2). From the computations
it turns out that if we do this Q7, Q8 and Q9 vanish. We



also get that Q6 = Q1 and Q3 = Q4 = −Q1. And finally
that,

Q1(sinα1 + sinα2) +Q5 sin(α1 − α2) = 0,

and

Q1 sin(α1 − α2) +Q2(sinα1 + sinα2) = 0.

So all the quadrics vanish or are multiples of Q1 (say). As
an 8× 8 matrix this quadric can be written,

Q1 =



0 0 0 0 0 0 0 0
0 2d2κ1 0 0 dκ4 dκ5 0 0
0 0 2d2κ2 0 0 0 dκ6 dκ8
0 0 0 0 0 0 0 0
0 dκ4 0 0 2κ3 κ7 0 0
0 dκ5 0 0 κ7 2κ2 0 0
0 0 dκ6 0 0 0 2κ1 κ9
0 0 dκ8 0 0 0 κ9 2κ10


,

where,

κ1 = − sin(α1 − α2)(sinα1 + sinα2)

κ2 = −(sinα1 − sinα2) sin(α1 + α2)

κ3 = (cosα1 − cosα2)(1− cos(α1 + α2))

κ4 = (sin(α1 − α2)(1− cos(α1 + α2))−
(sinα1 + sinα2)(cosα1 − cosα2))

κ5 = ((sinα1 − sinα2)(sinα1 + sinα2) +

sin(α1 − α2) sin(α1 + α2))

κ6 = ((sinα1 − sinα2)(sinα1 + sinα2)−
sin(α1 − α2) sin(α1 + α2))

κ7 = (sin(α1 + α2)(cosα1 − cosα2)−
(sinα1 − sinα2)(1− cos(α1 + α2)))

κ8 = ((sinα1 − sinα2)(cosα1 − cosα2)−
(1− cos(α1 − α2)) sin(α1 + α2))

κ9 = ((1− cos(α1 − α2))(sinα1 + sinα2) +

sin(α1 − α2)(cosα1 − cosα2))

κ10 = (1− cos(α1 − α2))(cosα1 − cosα2)

Notice that the quadric Q1 is singular along the line a1 =
a2 = c0 = c1 = c2 = c3 = 0. Moreover, this line singularity
lies in the P5 determined by the equations in (1).

III. MOBILE DOUBLE BENNETT MECHANIMS

The rigid-body displacements generated by a Bennett 3R
open-loop linkage is then the intersection of the Study
quadric with a P5 and another quadric. Suppose now that
we join two Bennett 3R linkages to form a single 6R loop,
in general the position and orientation of the coupler bar
will be given by the intersection of two P5s giving a P3 and
three quadrics, the Study quadric and two others. That is, the
intersection of 3 quadrics in a P3. Generally, that is when
the intersection is complete, there will be 23 = 8 points
of intersection giving 8 different assembly configurations or

modes. So in general, no mobile components. Here we are
interested in the special cases where the intersection contains
a component with dimension one.

If the two P5s meet exceptionally in a P4 then the
6R single loop, mechanism will be mobile. These cases,
including the possible degenerate sub-cases, were discussed
by Dietmaier [4], so will not be discussed further here.

Assuming the two 5-planes meet in a 3-plane, there are
only 5 possibilities for a mobile mechanism. To see this
consider the intersection of only two of the quadrics in the
P3, this will be a curve of degree 4. The general case will be
an elliptic quartic curve, but such a curve cannot lie in the
third quadric unless this quadric is a linear combination of
the first two. However, the quartic curve can degenerate, it
may split into; four lines, two lines and a conic, two conics
or a line and a twisted cubic curve. Now some of these
components may lie in the third quadric. The possibilities
are that the three quadrics share a single line, a pair of lines,
a conic, a conic and a line or a twisted cubic curve.

A. A Line and 4 Points

If the intersection of the three quadrics in P3 contain a
single line then the intersection will also contain 4 isolated
points. There are two ways to show this. First consider the
intersection of two of the quadrics, say the Study quadric
and one of the Bennett quadrics. If the intersection contains
a line then the intersection must also contain a residual curve
which in general will be a twisted cubic. The same must be
true for the intersection of the second Bennett quadric with
the Study quadric, we assume the line will be the same but
the residual cubic will be different. The intersection of the
Study quadric with the P3 will generally be a non-singular
2 dimensional quadric. The two twisted cubics must lie in
this quadric surface and each will have bi-degree (1, 2), they
both meet the same line in the quadric in two points. The
intersection of these two cubics will consist of 1×2+2×1 =
4 points. Alternatively, consider the intersection of two of the
quadrics in the P3 again. The intersection is assumed to be
a line and a twisted cubic curve as before. Now intersect
this with the third quadric.We assume that the line lies in
this quadric. The intersection of the twisted cubic with the
quadric will consist of 2 × 3 = 6 points. However, two of
these points must be where the twisted cubic meets the line,
hence there will be 6− 2 = 4 other points of intersection.

The arguments above apply to three quadrics in a P3,
but are there double Bennett mechanisms that give this
geometry? Notice that in the Study quadric a line corresponds
to the subgroup of rotations about a fixed line or the subgroup
of translations parallel to a fixed direction. Actually, this
describes lines through the identity in the group, a general
line in the Study quadric is one of these subgroups multiplied
by a constant displacement. It is clear that the 3R Bennett
linkage cannot perform pure translations, otherwise there
would be a mobile 3RP mechanism. We can have a 3R
Bennett linkage where the last link rotates about a fixed line,
this is just the 4R Bennett loop. The question now arises,
which lines can the end-effector of the 3R Bennett linkage



Fig. 2. A Double Bennett Maechanism with One Mobile Assembly and Four Isolated Assemblies.

rotate about? Notice that the first joint of the 3R linkage is
fixed, so the virtual 4th joint of a Bennett mechanism can
lie on the regulus traced out when the 4th joint is rotated
about the first joint. Now suppose we take two Bennett
4R mechanisms and join them in such a way that the axis
of the 4th joint in each coincides. We then join the third
joints of both mechanisms with a rigid link. This combined
mechanism is clearly still mobile, the new link simply rotates
about the combined 4th joint. Finally we can remove the 4th
joint and all the links attached to it, the result will be a
mobile 6R mechanism.

This construction seems to be due to Bennett [10]. The
results is an overconstrained mobile mechanism known as the
Waldron Hybrid mechanism. From the above we see that the
configuration space of the mechanism consists of a line and
4 points. Note that the algebraic geometry above assumes
complex scalars but we are really only interested in points
with real coordinates. So we are left with the question as
to whether or not all 4 isolated points in the variety defined
by the linkage can be real assembly configurations. This can
be answered with an example, fig. 2 shows a 6R double
Bennett mechanism with a mobile assembly mode and 4 real
isolated assemblies. The Denavit-Hartenberg parameters for
this mechanism are,

Twist angles 1.94, 2.04, 2.79, 0.72, 1.55, 1.99 radians,
Link lengths 1.79, 1.83, 4.82, 1.39, 2.64, 2.56,
Offsets 0, −2.85, −9.05, 0, −8.33, −3.29.

B. Conic and Two Points

If the three quadrics in P3 defining the configuration space
of the 6R double Bennett mechanism contain a conic curve

then the intersection will also contain a pair of isolated points
(or a line, see below). This can be seen using the same
methods as in the previous section. Consider again the 2-
dimensional quadric which is the intersection of the Study
quadric with the P3. The intersection of this with the quadric
determined by one of the Bennett linkages will be a pair of
conic curves. Now a conic must be a complete intersection
and so its bi-degree in the 2-dimensional quadric must be
(1, 1). This also applies to the intersection of the other
quadric with the 2-dimensional quadric. The intersection of
two (1, 1) curves in a quadric surface gives (1×1)+(1×1) =
2 points.

We can produce a double Bennett mechanism whose con-
figuration space contains a conic using another well known
construction. It is well known that the configuration space of
a 4R Bennett mechanism is conic curve. That is the coupler
bar of the Bennett mechanism traces out a conic curve in
the Study quadric, see [3]. Now we can attach a 3R Bennett
linkage to either side of a closed loop Bennett mechanism.
That is, the final joint of the linkage coincides with either
the second or third joint in the closed loop mechanism. So
long as the Bennett conditions are satisfied for each new loop
formed, the resulting mechanism will be mobile. Finally we
remove all of the original closed loop mechanism apart from
the second and third joint and the coupler link connecting
these two joints. This construction give a Goldberg primary
6R mechanism, see [2]. Clearly by construction, the configu-
ration space of the mechanism contains a conic in the Study
quadric, the coupler curve of the original closed-loop Bennett
mechanism the construction was based on. The above shows
however, that the configuration space of the curve can also



Fig. 3. A Double Bennett Maechanism with One Mobile Assembly and Two Isolated Assemblies.

contain up to two real isolated configurations. The example
shown in fig.3 shows that both isolated points can be real.
The Denavit Hartenberg parameters for this mechanism are,

Twist angels 1.94, 1.24, 1.99, 1.65, 1.97, 1.99 Radians,
Link lengths 1.79, 1.83, 0.76, 1.79, 1.95, 2.14,
Offsets 0, −2.55, 2.55, 0, −2.25, −2.25.

C. Two lines and Two points

If three quadrics in P3 contain a pair of lines, then the
intersection will also contain two isolated points. This can
be seen using the same argument as in the previous section.
In this case however, there is no double Bennett mechanism
with this geometry.

To see this consider the construction outlined in section
III-A above. Think of the two 3R Bennett linkages as a
left linkage and a right linkage joined at the coupler link.
Suppose the virtual fourth joint shared by the two Bennett
mechanisms is `. This common line ` must lie on two reguli,
one generated by swinging ` about the first joint in the
left linkage and the other generated by turning ` about the
first joint in the right linkage. Now it is possible for two
cylindrical reguli to intersect in a pair of lines.

However, for the 6R mechanism to exist with these two
mobile modes we must be able to disassemble the mechanism
and reassemble it in the other mode. Suppose the mechanism
is mobile in one mode, the coupler rotating about the virtual
4th joint `. Now disassemble the mechanism by splitting it at
the final joint of the left Bennett linkage. To reassemble the
mechanism in the other mode we must subject the coupler
link to a rigid-body displacement. To move the last link in
the left linkage to its new position without changing the

geometry of the mobile virtual Bennett mechanism, all we
can do is to rotate all the links and joints about the first
joint of the linkage. For the right linkage we have a little
more freedom, we can rotate about the first joint of the right
linkage but we can also rotate about the final link in the
right linkage since this will only move the coupler link. The
displacement in the right linkage must be the same as the
displacement in the left linkage. We don’t need a continuous
family of solutions, just a single solution will do. However,
it is not difficult to see that, apart from trivial solutions, the
only way that a rotation about one line can be equal to a pair
of rotations about two other lines is if the lines are all parallel
or all coincident. None of these solutions gives a double
Bennett mechanism. For a more formal proof of this claim
consider the screw triangle formed by the three rotations.
Since these are all rotations each can be decomposed into a
pair of half-turns about lines perpendicular to their rotation
axes and separated by half their rotation angles. For one
rotation to be equal to the product of the other two, the axes
of the half-turns must form a triangle which implies that the
three rotation axes of the original rotations must be parallel.
The exceptions are where all the axes meet at a point or all
the rotation angles are zero.

IV. CONCLUSIONS

This is not the only way that a mobile mechanism could
have a configuration space that contains an isolated point.
Suppose that the configuration space contains a complex
component. The points of such a component are not physical
and so would not be valid configurations of the real mecha-
nism. It is possible however, that such a complex component



contains a real singularity. That is a singular point with
real coordinates. An example of this phenomenon occurs
for a planar four bar where the sum of the three shortest
bars equals the length of the longest bar. This clearly has a
single, singular configuration. Presumably, the equations for
this mechanism can be set up so that this configuration is a
real singularity on a one-dimensional complex variety.

In future work we hope to be able to settle the two other
cases, the twisted cubic and the case where the configuration
space of the mechanism is a line and a conic. However, it
seems likely that, as with the case of two lines and two
points, double Bennett mechanisms with these configuration
spaces cannot occur. This is, of course, only speculation at
the moment.

A complete classification of 6R Bennett-based overcon-
strained mechanisms is not known, as far as we are aware.
The Bennett-based mechanisms form a much larger class
than the double Bennett mechanism considered here. For
example, a mobile 6R can be constructed as an intersection
of a Bennett 3R and a spherical or planar 3R, this is
well-known in the literature. The Wohlhart-partial-symmetric
6R is another example which can be constructed as an
intersection of a Bennett 3R and a general 3R linkage. In
[11] four Bennett mechanisms are combined, then a central
joint and its 4 links are removed, freezing two more joints
can produce mobile overconstrained 6R mechanism. All four
cases were studied Dietmaier [4]. Only one of the cases is a
double Bennett mechanism as studied here, this is Wohlhart’s
double-Goldberg 6R linkage. Another double Bennett mobile
6R is discussed in [5]. This is also a combination of
two Goldberg linkages but gives a different mechanism to
Wohlhart’s construction.

Another combination of two Bennett loops can be found

in [7] and [8]. These papers focus on 7R mechanisms which
are constructed by combining two Bennett loops sharing one
joint.
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