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Abstract: Recently, a novel microwave apparatus for breast lesion detection (MammoWave), uniquely
able to function in air with 2 antennas rotating in the azimuth plane and operating within the band
1–9 GHz has been developed. Machine learning (ML) has been implemented to understand infor-
mation from the frequency spectrum collected through MammoWave in response to the stimulus,
segregating breasts with and without lesions. The study comprises 61 breasts (from 35 patients),
each one with the correspondent output of the radiologist’s conclusion (i.e., gold standard) obtained
from echography and/or mammography and/or MRI, plus pathology or 1-year clinical follow-up
when required. The MammoWave examinations are performed, recording the frequency spectrum,
where the magnitudes show substantial discrepancy and reveals dissimilar behaviours when re-
flected from tissues with/without lesions. Principal component analysis is implemented to extract
the unique quantitative response from the frequency response for automated breast lesion identi-
fication, engaging the support vector machine (SVM) with a radial basis function kernel. In-vivo
feasibility validation (now ended) of MammoWave was approved in 2015 by the Ethical Committee
of Umbria, Italy (N. 6845/15/AV/DM of 14 October 2015, N. 10352/17/NCAV of 16 March 2017,
N 13203/18/NCAV of 17 April 2018). Here, we used a set of 35 patients. According to the radiolo-
gists conclusions, 25 breasts without lesions and 36 breasts with lesions underwent a MammoWave
examination. The proposed SVM model achieved the accuracy, sensitivity, and specificity of 91%,
84.40%, and 97.20%. The proposed ML augmented MammoWave can identify breast lesions with
high accuracy.

Keywords: MammoWave; breast lesion detection; machine learning

1. Introduction

Mammography is considered as the gold standard technology for breast screening,
where age and screening frequency are defined by contemplating the mammography
risk-benefit ratio [1,2]. Indeed, risks associated with X-ray cumulative effects (and low
sensitivity in dense breasts) limit the use of mammography—usually, women in the range
between 50–69 years are invited for screening once every two or three years [3–5]. Usually,
women after the age of 49 are offered bi/tri-annual screening to reduce the impact of
ionizing radiation. Although, the recent studies reported that lowering the screening age
limit to 40 years could potentially reduce breast cancer mortality rates [6–8].

Microwave-based techniques have recently been developed as a potential breast
screening tool [9–12]. Microwave-based techniques are non-ionizing, non-invasive, and
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painless since they do not involve breast compression during screening. Microwave-based
systems utilize the contrast in dielectric properties, i.e., permittivity and conductivity,
within the spectrum of microwave frequencies (i.e., approximately in the range of 1 and
10 GHz) between healthy tissues and tissues with lesions. A high difference in one or both
dielectric properties (up to 5) [13] stated between healthy tissues and tissues with lesions;
newer studies confirm such high contrast exists between fatty breast tissues and lesions
(WF), while it declines when considering fibro glandular breast tissues [14,15]. Wide-
ranging research on microwave-based procedures began in the late 1990’s, with a number
of different prototypes developed [16]. Hitherto, few clinically tested microwave breast
imaging operational systems have been reported in the literature, which was developed by
Dartmouth College, USA [17], the University of Bristol, UK, jointly with Micrima Limited,
UK [18–20], UBT Srl, Italy [21], University of Calgary, CA, [22,23], Southern University of
Science and Technology, China [24], Hiroshima University, Japan, [25], McGill University,
Canada [26], and Shizuoka University, Japan [27]. Only two of the aforementioned systems
methods have now cleared a regulatory path (CE marking), i.e., MARIA (Micrima Limited,
UK) and MammoWave® (UBT Srl, Perugia, Italy). One of these models, the MARIA system,
utilizes an array of 60 antennas (operating within the 3–8 GHz frequency band) and a
matching liquid to perform the radar approach with a sensitivity of 76% [18–20]. Mam-
moWave is uniquely skilled to work in the air with two antennas rotating in the azimuth
plane, operates within the frequency band of 1–9 GHz. MammoWave examinations are per-
formed in a multi-bistatic fashion, measuring the complex S21 in the frequency domain. In
more detail, the device transmits non-invasive and low-power microwave signals through
the breast and accumulates the backscattered signatures (commonly denoted as the S21
signals in engineering terminology) from a plurality of angular directions. A sensitivity
of up to 82% has been reported [28]. An initial Machine Learning (ML) experiment [21]
was performed on a limited number of subjects employing popular ML tools to classify the
frequency response signal backscatter from the breast with radiological findings (WF) and
no radiological findings (NF); it was found that the support vector machine (SVM) with a
quadratic kernel outperformed the various applied methods tested.

The aim of this paper is to apply principal component analyses (PCA) to extract the
unique quantitative responses from MammoWave raw-data frequency responses for an
automated classification in WF and NF breasts, engaging the support vector machine
(SVM) with radial basis function (RBF) kernel. The procedure is verified using clinical data
collected in 61 breasts, each one having conventional exams by radiologists (which was
used as the gold standard for our investigation). The contributions of the study are:

• The experimentation was completed on 61 breasts, allowing the exploration of lesions
with different dimensions.

• The newly collected data appear differently in the hyperplane, motivating the authors
to explore a radial basis function (RBF) kernel of SVM instead of a quadratic kernel,
where SVM with an RBF kernel is found to be more efficient.

• The optimal method for using the frequency response signals was explored. The ex-
periment shows that the 50 components obtained by applying a principal component
analysis (PCA) from the real-parts of the S21 parameters (engaging SVM with an RBF
kernel) is the best possible combination to classify NF and WF signals.

• The prediction results have been analyzed by the team of researchers and radiologists
through statistical measurements to understand the false positive and negative classi-
fications, revealing that lesion size and breast density have an effect on microwave
response, as well as ML predictions.

2. Methods

A diagrammatic flow chart of the proposed work is shown in Figure 1. In more detail,
each breast has its own correspondent output of the radiologist’s study review, which has
been used as gold standard for the classification of the breasts in two categories: breasts
with no radiological finding (NF), and breasts with radiological findings (WF), i.e., with
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lesions which may be benign or malignant. Gold standard labels of the breasts (NF or WF)
have been employed to train and test the ML algorithms to identify microwave signals
backscattered from the breasts automatically via the MammoWave.

Figure 1. Proposed flow chart for the machine learning-based breast lesion detection.

3. Device Description

MammoWave (shown in Figure 2a) employs low power (1 mW) microwave signals
in the 1–9 GHz frequency band. The device contains two antennas (Figure 2d) held in
free space, which illuminates the breast using electromagnetic signals and measures the
correspondent scattered electromagnetic fields from different angular positions around
the azimuth. The two antennas are connected to a 2-port VNA (Cobalt C1209, Copper
Mountain, Indianapolis, IN, USA). For each breast, measurements have been performed,
recording the complex S21, i.e., a parameter which is proportional to the electromagnetic
field emerging from the transmitting antenna to the receiving one, after having interacted
with the breast. The complex S21 is recorded in a multi-bistatic fashion, i.e., for each
transmitting position txm, the receiving antenna is moved to measure the received signal
at the receiving points rxn. In the current set-up, the receiving points are equally spaced
at every 4.5◦, leading to a total of NRX = 80 receiving points, Figure 2b. Concerning
the transmitting positions, all experiments have been executed, employing NTX = 15
transmitting positions, displaced in 5 triplets, i.e., sections, centered at 0◦, 72◦, 144◦,
216◦, and 288◦; in each triplet, the transmitting positions are displaced by 4.5◦. For
each transmitting and receiving position, the complex S21 is collected from 1 to 9 GHz,
with 5 MHz sampling (leading to NF = 1601 frequency samples f ). It follows, that for
each breast, the raw data is represented by a matrix of complex S21, having dimension
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15 × 80 × 1601 : S21[NTX, NRX, NF]. The exam is performed in less than 10 min per
breast with the patient lying in a comfortable facing down position (shown in Figure 2c),
with the breast (one at a time) positioned in a cup applying no compression. S21 (i.e., raw
data) may be then used to generate microwave images; however, in this paper, S21 data
only will be used.

(a) (b)

(c) (d)
Figure 2. MammoWave device with patient’s position and transmitting-receiving antenna positions. (a) Novel MammoWave
device. (b) Transmitting and receiving antenna rotation positions. (c) Patient’s posture over MammoWave. (d) Antenna
rotation around the breast.

4. Data Collection

The MammoWave feasibility clinical validation has been performed in Perugia Hospital
and Foligno Hospital, Italy (Ethical Committee of Umbria, Italy, approval N. 6845/15/AV/DM
of 14 October 2015, N. 10352/17/NCAV of 16 March 2017, N 13203/18/NCAV of 17 April
2018). All protocols and procedures were in accordance with both institutional and national
ethical standards in research, and with the World Medical Association’s Declaration of
Helsinki (1964) and its later amendments or analogous ethical standards. Prior to the
trial, all participants have been requested to read and sign both the informative sheet and
informed consent form.

This study comprises 61 breasts, 25 of which were found to be NF, and 36 were de-
termined as WF, from 35 patients participating in the feasibility clinical trial. Microwave
imaging was performed with patients who had already undergone a conventional radiol-
ogist’s examination review (used as a gold standard for our investigation). The average
patient age was 52 years. Specifically, the radiologists reviewed conventional exams for
each patient that agreed to participate in the study, classifying the breasts in to two groups:
breasts with no radiological findings (NF) and breasts with radiological findings (WF),
i.e., with lesions which may be benign or malignant. In this context, radiological study
examination included: mammography, performed using a Selenia LORAD Mammography
System (Hologic, Marlborough, MA), and/or echography, performed using the MyLab
70 xvg Ultrasound Scanner (Esaote, Genova, Italy), and/or magnetic resonance imaging,
performed through a 3.0T MAGNETOM scanner (Siemens Healthcare, Erlangen, Germany).
The lesion final assessment, performed using pathology within at least one year of clinical
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follow-up as reference standards was 22 benign lesions and 11 malignant lesions (while in
three cases, the final assessment was not available). All lesion details are given in Table 1
(where possible, lesion details, dimensions, and lesion final assessment have been included).

Table 1. Subject lists, details, and related radiologist’s review.

Age Breast
(L/R)

ACR Breast
Density

Mammography
BI-RADS

Echography
BI-RADS

Radiologist’s Output Details:
Sizes (mm) and Notes (If Available)

Pathology or 1-Year
Clinical Follow-Up

Output

48 L D 3 - Microcalcifications Benign

65 L C 4 - Cluster of microcalcifications Benign

40
L B 2 2 Three masses: 15 mm,

21 mm, and 23 mm Benign

R B 2 2 Microcalcifications Not available

52 L C 5 - Microcalcifications Malignant

47 L D 2 2 Microcalcifications Benign

55
R C 2 2 1.6 mm microcalcifications Benign

L C 2 2 3.8 mm microcalcifications Benign

51 L C 2 2 Presence of metallic marker Benign

54 R A 2 2 Microcalcifications Benign

77 R D - 5 17 mm mass Malignant

61
R C 4 - Multifocal lobular type suspected

carcinoma (MRI BI-RADS 4) Malignant

L C 2 - Macrocalcification and
Focal contrast enh. (MRI BI-RADS 3) Not available

50 L B 2 2 10 mm mass Benign

67 L C 4 - Microcalcifications Malignant

49 L A 3 - Microcalcifications Benign

70 L D 3 4 Mass Malignant

42 L C 2 3 7 mm mass, hypoechoic Benign

67 L B 3 - Architectural distortion Benign

56 R B 4 4 31 mm mass, hypoechoic,
irregular borders Malignant

43 R D 1 3 12 mm mass Benign

51 L C 3 - Microcalcifications Benign

59 L B - 4 11 mm areolar, suspicious of malignancy Malignant

40 L D 2 2 30 mm mass Benign

35 R C 2 3 7 mm, hypoechoic Benign

37 L A 2 3 25 mm mass Benign

43 R B 3 2 Microcalcifications Malignant

54 R B 2 2 18 mm mass Benign

49 L A 2 3 16 mm mass Benign

56 L D 4 4 27 mm mass Malignant

63 L A 3 4 6 mm mass Malignant

55
R C 4 4 23 mm mass Malignant

L C 2 2 Multiple cysts Benign

64 R B 3 - 1.6 mm microcalcifications Benign

37
R - - 3 15.4 mm mass Benign

L - - 2 Multiple cysts Not available
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5. MammoWave Signal Classification: Real-Parts of S21 & RBF Kernel Approach

The raw frequency response includes the real and imaginary component, backscat-
tered from the breast, i.e., λn = ΣNF

n=1RealS21(n) + jImgS21(n) where n is the number of
frequencies, NF = 1601, RealS21, and ImgS21 represents the real and imaginary component,
respectively. Initial studies performed by the authors on the MammoWave’s complex S21
signal classification [21] indicates SVM with quadratic kernel (SVMQ) is better able to
categorise NF and WF signals over other tested conventional ML methods. Hence, this
proposed work aims to further investigate the classification performance re-considering
the real-parts of S21 signals (in a form of ΣNF=1601

n=1 RealS21(n)) as feature values for NF-WF
signal classification through SVM model. There are two RealS21 groups, NF and WF. A two-
sample t-test has been performed to begin the experiment considering these groups. The
t-test has been conducted to check whether the two types of RealS21 values are dependent
and have equal variances. In other words, the outcome of the t-test signifies the suitability
of RealS21 values for classifying NF and WF signals. The null hypothesis (H0) here as-
sumes that the two groups of RealS21 data samples are from populations with equal means.
Therefore, the two types of RealS21 data samples can be employed for the classification
task if the t-test rejects the H0 and accept the alternative hypothesis (Ha). The alternative
hypothesis (Ha) states that the RealS21 data comes from two different populations with
unequal means. The desired significance level α = 0.05 has been assumed for accepting
and rejecting the null hypothesis, where the p-value has been compared for deciding the
statistical significance. Furthermore, the confidence interval for the difference in popu-
lation means of NF and WF’s RealS21 have been studied, where CL and CU demonstrate
the lower and upper boundaries of the confidence interval. Table 2 shows the outcomes
of the t-test, where p < α rejects the null hypothesis H0 (H0 = 1), accepts the alternative
hypothesis Ha, and the true mean of the population belong between −6.600 × 10−5 to
−4.600 × 10−5. Hence, the acceptance of the alternative hypothesis indicates that the
RealS21 data comes from populations with unequal means and can be employed for the
NF-WF signal classification task.

Table 2. Two-sample t-test on real-parts of MammoWave’s S21 data.

Null Hypothesis
(H0)

Probabilty
(p)

Confidence Interval-Lower Boundary
(CL)

Confidence Interval-Upper Boundary
(CU )

1 8.864 × 10−27 −6.600 × 10−5 −4.600 × 10−5

RealS21 data of the NF and WF groups has been visualized in the 3D plane, which
shows the spherical data, and might be classified better with the radial basis function (RBF)
than the quadratic kernel of SVM. Thus, SVMRBF has been employed to classify NF and
WF breast signals. The training and testing data have been divided using a Monte Carlo
Cross Validation (MCCV) [29], where training and testing data have been initiated with 5%
and 95%, respectively. The training data have been incremented by 5% in each simulation.
The whole simulation has been repeated twenty-five times and average the performance
metrics. SVMRBF computes the dissimilarity by measuring the squared Euclidean distance,
which has been found to be more effective in the MammoWave breast classification task.
Thus, the experiment has built on SVMRBF to improve the true positive prediction and
reduce the false negative prediction.

Figure 3 shows the outcomes of the MammoWave signal classification for NF and
WF detection using the real components of the complex signals. The accuracy, sensitivity,
and specificity of 79.80%, 70.40%, and 86.30%, respectively were obtained, which indicate
the real parts from the original feature dimension (real parts of Complex S21) are not
significant enough to be employed as features in this classification task, and may need
feature extractions to improve the classification performance.
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Figure 3. NF and WF signal prediction results (accuracy, sensitivity, and specificity) obtained using
real-parts of the MammoWave’s frequency response and SVMRBF, applying different amounts of
training data.

6. MammoWave Signal Classification Results: PCA on Real-Parts of S21 & RBF Kernel
Approach

Hence, one of the most popular feature extraction principal component analysis
(PCA) technique was applied on RealS21 to transform more meaningful features for the
classification task in a similar manner adopted to calculate the principal components (PCs)
from the original complex signals of the MammoWave. Here, two vectors of variances (after
PCA computation) have been selected from NF and WF breasts to study the magnitude
of variance for selecting the number of PCs for the classification, as shown in Figure 4.
Figure 4 shows the percentage of the total variance obtained from each PC for two different
breast’s S21, where first 80 PCs are found to be quantitatively significant. Hence, Figure 4a,b
show the percentage of variance for the first 80 PCs, where the x−axis and y−axis represent
the number of components and percentage of variance, respectively. Figure 4a displays the
percentage of variance of an NF breast and Figure 4b describes the percentage of variance
of a WF breast. As PCs show significant variance, up to 80 PCs (σ1, σ2,. . . , σ80) have been
selected for classification and varied, anticipating an improved performance.

(a) Variance obtained from NF breast. (b) Variance obtained from WF breast.
Figure 4. Percentage of variance obtained for 80 PCs measured from RealS21.

The variance of PCs are close to each other in Figure 4. Two sample t-tests were
constructed on the PCs to understand the capability to represent two signal groups and
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the data compactness, shown in Table 3. The probability has been found to be less than
the significance level, p < α. Hence, the t-test accepts the alternative hypothesis Ha, and
clearly demonstrates the presence of two different means for two different populations.
Subsequently, the difference between the lower and upper boundary (−1.770 × 10−4 and
−1.570× 10−4) reduced, which implies an improved data compactness over the prior result.

Table 3. Two-sample t-test on PCA features extracted from real-parts of MammoWave’s S21 data.

Null Hypothesis
(H0)

Probabilty
(p)

Confidence Interval-Lower Boundary
(CL)

Confidence Interval-Upper Boundary
(CU )

1 8.219 × 10−230 −1.770 × 10−4 −1.570 × 10−4

An NF and WF signal classification has been performed by employing SVMRBF and
varying the number of PCs from 80 to 40. The obtained results are shown in Figure 5.
Figure 5a–c represents accuracy, sensitivity, and specificity, respectively, for applying a
different number of PCs, where the x-axis represents the amount of training data used,
and the y-axis describes the magnitude of the performance metric. The accuracy, sensi-
tivity, and specificity have improved more than before, from 79.80% to 91%, 70.40% to
84.40%, and 86.30% to 97.20%. This is the optimal performance achieved, employing
50 PCs, and a further reduction of feature length (by 10 units of PCs) slopes down the
classification metrics.

(a) (b) (c)
Figure 5. NF and WF breast signal classification results considering PCs measured from RealS21 and employing SVMRBF,
(a) accuracy, (b) sensitivity, (c) specificity.

7. Discussion & Conclusions

The results demonstrate that a microwave breast imaging device (in this case Mam-
moWave), when augmented by ML, could be employed to identify the presence of breast
lesions with an accuracy of 91%, sensitivity > 84%, and specificity > 97%. Therefore, the
augmentation of a non-ionizing and patient-comfort focused platform (MammoWave with
ML) could be used to identify breast lesions in asymptomatic woman of any age and
without any safety restrictions. This study comprises 61 breasts, of which 25 were NF
and 36 were WF, from 35 patients participating for the feasibility clinical trial. Patients’
pre-menstrual information was not considered. False negative cases have been found in
some cases, particularly in the presence of small sized lesions (<10 mm). This issue will
be addressed in our future work, modifying the conventional SVMRBF kernel structure
and performing advanced research on feature representation. Also, current WF breasts
includes both benign and malignant lesions; three-classes breasts classification will be
adopted (i.e., no finding, begin finding, and malignant finding) in future. ML experiment
will be continued with ongoing clinical trial data [30] for enhancement in decision making
process and helping in breast lesion identification for asymptomatic women of any age and
without any safety restrictions.
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