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Abstract: 

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds 

and attenuation in cancellous bone to vary with angle. Comparisons between 

predictions of a Biot–Allard model allowing for angle-dependent elasticity and angle-

and-porosity dependent tortuosity and transmission data obtained on water-saturated 

replica bones at normal and oblique incidence are extended to water saturated porous 

rigid ceramic at different angles of propagation. It is found that predictions of the 

variation of transmitted waveforms with angle through porous ceramic are in 

reasonable agreement with data.  

 
1. Introduction 

Bone essentially has two types of structure, both having the same mineralized collagen 

composition. Cortical bone may generally be considered to be solid; cancellous bone consists of a 

complex open-celled porous network of rod- and plate-shaped elements termed trabeculae. 

Osteoporosis is a bone disease caused by hormonal and biochemical changes. Osteoporosis leads to 

nearly 9 million fractures annually worldwide [1], and over 300,000 patients present with fragility 

fractures to hospitals in the UK each year [2]. Direct medical costs from fragility fractures to the 

UK healthcare economy were estimated at £1.8 billion in 2000, with the potential to increase to 

£2.2 billion by 2025, and with most of these costs relating to hip fracture care [3].  

To improve the prediction of fracture risk by ultrasound it is important to understand the 

propagation of acoustic waves through rigid porous materials such as cancellous bone. Biot theory 

has been used extensively to describe the wave propagation in cancellous bone [4–12]. It was 

specifically developed to describe acoustic wave propagation in fluid-saturated porous elastic media 

[13, 14]. Biot theory predicts two compressional waves (fast and slow waves), when the waves 
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propagating through the solid frame of bone and marrow are in-phase and out-of-phase respectively, 

and a shear wave. It allows for an arbitrary microstructure, with separate motions considered for the 

solid elastic framework (bone) and the interspersed fluid (marrow), induced by the ultrasonic wave, 

and also includes energy loss due to viscous friction between solid (bone) and fluid (marrow).  

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation 

in cancellous bone to vary with angle. Aygün et al. [15] have extended previous work on the 

influence of anisotropic pore structure and elasticity in cancellous bone by developing an 

anisotropic Biot-Allard model allowing for angle-dependent elasticity, and angle-and-porosity 

dependent tortuosity. The extreme angle dependence of tortuosity corresponding to the parallel 

plate microstructure used by Hughes et al. [4] has been replaced by angle-and-porosity dependent 

tortuosity values based on data for slow wave transmission through air-filled stereolithography 

(STL) bone replicas [16]. It has been suggested that the anisotropic Biot-Allard model could be 

used to give further insight into the factors that have the most important influence on the angle 

dependency of wave speeds and attenuation in cancellous bone. Nevertheless the applicability of 

Biot-based theories to ultrasonic propagation in bone remains in question given the expected role of 

scattering which is neglected in the these theories. 

Aygün et al. [17, 18] have transmitted ultrasonic signals through water saturated stereolithograpical 

bone replicas in the form of 57 mm cubes with microstructural dimensions that are 13 times real 

scale at normal angle and oblique angles. Remarkably, it is found that the expected occurrence of 

scattering does not cause significant discrepancies between predictions and data at 100 kHz (which 

would be equivalent to 1.3 MHz in real bone), perhaps as a consequence of the fact that the samples 

behave as low pass filters.  

The aim of this paper is to investigate further ultrasonic wave transmission measurements on porous 

rigid ceramic immersed in water at 1 MHz as a function of angle of propagation. Predictions of the 

anisotropic Biot-Allard model allowing for angle-dependent elasticity and angle-and-porosity 

dependent tortuosity have been compared with measurements made in a fluid (water) filled tank at 1 

MHz. 



    
                        
 

Figure 1: Picture of rigid porous ceramic. 

2. Measurements 

A procedure given by Fellah et al. [8] has been used to carry out measurements on porous rigid 

ceramic immersed in water filled tank with transducers (see Figure 2). Two broadband Panametrics 

A 303S plane piezoelectric transducers having 1 cm diameter with 1 MHz central frequency have 

been used. 400 V pulses are provided by a 5058PR Panametrics pulser/receiver. Electronic 

interference is removed by 1000 acquisition averages. 

 

 

 

 

  

 

 

 

 

 

 

Figure 2: Experimental setup for ultrasonic measurements. 
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Porous ceramic is obtained by mixing clay and plastic then burning the plastic in a kiln at 

Laboratory of Acoustics and Thermal Physics at K. U. Leuven. Porous ceramic used for 

measurements is in the form of 65 mm squares with 30 mm thickness. The measurements have been 

made parallel to trabeculae direction starting from 00 up to 450. One incident (reference) signal 

generated by 1 MHz transducers and transmitted over corresponding path lengths in fluid (water) 

shown in Figure 3a, and its spectra is shown in Figure 3b, respectively.  Reference signal was used 

as an initial signal when analyzing transmission data for porous ceramic.  

 

Figure 3: a-) Inicident signal for porous rectangular ceramics versus time, b-) its spectrum versus 
frequency at 1 MHz. 

To vary the angle of incidence, ceramic was revolved around its central axis. For rotation angle, θ, 

measured from the normal, the transmission path becomes L.cos (θ) where L is the cube dimension. 

The distance between two transducers was 115 mm and this distance was kept same throughout of 

measurements. Measured variations of transmitted signals through rigid porous ceramic as a 

function of angle of propagation are shown in Figures 4 and 5. The variation in the signals 

transmitted through the ceramic is mainly in amplitude rather than in the structure of the 

waveforms. There is a variation in the amplitude and the structure of the waveform at 300 (see 
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Figure 5). Varying angle of propagation from 00 to 450 shifts the peak amplitude of waveforms 

towards right-hand-side because the transmission path length has been increased from 30 mm to 

42.43 mm.     

 

Figure 4: Comparison of measured transmitted waveforms through porous ceramic versus time for 
different angles of propagation. 

 

Figure 5: Measured transmitted waveforms through porous ceramic versus time at 0o, 15o, 30o, and 
45o. 
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3. Theory  

A rigid porous sample of length L is subjected to an incident ultrasonic wave in fluid (water), Pi. 

Part of incident wave is reflected back into the fluid, Pr, while other part is transmitted through the 

sample, Pt. Fellah et al. [8] have presented an analytical model in order to describe the viscous 

interaction between fluid and a porous elastic structure. The Fourier transform of the transmitted 

field is given by Fellah et al. [8] as: 

Lx
c

LxjTxP ≥






 −
−= ),()(exp)(~),(

0
3 ωϕωωω                  (1) 

where φ(ω) is the Fourier transform of the incident field (Pi(t)), T~ (ω) is the Fourier transform of 

the transmission kernel, ω is the angular frequency of motion, c0 is the speed of sound in fluid, and 

L is the thickness of the material. A more detailed consideration of the transformed field can be 

found in the paper by Fellah et al. [8]. The transmission coefficient T(ω), which is the Fourier 

transform of T~ , is given in the Appendix.  

 Aygün et al. [15] have introduced a transverse anisotropy into Biot-Allard model by 

allowing angle-and-porosity dependent tortuosity, and angle-dependent elasticity. A heuristic form 

for porosity- and angle- dependent tortuosity is proposed by Aygün et al. [15] as:  
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where φ is the porosity, θ is the variable between 0o and 90o, r and k can be considered adjustable. A 

range of possible values of r and k have been found by comparing predictions of equation (2) for θ 

= 0o and 90o respectively with values deduced from air-filled replicas of known porosity [16]. 

Values of r and k are found by solving the resulting simultaneous equations.  

To predict transmission through an anisotropic poroelastic sample it is necessary to allow for elastic 

anisotropy also. Williams [19] suggests that the dependence of skeletal frame modulus (Young’s 

modulus, Eb, Bulk Modulus, Kb, and rigidity modulus, µb) in terms of bone volume fraction (1 – φ) 

and the Young’s modulus of the solid material of the frame (Es) are given by n
sb EE )1( φ−= , 

( )bbb EK υ21−= , and ( )bbb E υµ 21+= , respectively, where vb is the Poisson’s ratio of frame, and the 

exponent n varies from 1 to 3 according to Gibson [20], depending on the angle (θ) with respect to 

the dominant structural orientation according to n = n1 sin2(θ) + n2 cos2(θ). Values of n1 = 1.23 and 

n2 = 2.35 are chosen by Lee et al. [5] to be consistent with the work of Williams [19]. 



The parameters used in the predictions are listed in Table 1. The elastic moduli of the porous 

ceramic made of clay has been taken to be equal to the elastic modulus of ceramic which is 59 GPa 

and is higher than the elastic modulus of real bone which is 20 GPa [19]. Assuming that the 

permeability of the bone is 5 × 10−9 m3[12], the permeability of ceramic has been taken to be 22 

times higher because the ceramic microstructures are larger than those of the actual bone 

microstructure by a factor of 2 in each direction. The assumed characteristics of the saturating fluid 

(water) are: density ρf = 1000 kg/m-3, viscosity η = 10-3 kg ms-1, speed of sound in water c0 = 1490 

m/s.   

Table 1: Default input parameters for rigid porous ceramic 

Parameters Porous ceramic 
Density of ceramic, ρs 1060 kg/m3 
Young’s modulus, Es 59 GPa 
Poisson’s ratio of solid, vs 0.30 
Poisson’s ratio of frame, vb 0.34 
Porosity, φ 0.62 
Permeability, k0 2 × 10−8 m3 
Viscous characteristic length, Λ 799.5 x 10−6 m 
r 0.56 
k, (Eq. 2) 0.44 
Speed of sound in ceramic 4000 m/s 
Thickness 30 mm 

 

Only two parameters, Poisson’s ratio of frame and viscous characteristic length, have adjusted in 

order to obtain the ‘best-fit’ at normal incidence. In particular, the predictions are very sensitive to 

the assumed values of viscous characteristic length. The ‘best-fit’ characteristic length values for 

the replicas listed in Table 1 are about 13 times those found for real bone i.e. between 5 and 10 µm 

[6, 8]. 

4. Comparisons between predictions and data 

Predicted transmission coefficient as a function of frequency for ceramic is shown in Figure 6. 

Predicted and measured transmitted waveforms in the Calcaneus and Femoral Head replicas at 

normal incidence are shown in Figures 7 and 8. There is reasonable agreement. It seems that only 

between 0.5 and 4 % of the incident wave amplitude is transmitted through bone replicas at 1 MHz. 

Most of the ultrasonic wave is reflected back into the water.  



 

Figure 6: Numerical simulation of the transmission coefficient as a function of frequency at 1 MHz.  

 

 

Figure 7: Predicted and measured transmitted waveforms in porous ceramic compared with data 
obtained at 1 MHz and at 0o. 
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Figure 8: Measured and predicted transmitted waveforms through FRA bone replica versus time at 
25o. 

Generally measured and predicted transmitted waveforms are similar except for the initial parts of 

the transmitted waveforms which can be identified as the fast wave arrivals. The second and major 

parts of the transmitted waveforms can be identified as the slow wave contributions. 

The predicted arrival time of the transmitted ‘slow’ ultrasonic waves changes when the angle of 

propagation is varied as a consequence of the angle dependence of tortuosity through equation (2).  

5. Conclusion and further work 

Predictions of a modified anisotropic Biot–Allard theory which neglecting scattering, have been 

compared with measurements of pulses centred on 1 MHz transmitted through water saturated 

porous ceramics at normal and oblique angles. The predictions and data are in reasonable 

agreement. It seems that porous ceramics can be used to investigate the effects of Osteoporosis in 

cancellous bone on the mechanical and acoustical properties of the bone structure. 

Further works need to be done on porous solid materials (ceramics) with different porosity values to 

investigate the Osteoporosis by using structural borne vibration. A low frequency (<1000 Hz) 

sinusoidal vibration should be applied to porous ceramics. This will cause a structural borne sound 

wave to propagate through the samples. The resulting vibration should be measured using either an 

ultrasound probe or an accelerometer. Based on these results, a hand held, low cost and portable 
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device should be designed and developed to detect the Osteoporosis in the bone with the aim of 

improving early detection rates.  

The chief debilitating consequence of osteoporosis is fracture, and early detection of the condition 

can allow interventions reducing the likelihood of occurrence [22]. As hip fracture invariably leads 

to hospital admission, early detection of the condition could significantly reduce the overall long 

term treatment costs by reducing admission to hospital [23]. Due to anticipated low costs of the 

product, it is anticipated that access to early screening would improve with increased overall take up 

by clinics compared to other technologies. The concept is for the device to have a simple interface, 

in order to be useable by health professionals without extensive training, to allow use in a variety of 

hospital departments and GP surgeries. 
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Appendix: Basis for the prediction of the Transmission Coefficient 

The transmission coefficient T(ω) is given by Fellah et al. [5]; 
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The eigenvalues λ1(ω) and λ2(ω) are the squared complex wave numbers of the two compressional 

waves and are given by;  
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where P, R, and Q are generalized elastic constants.  

The eigenvectors )(1 ωℑ  and )(2 ωℑ are given by; 
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The coefficients Ψ1(ω), Ψ2(ω) and Ψ(ω) are given by; 

Ψ1(ω) = φZ2(ω) – (1–φ)Z4(ω) 

Ψ2(ω) = (1–φ)Z3(ω) – φZ1(ω) 

Ψ(ω) = 2[Z1(ω) Z4(ω) – Z2(ω) Z3ω)] 

and the coefficients Z1(ω), Z2(ω), Z3(ω), and Z4(ω) by 
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