
Smart Agricultural Technology 5 (2023) 100277

Contents lists available at ScienceDirect

Smart Agricultural Technology

journal homepage: www.journals.elsevier.com/smart-agricultural-technology

Federated Learning: Crop classification in a smart farm decentralised 

network

Godwin Idoje ∗, Tasos Dagiuklas, Muddesar Iqbal

Computer Science and Informatics Division, London South Bank University, United Kingdom

A R T I C L E I N F O A B S T R A C T

Editor: Spyros Fountas

Keywords:

Federated Learning

Classifier chain Gaussian (CCGNB)

Binary Relevance Gaussian (BRGNB)

Label powerset Gaussian Naïve Bayes (LPGNB)

In this paper, the application of federated learning to smart farming has been investigated. The Federated 
averaging model has been used to carry out crop classification using climatic parameters as independent variables 
and crop types as labels. The decentralised machine learning models have been used to predict chickpea crops. 
Through experimentation, it has been observed the model converges when learning rates of 0.001 and 0.01 
are considered using the Stochastic gradient descent (SGD) and the Adam optimizers. The model using the 
Adam optimizer converged faster than the SGD optimizer, this was achieved after 100 epochs. Analysis from the 
farm dataset has shown that the decentralised models achieve faster convergence and higher accuracy than the 
centralised network models.
1. Introduction

The Federated Learning (FL) approach has been adopted in this re-

search to ascertain how the predicted crop types are close to the original 
crop types within the provided dataset. An FL network is a decentralised 
network where the local edge nodes send their updated weights to the 
server and the server aggregates all these updated weights and sends 
the combined model back to the edge nodes for further training, this 
process continues until convergence is achieved. The models are hyper-

tuned to investigate the convergence of the decentralised models during 
the optimization of the Federated Averaging model of the smart farm-

ing dataset. The FL algorithm is used to aggregate the edge node models 
within the decentralised network. The FL server sends its base model to 
the edge nodes and these edge nodes use the base model for training its 
local datasets and send their updated weights to the server, the server 
aggregates all the various updated weights from each edge node and 
forms a new global model, the updated global model is sent back to 
the edge nodes for the local model training, this process continues until 
convergence is obtained. As discussed in [1], the use of satellite images 
has helped to analyze soil and crops in farmlands, to determine the con-

dition of the crops or soil. This has helped to resolve many challenges 
with soil and crops using data obtained via satellite, these solutions 
have enhanced farming through the forecast of the crops harvesting 
time to make decisions to combat poor harvest from the farms. Accord-
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ing to [2], six domain models have been used for designing smart farms 
to interconnect between systems, the domain models have enhanced 
the joint ecosystem of sharing data between the industry players. It 
can be inferred that smart farms use Information and Communication 
Technology (ICT) and Internet of Things (IoT) devices which are inter-

connected via the Internet. Many data can be exchanged within these 
farms and one of the challenges experienced in smart farming is data 
privacy. It will be interesting to investigate federated learning applica-

tions for these smart farms, where the data owner will not share the 
data with the data scientist. Therefore, the data scientist will be able to 
evaluate these smart farm datasets without access to the farm data, this 
research explores smart farming use case within the federated learning 
platform.

The research of [3] discussed the automation of a smart farm where 
the irrigation system is controlled via a mobile app, enabling farmers to 
monitor the data captured by the IoT device around the plant. The lim-

itation of their work is that their system has not performed any analysis 
of the data collected. The research conducted by [4–6] discussed pre-

dictions of pest infestation from the dataset captured from smart farms. 
The plants experience high moisture during the day and low moisture 
at night, prompting the researchers to calibrate the automated device to 
supply more water to the plants during the day. The limitation of their 
work is that they did not provide any analysis of the data captured. It 
was observed from [1–5] that many of the edge devices performed little 
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or no analysis of the captured data. The synergies of the results, predic-

tions, or analysis have not been achieved due to different platforms, 
and operating systems used in their research. This paper uses a multi-

labelled dataset, the climatic parameters are the independent variables 
while the crop types are the labels and the federated learning platform 
has been used to predict the crop types from the climatic parameters 
for a smart farm network.

Our contributions: This paper proposes the use of hyper-tuned fed-

erated averaging models that can provide privacy for the smart farming 
multi-labelled dataset during evaluation. This is due to the fact the 
dataset is not shared with the server but is trained locally at the edge 
nodes. The FL models outperform the centralised network machine 
learning Gaussian Naïve Bayes models by producing optimal conver-

gence, accuracy, and harmonic means. Therefore, the model can predict 
the crop type from the dataset which contain climatic parameters as in-

dependent variables and crops as the labels. The hyper-tuned Federated 
averaging algorithm has been able to make crop predictions with a high 
accuracy value from the given multi-labelled dataset without access to 
the raw data within a decentralised network. The climatic features of 
the data have been temperature, humidity, the potential of hydrogen 
(pH), and rainfall while the following crops have been the dependent 
variables rice, maize, and chickpea. A Testbed using PySyft, Pytorch 
and Syft libraries has been used for the emulation. Section 2 discusses 
the existing publications on federated learning. Section 3 narrates the 
methodology adopted using federated Learning to predict crop types 
from the climatic datasets. Section 4 discusses the results obtained from 
the federated learning model and the Gaussian Naïve Bayes classifier 
models for the multi-labelled dataset. Section 5 discusses the conclu-

sion drawn from the results in Section 4.

2. Related work

2.1. Federated Learning

The soil-less smart farming methodology [7] has been adopted to 
cultivate crops, this approach has enabled farmers to produce high-

yield crops, reduce water usage within the smart farm, and low parasite 
infestation. However, the smart farming technic affords farmers the op-

portunity to monitor their crops using IoT sensors. Federated learning 
(FL) is a machine learning technic for analysing datasets without ac-

cessibility to the raw data. According to [8], FL has been used in the 
medical industry for covid-19 disease detection using chest computed 
tomography images. Their result indicates that using the Federated 
averaging model, the communication cost of their network has been re-

duced. The authors in [9] propose a modified Federated learning model 
where the edge nodes are randomly distributed into groups, and a group 
is given a different transmission time slot, this technic has been able to 
reduce the Byzantine attacks within their Federated learning test bed. 
Edge devices are agnostic in their capacities and resources, [10] paper 
proposes a federated learning framework that accepts the ad-hoc na-

ture of the edge devices and analyses the models without compromising 
the privacy, and security of the data while achieving convergence. Re-

search papers [11,12] propose the decoupling of the federated Learning 
architecture while distributing the edge nodes task in an intelligent pat-

tern. This architecture leads to low computational resource usage. Edge 
devices have been used to capture data which are processed or transmit-

ted to the cloud or server for analytics to ascertain decisions in various 
sectors. Data privacy is ensured during the evaluation. The authors in 
[13] have discussed that recent research work in federated learning 
has discussed extensively supervised learning and they have suggested 
that researchers should consider investigating unsupervised machine 
learning within a federated learning platform. As discussed in [14], to 
preserve the privacy of the data trained in a machine learning system, 
a shift from the classical machine learning algorithm to a decentralised 
machine learning platform is important, where the data are not sent to 
2

the server or cloud for training, this equally reduce the latency since 
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the bandwidth consumption within the network is reduced equally. It 
can be inferred from [12–14] that their work has not been applied to an 
unsupervised learning algorithm which is a limitation. As cited in [15], 
federated learning has been used to establish cross-domain, cross-data, 
and cross-enterprise platforms. The limitation of their research is that 
their work did not mention if they used either homogeneous or hetero-

geneous datasets. Homogeneous edge nodes all have the same attributes 
such as the memory, processor, and bandwidth capacities as opposed to 
heterogeneous edge nodes. In this paper’s research, the edge nodes are 
homogeneous because all the edge nodes have the same memory, pro-

cessor and transmitting power. The authors in [16,17] have discussed 
that there exists a server and edge nodes correlation and cross-domain, 
cross-data transaction between edge nodes and server nodes in a Fed-

erated learning network. It has been discussed that sending only the 
updated weights within the FL network minimised the latency within 
the network. It can be inferred that communication cost has been re-

duced by two ranks in an FL network from their research. Their research 
considered low bandwidth consumption edge nodes during the rounds 
but their model has not been tested in a high bandwidth scenario.

In [17], it is considered that a modest assets scenario in an FL net-

work, Federated Distillation (FD), is an algorithm that reduces commu-

nication overhead better than the Federated averaging algorithm and 
Hybrid federated distillation (HFD) algorithm. This helps to enhance 
the performance gap between FL and FD by controlling the average 
probability vector and average input from the dependent variable dur-

ing the offline phase. It was reported in their paper that FD and HFD 
yield better results compared with federated averaging when the num-

ber of uplinks and downlinks channels is very small. However, their 
research did not address the use of their model for a wired non-fading 
channel link and no information was provided on the frequency of the 
wireless edge nodes which was used for the experiment. The work of 
[16] inspires our architecture where a server has been set up for ex-

perimentation using homogeneous Edge nodes with the same attributes 
such as memory capacity, and processor. In [18], it is observed that us-

ing the distance of convex functions enables researchers to pick more 
nodes compared to other technological technics when the accumulation 
of Multi-access Edge Computing (MEC) devices allow applications to be 
run close to the service user for a rather demanding mean square error 
request which was achieved through increment of antennas at a base 
station in their experiment. The MEC allow cloud computing features 
and information technology profiles at the edge of any network. It can 
be deduced from their paper that aggregation of more MEC edge nodes 
in their experiment enhanced the performance of their model, some lim-

itations were observed in their research such as, it did not investigate 
the effect of channel uncertainty in the model accumulation, more so 
their research did not address the computational complexity of the al-

gorithm used. This paper applies the FL approach to smart farming, the 
Federated learning technique is a subset of machine learning that can 
be regarded as a contribution. The authors in [19] have used a greedy 
algorithm, a two-magnitude image analytical solution, where the edge 
nodes are vehicular. It can be deduced that the greedy algorithm helps 
to achieve model accuracy and aggregation efficiency for a federated 
learning vehicular network. Their work inspires the performance of FL 
models for smart farming. In this research, as shown in Fig. 1, which 
depicts our architecture, the mobile edge computers receive the data 
from the IoT devices, the MEC perform the local training of the data 
and only sends their updated weights to the server, upon completion 
of the aggregation of all the received local weights, the server sends its 
new updated global model to each MEC and they also use this new re-

ceived updated global model to perform the next training, this process 
continues until convergence is achieved.

The authors in [20] discussed, their modified C-fraction Federated 
Stochastic gradient descent algorithm which considers the ratio of the 
online participants to the total number of participants within the feder-

ated network, their modified algorithm has been able to give between 

99.65% to 99.85% accuracy from the training using different values 
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Fig. 1. Federated Learning architecture.
of the c-fraction during experimentation, despite the impressive results 
from their experimentation, it can be observed that the same learn-

ing rate has been considered for the 4 different C-fraction, it would 
have been interesting to get the results for each C-fraction using differ-

ent learning rates. Many different learning rates have been considered 
for this research unlike the research of [20] to determine the effect 
of the different learning rates on our accuracy values using different 
optimizers such as Stochastic Gradient Descent (SGD) and Adam opti-

mizer. According to the authors in [18], the Adam activation function 
has been used in a Federated averaging algorithm for a crowd-sourcing 
speech data to study an asset-limited wake word detector instead of us-

ing the normal global averaging for its training, their work achieved a 
95% recall per 5 false alarm per hour (FAH) for 100 communication cy-

cle when the crowd-sourced dataset communication cost per participant 
was 8 Megabyte (MB). Using the Adam optimisation, the network can 
converge faster, the limitation of their work is that a memory-efficient 
end-to-end model was not used in their research. [20] discussed that 
SGD converges faster but the step sizes decay fast which affects its ef-

ficiency during training, however, [21] stated that the Adam optimizer 
is a robust optimizer that combines two other optimizers namely Ada-

grad and RMSProp, and uses less memory for training and converges 
faster than SGD. This paper has considered both the SGD and Adam 
optimizer in our research for analysis and our results depict the perfor-

mance of the model using smart farming variables within a Federated 
Learning network, the results indicate that the Adam optimizer had a 
higher accuracy compared with the SGD optimizer while using climatic 
variables for crop type prediction. It is obvious from [14–21] that fed-

erated learning has been implemented in various networks with edge 
nodes which have reduced edge node queueing, bottleneck traffic, and 
latency of traffic due to the application of different technic of algo-

rithm schemes to make the communication cost low and the network 
more efficient. Related works have shown that several technics have 
been adopted by researchers to reduce the latency and network traffic 
challenges within a particular network, this research explores options 
for hyper-tuning the parameters to achieve optimal convergence within 
the federated learning network while predicting the crop type.

Fig. 2 shows the Federated Learning network flow sequence from 
the sensors which capture data and send these data to the edge devices. 
Unlike classical machine learning where the data are sent to the cloud 
3

for training, Federated learning adopts a different approach, the server 
sends its initial global models to the edge devices. Since training takes 
place at the edge nodes where the data is domiciled, the edge devices 
use the initial global model sent from the server to train its local model, 
the edge devices then send its updated weights to the server. It is im-

portant to note that the aggregate server never sees the raw data of the 
edge devices throughout the entire process which provides data privacy 
and security for the data for the entire analysis.

2.2. Gaussian Naïve Base (NB) classifiers

The authors in [22] discussed that Binary relevance breaks down 
the multi-class dataset into several independent binary variables such 
that one variable is in one label. According to [23], the classifier chain 
Gaussian NB equally disintegrates the multi-class dataset into many 
independent variables but recognises the dependent variable correla-

tions which is an enhancement over the Binary relevance Gaussian NB 
model. The authors in [23] discuss that the Label powerset Gaussian NB 
transform the multi-label dataset into many multi-classes single-label 
classification problem. The Gaussian Naïve Bayes is implemented from 
the Naive Bayes theorem.

2.3. Federated Learning

The following steps describe the sequence:

1. Initialisation of the tasks The training task is decided by the server.

The training process and global model hyper-parameters are han-

dled by the server.

The selected participants receive the task and initialise the global 
model 𝑉 𝑜

𝑝
.

2. Update and train the local model.

The edge nodes use their local data and devices to optimize the 
local model 𝑉 𝑡

𝑝
where t represents the recent iteration index.

The purpose of the edge nodes i in the process t is to determine the 
best variables 𝑉 𝑡

𝑖
that will decrease the loss function 𝐿 

(
𝑉 𝑡
𝑖

)

𝑉 𝑡
𝑖
= argmin

𝑉 𝑡
𝑖

𝐿
(
𝑉 𝑡
𝑖

)
(1)
The server receives the updated local model parameters.
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Fig. 2. Federated Learning sequence.
Algorithm 1 Federated Averaging Algorithm [16].

The Learning rate is 𝜂

The number of local epochs is e

Locally reduced batch (mini-batch) = S

Number of edge nodes in each iteration = c

Global model 𝑉 𝑜
𝑝

1. The participants are represented by i

2. Local Training 𝑉𝑖

3. Divide local dataset 𝐺𝑖 to small mini-batches, and place in set 𝐺𝑖

4. s which is part of a set 𝑆𝑖

5. for every local epoch h, from i to e do

6. for every 𝑠𝜖 𝑆𝑖 do where (𝜂 = learning rate and 𝛿 = gradient of L on S)

7. end for

8. end for

9. [server]

10. set 𝑉 𝑜
𝑝

11. for iteration t from 1 to t do

12. arbitrarily select a subset 𝑌𝑡 of C edge nodes from N

13. for each edge node i 𝜖𝑌𝑡 similarly do

14. 𝑉 𝑡+1
𝑖

local training (i, 𝑉 𝑡
𝑝
)

15. end for

16. aggregating 𝑉 𝑡
𝑝
= 1∑

𝑖𝜖𝑁 𝐷𝑖

∑𝑁

𝑖=1 𝐷𝑖𝑉𝑖
𝑡

17. end for

3. Global model accumulation and modification.

Local models are aggregated which are from the edge nodes to the 
server, the edge nodes receive the modified global model 𝑉 𝑡+1

𝑝
.

𝐿 
(
𝑉 𝑡
𝑝

)
is the global loss function, minimised by the server.

𝐿

(
𝑉 𝑡
𝑝

)
= 1

𝑁

𝑁∑
𝑖

𝐿
(
𝑉 𝑡
𝑖

)
(2)

The global loss function converges after many repetitions of steps 2 
to 3 (state which additional iterations do not enhance the model) FL 
4

training using learning rate = 0.01, optimizer = SGD.
3. Methodology and experimental set-up

The data used for this research include climatic features namely 
temperature, humidity, the potential of hydrogen (pH), and rainfall 
which are the independent variables, and the labels are rice, maize, and 
chickpea. The classes in the dataset namely chickpea, rice, and maize 
are equally distributed. This implies that the dataset is balanced. The 
dataset has been split into 80% for training and 20% for testing using 
the sci-kit learn library [24]. Each federated node has the same labels 
and attributes since we are exploring homogeneous edge nodes where 
all the edge nodes manage data with the same attributes and features. 
The research experiment aims to investigate the prediction of a partic-

ular crop from a class of crops using climatic data as the independent 
features from the dataset, while the crop types are the labels from the 
dataset. This was achieved using a modified federated averaging algo-

rithm model. The Syft library is used in a decentralised platform where 
the edge nodes’ data reside at the edge nodes and the data scientist re-

motely trains the dataset without seeing the data [24], this research 
uses the Syft library in the duet platform in our testbed. The Testbed 
has been set up using a Linux machine, the data scientist and the data 
owner have been able to interact via the duet platform, and the Data 
owner is the custodian of the data. First, the data owner establishes 
the connection using the duet server and waits for the Data scientist 
to connect to the data owner via the duet server, once a connection 
was established, the data owner (edge device) then proceeds to train its 
dataset and sends its local updated weights to the aggregate server or 
data scientist, the updated global model is then sent back to the edge 
devices for a repeat iteration and this process continues until the model 
converges. An emulation of the network was set up using the GNS3 
tool, to test the Federated Learning model for a smart farming dataset, 
climatic data with independent variables such as temperature, humid-

ity, pH, and rainfall were used as the independent variable while three 

crops namely rice, maize, chickpea were considered as the dependent 
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Fig. 3. Binary Relevance (Gaussian NB).

Fig. 4. Classifier Chain (Gaussian NB).

Fig. 5. Label Powerset (Gaussian NB).

variable and the results shown in Tables 1-4 were obtained from the 
experiment.

4. Results and discussion

The dataset with independent variables of temperature, humidity, 
pH, and rainfall and dependent variables of rice, maize, and chickpea 
has been passed into the Binary Relevance (Gaussian NB), Classifier 
chain (Gaussian NB) and Label Powerset (Gaussian NB) model in the 
test bed setup within the Jupyter Notebook and the following results 
5

have been obtained as shown in Fig. 3, 4, 5 respectively. The Binary Rel-
Smart Agricultural Technology 5 (2023) 100277

Fig. 6. Loss using SGD optimizer, Learning rate = 0.001.

evance (Gaussian NB), classifier chain (Gaussian NB) and Label power 
(Gaussian NB) produced an accuracy of 60%, 60%, and 55% respec-

tively from the training. The Binary Relevance and classifier chain Gaus-

sian Naïve Bayes model has been used to evaluate the multi-labelled 
dataset. Figs. 3 and 4 indicate the results obtained from using the Bi-

nary Relevance Gaussian NB and Classifier Chain Gaussian NB model in 
both evaluations, a Harmonic mean of 0.76 and Accuracy of 60% has 
been obtained. The Binary relevance Gaussian NB and Classifier chain 
Gaussian NB has been able to use the sample averages of each instance 
of the multi-labelled dataset to produce a Harmonic mean of 0.76 and 
both models were able to match 60% of the predicted multi-labelled 
variables to the original labels of the dataset. The Label Powerset Gaus-

sian NB model has produced an accuracy of 55% as shown in Fig. 5. 
The F1-score of 0.69 has been achieved by the model showing that the 
ratio of the product of the precision and recall to the sum of the preci-

sion and the recall values from the model during evaluation is 0.69. The 
model takes into account the sample average since the dataset consid-

ered is a multi-label and each of the sample averages for each instance 
is used during evaluation to produce the harmonic mean of the model. 
Tables 1–4 show the results obtained from using the federated learning 
models to predict the crop type using climatic parameters as indepen-

dent variables and crops as labels. The model hyper-parameters have 
been tuned to obtain various results, the learning rate hyper-parameters 
range from zero (0) to One (1), and different values of learning rates be-

tween zero (0) and one (1) have been considered for hyper tuning of the 
models, different optimizers such SGD and Adam has been considered 
based on previous research by [19]. Using an SGD optimizer, a learning 
rate of 0.001, and a Computational time of 0.00013 seconds have been 
obtained during the training of the model. An Accuracy of 23% has 
been obtained while the predicted crop was rice, implying the model 
made high errors since its loss values are also high as can be seen in 
Fig. 6. It can be inferred that using the SGD optimizer and a learning 
rate of 0.001 only 23% of the predicted labels have been matched with 
the original labels in the dataset after the training which indicates the 
SGD optimizer at this learning rate produced a poor accuracy and failed 
to match the predicted classes with the original labels. Fig. 7 shows fur-

ther hyper tuning using the Federated Learning Model using a Learning 
rate of 0.01, SGD optimizer, the model is converging very poorly due 
to over-fitting of the model. It produced an accuracy of 77% indicating 
it has been able to match only 77% of the predicted crop label to the 
original crop-dependent variables.

The Federated learning model produced a precision value of 0.40 
using the SGD optimizer and a Learning rate of 0.001. This is the ratio 
of the correctly predicted positive labels to the sum of the correctly pre-

dicted positive labels and the incorrectly predicted positive labels. Upon 
further evaluation where the model has considered the ratio of the cor-
rectly predicted positive labels to the sum of the correctly predicted 
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Fig. 7. Loss using SGD optimizer, Learning rate = 0.01.

positive labels and the incorrectly predicted negative labels giving a 
recall value of 0.60 which can be referred to as the recall value. Compar-

ing the precision and recall values from the federated learning model, 
an F1 score of 0.48, which is the Harmonic mean, that’s the reciprocal 
of the arithmetic mean has been produced which is a poor performance 
of the SGD optimizer function, as shown in Table 1. It can be inferred 
that the SGD optimizer function with a learning rate of 0.001 converged 
poorly and extremely slowly to its local minima as shown in Fig. 6. Fur-

ther hyper-tuning of the model parameters has been conducted with 
the SGD optimizer but with a different learning rate value of 0.01. 
The results in Table 2 indicate that only 77% of the predicted labels 
matched the original labels of the classes of chickpea, rice and maize. 
The model has failed to produce a value for the evaluation of the ra-

tio of the true positive of the predicted labels to the sum of the true 
positive predicted labels and incorrectly predicted positive labels, this 
indicates the poor performance of the model using the SGD optimizer 
and learning rate values of 0.01. The evaluation of the ratio of the true 
positive of the predicted labels to the sum of the true positive predicted 
labels and incorrectly predicted negative labels has produced a recall 
value of 0.60. Taking the ratio of the precision and the recall for the 
SGD with a learning rate of 0.01, a Harmonic mean (F1-score) of 0.77 
has been obtained which is a better performance than the initial learn-

ing rate considered earlier. It can be inferred that the federated learning 
model is converging to its local minima much faster, which is a better 
value when compared with the results from Table 1 but its performance 
is unable to give a precision value. From Table 3 a different optimizer 
function namely the Adam optimizer is considered for the hyper-tuning 
of the model, the Adam optimizer combines the Adagrad and RMSProp 
algorithms for its evaluation to give a better evaluation during training. 
The predicted class has matched the original values with a percentage 
of 90% which indicate a good performance of the accuracy metric. The 
ratio of the correctly predicted positive labels to the sum of the cor-

rectly predicted positive labels and the incorrectly predicted positive 
labels gave a value of 0.83 precision value as shown in Table 3. To fur-

ther verify the Adam optimizer performance using a learning rate of 
0.001, the ratio of the precision and recall values are taken which pro-

duce a Harmonic mean (F1-score) of 0.91 from the model evaluation. It 
can be inferred that the model has converged very fast which enabled 
it to reach its local minima, thereby improving its performance with a 
0.91 harmonic mean (F1-score) value. Further analysis using the Adam 
optimizer with a learning rate of 0.01, the hyper-tuning of the model, 
the predicted class has a match with the original values with a percent-

age of 90% which indicate a good performance of accuracy metric as 
shown in Table 4. The ratio of the correctly predicted positive labels 
to the sum of the correctly predicted positive labels and the incorrectly 
predicted positive labels gives a value of 0.73 precision value. To fur-
6

ther verify the Adam optimizer using a learning rate of 0.01, the ratio 
Smart Agricultural Technology 5 (2023) 100277

Table 1

FL training using learning rate = 0.001, optimizer = SGD.

Precision recall f1-score support

0 0.40 0.60 0.48 0.10

1 0.70 0.10 0.80 0.10

2 0 0 0 0.10

Accuracy 0.23 0.30

macro average 0.16 0.23 0.19 0.30

weighted average 0.82 0.23 0.19 0.30

Table 2

FL training using learning rate = 0.01, optimizer = SGD.

Precision recall f1-score support

0 0 0.62 0.77 0.10

1 1 0.30 0.46 0.10

2 0.91 1 0.95 0.10

Accuracy 0.77 0.30

macro average 0.84 0.77 0.73 0.30

weighted average 0.84 0.77 0.73 0.30

Table 3

FL training using learning rate = 0.001, optimizer = Adam.

Precision recall f1-score support

0 0.83 1 0.91 0.10

1 1 0.70 0.82 0.10

2 0.91 1 0.95 0.10

Accuracy 0.90 0.30

macro average 0.91 0.90 0.90 0.30

weighted average 0.91 0.90 0.90 0.30

Table 4

FL training using learning rate = 0.01, optimizer = Adam.

Precision recall f1-score support

0 0.83 1 0.91 0.10

1 0.67 0.40 0.50 0.10

2 0.67 0.80 0.73 0.10

Accuracy 0.73 0.30

macro average 0.72 0.73 0.71 0.30

weighted average 0.72 0.73 0.71 0.30

of the precision and recall values are taken which produce a Harmonic 
mean (F1-score) of 0.91 from the model evaluation. It can be inferred 
that the model dropped on its accuracy metric from the previous value 
using the 0.001 learning rate when a learning rate of 0.01 is considered 
but has been able to maintain the F1 score. It can be inferred that the 
model using the Adam optimizer has been able to converge to a local 
minimum, considering all the true and false positives, and true & false 
negatives to give a high harmonic mean (F1-score) at a higher learning 
rate of 0.01. The dataset contained three (3) classes in the dependent 
variables, during each hyper-tuning with different optimizer functions 
and learning rate parameters, it has been observed that chickpea was 
the predicted crop, indicating the federated learning model without see-

ing the raw dataset has been able to match a higher percentage of the 
predicted crop with its original values. Figs. 6 and 7 show the loss value 
decreasing during the training of the model using stochastic gradient 
descent (SGD) optimizer, with a learning rate (LR) of 0.001 and 0.01 
respectively.

From the results obtained, as shown in Fig. 6, a minimum Loss of 
1.096 has been obtained from the evaluation of the model, Fig. 7 has 
produced a minimum loss value of 0.7, while Fig. 9 depicts that a min-

imum loss value of 0.6 and the loss started to converge appreciably 

after 100 iterations. However, from Fig. 8, the loss has started to con-
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Fig. 8. Loss using optimizer = Adam, Learning rate = 0.001.

Fig. 9. Loss using Adam optimizer, Learning rate = 0.01.

verge appreciably after 20 iterations and eventually converge at a Loss 
value of 0.1 which is a better improvement compared with the other 
initial learning rate of 0.001, 0.01 for SGD optimizer and a learning 
rate of 0.001 for the Adam optimizer. It can be inferred that with the 
learning rate of 0.001 using the Adam optimizer, the federate learn-

ing model has been able to reach its local minima, although its training 
time at this learning rate has been increased as shown in Fig. 8. How-

ever, in Fig. 9 its training iteration is over 200, this implies the model 
has begun to learn the noise in the dataset and it causes over-fitting and 
generalising poorly. This research results confirm the efficiency of the 
Adam optimizer from the hyper-tuning of the parameters of the Fed-

erated Learning model to a smart farm dataset, it can be inferred that 
the Adam optimizer converges better than the SGD optimizer. This con-

firms that federated learning models also reach their local minima at 
low learning rates and use high training time to converge. The dataset 
used for this experiment was obtained from [20].

5. Conclusion

A dataset obtained from [15] has been used for this research to de-

termine the performance of the Federated Averaging algorithm within 
a smart farming scenario. It has been observed that climatic parameters 
can be considered as independent features and crop types as dependent 
features, upon training the dataset with the adjusted model, it has been 
observed that the Adam optimizer has enabled the model to reach its 
local minima while considering the true and false positive predicted la-
7

bel classes, true and false negatives predicted dependent variables to 
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achieve a harmonic mean (F1-score) of 0.91. It can be inferred from 
Table 1-4, which depicts the various Harmonic mean values obtained 
from the evaluation of the multi-labelled dataset with temperature, hu-

midity, pH, and rainfall as independent variables, with rice, maize and 
chickpea as labels, using the binary relevance Gaussian NB, Classifier 
chain Gaussian NB, Label Powerset Gaussian NB and the Federated av-

eraging models that, the optimal harmonic mean has been produced by 
the Federated averaging model with a value of 0.91 which is the decen-

tralised model where the raw dataset has not been shared, unlike the 
centralised network where the raw dataset has been shared in the Gaus-

sian NB models. Academic researchers can consider this work results to 
take decisions on smart farming within a Federated learning platform.

6. Future works

The Swin Transformer can be considered for evaluation of the cli-

matic parameters to predict the crop type. It will be novel research to 
use the Federated split learning model to predict the crop types using 
the climatic parameters as independent variables and the crop types as 
your dependent variables.
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