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Abstract—In vehicle security, attack identification has been
proposed to identify the compromised electronic control units
(ECUs) of a vehicle. Fingerprinting methods using a variety of
features have been widely applied to identify attacks. Howev-
er, these methods only consider the features of an individual
ECU, and ignore the logical association among different ECUs.
This condition leads to high requirements in terms of feature
measurements, and a great deal of useful information is lost to
achieve identification. In this paper, an association-learning-based
model, designated Aiden, is proposed to identify the compromised
ECUs on the edge of V2X communication networks and without
feature measurements. Experiments on a real vehicle show the
effectiveness of the proposed model.

Index Terms—Association Learning, Attack Identification, Au-
tomotive Security, Edge Intelligence, V2X Communication Net-
works.

I. Introduction

IN modern vehicles, the adoption of sensors and electronic
control units (ECUs) brings intelligence and convenience

to driving and makes autonomous driving possible [1]–[3].
However, successful attacks targeting these modern vehicles
via intelligent electronics have been demonstrated [4]–[7].
These attacks inject attack messages into a vehicle through
wireless channels, and enter into the controller area network
(CAN) bus of the vehicle. This way, an attacker can control the
vehicle and cause deviations from a safe operational regime
(as shown in Fig. 1). As a typical example, Miller et al. [8]
showed an attack in which the multimedia system, power
system, and braking system of a vehicle could be controlled
without requiring any physical access. This led to the recall
of millions of vehicles.

No matter how accurately an attack can be detected in a
vehicle, if one cannot know which ECU is mounting the attack
and, hence, which one must be isolated/patched, the vehicle
remains insecure and unsafe. Attack identification has been
proposed to determine which ECUs are actually mounting
attacks. Moreover, it is much more economical to isolate/patch
the compromised ECUs than to blindly consider all the ECUs
as compromised. Kyong-Tak Cho et al. proposed a clock-based
intrusion detection system (CIDS) [9] to identify which ECU
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Fig. 1. An attack enters into the CAN bus of a modern/autonomous vehicle
through wireless channels, and the in-vehicle ECUs connected by the CAN
bus are compromised. Because of the intrinsic associations among different
ECUs to take actions, the attack from the compromised ECUs easily causes
cascading failure to make the vehicle deviate from a safe operational regime.

mounted an attack. The CIDS exploits the intervals of in-
vehicle messages to estimate the clock skews of ECUs, and the
estimated clock skews are used to fingerprint the ECUs. Based
on the fingerprints of ECUs, the CIDS constructs a model of
ECU clock behaviors using the recursive least-squares (RLS)
algorithm. The fingerprinting capability of the CIDS enables
the identification of the compromised ECU. However, if attack
messages are injected aperiodically, the CIDS cannot be used
in attack identification. This is called the periodic dependence
problem. Viden (Voltage-based attacker identification) was
designed to avoid the problem of periodic dependence [10]. It
fingerprints ECUs on the CAN bus via voltage measurements,
allowing Viden to identify the compromised ECU irrespective
of how and when an attacker injects its messages. In more
recent work, Kneib et al. [11] designed a system to identify the
ECUs sending particular CAN frames by using the fingerprints
extracted from the CAN frames. The proposed system uses the
physical characteristics of CAN frames to assess whether the
frames are sent by legitimate ECUs. To improve this system,
Liu et al. [12] proposed a local–outlier–factor-based method to
distinguish voltage waveforms, fingerprint ECUs, and further
identify the compromised ECUs.

However, these previous methods need complex and ac-
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curate measurements; that is, they have high requirements
in terms of feature measurements. Moreover, they are cen-
tralized, which means that there is a third-party data center
to which vehicle users are required to upload their private
data. This means that these methods completely rely on the
computational resources of the data center to process data,
but fail to efficiently utilize the resources in vehicles. To
conquer the challenges that exist in the above methods, an
association-mining model, designated Aiden, is proposed to
identify the compromised ECUs directly on the edge of V2X
communication networks1.

Aiden learns the association of different ECUs and infers
the logical relationship among these ECUs. On this inference
basis, if any illogical relationship exists during a driving
action, Aiden then considers that an attack has occurred and
can identify which ECU is compromised.

The contributions of this paper are as follows.
1) Model Design. Aiden is designed to avoid high require-

ments in feature measurements, such as the avoidance
of the periodic dependence problem and the need for
complex and accurate voltage measurements. It only
analyzes the intrinsic logical association of different
ECUs when an operation is performed during driving. It
exploits the logical association to identify the compro-
mised ECUs and does not need to consider whether the
message sending is periodic or aperiodic.

2) Model Implementation. Aiden is implemented as a part
of OBD-II to act as an edge device to achieve edge
intelligence. It is deployed to the edge of V2X com-
munication networks to obtain improvements of real-
time communication and privacy [14]. Moreover, it does
not require additional special equipment to support its
deployment, so it is cost effective and easily accepted
by users as well as easily deployed to vehicles.

3) Model Evaluation. Aiden is evaluated on the CAN bus
prototype and on a real vehicle.

The rest of this paper is organized as follows. In section II,
the background of this paper is provided, and, in section III,
related work is reviewed. In section IV, the problem studied
in this paper is detailed, while the design of the Aiden model
is evaluated in section V on a CAN bus prototype system.
Further discussion of Aiden is given in section VI, including
its limitations. The paper is concluded in section VII.

II. Background

In a vehicle, ECUs broadcast their retrieved sensor data via
messages on the CAN bus, and the data are recorded by the
vehicle’s event data recorder (EDR). The EDR is a device
installed in a vehicle to record the information related to the
vehicle driving. In addition, the message used to carry the data
contains a unique identifier (ID) that represents the function of
the message. For example, the ID of a message from a 2011

1V2X (vehicle-to-everything) is communication between a vehicle and
any entity that may affect or may be affected by the vehicle. It is a
vehicular communication system that incorporates other specific types of
communication as V2I (vehicle-to-infrastructure), V2N (vehicle-to-network),
V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), and V2D (vehicle-to-
device) [13].

Toyota Camry is 398 (Hex); according to the ID number, by
the parse file available from the manufacturer, one can parse
that this message comes from the “Fuel” functional area of the
vehicle. Different vehicles have different numbering standards
for the messages from different ECUs, and the quantity and
type of ECUs are also different for different types of vehicles.
In this study, the data from a 2011 Toyota Camry [15] is used,
and the relationship between IDs and corresponding ECUs is
listed in Table I.

Table I shows that there are multiple ECUs in the same
functional area, and the messages from these ECUs have the
same ID. For example, there are four ECUs for the function
that controls wheel speed. Two of these ECUs are used to
control the speed of the two front wheels (message ID is
OB0), while the other two are used to control the speed of the
two rear wheels (message ID is OB2). Therefore, the ID of
messages used to facilitate the communications among ECUs
cannot be used to uniquely identify a particular ECU.

However, it is important to identify the compromised ECUs
in a vehicle, as the identification is the foundation of precisely
defending against security threats in V2X communication
networks. Such networks are proposed and aim to achieve
intelligence and even automatic driving of vehicles. The vehi-
cles in the V2X communication ecosystem are equipped with
different sensors to collect different types of data [16], as well
as ECUs to control different on-board equipment; moreover,
these different ECUs can communicate with each other. On
this basis, all of the vehicle equipment is connected and
further linked with external information networks. Therefore,
security threats extend from information networks to in-vehicle
networks, and security becomes important, as any system
failure of a vehicle directly affects driving safety.

III. RelatedWork
Fingerprinting ECUs has been attempted for attack identi-

fication. In existing methods, there are two types of ways to
fingerprint ECUs: message timing and voltage measurements.

Message Timing. In [9], the CIDS was proposed to detect
attacks by fingerprinting the ECUs on the CAN bus. The CIDS
extracts the ECUs’ clock skews from message arrival times.
Clock skew (also called timing skew) is a phenomenon for a
signal transmitter and can be represented as the slope of the
accumulated clock offset2. Owing to the use of accumulated
clock offsets as the fingerprints of ECUs, only when attack
messages are injected periodically can the CIDS be used for
attack identification. In other words, if a compromised ECU
injects messages aperiodically, the CIDS cannot identify it. In
a real scenario, some ECUs’ message sending is aperiodic.
Instead of fingerprinting ECUs with message timings, some
researchers have proposed the use of voltage measurements,
which avoids the constraint on the periodicity of message
injection.

Voltage Measurements. In [17], the mean-square error
(MSE) of voltage measurements was used as the ECU finger-
print. However, this scheme was shown to be valid only for the

2The accumulated clock offset is the sum of the absolute values of average
clock offsets for every N received messages. Moreover, the clock offset is the
difference in the time reported by the clock Ci and the clock Ci+1.
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TABLE I
Relationship between Data Frames and ECUs

ECU CAN ID (Decimalism) CAN ID (Hex) Periodicity (ms) Data Length (bytes)

Vehicle speed 1552 610 500 8

Odometer 1553 611 1000 8

Engine speed 708 2C4 30 8

Fuel 920 398 Aperiodic 2

Throttle pedal 705 2C1 30 8

Brake pedal 548 224 30 8

Throttle 947 3B3 500 3

PRND (Gearbox) 948 3B4 1000 8

WSPD1: Wheel speed (front right) 176 0B0 10 6

WSPD2: Wheel speed (front left) 176 0B0 10 6

WSPD3: Wheel speed (rear right) 178 0B2 10 6

WSPD4: Wheel speed (rear left) 178 0B2 10 6

Steering Angle 37 025 10 8

Aircon 896 380 1000 8

voltages that were measured during the transmission of CAN
messages and on a low-speed (10-kbps) CAN bus. Modern
vehicles, however, usually operate on a 500-kbps CAN bus.
To overcome these challenges, researchers have proposed to
further extract the features of the time and frequency domains
of voltage measurements and use them as inputs for classifica-
tion ( [18]). This way, successful fingerprinting ECUs on high-
speed CAN buses is facilitated. However, this type of method
requires not only a high sampling rate (2.5 Gsamples/s) but
also the use of an extended CAN frame. Moreover, be-
cause the modeling process uses batch learning, unpredictable
changes occur in the CAN bus (e.g., battery-consumption
level). In [10], Viden was proposed, which fingerprints ECUs
through a different way of using voltage measurements. Viden
has no restrictions on the type of CAN messages or the speed
of CAN buses to be used. However, voltage-measurement-
based methods require many complicated measurements and
a substantial amount of processing.

IV. Aiden

To avoid the abovementioned problems in the existing meth-
ods, this paper proposes Aiden, which learns the association
of different ECUs in a vehicle to deduce the compromised
ECUs.

A. Problem Formulation

Attack identification is used to identify compromised ECUs
in vehicle security. In this section, the attack identification
issue is formulated and described.

If there is a tree that can be used to visually show the paths
of message transmission among ECUs, for an attacker, the

optimal policy for compromising ECUs on the vehicle’s CAN
bus is to keep as many legitimate ECUs (victims) as possible
inside the subtrees of the compromised ECUs. Meanwhile, the
attacker does not desire the compromised ECUs to be easily
detected and identified by any defense strategy.

First, the overall gain of attacks from an attacker is for-
mulated: Gattack = (1 − Pdetect)

number o f victims
number o f total nodes , where Pdetect

denotes the possibility that attacks are detected. Then, to
maximize the gain, the attacker’s goal becomes to find an
optimal tree level (h) for the compromised ECUs and try to put
them in the message transmission tree as sparsely as possible.
Thus, the solution of this optimization problem is that all the
compromised ECUs are at the same optimal height (h), and
there is no compromised ECU that is placed within the subtree
of another. Otherwise, the number of victim ECUs will be
reduced without increasing the overall gain (Gattack). In the
rest of this paper, the optimal policy of an attacker is always
considered the worst case so as to guarantee a lower bound
for the effectiveness of any defense scheme.

In this study, an attack in a dynamic environment is iden-
tified, and in this dynamic environment ECUs have different
running times; an aging factor 0 < β ≤ 1 is used to reflect such
life cycles; that is, p(r)

f [i] = β(r) · (1 − (1 − pr−1
f [i]) · (1 − f (i)))

(β(0) = 1, β(r) = 0.5β(r−1), and p(0)
f [i] = 0), where p(r)

f [i] denotes
the probability of the suspicious level on the compromise
of ECU i during the rth round, and f (i) is the suspicion
level that the ECU i has been compromised. For example,
if p f [i] = 1, it is considered that ECU i is compromised.
Moreover, this equation guarantees that a legitimate ECU that
is occasionally suspected of being compromised will not be
eventually identified as an illegal one.
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B. System and Attack Models

In the proposed system model, the vehicle’s CAN bus
is considered to have been equipped with an identification
system by which to detect attacks and identify compromised
ECUs. This system model consists of two parts: adversaries
and compromised ECUs. The adversaries attack the in-vehicle
ECUs that work on the CAN bus protocol. For example, an
adversary controls the on/off operation of ECUs and injects
attack messages through the compromised ECUs. The com-
promised devices cause serious damage to the target that the
adversary intends to attack, such as the brake system of an
autonomous vehicle. The proposed system complements the
attack detection system via attack identification.

For the proposed attack model, because an unauthorized E-
CU cannot join in-vehicle networks without a valid credential,
only the authorized internal ECUs are considered [19]. It is
assumed that a compromised ECU controlled by an attacker
launches an attack on the other ECUs in its subtree. Moreover,
it is further assumed that an intelligent attacker knows defense
strategies and the tree topology of message transmission, and
can place the compromised ECUs into the positions of its
choice.

Fingerprinting-based identification methods can only handle
the attacks that cause a change of an ECU. The improvement
achieved in the proposed method can not only process the
attacks causing the change of an ECU but also process the
attacks causing the change of the logical association among
related ECUs.

C. Aiden

Aiden is used to overcome the challenges of fingerprinting-
based methods, namely that they need complex and accu-
rate measurements and have high requirements in feature
measurements. Moreover, Aiden has edge-computing ability.
Unlike the high requirements in feature measurements of
fingerprinting-based methods, Aiden does not use any feature
to fingerprint ECUs. It learns the association of different
ECUs and infers the logical relationship among these ECUs.
Regarding its edge computing ability, Aiden federates edge
devices, such as in-vehicle devices connected with OBD-
II, to conduct distributed data processing, and coordinates
the learning behaviors of these edge devices. Eventually,
Aiden achieves attack identification on the edge of V2X
networks [20].

Aiden includes the following three steps.
Step 1: Data Pre-processing. Two kinds of states for all

ECUs are marked by state flags in the dataset, that
is, rise and decline, and each state record is a state
change 3. The final pre-processed dataset is made up
of these elements: ECU IDs, state flags of ECUs,
and time stamps. Take, for example, the following
records: 223U: 1, 0.09998; 223D: 2, 0.11956; 0B0U:
3, 0.12996; 0B0D: 4, 0.15902; 0B0U: 3, 0.19057,
where 223 and 0B0 are ECU IDs, U/D denotes the

3A state change is the point of the state change from the rising (falling)
state to the falling (rising) state.

rising/falling state, and these states are numbered
1,2,3 ... If the same ECU appears in the same
state, the state number is the same (e.g., they are
two records at different times: 0B0U: 3, 0.12996,
and 0B0U: 3, 0.19057, but they have the same
state number, that is, 3). Moreover, in this example,
0.09998,0.11956,... are time stamps, and the time
stamp is recorded as the offset from the start time
in seconds.

Step 2: Sequence Extraction. The pre-processed dataset
without attacks is denoted A. During each ECU
state change, the full permutation is performed for
the normal behavior data in the dataset A, and the
occurrence number of each permutation is counted,
according to the support degree4. Then, permutations
with occurrence numbers less than the support degree
are removed. The remaining permutations are the
pattern sequences that are desirable to obtain.

Step 3: Attack Identification. Data traversal is performed
on all of the pre-processed data that accompany
attacks, and the data are pre-processed in the data
pre-processing step. During any ECU state change, in
the pattern sequences extracted from normal behavior
data, whether other ECU state changes that are
related to it are consistent to the pattern sequences
is checked. If there is no consistent sequence, the
corresponding ECU is marked as having been com-
promised.

In each time slot of length Tslot, Aiden can be trained to
achieve a desirable performance, by running an iteration of
following phases:

Phase 1: An edge-computing center receives and distributes
the pattern sequences extracted from the normal
behavior data of each vehicle.

Phase 2: Each vehicle updates its local pattern sequences
with a referral to the distributed pattern sequences
from the edge-computing center.

In this iteration, each vehicle transmits its updated pattern
sequences to the edge-computing center, which aggregates its
received pattern sequences to improve the performance of the
Aiden model.

V. Prototype System and Evaluation
A. Prototype System and Evaluation Setups

The prototype system designed to evaluate Aiden is shown
in Fig. 2, and the evaluation was deployed under four attack
scenarios, which are shown in Figs. 4 ∼ 7.

In the prototype system, the edge-computing center illustrat-
ed in Fig. 3 is used to gather driving data and inject attacks by

4The support degree which is described in the sequence extraction step is
a specific number of occurrences. Its calculation is as follows: first, count the
number of occurrences of each ECU in the dataset A, and then arrange them in
ascending order, de-duplicate them, and remove zeros, C = a0, a1, ..., ai (i =the
number of elements in the dataset C). The support degree is set to a j, and
j = 0.05∗ i. The reason one sets the value of the support degree is to compare
the following values: j = 0.05 ∗ i, j = 0.1 ∗ i, j = 0.2 ∗ i, and j = 0.5 ∗ i. The
accuracy of attack identification for these values is 0.9308, 0.9270, 0.9256,
and 0.9256, respectively. According to the comparison result, the accuracy is
the highest when j = 0and05 ∗ i.



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXXX 2022 5

Fig. 2. Components of prototype system designed to evaluate Aiden. The
system can inject attacks through the OBD-II interface. The injection process
can be done in either of two communication modes: wired or wireless.

the wired/wireless communication mode. Moreover, the center
is responsible for implementing edge computing to distribute
the pattern sequences to multiple vehicles and achieve the
training of the proposed model Aiden.

Fig. 3. Edge-computing center used to realize edge computing so as to achieve
distributed model training.

Based on the abovementioned prototype system, an evalua-
tion was conducted under the four attack scenarios of diagnosis
attack, fuzzy attack, replay attack, and spoofing attack, as these
attacks can immediately and severely impair in-vehicle func-
tions or cause extensive vehicle damage. Detailed descriptions
of the proposed attack scenarios follow.

1) Diagnosis attack. The automobile diagnosis instrument
is a vehicle fault-detection terminal. During the diag-
nosis process, it sends diagnosis frames to the vehicle
CAN bus, and vehicle ECUs execute instructions after
receiving the diagnosis frames. In this study, a custom-
designed development board is used to send diagnosis

frames to a vehicle to achieve attack operations. This is
called a diagnosis attack. An example is shown in Fig. 4.

Fig. 4. Example of a diagnosis attack in the proposed prototype system.

In this example (Fig. 4), experiments were con-
ducted on the aforementioned 2011 Toyota Camry
at 33 and 34km/h driving speeds, and the diagno-
sis attack was carried out with a diagnosis frame
(7C0 8 04 30 01 06 10 00 00 00) to change the
speed shown on the dashboard to 160km/h. This type
of attack greatly interferes with the driver to understand
the current vehicle driving speed.

2) Fuzzy attack. Fuzzing is a software-testing technique
that inputs invalid or random data called FUZZ into
the software system to discover vulnerabilities [21]. As
an attack scenario, the fuzzy attacker performs indis-
criminate attacks by an iterative injection of random
CAN frames with the “randint” function, which is a
module that generates random integer numbers within
a specified range. In this attack, an attacker directly
and randomly injects any frame on the CAN bus, and
determines the corresponding relations between CAN
frame IDs and ECUs by observing the correspondence
between vehicle behavior changes and ECUs. Based on
these corresponding relations, the attacker knows which
ECUs can be attacked. According to the content of the
injected frame, the fuzzy attack can be divided into two
categories: fuzzy ID attacks and fuzzy payload attacks.
Fuzzy ID attacks refer to the random change of the CAN
frame ID, after which the attack injects the ID-changed
frame into the CAN bus. Fuzzy payload attacks refer
to the random change of the payload of the CAN frame
after selecting the CAN frame ID, after which the attack
injects the payload-changed frame into the CAN bus. An
example is shown in Fig. 5.
In the example shown in Fig. 5, for the fuzzy ID
attack, CAN frame IDs 0x100 and 0x123 are ran-
dom numbers, and for the fuzzy payload attack, the
payloads of the CAN frame 0x610 are randomly
changed to FF FF FF FF FF FF FF FF and
01 23 45 67 89 AB CD EF.

3) Replay attack. An attacker monitors the vehicle CAN
bus to obtain the information of the data frames ap-
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Fig. 5. Example of a fuzzy attack in the proposed prototype system.

pearing on the CAN bus, and copies the data-stream
fragments that occur during the monitoring period. The
attacker injects these copied data frames into the CAN
bus to interfere with the normal actions of the vehicle.
This is called a replay attack. An example of a replay
attack is shown in Fig. 6.

Fig. 6. Example of a replay attack in the proposed prototype system.

In the example shown in Fig. 6, an attacker copies and
replays the data frames with the frame ID 0x610.

4) Spoofing attack. In this attack, after cracking the se-
mantics of the CAN frame payload, the attack injects
the modified and recomposed data frames into the CAN
bus to carry out an attack. The attack frames of the
spoofing attack are sent at the same frequency as the
normal ECU, so the compromised ECU can pretend to
be a normal ECU, and the compromised ECU cannot be
easily identified.
The example shown in Fig. 7 explains the experiment
carried on the 2011 Toyota Camry. The frames with the
CAN ID 610 are related to the vehicle speed shown on
the dashboard, and the time period of normal ECUs to
send frames is 500ms.
If the vehicle is stopped, the third byte of the frame
is 00, indicating that the vehicle speed is 0km/h. An
attack modifies the third byte of four frames to 14, 28,
3C, and 50, which correspond to vehicle speeds of 20,

Fig. 7. Example of a spoofing attack in the proposed prototype system.

40, 60, and 80km/h, respectively. Then, the attack sends
the modified frames to the CAN bus at a time interval
of 500ms. As the vehicle has an automatic door lock
function, when the vehicle shows the fake speed under
the attack, the ECU of the door lock controls signals to
automatically lock the doors, even though the true speed
of the vehicle is 0km/h.

To substantiate attack identification against the four attack
scenarios, two different kinds of datasets: normal driving data
and abnormal driving data, are used. The data are the CAN
messages obtained through the in-vehicle OBD-II port of a
real vehicle (the aforementioned 2011 Toyota Camry) [7]. The
normal driving data without attacks measure the ground-truth
value of the vehicle’s normal operation. The abnormal driving
data are those containing attacks.

The equipment setup used for the extraction of the two
kinds of driving datasets is as follows. A development board
with the main control chip STM32 is used to obtain the
data from the in-vehicle OBD-II port and analyze/transmit
data. The data acquisition and transmission rates are both
500kbps, and the data transmission employs 4G standards.
Moreover, the board supports multiple diagnosis protocols,
such as ISO15765, ISO14230, and SAEJ1939. On this basis,
in the same experimental environment, the computation time
is at the millisecond level for Aiden and the approach (it is
used for comparison) and can almost be ignored.

B. Evaluation Results and Analysis

To demonstrate the performance of the proposed model for
attack identification, in this section the comparative results of
the overall performance evaluation are presented and analyzed;
the comparison is made with an approach that previously
proposed by Cho et al. [9].

1) Evaluation Results: In this study, the accuracy of attack
identification is measured by considering the four attack
scenarios described in section V-A. Accuracy is defined as
the ratio of the correctly identified data for a specific attack
scenario and the four defined attack scenarios, and is for-
mulated as Accuracy = T P + T N/(T P + FP + T N + FN),
where T P denotes an attack packet classified as attack,
and the corresponding compromised ECU is identified. FP
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indicates that a normal packet is classified as attack, and
the corresponding compromised ECU is identified falsely. FN
means that an attack packet is classified as normal, and the
corresponding compromised ECU is not identified. T N shows
that a normal packet is classified as normal, and there are no
ECUs to be identified as compromised.

To demonstrate the applicability and scalability of the pro-
posed model, an evaluation experiment was conducted under
five speeds: 0, 20, 40, 60, and 80km/h. The results are shown
in Fig. 8. Moreover, Aiden’s performance is compared with
that of the existing method using the CIDS under four defined
attack scenarios. Figure 9 illustrates the comparative results.

Fig. 8. Average accuracy of attack identification in four types of attack
scenarios under five vehicle speeds.

Fig. 9. Comparative results of Aiden and CIDS under four types of attack
scenarios.

2) Result Analysis: The identification performance of the
proposed model is evaluated by “accuracy”. The evaluation of
the identification accuracy is done using four types of attack
scenarios, with two kinds of datasets and under five vehicle
speeds.

Figure 8 illustrates the identification accuracy under five
speeds, that is, 0, 20, 40, 60, and 80km/h, and each accuracy
value is calculated as the average in four defined attack
scenarios at a certain speed. In all of the speed cases, Aiden

performs better than the CIDS: The accuracy is improved
by 41.5% for a speed of 0km/h, 60.7% for 20km/h, 96.7%
for 40km/h, 48.0% for 60km/h, and 64.1% for 80km/h. The
values of identification accuracy for the five speed scenarios
are listed in Table II.

TABLE II
Identification Accuracy Values for Five Speed Scenarios

CIDS Aiden
0 0.571429 0.976463
20 0.371429 0.944714
40 0.028571 0.876691
60 0.457143 0.878607
80 0.314286 0.874445

Figure 9 provides the identification accuracy evaluated using
four defined attack scenarios for the 2011 Toyota Camry, and
the comparative results are presented as the mean values of
the attack-identification accuracy from multiple experiments.
In all of the attack scenarios, for the identification accuracy,
Aiden obtains higher values than the CIDS regardless of the
defined speeds. The accuracy is improved by 8.2% for the
diagnosis attack, 50.4% for the fuzzy attack, 13.3% for the
replay attack, and 25.6% for the spoofing attack. The values
of identification accuracy for the four defined attack scenarios
are listed in Table III.

TABLE III
Identification Accuracy Values for Four Attack Scenarios

CIDS Aiden
Diagnosis attack 0.911765 0.992849
Fuzzy attack 0.492307 0.993416
Replay attack 0.852941 0.983284
Spoofing attack 0.735294 0.988703

VI. Discussion
In this study, a cost-effective model for attack identification

is proposed and evaluated. The proposed model only analyzes
the CAN messages from real vehicles. It performs association
learning to learn the logical association among different ECUs,
without using any feature to fingerprint ECUs. Moreover,
the model does not need to know the content inside CAN
messages. Therefore, the model can be applied to any type of
vehicle without parsing the CAN messages.

Most importantly, because the loss of information content
is reduced by considering the association of CAN messages
from different ECUs, the proposed model can provide higher
accuracy in attack identification.

The processing procedure of the proposed model abides
by the principle of integrity for digital evidence [22], and
ensures that the collected data are not forged or modified.
Similar to the data transmitted over a general network, the
CAN message is a form of volatile data that temporarily exists
on the CAN bus that disappears after completing its function.
For this reason, the CAN messages on the CAN bus should
be saved with metadata when an attack occurs.
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With the association learning of CAN messages, volatile
data constitute valuable information with which to better
understand events happening to the CAN bus. Additionally,
they can provide a clue for determining the source of and
thereby solving the problems caused by an attack. Therefore,
it is important to ensure the authenticity and integrity of data in
the detection and identification processes. The proposed model
strengthens the case for CAN messages of the CAN bus to be
accepted as legally significant digital evidence.

VII. Conclusion

In this study, a model is developed for attack identification
by learning the ECUs’ association in the driving behaviors.
Through such learning, pattern sequences are obtained to
represent the association of different ECUs. Moreover, the
proposed model, Aiden, does not have to consider vehicle
models.

The performance of the proposed model is evaluated by
measuring the identification accuracy in four specific attack
scenarios. To cover a wide range of internal running status
of a vehicle, five different vehicle speeds are used to evaluate
the identification accuracy by applying statistical values. From
the perspective of ensuring performance, Aiden preserves
the association of different ECUs, ensuring the information
integrity of CAN messages.

In the future, given the association property of volatile data
on the CAN bus, research concerning digital forensics will be
conducted by using the model Aiden [22]–[24]. In the digital
forensics of vehicles, to ensure the information integrity from
different ECUs and trace the information flow on the in-vehicle
CAN bus, information should be retrieved and ascertained
from the traces left by the various devices connected to the
CAN bus.

In summary, the results of this study contribute to secure da-
ta management on the edge of V2X communication networks.
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