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Abstract: Droughts are one of the world’s most destructive natural disasters. In large regions of
Africa, droughts can have strong environmental and socioeconomic impacts. Understanding the
mechanism that drives drought and predicting its variability is important for enhancing early warning
and disaster risk management. Taking North and West Africa as the study area, this study adopted
multi-source data and various statistical analysis methods, such as the joint probability density
function (JPDF), to study the meteorological drought and return years across a long term (1982–2018).
The standardized precipitation index (SPI) was used to evaluate the large-scale spatiotemporal
drought characteristics at 1–12-month timescales. The intensity, severity, and duration of drought in
the study area were evaluated using SPI–12. At the same time, the JPDF was used to determine the
return year and identify the intensity, duration, and severity of drought. The Mann-Kendall method
was used to test the trend of SPI and annual precipitation at 1–12-month timescales. The pattern of
drought occurrence and its correlation with climate factors were analyzed. The results showed that the
drought magnitude (DM) of the study area was the highest in 2008–2010, 2000–2003, and 1984–1987,
with the values of 5.361, 2.792, and 2.187, respectively, and the drought lasting for three years in
each of the three periods. At the same time, the lowest DM was found in 1997–1998, 1993–1994,
and 1991–1992, with DM values of 0.113, 0.658, and 0.727, respectively, with a duration of one year
each time. It was confirmed that the probability of return to drought was higher when the duration
of drought was shorter, with short droughts occurring more regularly, but not all severe droughts hit
after longer time intervals. Beyond this, we discovered a direct connection between drought and
the North Atlantic Oscillation Index (NAOI) over Morocco, Algeria, and the sub-Saharan countries,
and some slight indications that drought is linked with the Southern Oscillation Index (SOI) over
Guinea, Ghana, Sierra Leone, Mali, Cote d’Ivoire, Burkina Faso, Niger, and Nigeria.
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1. Introduction

Drought is a recurrent climatic phenomenon all over the world, which varies every
time it occurs in terms of its magnitude, severity, duration, and geographical coverage.
Drought episodes have been recurring for many years in Africa and have affected humanity
in many ways, such as causing loss of life, crop failures, and food shortages. These, in turn,
have triggered famine in many regions, resulting in malnutrition, health issues, and mass
migration [1–3].

Previous research found that more than 10 million people died due to drought impacts
from 1900–2010 in the world [3,4]. In 2003 and 2006, Europe was hit by severe droughts
that caused crop failures, navigation problems, and loss of life due to a heat wave [5].
In addition, until 2008, the Iberian Peninsula faced impacts of the latter drought that
extended for multiple years, reducing groundwater levels and reservoir storage to a
minimum [6]. In Africa, drought events caused more than 800,000 deaths and affected
about 262 million people from 1900–2013 [7]. Gautam [8] and Shiferaw et al. [9] have
reported that 382 dry spells between 1960 and 2006 affected 326 million people in Africa.
Furthermore, a very severe drought in Africa during 2010–11 resulted in massive migration,
extreme hunger, and the mortality of more than 260,000 people [10]. Henchiri et al. [11]
reported that in North and West African regions, severe drought events occurred in 2002,
2009, 2010, and 2016, though the severity and impact differed from one country to another.
Shanahan et al. [12] surmised that the severe drought experienced in the Sahel in the
1970s was not uncommon in the context of the last three millennia, and proposed that the
monsoon is capable of triggering more extended and severe droughts, which the world
will experience in the future. The driest years have become more frequent, now occurring
at shorter intervals, and the geographic extent of drought has also increased in West Africa
according to Gautier et al. [13]. Oguntunde et al. [14] studied the characteristics of drought
and projected the effects of future climate change on drought in West Africa between 1986
and 2100. They reported that the historical pattern of drought was consistent with previous
studies conducted over most parts of West Africa, and predicted that an increase in drought
intensity and frequency can be expected.

Mauritania, along with various countries in the Sahel, was dramatically impacted by
severe droughts during the 2010–11 rainy seasons, which resulted in poor harvests, loss of
livestock, and high food prices [9,15,16]. Winkler et al. [17] studied the droughts affecting
agriculture in Africa between 2000–16, finding that during La Niña 2010–11, large cropland
areas in Somalia (88%), Sudan (64%), and South Sudan (51%) were affected by severe
to extreme droughts during the growing seasons. In addition, the study of Elagib and
Elhang [18] from the 1940s to 2008 showed several multi-year droughts to have occurred
from the 1970s onward in Sudan. Furthermore, Gargouri et al. [19] described how Algeria
and Tunisia experienced severe drought during 1999 and 2002. Touchan et al. [20] observed
that over the last 1000 years, droughts have occurred every 20 years or so, on average,
which could last for two to four successive years in the Mediterranean regions. Numerous
investigations, meanwhile, have shown that the frequency of having one dry year is high
for Algeria, Tunisia, and Morocco, and the frequency of two or more successive drought
years is generally high in the south, moderate in the middle, and low in the north of the
continent [21–23]. Dry spell phases can affect one or various areas, and their duration can
last from one month or season, extending to one year or more [24].

These enumerations of the drought impact in recent years indicate that drought is
a recurring, worldwide natural phenomenon, of which the related losses rise day by
day [25–27]. In research, remote sensing data and methods are critical tools for studying
droughts’ underlying drivers. Numerous studies over the last few decades have investi-
gated drought based on their magnitude and severity using different indices, such as mul-
tivariable linear regression with composite drought indices (MCDIs) by Liu et al. [28]; opti-
mized vegetation and meteorological drought indices (OVDI and OMDI) by Hao et al. [29];
the US drought monitor (USDM) by Svoboda et al. [30]; the reclamation drought index
(RDI) by Weghorst [31]; the standardized precipitation index (SPI) by McKee et al. [32];
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the Palmer drought severity index (PDSI) by Palmer [33]; the decile index (DI) by Gibbs and
Maher [34]. The SPI was used to study meteorological drought, but this tool can be applied
at various timescales to categorize diverse types of drought [35]. Long timescales desig-
nate groundwater drought, medium timescales designate hydrological drought, and short
timescales are linked to soil moisture and agricultural drought [36].

Understanding the determinants of dry spells’ occurrence is significant in forecasting
future events, which acts to prevent adverse effects on the environment [37]. In many
regions, observed recurrent droughts are linked with the phenomenon of the El Niño–
Southern Oscillation (ENSO) [38,39]. The fundamental climate conditions that cause dry
spells are high-pressure systems at a huge scale across a region (over an extended period
of low-pressure forecast), rain-bearing frontal systems moving into the zone, or elevated
convectional conditions that persevere [40,41]. The adjustments in the overarching climate
dynamics that trigger these situations are still ineffectively comprehended [42]. These
teleconnections are characterized as repeating and persistent huge-scale patterns of circu-
lation anomalies and pressure across large areas, or even more basically, as atmospheric
interactions between usually isolated areas of the ground [38]. The teleconnections can last
from weeks to months and may appear for numerous successive years, meaning that they
could play a significant role in interdecadal and interannual atmospheric variability. Since
they influence precipitation, temperature, jet stream location, storm tracks, and intensity,
teleconnections are frequently held accountable for unusual climate patterns across re-
gions [40,41,43]. Different teleconnections are found around the globe, and specific indices
often characterize their strengths and phases. The main teleconnections of concern in
this study were the Mediterranean Oscillation Index (MOI), Southern Oscillation Index
(SOI), and North Atlantic Oscillation Index (NAOI), obtained from the Climate Research
Unit (CRU).

In this context, ENSO is related to regional climate variability and associated droughts
over large parts of the African continent. In general, Africa is the hottest and most water-
scarce continent on earth [17]. The Mediterranean climate is characterized as a mid-latitude
temperate climate with a dry summer season. Precipitation has a distinct yearly cycle,
with low precipitation in the summer season, as well as a spatial gradient, with values
dropping toward the south [44]. The high variability of the Mediterranean climate at
seasonal and inter-annual scales is caused by the transitional situation between temperate,
cold mild-latitudes and the tropics, resulting in significant circulation changes between
winter and summer, as well as the association with several large-scale atmospheric oscilla-
tions/teleconnection patterns [44].

The climate of West Africa, meanwhile, is influenced by the interaction of two air
masses, the effect of which fluctuates during the year due to the north-south movement
of the Intertropical Convergence Zone (ITCZ) [17]. From November to February, dusty
Harmattan winds blow throughout most of West Africa as a result of hot, dry continental
air masses coming from a high-pressure system above the Sahara desert. Annual monsoon
rains are brought by moist equatorial air masses originating over the Atlantic Ocean in the
summer [45]. As a result of these interacting air masses, West Africa’s precipitation regime
is defined by latitudinal belts of decreasing rainfall and the wet season length. Not only the
scarcity of rainfall but also its variability and unpredictability become more significant with
increasing latitude. As a result, rainfall variability is great from year to year, ranging from
10 to 20% in coastal regions and up to more than 40% in the northern Sahel [46]. Therefore,
drought is considered a recurrent phenomenon in North and West African regions.

The Mediterranean droughts, particularly those that occur during the wet season,
can have a significant impact on water resources by lowering groundwater levels and the
amount of water available in dams and reservoirs [17,47–49]. Meanwhile, in semiarid West
Africa, normal rainfall is rare and rainfall is biased to dryness, with a few big rainfall years
offset by a larger number of below-average rainfall years [50,51]. Therefore, with rainfall as
the limiting factor for farming and many countries strongly relying on rain-fed agriculture,
droughts affect natural ecosystems, crop production, and the food supply, and may have
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severe socioeconomic impacts [52,53]. What is more, severe dry episodes in Africa have
often been linked to the effects of the El Niño–Southern Oscillation (ENSO), leading to
regional precipitation and temperature anomalies around the globe [54]. Considering
the recent drought events of recorded history, and the devastating effects of drought on
agriculture and food security over large parts of Africa, monitoring and understanding
ENSO-related droughts in North and West Africa is a major concern for implementing
measures of adaption to drought hazards.

In this study, meteorological droughts are analyzed using the SPI at 1–12-month
timescales, to assess the dry and wet spells from 1982 to 2018 over North and West Africa.
Using the joint probability distribution function (JPDF), the drought return periods were cal-
culated based on their characteristics. MOI, NAOI, and SOI data from the CRU (1982–2018)
were used to examine the ENSO-drought relationship over the study area. The result of
this study can be considered when interrogating future drought variations in comparison
with the historical period.

2. Materials and Methods
2.1. Study Area

The study area covers North and West Africa. This region lies between latitudes 4◦

and 38◦N, and longitudes 18◦W and 40◦E. It is surrounded by the Atlantic Ocean in the
West and Southwest, the Red Sea in the East, the Mediterranean Sea in the North, and East
and Central Africa in the Southeast (Figure 1) [11]. The study region contains a range of
climates such as the desert climate (arid and hyper-arid), the semi-arid climate (steppe and
semi-desert), the tropical monsoon climate, and the tropical wet and dry climate [55].
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Figure 1. Study area. Adapted from Ref.[11].

2.2. Methods

In this work, we used the precipitation dataset during 1982–2018 from the Climate
Research Unit (CRU) (http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
accessed on 18 September 2021) between 1982 and 2018. The SPI presented by McKee
et al. [32] was used to assess meteorological drought. It is calculated by fitting the function
of the gamma distribution to the precipitation dataset of a specified frequency variation

http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
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across a region, and then converting the gamma distribution function to a normal distribu-
tion function with a variance and mean of one (1) and zero (0), respectively [11]. Following
Guttman [56], the main objective of doing this is to reduce the skewness in the dataset to
zero. The magnitude of the drought was understood as the cumulative SPI for the dry
years and considered as a positive value. The intensity of drought was calculated as the
drought magnitude divided by the drought duration. We also used the Mann-Kendall test
to characterize the SPI trends and precipitation and assess the statistical distributions of
the dataset records. Kalisa et al. [57] mentioned that the Mann-Kendall test is the most
suitable due to its ability to overcome the issue of (positive or negative) skewness associ-
ated with an extreme value of the precipitation dataset. In this work, we also studied the
main ENSO teleconnections such as the Mediterranean Oscillation Index (MOI), the North
Atlantic Oscillation Index (NAOI), and the Southern Oscillation Index (SOI), as obtained
from the CRU during 1982–2018 (https://crudata.uea.ac.uk/cru/data/pci.htm accessed
on 18 September 2021), to understand the ENSO-drought relationship over the study area.
The methodology employed in this study is illustrated in the abstract flowchart.

2.2.1. Standardized Precipitation Index (SPI)

For the SPI calculation, the method of Guttman [56] and Haroon et al. [58] was

used. The standard deviation (s), skew X (sk), and mean (
→
X) were defined following the

Equations below:

mean →
(x)

=
∑ X
N

(1)

standard deviation (s) =

√√√√∑ (X +
→
X)

2

N
(2)

skewness (sk) =
N

(N− 1)(N− 2)
∑ (X +

→
X)

2

N
(3)

where N represents the length of the dataset records and X presents the time series of
precipitation. The precipitation dataset was converted using the log normal (ln), and the
average of those values was calculated. The converted values were exposed to (U), which
was utilized to calculate the scale parameter and shape following the Equations:

Log mean =→
Xh

=
In(X)

N
(4)

U = In(X)− In(X)
N

(5)

Shape(β) =
1

4U

[
1 +

√
4U
3

]
(6)

and

Scale(α) =
→
X

β
(7)

Additionally, the values of (ln) were converted by the function of gamma distribution,
including the scale values and shape:

Cumulative gamma function G(x) =
1

αβΓβ

x∫
0

xβ−1e
x
a dx (8)

https://crudata.uea.ac.uk/cru/data/pci.htm
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and we performed a T transform as√
In
(

1
Xg2

)
, where 0 < Xg ≤ 0. (9)

Likewise, t =

√√√√In

(
1(

1− xg
)2

)
, where 0.5 < Xg ≤ 1.0 (10)

and

SPI = −t +
C0 + C1t + C2t2

1 + d1t + d2t2 + d3t3 , where 0 < Xg ≤ 0.5 (11)

or

SPI = t− C0 + C1t + C2t2

1 + d1t + d2t2 + d3t3 , where 0 < Xg ≤ 0.5. (12)

The constants articulated in Equations (11) and (12) are:
C0 = (2.515517), d1= (1.432788);
C1 = (0.802853), d2 = (0.189269);
C2 = (0.010328), d3 = (0.001308).

2.2.2. Magnitude, Intensity, and Duration of Drought

The magnitude of drought (DM) was obtained via Equation (13):

DM = −
n

∑
i=1

SPIij (13)

where DM is the drought magnitude and n is the number of months with a drought event
at j timescale. The drought intensity (DI) is the ratio of the drought magnitude (DM) to the
drought duration (Dd), as follows:

DM =
DM

Dd
(14)

2.2.3. Mann-Kendall Test

The Equation below displays the Mann-Kendall trend test:

S =
n−1

∑
i−1

n

∑
j−1+1

sgn
(
xj − xi

)
, (15)

where xj is ordered from j = i + 1, 2, 3, . . . .n and xi from i = 1, 2, 3, . . . .n – 1. The values of
the dataset are considered as a reference point to which assessment is prepared with the
dataset values xj, such as:

sgn
(
xj − xi

)
=


+1,>

(
xj − xi

)
0,=

(
xj − xi

)
−1,<

(
xj − xi

) (16)

The statistic of variance is given as

Var (S) =
n(n− 1)(2n + 5) −∑m

i=1 ti(i)(i− 1)(2i + 5)
18

(17)

where ti is the number of ties up to sample value i. Zc is the statistics test, which is
calculated as follows:
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as Zc =


S−1√
Var(S)

, S > 0

0, S = 0
S−1√
Var(S)

, S < 0
(18)

Zc defines a standard normal distribution (SND). The negative and positive Zc values
display downward and upward trends, respectively. Mondal et al. [59] mentioned that to
evaluate either a downward or upward trend, a significance level γ can be used; if Zc is
bigger than Zγ/2, then the test of the trend is assumed significant, and vice versa.

2.2.4. Sen’s Slope Estimator

Modarres et al. [60] characterized the Sen’s slope estimator, and the magnitude of the
slope is specified in the Equation below:

Ti =
xj − xk

j− k
(19)

where xk and xj are taken as datapoints k and j (j > k). Sen’s slope estimator is characterized
as the median of the values of N from Ti, which is specified as:

Qi =

{ TN+1
2

1
2

(
T N

2
+ TN+2

2

) (20)

Negative and positive values of Qi signify downward (decreasing) and upward
(increasing) trends, respectively.

The 12–month, 6–month, 3–month, and 1–month SPI were used to monitor a spa-
tiotemporal drought event in the long term over North and West Africa. This period was
sufficient for the assessment of drought intensity and frequency. The monthly SPI was
calculated so that the reliability of the intensity of drought could be categorized following
Table 1. González and Valdés [61] define a drought as a complex event, the treatment and
dimension of which depend on its frequency, duration, and severity. To determine the
probabilistic characteristic, we used the joint probability distribution function (JPDF) since
drought duration and severity are frequently difficult to assess distinctly.

Table 1. Description of SPI (McKee et al. [32]).

SPI Value Category

−2< Extreme drought
−1.99 to −1.5 Severe drought
−1.49 to −1 Moderate drought
−0.99 to 0 Mild drought
0 to 0.99 Mildly wet
1 to 1.49 Moderately wet

1.5 to 1.99 Very wet
2> Extremely wet

Assuming a set of interpretations yi . . . yn, Kim et al. [62] defined a mathematical
expression of fSD as:

fSD(s, d) =
1

nhshd

n

∑
i=1

{
K
(

S− Si

hs

)
K
(

d− di

hd

)}
(21)

Kim et al. [62] defined the drought joint return period (Tsd) as:

Tsd =
N

n[1− fSD(s, d)]
(22)
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where N presents the numbers of years.

3. Results
3.1. Precipitation Anomaly and Precipitation Characteristics over North and West Africa from
1982 to 2018

Characterization of the mean monthly precipitation from 1982 to 2018 over the study
area indicated great variability between two regions (Figure 2) [62]. In the North African
region, the rainy season started from October to April with deficient rainfall [63–65], while
in the southern regions of West Africa, there were two rainy seasons, one lasting from
the end of April to mid-July, and another, shorter one in September and October. In the
north, where there is less rainfall, there is only one rainy season, which lasts from July to
September [66,67].
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The precipitation anomalies in Figure 3 show positive and negative anomalies from
1982 to 2018 that occurred when the precipitation was below or above the normal conditions
(representing dry and wet conditions, respectively) for the North and West African regions.

The 36 hydrological years presented in Table 2, from 1982 to 2018, reveal 13 dry years
and 23 wet years. The years 2002–03, 2008–09, 2009–10, 2010–11, and 2016–17 were the
driest, while 1994–95, 1995–96, 2003–04, 2014–15, and 2015–16 were the wettest.

The annual precipitation, SPI–12, and corresponding anomalies for dry and wet years
revealed that dry and wet spells corresponded with negative and positive anomalies over
the North and West African regions, respectively (Table 2). This revealed that the drought
conditions occurred as a consequence of insufficient water in the ground. The magnitude of
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anomaly of the dry years was lower than that of the wet years. This knowledge is significant
for future management and planning of water usage, specifically for agricultural practices.

Table 2. SPI–12, annual precipitation (P), and annual precipitation anomaly (PA) over North and West Africa.

Conditions Year SPI–12 P (mm/yr) PA

Dry spells

1984–1985 −0.33 12,917.95 −35.52
1985–1986 −0.91 12,411.05 −97.47
1986–1987 −0.95 12,370.62 −102.41
1991–1992 −0.73 12,567.83 −78.31
1993–1994 −0.66 12,628.98 −70.84
1997–1998 −0.11 13,108.82 −12.2
2000–2001 −0.7 12,590 −75.6
2001–2002 −0.78 12,522.9 −83.8
2002–2003 −1.31 ** 12,053.27 −141.2
2008–2009 −1.23 12,124.13 −132.54
2009–2010 −1.76 ** 11,658.48 −189.45
2010–2011 −2.37 ** 11,120.93 −255.14
2016–2017 −1.7 ** 11,713.27 −182.75

Wet spells

1982–1983 0.5 13,647.62 53.65
1983–1984 0.11 13,307.62 12.1
1987–1988 0.39 13,554.4 42.26
1988–1989 0.49 13,638.78 52.57
1989–1990 0.62 13,753.18 66.56
1990–1991 0.59 13,726.6 63.31
1992–1993 0.62 13,756.88 67.01
1994–1995 1.09 14,172.83 117.84
1995–1996 1.04 14,126 112.12
1996–1997 0.2 13,380.67 21.03
1998–1999 0.77 13,894.5 83.82
1999–2000 0.2 13,389.85 22.15
2003–2004 1.09 14,172.48 117.8
2004–2005 0.18 13,365.32 19.15
2005–2006 0.35 13,519.73 38.02
2006–2007 0.89 13,989.17 95.4
2007–2008 0.55 13,693.35 59.24
2011–2012 0.62 13,757.6 67.09
2012–2013 0.27 13,449.07 29.39
2013–2014 0.19 13,371.9 19.96
2014–2015 1.51 * 14,535.47 162.16
2015–2016 1.23 * 14,292.22 132.43
2017–2018 0.02 13,226.32 2.16
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Figure 3. Precipitation anomalies over North and West Africa.

3.2. Spatiotemporal Variation of SPI over North and West Africa from 1982 to 2018

The spatial patterns of SPI–12 for the hydrological years between 1982 and 2018 across
North and West African regions are shown in Figure 4a–ak. Figure 4c,e,j,n,p,ab,ac,ad,aj
shows wet conditions in the North African region coupled with dry conditions in the West
African region while Figure 4d,f,o,q,r,s,y,ai registers wet conditions in the West African
region coupled with dry conditions in the North African region. This implies that many
areas registered a high SPI for several years and also registered a low SPI in other years.
Therefore, drought occurrence is not restricted to one region, and the SPI over many regions
of North and West Africa is changeable.

Figure 5 displays the SPI variation at different timescales of 1, 3, 6, and 12 months
from 1982 to 2018. The results indicate that short timescales (i.e., 1 or 3 months) have higher
temporal variability in wet and dry periods, while long timescales (12 months) have a
lower frequency of wet and dry periods.
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1992–93, (l) 1993–94, (m) 1994–95, (n) 1995–96, (o) 1996–97, (p) 1997–98, (q) 1998–99, (r) 1999–2000, (s) 2000–01, (t) 2001–02,
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2011–12, (af) 2012–13, (ag) 2013–14, (ah) 2014–15, (ai) 2015–16, (aj) 2016–17, (ak) 2017–18.
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3.3. Drought Characteristics, JPDF, and Drought Return Years over North and West Africa

The drought intensity, duration, and magnitude were computed across North and
West African regions (Table 3). The magnitude of drought was calculated as the cumulative
SPI–12 for the dry hydrological years and considered as a positive value. Years with a high
magnitude of drought were 2008–10, 2000–03, and 1984–87, with values of 5.361, 2.792,
and 2.187, respectively; these droughts each had a duration of three years. The lowest
magnitude of drought was observed in 1997–98, 1993–94, and 1991–92, with values corre-
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sponding to 0.113, 0.658, and 0.727, respectively; these droughts each had a duration of one
year. The duration and magnitude of drought show that extreme droughts last for longer,
and vice versa, in the study region.

Table 3. Characteristics of drought.

Hydrological Year Intensity Duration Magnitude

1984–1987 0.729 3 2.187
1991–1992 0.727 1 0.727
1993–1994 0.658 1 0.658
1997–1998 0.113 1 0.113
2000–2003 0.931 3 2.792
2008–2010 1.787 3 5.361
2016–2017 1.698 1 1.698

Figure 6 displays the spatial pattern of the magnitude of drought for various hydrolog-
ical years over North and West African regions. The results indicate that the magnitude of
drought was higher during the hydrological years 2008–11, 1984–87, 2000–03, and 2016–17.
In 2008–11, the regions that registered the highest drought magnitude covered Morocco
and Algeria. In 1984–87, the drought magnitude was higher over Tunisia, Algeria, Morocco,
Libya, Mauritania, Nigeria, and Sudan. In 2000–03, the drought magnitude was higher
over Sudan, Nigeria, Niger, Cote d’Ivoire, and Liberia. In 2016–17, the drought magnitude
was higher over Tunisia, Algeria, South Nigeria, Ghana, Cote d’Ivoire, and Liberia. These
results show spatial variability in the drought magnitude over the study period across
different parts of the two study regions.
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Figure 7 displays the drought risk generated from the maps of SPI over North and West
African regions during the selected dry years following the classification of McKee et al. [32].
The drought conditions can be characterized from extreme to moderate, with different
magnitudes and durations. Meanwhile, the severity, duration, and magnitude of drought
events changed from one region to another over the study period. The drought risk maps
show that drought could persist in some regions after a period of wide extent, and that the
regions to experience drought have differed over the years (see Figure 7a–m). In Figure 7l,
extreme drought conditions can be seen in the Sub-Saharan regions, Morocco, and Algeria.
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In a different case, in Figure 7m, extreme drought conditions can be observed over Morocco,
Nigeria, Benin, Ghana, Cote d’Ivoire, and Mauritania.
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Since the drought duration and severity may have different distributions, the probabil-
ity density function was calculated using the joint probability distribution function (JPDF)
provided by Equation (9), and the joint return years were calculated using Equation (10).
JPDF analysis is a multivariate method that may be used to manage water resources. The
JPDF was calculated based on the drought magnitude and duration using the 12–month
SPI (Figure 8). Figure 8 indicates that when drought severity is low and droughts occur at
short intervals, the chance of drought occurrence is high. Severe drought also requires a
certain number of years of duration to recur at such short intervals.

The drought severity, duration, and frequency curves for North and West Africa were
generated after the JPDF for the bivariate return periods of the drought was computed
(Figure 9). Figure 9 shows a bivariate study of drought severity for North and West
Africa, including return periods and severity levels. Drought severity is determined by
many drought drivers that exist in a given region. Drought severity describes the drought
magnitude of dry events. Figure 9 shows the JPDF drought-based curves created for
specified recurrence severity levels of one, two, three, four, and five years. It can be noted
that for a short drought duration lasting from one to two years, severe drought conditions
have greater drought return periods, of between 10 and 20 years. Moreover, a drought
lasting for three years with a severity from three to five can return in between 20 and
30 years.
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Tables A1–A4 (Appendix A) displays the occurrence of drought over North and West
African regions. The results indicate that drought is a complex phenomenon and the
drivers are enormously influenced by the conditions of the local environment of a specific
region. Dry periods are related to low rainfall values closely corresponding to the values of
SPI and to negative precipitation anomalies.

Spatial and temporal variability of drought trends can be observed in the study area
and are shown in Table 4 as the positive and negative trends of SPI at various timescales over
North and West African countries. The tested models of SPI indicated that SPI–12, SPI–3,
and SPI–1 showed significant trend values in Algeria, Tunisia, Mali, and Cote d’Ivoire,
with Sen’s slope (Kendall’s tau) values of 0.021 (0.156), 0.009 (0.127), and 0.006 (0.102);
0.007 (0.054), 0.007 (0.127), and 0.006 (0.187); 0.013 (0.095), 0.012 (0.159), and 0.009 (0.235);
and 0.010 (0.076), 0.008 (0.105), and 0.009 (0.130), respectively. Also, the tested models
of SPI indicated that SPI–12 showed a significant trend in Burkina Faso and Niger, with
Sen’s slope (Kendall’s tau) values of 0.008 (0.070) and 0.007 (0.048), respectively. Tan
et al. [68] mentioned that SPI–12 demonstrated year-round water deficiency, whereas SPI–1,
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SPI–3, and SPI–6 were suitable indicators of the state of seasonal water deficiency affected
by drought.

Table 4. Mann-Kendall test of 1–12 months’ SPI over North and West African countries.

Country Series\Test Kendall’s Tau p-Value Sen’s Slope

Algeria

SPI–12 0.156 0.188 0.021
SPI–6 0.146 0.217 −0.5
SPI–3 0.127 0.284 0.009
SPI–1 0.102 0.394 0.006

Tunisia

SPI–12 0.054 0.656 0.007
SPI–6 0.057 0.636 −0.5
SPI–3 0.127 0.284 0.007
SPI–1 0.187 0.112 0.006

Morocco

SPI–12 −0.165 0.162 −0.02
SPI–6 −0.102 0.394 −0.5
SPI–3 −0.13 0.272 −0.013
SPI–1 −0.124 0.297 −0.007

Libya

SPI–12 −0.187 0.112 −0.024
SPI–6 −0.273 0.019 −0.5
SPI–3 −0.241 0.039 −0.015
SPI–1 −0.184 0.118 −0.007

Egypt

SPI–12 −0.06 0.617 −0.006
SPI–6 −0.022 0.861 −0.5
SPI–3 −0.149 0.207 −0.011
SPI–1 0.013 0.925 0.001

Mauritania

SPI–12 −0.083 0.49 −0.008
SPI–6 −0.01 0.946 −0.5
SPI–3 −0.067 0.579 −0.005
SPI–1 −0.054 0.656 −0.003

Senegal

SPI–12 −0.057 0.636 −0.012
SPI–6 −0.07 0.561 −0.5
SPI–3 −0.111 0.35 −0.007
SPI–1 −0.048 0.695 −0.002

Mali

SPI–12 0.095 0.425 0.013
SPI–6 0.016 0.903 −0.5
SPI–3 0.159 0.179 0.012
SPI–1 0.235 0.045 0.009

Niger

SPI–12 −0.051 0.675 −0.006
SPI–6 0.067 0.579 −0.5
SPI–3 0.07 0.561 0.008
SPI–1 0.041 0.735 0.004

Sudan

SPI–12 −0.098 0.409 −0.009
SPI–6 −0.117 0.323 −0.5
SPI–3 0.029 0.818 0.003
SPI–1 −0.057 0.636 −0.002

Guinea

SPI–12 −0.076 0.525 −0.01
SPI–6 −0.086 0.473 −0.5
SPI–3 −0.048 0.695 −0.004
SPI–1 −0.063 0.598 −0.004

Burkina Faso

SPI–12 0.048 0.695 0.007
SPI–6 0.057 0.636 −0.5
SPI–3 0.051 0.675 0.004
SPI–1 0.083 0.49 0.004

Chad

SPI–12 −0.076 0.525 −0.013
SPI–6 −0.127 0.284 −0.5
SPI–3 −0.076 0.525 −0.004
SPI–1 0.051 0.675 0.002
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Table 4. Cont.

Country Series\Test Kendall’s Tau p-Value Sen’s Slope

Sierra Leone

SPI–12 −0.005 0.967 0
SPI–6 −0.053 0.652 −0.5
SPI–3 0.018 0.881 0
SPI–1 0.072 0.539 0.001

Cote d’Ivoire

SPI–12 0.076 0.525 0.01
SPI–6 0.105 0.379 −0.5
SPI–3 0.13 0.272 0.008
SPI–1 0.181 0.125 0.009

Ghana

SPI–12 −0.013 0.925 −0.003
SPI–6 0 0.989 −0.5
SPI–3 −0.057 0.636 −0.003
SPI–1 0.048 0.695 0.002

Nigeria

SPI–12 −0.184 0.118 −0.019
SPI–6 −0.076 0.525 −0.5
SPI–3 0.003 0.989 0
SPI–1 −0.098 0.409 −0.006

Table 5 illustrates positive and negative precipitation trends across North and West African
countries. The tested models of precipitation showed significant trends in Algeria, Tunisia, Mali,
Sudan, Burkina Faso, and Cote d’Ivoire with Sen’s slope (Kendall’s tau) values of 1.1375 (0.156),
0.637 (0.054), 1.352 (0.124), 0.087 (0.019), 0.619 (0.048), and 1.73 (0.07), respectively.

Table 5. Mann-Kendall test of annual precipitation over North and West African countries.

Series\Test Kendall’s Tau p-Value Sen’s Slope

Algeria 0.156 0.188 1.375
Tunisia 0.054 0.656 0.637

Morocco −0.165 0.162 −2.079
Libya −0.206 0.079 −0.922
Egypt −0.105 0.379 −0.821

Mauritania −0.095 0.414 −0.088
Senegal −0.057 0.636 −0.964

Mali 0.124 0.297 1.352
Niger −0.054 0.656 −0.389
Sudan 0.019 0.882 0.087
Guinea −0.076 0.525 −1.317

Burkina Faso 0.048 0.695 0.619
Chad −0.068 0.558 −1.392

Sierra Leone −0.005 0.967 0.000
Cote d’Ivoire 0.070 0.561 1.730

Ghana −0.013 0.925 −0.453
Nigeria −0.222 0.058 −2.469

3.4. ENSO-Drought Relationship
3.4.1. Mediterranean Oscillation Index (MOI)

The MOI was determined by Palutikof et al. [69] and Conte et al. [70] as the difference
of normalized pressure between Algiers (36.4◦N, 3.1◦E) and Cairo (30.1◦N, 31.4◦E). Daily
records of this index were obtained from the Climate Research Unit (University of East
Anglia) from 1982 to 2018, and monthly and annual means were collated by averaging
daily values. In this work, we chose neutral, La Niña, and El Niño conditions based on the
Mediterranean oscillation (MOI) for the Mediterranean regions (Figure 10). We considered
La Niña (El Niño) as a period with a MOI below (above) −0.5 ◦C (+0.5 ◦C) and neutral as
−0.5 < MOI < +0.5. Figure 10 shows La Niña as lasting from October to February and El
Niño from June until August in many years.
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The 1–12 month SPI values for the yearly MOI showed only neutral years over the
study period (Figure 11). The results displayed in Figure 11 show that for the SPI at
different timescales, the mean magnitude was very similar and the mean duration was
between two and five years.
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3.4.2. North Atlantic Oscillation Index (NAOI)

The NAOI was determined by Jones et al. [71] as the difference of the normalized sea
level pressure between Southwest Iceland and Gibraltar. This index’s monthly and yearly
records were obtained from the Climate Research Unit (University of East Anglia) from
1982 to 2018. We selected neutral, La Niña, and El Niño conditions based on the North
Atlantic Oscillation Index (NAOI) in this work. We considered La Niña (El Niño) as a
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period with a NAOI below (above) −0.5 ◦C (+0.5 ◦C) and neutral as −0.5 < NAOI < +0.5
(Figure 12).

Figure 12 displays La Niña, El Niño, and neutral conditions for different months
during 1982–2018. The most noticeable La Niña years were in 2002–03 from September to
December, with −3.58, −1.5, −0.55, and −0.98 monthly NAOI values, and in 2010–11 from
September to January, with −2.01, −2.41, −3.34, −4.61, and −1.38. Moreover, the most
noticeable El Niño years were observed in 1991–92 from November to May with monthly
NAOI values of 1.86, 1.24, 0.64, 3.18, 1.66, 1.32, and 0.79, in 2014–15 from December to May
with 1.89, 2.81, 1.47, 1.99, 1.03, and 2.09, and in 2015–16 from November to February with
3.54, 4.22, 1.17, and 1.61.

The 1–12 month SPI values for the yearly NAOI revealed La Niña, El Niño, and
neutral years from 1982 to 2018 (Figure 13). The results displayed in Figure 13 show that in
(A) neutral years, the mean magnitude was very similar for SPI–1, SPI–3, SPI–6, and SPI–12,
with a value of 0.2, and the mean duration was similar for SPI–3, SPI–6, and SPI–12, with a
value of 2, while for SPI–1 it presented a value of 4. For (B) La Niña years, the results show
that the mean magnitude for SPI–1, SPI–3, and SPI–6 was similar (between 0.6 and 0.8),
and for SPI–12 it presented a value of 1.4. The mean duration was very similar for SPI–1,
SPI–3, and SPI–6 at around 1, and for SPI–12 it was 1.4. For (C) El Niño years, the result
display that for SPI–3, SPI–6, and SPI–12 the mean magnitude was between 0.5 and 1,
with the mean duration very similar for SPI–3, SPI–6, and SPI–12 at around 1.
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3.4.3. Southern Oscillation Index (SOI)

The Southern Oscillation Index (SOI) was defined by Ropelewski and Jones [72] as the
difference of normalized pressure between Darwin and Tahiti. This index’s monthly and
yearly records were obtained from the Climate Research Unit (University of East Anglia)
from 1982 to 2018. We chose neutral, La Niña, and El Niño conditions based on the SOI in
this work. We considered La Niña (El Niño) as a period with a SOI below (above) −0.5 ◦C
(+0.5 ◦C) and the condition to be neutral at −0.5 < SOI < +0.5 (Figure 14).
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Figure 14 shows La Niña, El Niño, and neutral conditions for various months during
1982–2018. The most noticeable La Niña years were in 1986–87 from November to August,
in 1991–92 and 1997–98 from September to April, in 2002–03 from September to March,
and in 2009–10 from October to March. Furthermore, the most visible El Niño years were
observed in 1998–99 from September to April, in 2000–01 from September to February,
and in 2007–08 from November to April.

Figure 15 displays the 1–12 month SPI values for yearly SOI, showing La Niña,
El Niño, and neutral years from 1982 to 2018. The results revealed that during (A) neutral,
(B) La Niña, and (C) El Niño years, the mean magnitude and mean duration were very
similar for SPIs at various timescales.
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4. Discussion

The most widely used drought indicator is the actual precipitation, represented
as a percentage variation from normal (or long-term average), although it has limited
use/reliability for regional comparison due to its reliance on the mean [73]. According
to Ye et al. [74], the SPI reflects a deviation from the mean and is thus expressed as a
normalized index in time and space in standard deviation units. The deviation from the
mean is a probabilistic indicator of the severity of the wetness or drought that may be used
to estimate risk. Given that the SPI is a statistical approach, it was preferable to use data
from as far back as 1982 in this study. Long records provide more trustworthy statistics
for the SPI. As a result of the availability of such data records, the SPI has gained traction
as a potential drought indicator in recent years, allowing for comparisons across different
precipitation zones [73,74].

The results of this study revealed that extremely low or extremely high precipitation
was linked with extremely low or extremely high SPI values. When the precipitation was
very low or very high, SPI readings accurately predicted the dryness or wetness. Table 2
demonstrates that all periods with dry spells had low/negative anomaly and SPI values,
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with the driest being 2010–2011 (2.37) followed by 2009–2010 (1.76). Similarly, wet spell
periods showed positive anomaly and SPI values, with the wettest periods being 2014–2015
(1.51) and 2015–2016 (1.23). The findings of this investigation are consistent with the SPI
classifications of McKee et al. [32]. Our results are also consistent with Henchiri et al. [11],
who evaluated the spatiotemporal patterns of drought and its impact on vegetation in North
and West Africa, finding that 2002, 2009, 2010, and 2016 were the driest years, and 2014 and
2015 were the wettest years. Furthermore, Ghoneim et al. [75] analyzed vegetation drought
in North Africa (Tunisia) and identified 2002 as the driest year. Moreover, SPI analysis
at 1, 3, 6, and 12–month timescales showed that shorter timescales have large temporal
variability in dry and wet periods, but longer timescales (12 months) have a much lower
frequency of dry and wet periods (Figure 4). Furthermore, drought characteristic analysis
showed that years of higher drought magnitude increased when the duration of drought
was longer, and vice versa (see Table 3 and Figure 6). Also, the severity of drought might
differ in a specific region in different years (see Figure 7), which confirms the findings
of the study of Orimoloye et al. [14]. They mentioned that the Sahel experiences severe
drought conditions with a significantly greater water deficiency than elsewhere, especially
during the late dry seasons. The period of 2001 to 2019, during late dry seasons, showed
severe to extreme drought conditions, while the region observed mild droughts, such as
in 2001 and 2003–2018, where the region observed no to moderate drought events during
the wet seasons. Additionally, numerous studies over arid regions, such as those of Kim
et al. [62], Kalisa et al. [57], and Mesbahzadeh et al. [76], have mentioned that the likelihood
of drought is higher when the severity is lower, and that such a drought happens at a
short timescale. Simultaneously, severe drought conditions take many years to repeat
themselves, as was confirmed by the results of the JPDF and joint return years analysis in
our study (see Figures 8 and 9).

The findings of this study show that drought characteristics analysis (magnitude,
intensity, and duration) using SPI can be applied to accurately measure the drought inten-
sity in regions like North and West Africa, where drought sensitivity and low precipitation
are common.

The SPI–12 and precipitation anomalies (Appendix A, Tables A1–A4), the Mann-
Kendall trend and significance level of 1–12-month SPI (Table 4), and the Mann-Kendall
trend and significance level of precipitation (Table 5) demonstrate varied findings, both spa-
tially and temporally, over North and West African countries. For example, a country
may have the same drought level (SPI), but the precipitation anomaly values may differ
(Appendix A, Tables A1–A4). The drought of 2010–11 was worst in countries like Maurita-
nia, Senegal, Mali, Niger, Sudan, Guinea, Burkina Faso, and Chad. From 2002–03, Algeria,
Tunisia, Morocco, and Libya experienced severe drought conditions. Also, from 2000–01,
Morocco and Libya experienced severe drought episodes (Appendix A, Tables A1–A4).
Table 4 reveals that out of 17 countries, the tested models of SPI indicated that SPI–12,
SPI–3, and SPI–1showed significant trends in Algeria, Tunisia, Mali, and Cote d’Ivoire
with Sen’s slope (Kendall’s tau) values of 0.021 (0.156), 0.009 (0.127), and 0.006 (0.102);
0.007 (0.054), 0.007 (0.127), and 0.006 (0.187); 0.013 (0.095), 0.012 (0.159), and 0.009 (0.235);
and 0.010 (0.076), 0.008 (0.105), and 0.009 (0.130), respectively. Also, the tested models of
SPI indicated that SPI–12 showed significant trends in Burkina Faso and Niger with Sen’s
slope (Kendall’s tau) values of 0.008 (0.070) and 0.007 (0.048), respectively. The results in
Table 5 illustrate positive and negative precipitation trends across North and West African
countries. The tested models of precipitation showed significant trends in Algeria, Tunisia,
Mali, Sudan, Burkina Faso, and Cote d’Ivoire with Sen’s slope (Kendall’s tau) values of
1.1375 (0.156), 0.637 (0.054), 1.352 (0.124), 0.087 (0.019), 0.619 (0.048), and 1.73 (0.07), respec-
tively. Furthermore, Table 5 shows that most countries suffered oscillations between dry
and wet conditions, with a few countries becoming increasingly wet and others becoming
increasingly dry. There was no discernible trend in precipitation at a regional scale. During
the research period, there was no substantial change in the annual rainy season’s precipi-
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tation. We used SPI to study precipitation, to address potential changes in precipitation
extremes, because there was no yearly trend in precipitation amount.

Due to the diverse plant varieties over the study area, which have variable water
storage capabilities, a temporal lag was expected [77]. The humid areas of various ports of
West Africa (with mostly dense forests), as stated by Henchiri et al. [11], are projected to
have the largest time lag. This is because, according to McDowell et al. [78], forests have
the greatest capacity for water retention, with deeper roots to tap groundwater. Arid and
semi-arid regions such as Sudan, Chad, Mali, Niger, Mauritania, Libya, Algeria, and Egypt,
on the other hand, are primarily covered by grasslands and have a shorter time lag due to
grasslands’ lower water retention capacity. The north parts of Algeria, Tunisia, Morocco,
Libya, and Egypt are sub-humid areas covered by croplands. Croplands’ water storage
capacity is estimated to be comparable to, if not lower than, that of grasslands. Moreover,
artificial irrigation, according to Grünzweig et al. [79], might change the time lag for
irrigated agricultural zones. As a result, semi-arid areas are likely to have a temporal lag
equivalent to or longer than dry areas [80]. This pattern closely resembles the study’s
findings, as illustrated in Appendix A Tables A1–A4, Table 5, and Figures 4, 6 and 7.

In terms of the ENSO-drought relationship over the study region, we sought to better
understand the mechanism that drives drought and predict its variability, to enhance
early warning and disaster risk management. We used the MOI, NAOI, and SOI, which
displayed the La Niña, El Niño, and neutral conditions for various months of 1982–2018.
For the MOI, La Niña was noted from November to February, and El Niño was detected
from June to August in some years. The mean magnitude of SPI at different time scales
was very similar during the neutral years for MOI, and the mean duration was between
two and five years.

For the NAOI, the most noticeable La Niña years were 2002–03 and 2010–11, and for El
Niño, 1991–92, 2014–15, and 2015–16 during autumn (SON) and winter (DJF), a period that
concurs with the increased precipitation in northern regions. For NAOI during the neutral
years, the mean magnitude was very similar for SPI at 1–12 months’ timescale, and the
mean duration was similar for SPI–12, SPI–6, and SPI–3. For La Niña years, the mean
magnitude and mean duration for SPI–1, SPI–3, and SPI–6 were similar, and in El Niño
years, the mean magnitude and mean duration were similar for SPI–12, SPI–6, and SPI–3.
These results with the spatial pattern of SPI–12 revealed that drought conditions could occur
during La Niña years and wet conditions during El Niño years in many regions affected by
the NAOI like Morocco, Algeria, and the sub-Saharan countries (Figures 4, 12 and 13). This
result clarifies that there is a direct connection between drought and the NAOI over these
countries, which is in agreement with the work of Hurrell [81] and Osborn et al. [82], who
mentioned that the North Atlantic Oscillation (NAO) is one of the main modes of variability
of the northern hemisphere’s atmosphere. The NAO is especially important in winter when
it exerts robust control over the northern hemisphere’s climate. Osborn [83] also reported
that this season could be subject to intense interdecadal variability; in winter, the difference
of the normalized sea level pressure between Southwest Iceland and Gibraltar is a useful
index of the strength of the NAOI. Furthermore, Mariotti et al. [84,85] found that averaged
rainfall over the western Mediterranean is significantly correlated with ENSO variability
in autumn, with the trend opposite to that found in spring.

For the SOI, the most noticeable La Niña years were 1986–87, 1991–92, 1997–98, 2002–
03, and 2009–10, and the El Niño years were 1998–99, 2000–01, and 2007–08. The 1–12 month
SPI revealed that for the SOI, the mean magnitude and duration were very similar during
neutral, La Niña, and El Niño years. Comparison of this result with the spatial pattern of
SPI–12 revealed that drought conditions could occur during La Niña years in many regions
affected by the SOI like Guinea, Ghana, Sierra Leone, Mali, Cote d’Ivoire, Burkina Faso,
Niger, and Nigeria (Figures 4, 14 and 15). Our result was affirmed by Ogunjo et al. [51];
they investigated the impact of large-scale ocean oscillation indices—the SOI, NAO and
Pacific Decadal Oscillation (PDO)—on drought over West Africa. They found that the SOI
showed a predominantly positive correlation with drought over the West African region,
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while PDO and NAO showed a negative correlation. Moreover, Addi et al. [86] studied
the impact of large-scale climate indices on the meteorological drought of coastal Ghana
(West Africa). They found that the SPI and ENSO led to moderate to severe drought during
the dry seasons, meaning they have great potential for seasonal drought prediction over
coastal Ghana. This conclusion demonstrates that drought in these regions can be linked to
the SOI. The trend in the ENSO originating in both the Pacific and Indian Oceans influences
the regional climate of West Africa. This affirms that the global phenomenon’s apparition
impacts weather conditions, and mainly those in West Africa, as confirmed by Egbuawa
et al. [87] and Adeniyi et al. [88].

5. Conclusions

There is a consensus on the increase in droughts over the past decades, nor on future
climate scenarios, for most regions of Africa. Recent studies have made significant progress
in understanding drought in West and North African regions, as well as the effects of
climate change, but further research is needed due to the uncertainty remaining in regional
climate responses. This could be addressed by recent advances in climate modelling, which
take advantage of increased spatiotemporal resolutions and a better quality of observations.
In the current study, the SPI index was used to effectively describe the meteorological
drought over North and West African regions from 1982 to 2018. The result for 36 years
showed 13 dry years and 23 wet years. The SPI analysis at different timescales revealed
a higher temporal variability in wet and dry periods for short timescales, while for long
timescales, it was lower. The drought characteristics also showed that years of higher
drought magnitude increased when the duration was longer (and vice versa), and the
severity of drought differed across the study area over the different study years. In terms of
the ENSO-drought relationship, the NAOI showed that the mean drought characteristics,
duration, and magnitude for SPI–1, SPI–3, and SPI–6 were similar in La Niña years, while
the mean drought characteristics for SPI–12, SPI–6, and SPI–3 coincided with El Niño years.
The SOI showed that the mean magnitude and duration were very similar during La Niña
and El Niño years at various timescales. The NAOI and SOI with the spatial pattern of
SPI–12 revealed that drought conditions could occur in many regions. In Morocco, Algeria,
and the sub-Saharan countries, the result clarified a direct link between the NAOI and
drought in these countries. The findings of this study also exposed how drought is linked
with the SOI in Guinea, Ghana, Sierra Leone, Mali, Cote d’Ivoire, Burkina Faso, Niger,
and Nigeria.

The SPI was an applicable and suitable index for drought monitoring over the study
region as it offered drought analysis at various timescales. This research might aid in
improving our understanding of drought characteristics and return years, and their associ-
ation with the ENSO over the study area, which will be useful for monitoring droughts in
an integrated manner. Moreover, this study offers policymakers essential information that
is prerequisite to local adaptation, increased mitigation measures, and resilience in the face
of a vulnerable ecoclimatic system, brought on by constant climate change in the study
area. For improved understanding of the drought processes related to climate change,
a shift from index-based analysis to impact-based research is likely required. Adaptation to
forthcoming climate changes will present a huge challenge for the region, and this necessi-
tates a comprehensive assessment of droughts that includes a realistic representation of the
water available in soils, drought propagation, feedback from vegetation cover, and human
influence during these events.
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Appendix A

Table A1. Annual PA and SPI–12 for different countries (Algeria, Tunisia, Morocco, Libya and Egypt) in northern region
between 1982 and 2018.

Year
Algeria Tunisia Morocco Libya Egypt

PA SPI PA SPI PA SPI PA SPI PA SPI

1982–1983 −0.05 −0.01 0.51 0.57 0.16 0.25 0.30 0.31 0.05 0.00
1983–1984 −1.00 −0.89 −0.76 −0.76 −0.40 −0.33 −0.85 −0.60 −0.80 −0.43
1984–1985 0.62 0.53 0.68 0.73 0.16 0.26 0.52 0.54 0.39 0.50
1985–1986 −1.68 −1.64 −1.55 −1.73 1.05 1.06 −1.01 −0.89 −0.23 −0.39
1986–1987 0.59 0.57 −0.11 −0.05 −1.00 −1.03 1.62 1.30 0.67 −0.01
1987–1988 −0.79 −0.68 −1.62 −1.82 1.90 1.74 −0.22 −0.13 2.86 1.40
1988–1989 −0.78 −0.68 −0.61 −0.59 0.96 0.99 1.55 1.16 1.20 1.24
1989–1990 2.00 1.68 0.90 0.94 1.44 1.39 −0.97 −0.71 −1.35 −1.00
1990–1991 0.46 0.48 0.66 0.71 0.06 0.16 −0.24 −0.11 0.02 0.49
1991–1992 0.75 0.71 1.08 1.10 0.94 0.97 2.15 1.47 1.11 0.12
1992–1993 0.63 0.54 1.10 1.12 0.04 0.14 0.84 0.70 −0.35 −0.41
1993–1994 −1.55 −1.49 −0.37 −0.33 −0.44 −0.37 0.29 0.34 −0.36 0.21
1994–1995 −0.05 −0.03 −1.38 −1.51 −0.75 −0.72 1.07 0.84 1.06 0.63
1995–1996 2.21 1.84 3.10 2.76 1.98 1.81 1.52 1.24 −1.16 −1.10
1996–1997 −0.99 −0.88 −1.19 −1.27 −0.74 −0.72 −0.89 −0.63 0.13 0.09
1997–1998 0.20 0.20 0.39 0.45 −0.16 −0.07 1.13 0.98 −0.16 0.78
1998–1999 −1.32 −1.31 0.29 0.35 −1.04 −1.09 0.37 0.26 −1.44 −0.85
1999–2000 −1.13 −1.07 −0.75 −0.74 −0.61 −0.56 −0.04 −0.01 −1.49 −1.24
2000–2001 −0.77 −0.67 −0.82 −0.83 −1.54 −1.79 * −1.63 −1.40 * 0.93 0.31
2001–2002 −0.71 −0.61 −0.76 −0.75 0.77 0.82 0.68 0.22 −0.07 −0.37
2002–2003 −1.20 −1.13 * −0.68 −0.67 * −1.12 −1.19 * −1.19 −1.17 * 0.25 0.91
2003–2004 0.94 0.85 1.03 1.06 0.72 0.78 −0.19 −0.02 0.08 0.10
2004–2005 −0.32 −0.26 0.34 0.41 −1.04 −1.09 −0.47 −0.55 0.07 0.52
2005–2006 0.48 0.48 −0.11 −0.05 0.58 0.66 1.19 0.99 −0.65 −0.50
2006–2007 −0.26 −0.16 1.10 1.12 −0.69 −0.65 −0.32 −0.16 −0.65 −0.70
2007–2008 −0.05 0.02 −1.11 −1.17 −0.76 −0.74 −0.59 −0.36 −0.84 −0.80
2008–2009 −0.76 −0.65 1.12 1.14 0.29 0.38 −0.82 −0.57 1.31 0.84
2009–2010 0.44 0.46 −1.21 −1.29 −0.71 −0.68 −0.61 −0.49 1.11 0.88
2010–2011 −0.99 −0.88 −0.53 −0.50 −1.27 −1.39 0.26 0.17 −1.66 −1.49
2011–2012 0.24 0.29 0.31 0.38 −0.65 −0.60 −0.04 0.00 −0.26 −0.35
2012–2013 1.74 1.49 −0.77 −0.77 0.39 0.48 −1.77 −1.62 0.09 0.17
2013–2014 −0.16 −0.08 −0.31 −0.26 −0.78 −0.77 −0.51 −0.36 0.67 1.15
2014–2015 1.32 1.15 1.02 1.05 1.64 1.55 −0.64 −0.43 −1.32 −1.12
2015–2016 1.06 0.96 −0.14 −0.08 1.54 1.47 −1.75 −1.51 −0.80 −0.58
2016–2017 −0.19 −0.14 0.71 0.76 −1.57 −1.84 1.06 0.91 1.70 0.49
2017–2018 1.06 0.97 0.42 0.49 0.64 0.70 0.18 0.27 −0.10 0.45

*: Dry years.

http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
https://crudata.uea.ac.uk/cru/data/pci.htm
https://crudata.uea.ac.uk/cru/data/pci.htm
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Table A2. Annual PA and SPI–12 for different countries (Mauritania, Senegal, Mali, Niger and Sudan) in western region
between 1982 and 2018.

Year
Mauritania Senegal Mali Niger Sudan

PA SPI PA SPI PA SPI PA SPI PA SPI

1982–1983 1.24 0.82 −0.30 −0.22 0.75 0.80 0.47 0.44 −0.11 −0.04
1983–1984 −0.05 0.17 0.41 0.47 −0.74 −0.45 0.58 0.56 0.00 0.26
1984–1985 1.00 0.50 0.20 0.27 −1.21 −0.91 −0.88 −0.81 −1.09 −0.72
1985–1986 −0.46 −0.02 −0.14 −0.07 −0.52 −0.65 −0.89 −0.80 0.08 0.11
1986–1987 0.40 −0.19 0.40 0.46 −1.53 −1.28 −0.99 −0.83 −0.99 0.06
1987–1988 0.74 0.86 1.38 1.31 0.22 0.15 0.75 0.70 1.16 0.70
1988–1989 1.03 0.80 2.31 2.04 0.70 0.61 0.86 0.81 −0.12 −0.22
1989–1990 0.27 0.31 1.17 1.14 −0.60 −0.43 −0.43 −0.30 −0.63 −0.12
1990–1991 −1.22 −1.24 −1.56 −1.68 −0.28 −0.31 0.26 0.31 −0.39 −0.93
1991–1992 −0.71 −0.31 −0.59 −0.53 −0.63 −0.49 −0.78 −0.63 −0.92 0.35
1992–1993 0.42 0.42 −0.03 0.05 0.89 0.87 1.52 1.27 1.79 1.17
1993–1994 −1.77 −1.70 −0.62 −0.57 0.78 0.64 0.85 0.80 0.60 0.52
1994–1995 1.00 1.02 −0.01 0.07 0.82 0.63 0.28 0.33 0.78 0.77
1995–1996 0.56 0.72 −0.42 −0.35 −0.61 −0.52 −1.06 −0.91 −0.17 0.28
1996–1997 0.35 0.38 0.18 0.25 0.97 0.93 0.61 0.57 0.65 0.40
1997–1998 −1.07 −0.53 −1.20 −1.23 −0.56 −0.57 −0.22 −0.12 0.01 0.06
1998–1999 0.48 0.44 0.76 0.78 1.37 1.16 2.25 1.84 1.88 1.14
1999–2000 0.23 0.19 0.79 0.81 0.55 0.52 0.17 0.21 0.56 −0.08
2000–2001 0.38 0.40 0.08 0.15 −0.20 −0.04 −0.03 0.03 0.28 0.40
2001–2002 −0.90 −0.41 −1.31 −1.37 −2.44 −2.24 −0.79 −0.68 −0.73 0.01
2002–2003 −0.59 −0.01 −0.69 −0.64 −0.45 −0.46 −1.24 −1.16 −0.38 0.04
2003–2004 1.60 1.28 0.63 0.67 0.71 0.57 0.17 0.20 −0.64 −0.56
2004–2005 −0.49 −0.26 1.44 1.36 −0.52 −0.35 0.42 0.44 0.11 0.09
2005–2006 0.31 0.26 0.26 0.32 0.15 0.17 0.37 0.38 0.34 0.34
2006–2007 0.12 0.37 −0.09 −0.01 0.63 0.66 1.11 0.96 1.95 2.20
2007–2008 0.36 0.27 0.87 0.88 0.26 0.26 0.61 0.58 −0.30 −0.72
2008–2009 −0.85 −1.13 −1.03 −1.03 −0.55 −0.68 −1.05 −0.90 −1.44 −2.45
2009–2010 −0.45 −0.92 −1.82 −2.05 −0.65 −0.99 −0.25 −0.13 −1.36 −1.03
2010–2011 −2.58 −2.49 * −1.46 −1.56 * −2.01 −1.97 * −2.94 −3.25 * −2.96 −2.73 *
2011–2012 0.12 0.17 0.27 0.34 1.53 1.38 0.78 0.66 1.22 0.29
2012–2013 0.80 0.46 0.42 0.48 0.20 0.30 1.26 1.01 0.77 0.04
2013–2014 0.44 0.45 0.32 0.38 0.26 0.27 −0.31 −0.19 0.27 0.45
2014–2015 0.54 0.57 1.27 1.22 0.91 0.77 −0.13 −0.08 0.43 −0.29
2015–2016 1.24 0.90 1.13 1.10 2.36 1.86 0.32 0.35 −0.38 −0.22
2016–2017 −2.74 −2.77 −1.78 −1.99 −1.09 −0.76 −1.89 −1.82 −0.90 −0.55
2017–2018 0.23 0.32 −1.21 −1.24 0.51 0.57 0.24 0.20 0.64 1.05

*: Dry years.

Table A3. Annual PA and SPI–12 for different countries (Guinea, Burkina Faso, Chad, Sierra Leone and Cote d’Ivoire) in
western region between 1982 and 2018.

Year
Guinea Burkina Faso Chad Sierra Leone Cote d’Ivoire

PA SPI PA SPI PA SPI PA SPI PA SPI

1982–1983 1.51 1.51 0.46 0.48 0.95 0.83 0.57 0.57 −0.52 −0.48
1983–1984 1.07 1.10 −0.41 −0.38 0.48 0.47 0.60 0.61 −0.37 −0.30
1984–1985 −0.71 −0.71 0.33 0.36 −0.90 −0.77 −2.08 −2.13 0.63 0.63
1985–1986 0.12 0.16 −0.04 0.00 −0.03 0.03 −0.73 −0.71 −1.49 −1.41
1986–1987 −1.39 −1.46 −0.48 −0.46 −1.00 −0.89 −2.07 −2.12 −0.53 −0.51
1987–1988 −0.10 −0.07 −0.67 −0.65 1.24 1.10 −1.23 −1.23 0.38 0.40
1988–1989 −0.50 −0.49 −0.64 −0.62 0.75 0.66 −1.20 −1.19 1.15 1.10
1989–1990 −0.20 −0.17 −0.50 −0.48 0.02 0.08 0.51 0.52 0.38 0.40
1990–1991 −0.70 −0.70 −0.05 −0.01 1.18 1.05 −0.19 −0.17 0.85 0.82
1991–1992 −0.89 −0.91 0.13 0.17 −0.81 −0.70 0.94 0.93 −2.26 −2.27
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Table A3. Cont.

Year
Guinea Burkina Faso Chad Sierra Leone Cote d’Ivoire

PA SPI PA SPI PA SPI PA SPI PA SPI

1992–1993 −0.26 −0.24 1.50 1.46 −0.42 −0.31 0.39 0.41 0.29 0.30
1993–1994 0.08 0.12 0.32 0.35 −0.31 −0.22 −0.84 −0.83 −0.82 −0.72
1994–1995 1.44 1.45 0.73 0.74 0.23 0.23 1.08 1.07 0.95 0.89
1995–1996 −0.43 −0.42 −0.85 −0.84 0.29 0.27 0.59 0.60 2.01 1.76
1996–1997 0.78 0.82 1.27 1.25 0.97 0.86 0.65 0.65 −0.39 −0.37
1997–1998 −0.65 −0.65 0.82 0.84 −0.24 −0.15 1.27 1.24 −1.31 −1.26
1998–1999 1.04 1.07 0.43 0.46 −1.12 −1.00 1.07 1.05 0.25 0.26
1999–2000 1.38 1.39 0.62 0.64 −0.02 0.05 0.57 0.58 −0.31 −0.24
2000–2001 −0.24 −0.22 −0.59 −0.57 −0.79 −0.68 0.50 0.51 0.63 0.58
2001–2002 −1.12 −1.16 −2.07 −2.20 −1.09 −0.97 0.55 0.56 0.91 0.85
2002–2003 −0.41 −0.40 −1.15 −1.16 −0.80 −0.68 −0.34 −0.32 −0.55 −0.45
2003–2004 1.44 1.44 0.13 0.16 2.12 1.78 0.51 0.52 −0.02 −0.01
2004–2005 0.44 0.48 −1.30 −1.32 0.50 0.50 0.15 0.16 0.11 0.13
2005–2006 0.64 0.68 −0.32 −0.28 1.23 1.04 0.51 0.52 0.54 0.50
2006–2007 −0.99 −1.02 1.96 1.87 0.98 0.87 0.83 0.82 0.56 0.56
2007–2008 −0.47 −0.46 −0.06 −0.03 1.03 0.83 0.35 0.37 0.82 0.81
2008–2009 −0.46 −0.45 −0.38 −0.35 −1.04 −0.93 −2.05 −2.09 −1.34 −1.23
2009–2010 −0.69 −0.69 −0.36 −0.33 −1.43 −1.39 −2.54 −2.64 −0.94 −0.85
2010–2011 −1.75 −1.88 * −2.38 −2.57 * −2.29 −2.27 * −0.45 −0.43 0.34 0.37
2011–2012 −0.90 −0.92 1.68 1.62 1.39 1.22 0.48 0.49 −0.04 0.00
2012–2013 0.88 0.91 0.14 0.17 0.41 0.43 0.51 0.52 −0.61 −0.57
2013–2014 −0.11 −0.08 0.61 0.63 −0.80 −0.77 0.49 0.50 0.86 0.77
2014–2015 2.13 2.09 0.71 0.73 0.65 0.63 0.51 0.52 0.99 0.92
2015–2016 1.98 1.95 1.64 1.59 0.11 0.16 0.51 0.52 1.27 1.06
2016–2017 −1.00 −1.03 −1.61 −1.68 −1.70 −1.64 −0.90 −0.89 −2.67 −2.70
2017–2018 −0.99 −1.02 0.35 0.38 0.23 0.27 0.51 0.52 0.24 0.28

*: Dry years.

Table A4. Annual PA and SPI–12 for different countries (Ghana and Nigeria) in western region
between 1982 and 2018.

Year
Ghana Nigeria

PA SPI PA SPI

1982–1983 −0.29 −0.25 −0.32 −0.17
1983–1984 0.47 0.50 0.47 0.45
1984–1985 0.80 0.81 0.40 0.30
1985–1986 −1.25 −1.28 0.09 0.11
1986–1987 0.36 0.39 0.79 0.55
1987–1988 0.32 0.36 −0.21 −0.61
1988–1989 0.41 0.45 0.05 0.05
1989–1990 0.87 0.88 0.66 0.63
1990–1991 1.61 1.55 2.56 2.02
1991–1992 −1.91 −2.05 −1.35 −1.20
1992–1993 −0.26 −0.22 0.08 0.13
1993–1994 −0.97 −0.96 −0.58 −0.69
1994–1995 1.07 1.06 1.67 1.25
1995–1996 0.26 0.30 1.35 1.01
1996–1997 −0.44 −0.40 −0.51 −0.26
1997–1998 −0.32 −0.28 0.93 0.97
1998–1999 1.27 1.25 0.08 −0.09
1999–2000 −0.24 −0.20 0.33 0.59
2000–2001 −1.61 −1.69 −0.76 −0.47
2001–2002 0.15 0.19 −0.19 −0.05
2002–2003 −1.28 −1.31 −0.78 −0.59
2003–2004 −0.01 0.03 1.03 0.74
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Table A4. Cont.

Year
Ghana Nigeria

PA SPI PA SPI

2004–2005 0.53 0.56 0.34 0.25
2005–2006 −0.85 −0.84 −0.74 −0.44
2006–2007 0.89 0.90 0.85 0.65
2007–2008 1.68 1.61 1.22 0.83
2008–2009 −0.74 −0.72 −0.50 −0.12
2009–2010 −0.32 −0.28 −2.04 −1.91
2010–2011 1.99 1.88 −0.81 −0.48
2011–2012 0.47 0.50 −0.13 −0.09
2012–2013 −0.65 −0.63 −0.43 −0.32
2013–2014 0.49 0.52 −0.31 −0.23
2014–2015 0.96 0.97 0.19 0.11
2015–2016 −0.52 −0.48 −0.01 0.02
2016–2017 −2.19 −2.39 −2.82 −2.52
2017–2018 −0.73 −0.71 −0.59 −0.42
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