
International Journal of Automation and Computing, 3, (3), pp. 252–262, 2006

1

Real-time Design Constraints in Implementing

Active Vibration Control Algorithms

M. A. Hossain and M. O. Tokhi*

Department of Computing, School of Informatics,
University of Bradford, Bradford, BD7 1DP, UK

Email: m.a.hossain1@bradford.ac.uk

*Department of Automatic Control and Systems Engineering,
The University of Sheffield, Sheffield, S1 3JD, UK

Email: O.Tokhi@sheffield.ac.uk

ABSTRACT
Although computer architectures incorporate fast
processing hardware resources, high performance
real-time implementation of a complex control
algorithm requires an efficient design and software
coding of the algorithm so as to exploit special
features of the hardware and avoid associated
shortcomings of the architecture. This paper
presents an investigation into the analysis and
design mechanisms that will lead to reduction of the
execution time in implementing real-time control
algorithms. The proposed mechanisms are
exemplified by means of one algorithm, which
demonstrates the applicability of these mechanisms
to real-time applications. An active vibration control
(AVC) algorithm for a flexible beam system
simulated using the finite difference (FD) method is
considered to demonstrate the effectiveness of the
proposed methods. A comparative performance
evaluation of the proposed design mechanisms is
presented and discussed through a set of
experiments.

Keywords: Algorithm analysis and design, active
vibration control, flexible beam system, real-time
control, memory management.

1 Introduction

Analysis and design of algorithms are currently
subjects of widespread interest among researchers
and scientists. Accordingly a new scientific subject
has emerged during the 1960s and has quickly been
established as one of the most active fields of study
and an important topic in computer and systems
engineering. The reason for this sudden interest in

the study of algorithms is not difficult to trace as a
fast and successful development of digital
computers and their uses in many different areas of
human activity, which have led to the construction
of a great variety of computer algorithms. In many
cases, analysis of algorithms leads to the revelation
of completely new algorithms that are even faster
than all available algorithms. In general, a goal of
algorithmic analysis is to obtain sufficient
understanding of the relative merits of complicated
algorithms so as to provide useful information to
someone undertaking an actual computation.

In practice, more than one algorithm exists for
solving a specific problem. Depending on the
formulation, each can be evaluated numerically in
different ways. As computer arithmetic is of finite
accuracy, different results can evolve, depending on
the algorithm used and the way it is evaluated. On
the other hand, the same computing domain could
offer different performances due to variation in the
algorithm design and in turn, source code
implementation. The choice of the best algorithm
for a given problem and for a specific computer is a
difficult task and depends on many factors, for
instance, data and control dependencies of the
algorithm, regularity and granularity of the
algorithm and architectural features of the computer
domain [1], [2].

The ideal performance of a computer system
demands a perfect match between machine
capability and program behaviour. Program
performance is the turnaround time, which includes,
disk and memory accesses, input and output
activities, compilation time, operating system
overhead, and central processing unit (CPU) time.
In order to shorten the turnaround time, one can
reduce all these time factors. Minimising the run-

time memory management, efficient partitioning
and mapping of the program, and selecting an
efficient compiler for specific computational
demands, could enhance the performance.
Compilers have a significant impact on the
performance of the system. This means that some
high-level languages have advantages in certain
computational domains, and some have advantages
in other domains. The compiler itself is critical to
the performance of the system as the mechanism
and efficiency of taking a high-level description of
the application and transforming it into a hardware
dependent implementation differs from compiler to
compiler [3], [4].

Performance is also related to program optimisation
facility of the compiler, which may be machine
dependent. The goal of program optimisation is, in
general, to maximise the speed of code execution.
This involves several factors such as minimisation
of code length and memory accesses, exploitation of
parallelism, elimination of dead code, in-line
function expansion, loop unrolling and maximum
utilisation of registers. The optimisation techniques
include vectorization using pipelined hardware and
parallelization using multiprocessors simultaneously
[5].

The performance demand in modern real-time signal
processing and control applications has motivated
the development of advanced special-purpose and
general-purpose hardware architectures. However,
the developments within the software domain have
not been at the same pace and/or level as within the
hardware domain. Thus, although advanced
computing hardware with significant levels of
capability is available in the market, these
capabilities are not fully utilised and exploited at the
software level. Efficient software coding is essential
in order to exploit the special hardware features and
avoid associated shortcomings of the architecture.
There has been a substantial amount of effort
devoted to this area of research over the last decade
[6], [7], [8].

It is essential for enhanced performance of a
computing domain that a characteristic matching
between the computing requirements of an
algorithm and computing capabilities of the
computing domain is made. Moreover, source code
and corresponding memory management facility of
the computing domain play an important role in its
overall performance in implementing an algorithm.
This further includes the memory access time
required during execution of a program code. Some
special-purpose digital signal processing (DSP)
devices, for example the Texas Instruments
TMS320 devices, incorporate instructions, at the
assembly language level, that allow executing
commonly occurring operations in digital filtering

applications, such as multiply, add and shift
together. Such facilities attempt to minimise the
memory access time and hence enhance the
performance of the processor [9], [10].

This paper addresses the issue of algorithm analysis,
design and software coding for real-time active
control systems. A number of design methodologies
are proposed for the real-time implementation of an
AVC algorithm. The proposed methodologies are
exemplified and demonstrated with FD simulation
algorithm of a flexible beam system within the
framework of AVC. Finally, a comparative
performance of the proposed design mechanisms is
presented and discussed through a set of
experimental investigations.

2 Active Vibration Control Algorithm

Consider a cantilever beam system with a force
 txU , applied at a distance x from its fixed

(clamped) end at time t . This will result in a
deflection txy , of the beam from its stationery

position at the point where the force has been
applied. In this manner, the governing dynamic
equation of the beam is given by

 txU
mt

txy

x

txy
,

1,,
2

2

4

4
2

 (1)

where, is a beam constant and m is the mass of

the beam. Discretising the beam in time and length
using central FD methods, a discrete approximation
to equation (1) can be obtained as [11], [12]:

 txU
m

t
SYYY kkk ,

2
2

11

 (2)

where, 2422 xt with t and x

representing the step sizes in time and along the
beam respectively,

,,,

1,

1,2

1,1

1

,

,2

,1

1,

1,2

1,1

1

kn

k

k

j

kn

k

k

j

kn

k

k

k

y

y

y

Y

y

y

y

Y

y

y

y

Y

and S is a penta-diagonal matrix, given (for 20n ,
say) as:

d

c

b

b

b

b

a

S

4200

2410

1441

014410

001441

000144

000014

where,
2

7
7

a ,

2

2
6

b ,

2

2
5

c and

2

2
2

d . Equation (2) is the required relation for

the simulation algorithm, characterising the
behaviour of the cantilever beam system, which can
be implemented on a digital computer easily. For
the algorithm to be stable it is required that the
iterative scheme described in equation (2), for each
grid point, converges to a solution. It has been
shown that a necessary and sufficient condition for
stability satisfying this convergence requirement is

given by 25.00 2 [12].

A schematic diagram of an AVC structure is shown
in Fig. 1. A detection sensor detects the unwanted
(primary) disturbance. This is processed by a
controller to generate a cancelling (secondary,
control) signal so that to achieve cancellation at the
observation point. The objective in Fig. 1 is to
achieve total (optimum) vibration suppression at the
observation point. Synthesising the controller on the
basis of this objective yields [13],

1

0

11

Q

Q
C (3)

where, 0Q and 1Q represent the equivalent transfer

functions of the system (with input at the detector
and output at the observer) when the secondary
source is off and on respectively.

To investigate the nature and real-time processing
requirements of the AVC algorithm, it is divided
into two parts, namely control and identification.
The control part is tightly coupled with the
simulation algorithm, and both will be described in
an integral manner as the control algorithm. The
simulation algorithm will also be explored as a
distinct algorithm. Both of these algorithms are
predominately matrix based. The identification
algorithm consists of parameter estimation of the
models 0Q and 1Q and calculation of the required

controller parameters according to equation (3).
However, the nature of identification algorithm is
completely different as compared with the
simulation and control algorithms [10]. Thus, for
reasons of consistency only the simulation and

control algorithms are considered in this
investigation.

3 Algorithm Design

3.1 Beam Simulation Algorithm

The beam simulation algorithm is of regular
iterative type. In implementing this algorithm on a
sequential vector processor a performance better
than with any other processor can be expected. The
algorithm processes floating-point data, which is
computed within a small iterative loop.
Accordingly, the performance is further enhanced if
the processor has internal/external data cache and
instruction cache, built-in maths co-processor etc.

The simulation algorithm in equation (2) can be
expressed for exchange of information, for
computing the deflection of segments 8 and 16, as in
Fig. 2, assuming no external force is applied at these
points.

It follows from the above that computation of
deflection of a segment at time step t can be
described as in Fig. 3. It is also noted that
computation of deflection of a particular segment is
dependent on the deflection of six other segments.
These heavy dependencies could be major causes of
performance degradation in real-time sequential
computing, due to memory access time. On the
other hand, these dependencies might cause
significant performance degradation in real-time
parallel computing due to inter-processor
communication overheads.

To explore this issue, a number of design
mechanisms for the beam simulation algorithm were
developed in a real-time performance context.
Seven designs of the simulation algorithm were
developed and tested through a set of experiments
[14], [5]. These designs are considered here for
further investigation in the AVC framework. The
algorithms for different designs are described
through Fig.(s) 3 to 13.

3.1.1 Beam Algorithm–1: Shifting of data
array

Algorithm–1 was adopted from a previously
reported work [5]. The algorithm is listed in Fig. 4.
It is noted that complex matrix calculations are
performed within an array of three elements each
representing information about the beam position at
different instants of time. Following these
calculations, the memory pointer is shifted to the
previous pointer time step before the next iteration.
This technique of shifting the pointer does not
contribute to the calculation efforts and is thus a

program overhead. Other algorithms were deployed
to address this issue further.

3.1.2 Beam Algorithm–2: Array rotation

Algorithm–2 incorporates design suggestions made
by [14]. A listing of Algorithm–2 is given in Fig. 5.
In this case, each loop calculates three sets of data.
Instead of shifting the data of the memory pointer
(that contains results) at the end of each loop, the
most current data is directly recalculated and written
into the memory pointer that contains the older set
of data. Therefore, re-ordering of array in
Algorithm–1 is replaced by recalculation. The main
objective of the design effort is to achieve better
performance by reducing the dynamic memory
allocation and, in turn, memory pointer shift
operation. Thus, instead of using a single code block
and data-shifting portion, as in Algorithm–1, to
calculate the deflection, three code blocks, are used
with the modified approach in Algorithm–2. It is
worth noting that in Algorithm–2, the overhead of
Algorithm 1 due to memory pointer shift operation
is eliminated and every line of code is directed
towards the simulation effort.

3.1.3 Beam Algorithm–3: Large array and
less frequent shifting

In Algorithm–1 shifting of memory pointers was
required in each iteration. Algorithm–3 was
developed as an attempt to reduce the number of
memory pointer shifting instructions and thereby to
decrease program overhead. An array of 1000
elements was considered for each beam segment.
This array size was chosen rather arbitrarily, but
small enough to allow easy allocation of these
monolithic memory blocks within typical hardware
boundaries. Fig. 6 shows how the array is utilised in
Algorithm–3. Shifting occurs at the end of every
thousandth iteration, rendering the overhead
produced at this stage negligible. However, array
positions are indirectly referenced through a
variable, accessed at run-time, which, in turn, lead
to an overhead. Of far greater concern to program
performance is the fact that large data structures
need to be dealt with. Therefore, the internal data
cache struggles to handle large amount of data.

3.1.4 Beam Algorithm–4: Nested loops and
shifting

Algorithm–4 incorporates merely a minor
modification of Algorithm–1, as shown in Fig. 7.
The aim in this algorithm is to contain the number
of instructions inside the main loop, and thus,
reduce the instruction size of the program. This was
accomplished by nesting secondary loops inside the
main iterations. Complex substitutions need to be
carried out to determine which matrix elements need
to be referred to for performing the ongoing

calculations. A moderate amount of overhead
resulting from these necessary substitutions was
anticipated. The benefits of this algorithm include
quicker compilation, greater flexibility in respect of
the number of segments (possibly changes at run-
time) and a fixed number of program instructions in
the main loop as segment sizes are increased. The
likelihood of cache misses in the instruction cache
was significantly reduced.

3.1.5 Beam Algorithm–5: Nested loops and
array rotation

Fig. 8 shows a listing of Algorithm–5, in which the
new methods of Algorithm–4 were applied with the
concepts of Algorithm–2. Three distinct calculation
runs are performed during each iteration, but instead
of listing the instructions for each segment
separately, nested loops are used to limit the number
of instructions (source code lines) in the main
program loop. The benefits of employing this
technique are identical with those listed in the
description of Algorithm–4. However, it possesses
the same disadvantage of overhead produced by the
complex substitutions required.

3.1.6 Beam Algorithm–6: Two-element array
rotation

Algorithm–6 is shown in Fig. 9. This makes use of
the fact that access to the oldest time segment is
only necessary during re-calculation of the same
longitudinal beam segment. Hence, it can directly be
overwritten with the new value as shown in Fig. 10.

Fig.(s) 11 and 12 show simplified flow diagrams of
Algorithm–2 and Algorithm–6, respectively. The
conventional re-calculation algorithm in Fig. 4
requires three memory segments in the time domain.
In contrast, Algorithm–6 is optimised for the
particular discrete mathematical approximation of
the governing physical formula, exploiting the
previously observed features.

It is noted that this particular algorithm is not
suitable for applications for which the previous
assumption does not hold. This technique gives a
major performance advantage over the conventional
rotation method, in particular when the number of
beam segments is increased.

3.1.7 Beam Algorithm–7: Nested loops two-
element array and rotation

Algorithm–7, as shown in Fig. 13, is based on
improvements achieved with Algorithm–6.
Additionally, the notion of nested loops was
incorporated. The advantages and disadvantages of
this approach were identified earlier and remain true
for this particular algorithm.

3.2 Control Algorithm

As mentioned earlier, the AVC algorithm consists of
the beam simulation algorithm and control
algorithm. For simplicity the control algorithm in
equation (3) can be rewritten as a difference
equation as in Fig. 14 (Hossain, 1995), where, b0,
…, b4, and a0, …, a3 represent controller
parameters. The arrays y12 and yc denote input and
controller output, respectively. It is noted that the
control algorithm shown in Fig. 14 has similar
design and computational complexity as one of the
beam segments described and discussed in the beam
simulation Algorithm-1.

4 Implementation and results

 The AVC algorithms based on seven different
methods of the beam simulation and the control
algorithms were implemented with similar
specification using the C programming language on
a uniprocessor computing domain for similar
specification [7]. It is worth mentioning that seven
different forms of the AVC algorithm were
implemented based on the seven different forms of
the beam simulation algorithm. Thus, the AVC
algorithm Alg-1 design consists of the beam
simulation Algorithm-1 and control algorithm in
Fig. 14. Similarly, AVC algorithm Alg-2 is formed
by combining the beam simulation Algorithm-2 and
the control algorithm in Fig. 14 and so on. Thus, the
seven different forms of AVC algorithm were
implemented, tested and verified. It is worth noting
that a fixed number of iterations (250,000) was
considered in implementing all the algorithms for
reasons of consistency.

To explore the controller performance of the design
mechanisms, all the seven forms of the AVC
algorithm were implemented for 20 segments.
Although the AVC algorithm is designed in
different forms, the resultant outcomes of all these
forms are maintained the same. Fig.(s) 15, 16 and 17
show the performance of the AVC algorithm using
Alg-1. Fig. 15 shows the beam fluctuation before
cancellation and Fig. 16 shows the corresponding
fluctuation after cancellation. These diagrams
demonstrate the capabilities and dynamic behaviour
of the resultant controller. This is further
demonstrated in Fig. 17, which shows the auto-
power spectral density at the end point of the beam
before and after cancellation. As mentioned earlier,
the main objective of this investigation is to
maintain the same processing output with different
forms of the algorithm so as to demonstrate the
comparative real-time computing performance in
implementing the AVC algorithm. Therefore,
performances of the other forms of the AVC system
are not included here to avoid duplication.

To explore the comparative real-time computing
performance of the design mechanisms, all the
seven forms of the AVC algorithm were
implemented for 20 segments. The execution time
performance of the algorithms relative to Alg-1 is
shown in Table I. It is observed that Alg-3 was the
slowest among all the algorithms. On the other
hand, Alg-2 performs best among all the design
mechanisms. Alg-6 performed better than Alg-1 but
was slower than Alg-2. It is also observed that Alg-
4 is almost 2.5 times slower than Alg-1. This is
further demonstrated in Fig. 18, where Alg-3 has not
been incorporated due to its poor performance as
compared to other designs of the algorithm. It is
noted that Alg-4 performed worst among the six
design mechanisms of the algorithm shown in Fig.
18.

To explore performance of the design mechanisms
further, all designs of the algorithm, except Alg-3,
were implemented with different number of
segments. Fig. 19 depicts comparative performance
of Alg–1 and Alg–2 for 20 to 200 segments. It is
noted that execution time for both algorithms
increases almost linearly with increasing the number
of segments. It is also noted that Alg-2 performs
better throughout except for the 100 segments case.

Fig. 20 shows the comparative real-time
performance in implementing Alg-6 and Alg-7. It is
noted that Alg-6 performs better throughout. It is
also noted that the performance variation of Alg-6
as compared to the Alg-7 is not linear and it
performs best for the 80 segments case. Table II
presents further details to demonstrate the
performance of all the different designs of the AVC
algorithm relative to Alg-1.

Table II shows the performance ratio of the different
forms of the algorithm relative to Alg-1. It is noted
that Alg-4 performed worst throughout. It is also
noted that the transition towards weaker
performance occurred in AVC Alg–6 halfway
between the transitions of Alg–1 and Alg–2. In spite
of being outperformed by Alg–1 in a narrow band of
around 100 segments, Alg–6 offers the best
performance overall. Thus, the design mechanism
employed in Alg–3 can offer potential advantages in
real-time control applications.

5 Concluding Remarks

An investigation into the analysis, design, software
coding and implementation of algorithms so as to
reduce the execution time and, in turn, enhance the
real-time performance of the algorithm, has been
presented within the framework of real-time
implementation of an active control algorithm. A
number of design approaches have been proposed
and demonstrated with the control algorithm of a

flexible beam. The same resultant outcomes with the
different forms in implementing the AVC algorithm
have been maintained so as to demonstrate the
comparative real-time computing performances. It
has been observed that the execution time and in
turn, performance of an algorithm varies with
different approaches in a real-time implementation
context. It is also noted from the investigations that
a design based on reduced instructions provides
linear performance, although in most cases these are
slower. On the other hand, designs leading to large
number of instructions cause non-linear transitions
at certain stages where internal built-in instruction
cache is unable to handle the load. It is worth
mentioning that such transitions with the control
algorithms considered occur with computation of
different number of segments. Therefore,
identification of the suitability of source code design
and implementation mechanism for best
performance is a challenge. As a whole, the
proposed approaches can have a significant impact
on the design and real-time implementation of real-
time control algorithms.

6 References

[1] A. U. Thoeni,. Programming real-time
multicomputers for signal processing.
Prentice-Hall, Hertfordshire, 1994.

[2] M. O. Tokhi and M. A. Hossain. CISC, RISC
and DSP processors in real-time signal
processing and control, Journal of
Microprocessors and Microsystems, vol. 19,
no. 5, UK. pp. 291-300, 1995.

[3] G. Bader and E. Gehrke. On the performance
of transputer networks for solving linear
systems of equation. Parallel Computing, vol.
17, no. 12, pp. 1397-1407, 1991.

[4] M. O. Tokhi, M. A. Hossain, M. J. Baxter and
P. J. Fleming. Heterogeneous and
homogeneous parallel architectures for real-
time active vibration control. IEE
Proceedings-D: Control Theory and
Applications, vol. 142, no. 6, pp. 1-8, 1995.

[5] M. O. Tokhi, M. A. Hossain, M. J. Baxter and
P. J. Fleming. Performance evaluation issues
in real-time parallel signal processing and
control. Journal of Parallel and Distributed
Computing, vol. 42, pp. 67-74, 1997.

[6] B. N. Bershad, D. Lee, T. H. Romer and J. B.
Chen. Avoiding conflict misses dynamically in
large direct-mapped caches. Proceedings of
Fifth International Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS'94), San Jose, California, ACM
Press, pp. 158-170, 1994.

[7] B. Clader, C. Krintz, S. John and T. Austin.
Cache-concious data placement. Proceedings
of Eighth Int. Conference on Architectural

Support for Programming Languages and
Operating Systems (ASPLOS'98), San Jose,
California, ACM SIGARCH SIGOPS
SIGPLAN and the IEEE Computer Society,
pp. 139-149, 1998.

[8] K. Hwang. Advanced computer architecture –
Parallelism, scalability, programmability.
McGraw-Hill, USA, 1993.

[9] S. Mcfalring. Program optimization for
instruction caches. Proceedings of third Int.
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS'89), Boston, MA, ACM
Press, pp. 183-191, 1989.

[10] M. A. Hossain. Digital signal processing and
parallel processing for real-time adaptive noise
and vibration control. Ph.D. thesis, Dept. of
Automatic Control and Sys. Eng., The
University of Sheffield, UK, 1995.

[11] P. K. Kourmoulis. Parallel processing in the
simulation and control of flexible beam
structure system. PhD. Thesis. Department of
Automatic Control and Systems Engineering,
The University of Sheffield, UK. 1990.

[12] G. S. Virk. and P. K. Kourmoulis. On the
simulation of systems governed by partial
differential equations. Proceedings of IEE
Control-88 Conference, PP. 318-321, 1988.

[13] M. O. Tokhi and M. A. Hossain. Self-tuning
active control of noise and vibration.
Proceedings IEE - Control Conference-94,
vol. 1, 21-24 March, UK, pp. 263-278, 1994.

[14] U. Kabir, M. A. Hossain and M. O. Tokhi.
Reducing memory access time in real-time
implementation of signal processing and
control algorithms. Pro. of AARTC00: IFAC
Workshop on Algorithms and Architectures for
Real-time Control. Palma de Mallorca (Spain),
15-17 May, pp. 15-18, 2000.

Biographies

Alamgir Hossain received his MSc from University
of Dhaka (Bangladesh) in 1984 and PhD from
University of Sheffield (UK) in 1995. He has
worked at several academic institutions and is

currently employed as Lecturer at the Department of
Computing, The University of Bradford (UK). His
main research interests include intelligent control,
high-performance computing for real-time signal
processing and control (HPC) and network
congestion control.

Osman Tokhi obtained his BSc (Electrical
Engineering) from Kabul University (Afghanistan)
in 1978 and PhD from Heriot-Watt University (UK)
in 1988. He has worked at several academic and
industrial establishments and is currently employed
as Reader at the Department of Automatic Control
and Systems Engineering, The University of
Sheffield (UK). His main research interests include
adaptive/intelligent and soft computing techniques
for modelling and control of dynamic systems, high-
performance computing for real-time signal
processing and control (HPC), and biomedical
applications of robotics and control.

Figures and Tables:

C

Observed
Signal

Detector

Secondary
source

Primary
source

Fig. 1: Active vibration control structure

y[8][8] y[8][6] lumsq*(y[6][7] 4*y[7][7] b*y[8][7] 4*y[9][7]+y[10][7]);

y[16][16]y[16][14]lumsq*(y[14][15]4*y[15][15]b*y[16][15]4*y[17][15]+y[18][15]);

Fig. 2: Calculation of deflection of segments 8 and 6 (where, lumsq is lambda square)

2, tnY

1, tnY

tnY ,

6,8Y

7,7Y7,6Y 7,8Y 7,9Y 7,10Y

8,8Y 8,16Y8,0Y 8,1Y

8,8Y 7,107,97,67,76,87,8 , , , , , YYYYYY

8,16Y 7,187,177,147,156,167,16 , , , , , YYYYYY

Fig. 3: Data dependencies for computation of deflection of each segment

Loop {
//Step 1
 y0[2]=-y0[0]-lamsq*(a*y0[1]-4*y1[1]+y2[1]);
 y1[2]=-y1[0]-lamsq*(-4*y0[1]+b*y1[1]-4*y2[1]+y3[1]);
 :
 y18[2]=-y18[0]-lamsq*(y16[1]-4*y17[1]+c*y18[1]-2*y19[1]);
 y19[2]=-y19[0]-lamsq*(2*y17[1]-4*y18[1]+d*y19[1]);
//Step 2 : Shifting memory locations
 y0[0]=y0[1]; y0[1]=y0[2]; y1[0]=y1[1]; y1[1]=y1[2];
 :
 y18[0]=y18[1]; y18[1]=y18[2]; y19[0]=y19[1]; y19[1]=y19[2]; }

Fig. 4: Design of Algorithm–1

Loop {
//Step 1
 y0[2]=-y0[0]-lamsq*(a*y0[1]-4*y1[1]+y2[1]);
 y1[2]=-y1[0]-lamsq*(-4*y0[1]+b*y1[1]-4*y2[1]+y3[1]);
 :
 y18[2]=-y18[0]-lamsq*(y16[1]-4*y17[1]+c*y18[1]-2*y19[1]);
 y19[2]=-y19[0]-lamsq*(2*y17[1]-4*y18[1]+d*y19[1]);
//Step 2
 y0[0]=-y0[1]-lamsq*(a*y0[2]-4*y1[2]+y2[2]);
 y1[0]=-y1[1]-lamsq*(-4*y0[2]+b*y1[2]-4*y2[2]+y3[2]);
 :
 y18[0]=-y18[1]-lamsq*(y16[2]-4*y17[2]+c*y18[2]-2*y19[2]);
 y19[0]=-y19[1]-lamsq*(2*y17[2]-4*y18[2]+d*y19[2]);
 //Step 3
 y0[1]=-y0[2]-lamsq*(a*y0[0]-4*y1[0]+y2[0]);
 y1[1]=-y1[2]-lamsq*(-4*y0[0]+b*y1[0]-4*y2[0]+y3[0]);
 :
 y18[1]=-y18[2]-lamsq*(y16[0]-4*y17[0]+c*y18[0]-2*y19[0]);
 y19[1]=-y19[2]-lamsq*(2*y17[0]-4*y18[0]+d*y19[0]); }

Fig. 5: Design of Algorithm–2

Loop {
 for(j=0; j<1000; j++) {
 y0[j]=-y0[pj]-lamsq*(a*y0[ppj]-4*y1[ppj]+y2[ppj]);
 y1[j]=-y1[pj]-lamsq*(-4*y0[ppj]+b*y1[ppj]-4*y2[ppj]+y3[ppj]);
 :
 y18[j]=-y18[pj]-lamsq*(y16[ppj]-4*y17[ppj]+c*y18[ppj]-2*y19[ppj]);
 y19[j]=-y19[pj]-lamsq*(2*y17[ppj]-4*y18[ppj]+d*y19[ppj]);
 pj++; ppj++;
 }
 // Shifting memory locations
 y0[0] = y0[998]; y0[1] = y0[999]; y1[0] = y1[998]; y1[1] = y1[999];
 :
 y18[0] = y18[998]; y18[1] = y18[999]; y19[0] = y19[998]; y19[1] = y19[999];}

Fig. 6: Design of Algorithm–3

Loop {
 y[0][2]=-y[0][0]-lamsq*(a*y[0][1]-4*y[1][1]+y[2][1]);
 y[1][2]=-y[1][0]-lamsq*(-4*y[0][1]+b*y[1][1]-4*y[2][1]+y[3][1]);
 for (i=2; i<18; i++){
 y[i][2]=-y[i][0]-lamsq*(y[i-2][1]-4*y[i-1][1]+b*y[i][1]-4*y[i+1][1]+y[i+2][1]);
 }
 y[18][2]=-y[18][0]-lamsq*(y[16][1]-4*y[17][1]+c*y[18][1]-2*y[19][1]);
 y[19][2]=-y[19][0]-lamsq*(2*y[17][1]-4*y[18][1]+d*y[19][1]);
 // Shifting memory locations
 for (i=0; i<20; i++) {
 y[i][0]=y[i][1]; y[i][1]=y[i][2]; } }

Fig. 7: Design of Algorithm–4

Loop {
 // Step 1
 y[0][2]=-y[0][0]-lamsq*(a*y[0][1]-4*y[1][1]+y[2][1]);
 y[1][2]=-y[1][0]-lamsq*(-4*y[0][1]+b*y[1][1]-4*y[2][1]+y[3][1]);
 for (i=2; i<18; i++){
 y[i][2]=-y[i][0]-lamsq*(y[i-2][1]-4*y[i-1][1]+b*y[i][1]-4*y[i+1][1]+y[i+2][1]);
 }
 y[18][2]=-y[18][0]-lamsq*(y[16][1]-4*y[17][1]+c*y[18][1]-2*y[19][1]);
 y[19][2]=-y[19][0]-lamsq*(2*y[17][1]-4*y[18][1]+d*y[19][1]);
 // Step 2
 y[0][0]=-y[0][1]-lamsq*(a*y[0][2]-4*y[1][2]+y[2][2]);
 y[1][0]=-y[1][1]-lamsq*(-4*y[0][2]+b*y[1][2]-4*y[2][2]+y[3][2]);
 for (i=2; i<18; i++){
 y[i][0]=-y[i][1]-lamsq*(y[i-2][2]-4*y[i-1][2]+b*y[i][2]-4*y[i+1][2]+y[i+2][2]);
 }
 y[18][0]=-y[18][1]-lamsq*(y[16][2]-4*y[17][2]+c*y[18][2]-2*y[19][2]);
 y[19][0]=-y[19][1]-lamsq*(2*y[17][2]-4*y[18][2]+d*y[19][2]);
 // Step 3
 y[0][1]=-y[0][2]-lamsq*(a*y[0][0]-4*y[1][0]+y[2][0]);
 y[1][1]=-y[1][2]-lamsq*(-4*y[0][0]+b*y[1][0]-4*y[2][0]+y[3][0]);
 for (i=2; i<18; i++){
 y[i][1]=-y[i][2]-lamsq*(y[i-2][0]-4*y[i-1][0]+b*y[i][0]-4*y[i+1][0]+y[i+2][0]);
 }
 y[18][1]=-y[18][2]-lamsq*(y[16][0]-4*y[17][0]+c*y[18][0]-2*y[19][0]);
 y[19][1]=-y[19][2]-lamsq*(2*y[17][0]-4*y[18][0]+d*y[19][0]);}

Fig. 8: Design of Algorithm–5

Loop {

 // Step 1
 y0[0]=-y0[0]-lamsq*(a*y0[1]-4*y1[1]+y2[1]);
 y1[0]=-y1[0]-lamsq*(-4*y0[1]+b*y1[1]-4*y2[1]+y3[1]);
 :
 y18[0]=-y18[0]-lamsq*(y16[1]-4*y17[1]+c*y18[1]-2*y19[1]);
 y19[0]=-y19[0]-lamsq*(2*y17[1]-4*y18[1]+d*y19[1]);

 // Step 2
 y0[1]=-y0[1]-lamsq*(a*y0[0]-4*y1[0]+y2[0]);
 y1[1]=-y1[1]-lamsq*(-4*y0[0]+b*y1[0]-4*y2[0]+y3[0]);
 :
 y18[1]=-y18[1]-lamsq*(y16[0]-4*y17[0]+c*y18[0]-2*y19[0]);
 y19[1]=-y19[1]-lamsq*(2*y17[0]-4*y18[0]+d*y19[0]);
}

Fig. 9: Design of Algorithm–6

2, tnY

1, tnY

6,8Y

7,7Y7,6Y 7,8Y 7,9Y 7,10Y

Calculations on registers

Fig. 10: Re-calculating in 2 time steps

Calculate time segment 0

Calculate time segment 1

Calculate time segment 2

Calculate time segment 0

Calculate time segment 1

Fig. 11: Block representation of Algorithm–2 Fig. 12: Block representation of Algorithm–6

Loop {
 // Step 1
 y[0][0]=-y[0][0]-lamsq*(a*y[0][1]-4*y[1][1]+y[2][1]);
 y[1][0]=-y[1][0]-lamsq*(-4*y[0][1]+b*y[1][1]-4*y[2][1]+y[3][1]);

for (i=2; i<18; i++){
 y[i][0]=-y[i][0]-lamsq*(y[i-2][1]-4*y[i-1][1]+b*y[i][1]-4*y[i+1][1]+y[i+2][1]);
 }
 y[18][0]=-y[18][0]-lamsq*(y[16][1]-4*y[17][1]+c*y[18][1]-2*y[19][1]);
 y[19][0]=-y[19][0]-lamsq*(2*y[17][1]-4*y[18][1]+d*y[19][1]);

 // Step 2
 y[0][1]=-y[0][1]-lamsq*(a*y[0][0]-4*y[1][0]+y[2][0]);
 y[1][1]=-y[1][1]-lamsq*(-4*y[0][0]+b*y[1][0]-4*y[2][0]+y[3][0]);

 for (i=2; i<18; i++){
 y[i][1]=-y[i][1]-lamsq*(y[i-2][0]-4*y[i-1][0]+b*y[i][0]-4*y[i+1][0]+y[i+2][0]);
 }
 y[18][1]=-y[18][1]-lamsq*(y[16][0]-4*y[17][0]+c*y[18][0]-2*y[19][0]);
 y[19][1]=-y[19][1]-lamsq*(2*y[17][0]-4*y[18][0]+d*y[19][0]);

 Fig. 13: Design of Algorithm–7

yc[n]=b0*y12[n] + b1*y12[n-1] + b2*y12[n-2] + b3*y12[n-3]+ b4*y12[n-4]-(a0*yc[n-1]+a1*yc[n-2]
+a2*yc[n-3] +a3*yc[n-4]);

//Shift data array

y12[n-4]=y12[n-3] ; y12[n-3]=y12[n-2] ; y12[n-2]=y12[n-1] ; y12[n-1]=y12[n] ;
yc[n-4]=yc[n-3] ; yc[n-3]=yc[n-2] ; yc[n-2]=yc[n-1] ; yc[n-1]=yc[n] ;

Fig. 14: Design outline of the control algorithm (data array shifting method)

Fig. 15: Fluctuation of the beam along the length before cancellation

Fig. 16: Fluctuation of the beam along the length after cancellation

10 20 30 40 50 60 70
-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10
S
pe

ct
ra

l d
en

si
ty

 (
db

)

Frequency (Hz)

Fig. 17: Auto-power spectral density at the end point before and after cancellation

Table I: Relative performance of the different designs as compared to the Alg-1 (‘X’ represents 2,

3, 4,---, 7).

Ratio Alg-1 Alg-2 Alg-3 Alg-4 Alg-5 Alg-6 Alg-7

Alg-X/Alg-1 1 0.67 157 2.46 1.65 0.83 1.48

Fig. 18: Execution time in implementing different algorithms

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 .1 2

0 .1 4

0 .1 6

0 .1 8

E
xe

cu
tio

n
tim

e(
se

c)

A l g o r i t h m s

S e r i e s 1 0 .0 6 5 0 .0 4 3 0 .1 7 2 2 0 .1 0 7 0 .0 5 4 0 .0 9 7

A l g - 1 A l g - 2 A l g - 4 A l g - 5 A l g - 6 A l g - 7

Fig. 19: Performance comparison of Alg–1 and Alg–2

Fig. 20: Performance comparison of Alg–6 and Alg–7

Table II: Performance of the AVC algorithm designs relative to Alg-1.

No. of

Segments

20

40

60

80

100

150

200

A2/A1 0.67 0.83 1.0 1.4 1.6 0.83 0.83

A4/A1 2.46 2.83 2.89 2.92 2.81 1.67 1.63

A5/A1 1.65 1.66 1.77 1.79 1.74 1.10 1.09

A6/A1 0.83 0.83 0.83 0.83 1.3 0.83 0.82

A7/A1 1.48 1.49 1.49 1.54 1.49 0.92 0.91

0

0 . 2

0 . 4

0 . 6

0 . 8

1

2 0 4 0 6 0 8 0 1 0 0 1 5 0 2 0 0
N u m b e r o f s e g m e n t s

E
xe

cu
tio

n
tim

e
(s

ec
)

A l g - 1

A l g - 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

2 0 4 0 6 0 8 0 1 0 0 1 5 0 2 0 0
N u m b e r o f s e g m e n t s

E
xe

cu
ti

on
 ti

m
e

(s
ec

)

A l g - 6

A l g - 7

