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Abstract 

This paper proposes an efficient PID control of a highly nonlinear double-pendulum overhead 

crane without the need for a payload motion feedback signal. Optimal parameters of the PID 

controllers are tuned by using an improved particle swarm optimisation (PSO) algorithm based 

on vertical distance oscillations and potential energy of the crane. In contrast to a commonly 

used PSO algorithm based on a horizontal distance, the approach resulted in an efficient 

performance with a less complex controller. To test the effectiveness of the approach, extensive 

simulations are carried out under various crane operating conditions involving different 

payload masses and cable lengths. Simulation results show that the proposed controller is 

superior with a better trolley position response, and lower hook and payload oscillations as 

compared to the previously developed PSO-tuned PID controller. In addition, the controller 

provides a satisfactory performance without the need for a payload motion feedback signal.  
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1. Introduction 

Cranes are extensively used in industries to transport heavy payloads from one place to another. 

In industrial environments, a fast and accurate positioning with minimum hook and payload 

oscillations are desirable for an efficient and safe operation of the crane systems which can 

directly increase the industrial productivity (Ramli et al. 2017). Various control methods have 

been proposed to achieve the objectives. Most of the control methods treat the payload 

oscillation as a single-pendulum without considering a hook mass and an additional cable as 

variables. However in practice, cranes with double-pendulum dynamics are extensively used 

in many industrial applications, and therefore, design of an efficient control for such systems 

will be meaningful. The double-pendulum crane system is an under-actuated nonlinear system 

(Chen et al. 2017a) with one control input (trolley force) and three control variables (trolley 

position, hook and payload oscillation angles).  

Research involving a double-pendulum crane started in 1998 (Singhose and Towell 

1998). Since then, many researchers investigated various control techniques for the cranes and 

has becoming an attractive benchmark. The controllers involved linear control (Yang et al. 

2009; Jaafar and Mohamed 2017), adaptive control (Zhang et al. 2016a), intelligent control 

(Qian et al. 2016) and other nonlinear control approaches (Tuan and Lee 2013; Alhazza et al. 

2014; Zhang et al. 2016b; Sun et al. 2017a; Sun et al. 2017b; Sun et al. 2018). Controlling the 

double-pendulum crane is more challenging as compared to the single-pendulum crane as the 

dynamic is complicated and the double-pendulum system consists of two different natural 

frequencies that belongs to each cable (hoisting and rigging cables). Moreover, control to 

achieve both objectives simultaneously is difficult as a faster trolley motion leads to higher 

hook and payload oscillations.  

The proportional-integral-derivative (PID) control is a widely used controller in a 

number of practical systems due to easy implementation, effective and low cost. In Maghsoudi 
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et al. (2016), PID controllers were used to move the trolley and rail of a three dimensional 

crane with a reduced oscillation. Several researchers also implemented PD-type controllers to 

suppress the swing oscillation of a gantry crane system (Solihin et al. 2010; Jaafar et al. 2015). 

In using the PID-type controllers for control of cranes, a separate PID controller was used to 

achieve each objective. Thus, for the case of a single-pendulum crane, two PID controllers 

were used in the forward path and feedback loop for the positioning and oscillation control 

respectively. Similarly, for a double-pendulum crane, three PID controllers are required for 

positioning, hook and payload oscillations control. 

It is known that a properly tuned PID controller’s parameters is needed for an optimal 

system performance. For optimisation, a particle swarm optimisation (PSO) algorithm has 

attracted an increasing attention from researchers and has been successfully applied to solve 

many design problems. The PSO worked well to solve various nonlinear systems against many 

other conventional optimisations (Chen et al. 2017b). In the crane control, the PSO-based PID 

controllers were previously used to tune optimal PID parameters of a single-pendulum crane 

(Jaafar et al. 2015; Maghsoudi et al. 2016). Their performance is significantly affected by a 

fitness function and in Maghsoudi et al. (2016), a common fitness function based on 

minimising a payload angle was used. In an attempt to find optimal PID parameters that yields 

a more accurate trolley positioning and a higher oscillation reduction, one possible approach is 

to define the PSO algorithm in a new way that include both the hook and payload parameters. 

To the best of authors’ knowledge, this approach has not been reported in literatures. 

Most of the feedback controllers for crane systems were based on a full-state feedback 

control method where all states need to be obtained and fed back for control action. In the same 

approach, for a double-pendulum crane, an additional sensor for measurement of a payload 

motion is required as compared to a single-pendulum crane. However, in the industrial 

environment, adding and installing a suitable sensor for an accurate and fast measurement of 
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payload motion of a double-pendulum crane is challenging (Ramli et al. 2017). Besides an 

additional cost for sensing, the payload changes in various shapes and sizes. With all these 

difficulties, successful design of a closed-loop control scheme with a sensorless payload motion 

will be an advantage. 

In this paper, an efficient PID controller tuned by an improved PSO algorithm for 

control of a nonlinear double-pendulum overhead crane without the need for a payload motion 

sensor is proposed. The main contribution of this paper is in the PID tuning approach for the 

nonlinear system which resulted in a better system performance and a less complex PID 

controller. To study the effectiveness of the controller, extensive simulations under various 

operating conditions of the double-pendulum crane were carried out. Assessments of the 

controller performance were conducted in terms of trolley positioning and the levels of 

oscillation of the hook and payload. Performance comparisons were conducted in two aspects: 

(a) Between the proposed and the commonly used PSO-tuned PID controllers to show the 

superiority of the technique; (b) Between two PID and three PID control schemes to 

demonstrate the capability of the proposed technique to provide a satisfactory performance 

without the need for a payload motion signal.  

 

2. Dynamic Model of a Nonlinear Double-Pendulum Crane  

The most popular technique for modelling of a double-pendulum crane system was the 

Lagrangian method (Ramli et al. 2017). In this paper, a brief formulation for modelling of an 

overhead crane using the Lagrangian method is given. A schematic diagram of a double-

pendulum overhead crane system is illustrated in Figure 1. The crane consists of three 

independent generalised coordinates namely the trolley position, x, the hook angle, θ1, and the 

payload angle, θ2. 𝑚, 𝑚1, 𝑚2, 𝑔, 𝑙1 and 𝑙2 represent the trolley mass, the hook mass, the 

payload mass, the gravitational acceleration constant, the cable length between the trolley and 
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the hook, and the cable length between the hook and the payload respectively. 𝐹 is an external 

force applied to the crane, which is the only control input for this system. 

 

Figure 1. A double-pendulum overhead crane system 

 

By using the Lagrangian method, the nonlinear dynamic model of the double-pendulum 

overhead crane system can be obtained as: 

(𝑚 + 𝑚1 + 𝑚2)�̈�  + (𝑚1 + 𝑚2)𝑙1�̈�1 cos 𝜃1 + 𝑚2𝑙2�̈�2 cos 𝜃2 

− (𝑚1 + 𝑚2)𝑙1�̇�1
2

sin 𝜃1 − 𝑚2𝑙2�̇�2
2

sin 𝜃2 = 𝐹                                 (1) 

(𝑚1 + 𝑚2)𝑙1�̈� cos 𝜃1  + (𝑚1 + 𝑚2)𝑙1
2�̈�1 + 𝑚2𝑙1𝑙2�̈�2 cos(𝜃1 − 𝜃2) 

+ 𝑚2𝑙1𝑙2�̇�2
2

sin(𝜃1 − 𝜃2) + (𝑚1 + 𝑚2)𝑔𝑙1 sin 𝜃1 = 0                             (2) 

𝑚2𝑙2�̈� cos 𝜃2  + 𝑚2𝑙1𝑙2�̈�1 cos(𝜃1 − 𝜃2) + 𝑚2𝑙2
2�̈�2 

− 𝑚2𝑙1𝑙2�̇�1
2

sin(𝜃1 − 𝜃2) + 𝑚2𝑔𝑙2 sin 𝜃2 = 0                                  (3) 

Equations (1)-(3) are the dynamic equations of the under-actuated crane and the equations show 

that all the outputs are highly nonlinear and coupled. The control aim is to achieve a precise 

position, x and low oscillation angles of θ1 and θ2. 
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 The nonlinear model can be linearised by assuming small angles during control, with 

sin 𝜃1 ≈ 𝜃1, sin 𝜃2 ≈ 𝜃2, cos 𝜃1 = cos 𝜃2 ≈ 1. The relationship between the crane outputs can 

thus be represented in transfer functions as: 

𝜃1(𝑠)

𝑋(𝑠)
=

−𝑠2((1 − 𝐷)𝑙2𝑠2 + 𝑔)

(1 − 𝐷)𝑙1𝑙2𝑠4 + 𝑔(𝑙1 + 𝑙2)𝑠2 + 𝑔2
                                    (4) 

𝜃2(𝑠)

𝜃1(𝑠)
=

𝑔

(1 − 𝐷)𝑙2𝑠2 + 𝑔
                                                      (5) 

where 𝐷 =
𝑚2

𝑚1+𝑚2
. Subsequently, the transfer functions between the three outputs and the input 

can be derived as:  

𝑋(𝑠)

𝐹(𝑠)
=

(1 − 𝐷)𝑙1𝑙2𝑠4 + 𝑔(𝑙1 + 𝑙2)𝑠2 + 𝑔2

𝑠2((𝐴 − 𝐵)(1 − 𝐷)𝑙1𝑙2𝑠4 + 𝑔(𝐴(𝑙1 + 𝑙2) − 𝐵𝑙1 − 𝐶𝑙2)𝑠2 + 𝐴𝑔2)
         (6) 

𝜃1(𝑠)

𝐹(𝑠)
=

−((1 − 𝐷)𝑙2𝑠2 + 𝑔)

(𝐴 − 𝐵)(1 − 𝐷)𝑙1𝑙2𝑠4 + 𝑔(𝐴(𝑙1 + 𝑙2) − 𝐵𝑙1 − 𝐶𝑙2)𝑠2 + 𝐴𝑔2
            (7) 

𝜃2(𝑠)

𝐹(𝑠)
=

−𝑔

(𝐴 − 𝐵)(1 − 𝐷)𝑙1𝑙2𝑠4 + 𝑔(𝐴(𝑙1 + 𝑙2) − 𝐵𝑙1 − 𝐶𝑙2)𝑠2 + 𝐴𝑔2
            (8) 

where 𝐴 = 𝑚 + 𝑚1 + 𝑚2; 𝐵 = 𝑚1 + 𝑚2 and 𝐶 = 𝑚2. These transfer functions are derived 

for investigations of the stability of the proposed control schemes presented later in this paper. 

 

3. PID Control Schemes 

In this work, two PID control schemes are considered: (a) Three separate PID controllers for 

each control variable and the position, the hook and payload oscillation signals are used as the 

feedback signals. The control structure is shown in Figure 2, and it is referred as 3-PID control 

scheme; (b) Two PID controllers utilising only the position and the hook oscillation as the 

feedback signals (2-PID control scheme) as shown in Figure 3. In practice, the second approach 

attempts to control the position, and hook and payload oscillations without using a sensor for 

measurement of the payload oscillation. 
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Figure 2. A structure with 3-PID control scheme 

 

Figure 3. A structure with 2-PID control scheme 

 

Designs of both controllers are challenging as all the optimal parameters of the PID 

controllers have to be tuned concurrently. Nine PID parameters (Kp1, Ki1 and Kd1 for PID #1; 

Kp2, Ki2 and Kd2 for PID #2; Kp3, Ki3 and Kd3 for PID #3) need to be obtained for the first 

approach whereas six PID parameters (Kp1, Ki1, Kd1, Kp2, Ki2 and Kd2) are needed for the second 

approach. As PSO has been shown to be effective in optimisations, including for nonlinear 

systems, the method was used to find the optimal PID gains for both approaches.  

The control scheme in Figures 2 and 3 using separate PID controllers for each system 

state was proposed and was successfully implemented on laboratory cranes in Solihin et al. 

(2010) and Maghsoudi et al. (2016). Discussion on the stability of the controller was also given 
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in the article. By taking a similar approach, the control schemes in this work are shown to be 

stable with the PID gains tuned using the proposed PSO algorithm. Based on the 3-PID control 

scheme and equations (6)-(8), the closed-loop transfer function can be found as: 

𝑇(𝑠) =
𝑏6𝑠6 + 𝑏5𝑠5 + 𝑏4𝑠4 + 𝑏3𝑠3 + 𝑏2𝑠2 + 𝑏1𝑠 + 𝑏0

𝑠7 + 𝑎6𝑠6 + 𝑎5𝑠5 + 𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
                    (9) 

The numerator coefficients are given by: 

𝑏6 = 𝐾𝐾𝑑1;  𝑏5 = 𝐾𝐾𝑝1;   𝑏4 = 𝐾𝐾𝑖1 +
𝑔𝐾𝐾𝑑1(𝑙1 + 𝑙2)

(1 − 𝐷)𝑙1𝑙2
; 𝑏3 =

𝑔𝐾𝐾𝑝1(𝑙1 + 𝑙2)

(1 − 𝐷)𝑙1𝑙2
                 (10) 

𝑏2 =
𝑔𝐾(𝐾𝑖1(𝑙1 + 𝑙2) + 𝑔𝐾𝑑1)

(1 − 𝐷)𝑙1𝑙2
;  𝑏1 =

𝑔2𝐾𝐾𝑝1

(1 − 𝐷)𝑙1𝑙2
;  𝑏0 =

𝑔2𝐾𝐾𝑖1

(1 − 𝐷)𝑙1𝑙2
  

and the denominator coefficients by: 

𝑎6 = 𝐾𝐾𝑑1 +
𝐾𝐾𝑑2

𝑙1
;  𝑎5 = 𝐾𝐾𝑝1 +

𝐾𝐾𝑝2

𝑙1
+

𝑔𝐾(𝐴(𝑙1 + 𝑙2) − (𝐵𝑙1 + 𝐶𝑙2))

(1 − 𝐷)𝑙1𝑙2
                  (11) 

𝑎4 = 𝐾𝐾𝑖1 +
𝐾𝐾𝑖2

𝑙1
+

𝑔𝐾(𝐾𝑑1(𝑙1 + 𝑙2) + 𝐾𝑑2 + 𝐾𝑑3)

(1 − 𝐷)𝑙1𝑙2
; 

𝑎3 =
𝑔𝐾(𝐾𝑝1(𝑙1 + 𝑙2) + 𝐾𝑝2 + 𝐾𝑝3 + 𝐴𝑔)

(1 − 𝐷)𝑙1𝑙2
;  𝑎2 =

𝑔𝐾(𝐾𝑖1(𝑙1 + 𝑙2) + 𝐾𝑖2 + 𝐾𝑖3 + 𝑔𝐾𝑑1)

(1 − 𝐷)𝑙1𝑙2
 

𝑎1 =
𝑔2𝐾𝐾𝑝1

(1 − 𝐷)𝑙1𝑙2
;  𝑎0 =

𝑔2𝐾𝐾𝑖1

(1 − 𝐷)𝑙1𝑙2
 

where 𝐾 = (𝐴 − 𝐵)−1. The closed-loop transfer function for the 2-PID control scheme can be 

obtained by eliminating 𝐾𝑝3, 𝐾𝑖3 and 𝐾𝑑3 in equation (11). The denominator of the transfer 

function which is the closed-loop characteristic equation is essential in determining the system 

stability, in which all poles must lie on the left-half plane. 

 

4. Particle Swarm Optimisation 

PSO was invented by Kennedy and Eberhart (Kennedy and Eberhart 1995) and is still being 

used to solve various engineering problems. Two initial parameters namely position, 𝑋𝑘
𝑖  and 

velocity, 𝑉𝑘
𝑖 of the particles are introduced in the optimisation process. The new velocity, 𝑉𝑘+1

𝑖  
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of the particles are depended on the current 𝑋𝑘
𝑖 , local best, 𝑃𝐵𝑒𝑠𝑡 and global best, 𝐺𝐵𝑒𝑠𝑡 values. 

The new position, 𝑋𝑘+1
𝑖  will be updated accordingly based on the new velocity as: 

𝑉𝑘+1
𝑖 = 𝑤𝑉𝑘

𝑖 + 𝑐1𝑟1(𝑃𝐵𝑒𝑠𝑡 − 𝑋𝑘
𝑖 ) + 𝑐2𝑟2(𝐺𝐵𝑒𝑠𝑡 − 𝑋𝑘

𝑖 )                         (12) 

𝑋𝑘+1
𝑖 = 𝑉𝑘+1

𝑖 +  𝑋𝑘
𝑖                                                  (13) 

where 𝑖 is the number of iterations (𝑖 = 1, 2, 3, … … , 𝑁). 𝑐1 and 𝑐2 are positive learning factors 

that control the strength of cognitive and social acceleration coefficients while 𝑟1 and 𝑟2 

represent random function values, 𝑟1, 𝑟2 ϵ U(0,1). 𝑃𝐵𝑒𝑠𝑡 and 𝐺𝐵𝑒𝑠𝑡 are defined as personal best 

position and best position among 𝑃𝐵𝑒𝑠𝑡 respectively. 𝑤 is inertia weight (decrease from 0.9 to 

0.4 during iterations) that influence particle for exploration and exploitation.  

Each individual particle is assessed by a fitness function. All particles try to replicate 

their historical success and in the same time try to follow the success of the best agent. It means 

that 𝑃𝐵𝑒𝑠𝑡 and 𝐺𝐵𝑒𝑠𝑡 are updated at each 𝑖𝑡ℎ iteration if the particle has a minimum fitness value 

compared to the current 𝑃𝐵𝑒𝑠𝑡 and 𝐺𝐵𝑒𝑠𝑡 until the maximum number of iteration, 𝑁 is reached.  

 

4.1 An improved PSO algorithm for the crane system 

In order to obtain higher oscillation reductions for both hook and payload, and without the use 

of the payload oscillation signal, a PSO algorithm derived by considering the relationship 

between physical parameters of both the hook and payload to the oscillation is proposed. This 

strategy is based on the potential energy, 𝑃 = 𝑚𝑔ℎ where a vertical distance, ∆ℎ = ℎ1 + ℎ2 is 

considered as shown in Figure 4. This is in contrast to the previously developed PSO algorithm 

designed using the angles or the horizontal distance to represent the oscillations. ℎ1 and ℎ2 

represent the differences in heights of the hook and payload with respect to a reference height 

without oscillation respectively. Higher values of ℎ1 and ℎ2 indicate high hook and payload 

oscillations, and directly increase the potential energy of the system. It is worth mentioning 
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that a high potential energy might bring the system to an unstable condition, and thus, should 

be kept minimum to attain a maximum stability.  

 

Figure 4. Vertical distance of hook and payload movements 

Using ∆ℎ, the improved PSO algorithm is proposed with a fitness function as: 

𝐹𝑖𝑡_𝑓𝑢𝑛𝑐𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = ∑|𝑥𝑟𝑒𝑓 − 𝑥𝑡𝑟𝑜𝑙𝑙𝑒𝑦
(𝑖)

+ ∆ℎ|

𝑁

𝑖=1

                                (14) 

and a complete function as: 

𝐹𝑖𝑡_𝑓𝑢𝑛𝑐𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = ∑ |
𝑥𝑟𝑒𝑓 − 𝑥𝑡𝑟𝑜𝑙𝑙𝑒𝑦

(𝑖)
+ (𝑚1 + 𝑚2)𝑔𝑙1(cos 𝜃1 𝑟𝑒𝑓 − cos 𝜃1

(𝑖)
)

+𝑚2𝑔𝑙2(cos 𝜃2 𝑟𝑒𝑓 − cos 𝜃2
(𝑖)

)
|

𝑁

𝑖=1

       (15) 

where 𝑥𝑟𝑒𝑓 represents the desired position of trolley movement, and 𝜃1 𝑟𝑒𝑓 and 𝜃2 𝑟𝑒𝑓 represent 

reference angles (zero angle) of the hook and payload respectively. The fitness function in 

equation (15) is used in the PSO algorithm to obtain optimal PID gains for the cases with three 

and two PID controllers shown in Figures 2 and 3 respectively. With the fitness function, the 

hook and payload masses are also considered in finding the optimal parameters. 

The fitness function in equation (15) is obtained by using the relationships between ∆ℎ 

and the hook and payload angles. Therefore for implementation of the improved 3-PID control 
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scheme, the fitness function can be solved by using measured hook and payload angles (𝜃1, 𝜃2) 

similar to the commonly used technique, and measurements of ℎ1and ℎ2 are not needed. 

Besides, for the implementation of the 2-PID control scheme which is without measurement of 

the payload angle, the fitness function is solved by using a measured hook angle and an 

estimated payload angle obtained by analysing the dynamic behaviour of both angles. This is 

further described in Section 5. 

 

4.2 A PSO algorithm based on a horizontal distance 

For a comparative assessment, a PSO algorithm with a fitness function based on a horizontal 

distance to represent the hook and payload oscillations was also considered in finding the PID 

parameters. This strategy was implemented in Maghsoudi et al. (2016) for a single-pendulum 

crane and the algorithm was extended to suit with a double-pendulum crane system. Figure 5 

shows the horizontal distances, 𝑧1 and 𝑧2 of the hook and payload respectively where less 𝑧1 

and 𝑧2 indicate low oscillations. The horizontal distances were commonly used as they were 

directly related to the oscillation angles. Utilising ∆𝑧 = 𝑧1 + 𝑧2 and to achieve a satisfactory 

input tracking with low oscillation, the fitness function can be obtained as: 

𝐹𝑖𝑡_𝑓𝑢𝑛𝑐 = ∑|𝑥𝑟𝑒𝑓 − 𝑥𝑡𝑟𝑜𝑙𝑙𝑒𝑦
(𝑖)

+ ∆𝑧|

𝑁

𝑖=1

                                 (16) 

and can be expanded as: 

𝐹𝑖𝑡_𝑓𝑢𝑛𝑐 = ∑|𝑥𝑟𝑒𝑓 − 𝑥𝑡𝑟𝑜𝑙𝑙𝑒𝑦
(𝑖)

+ 𝑙1 sin 𝜃1
(𝑖)

+ 𝑙2 sin 𝜃2
(𝑖)

|

𝑁

𝑖=1

                  (17) 

By reducing ∆𝑧, the hook and payload oscillations can be minimised to achieve a maximum 

stability for the system. 



12 
 

 

Figure 5. Horizontal distance of hook and payload movements 

 

5. Implementations and Results 

The effectiveness of the controllers in achieving the control objectives were investigated within 

the simulation environment of a double-pendulum overhead crane. The capability of the 

controller to suppress the oscillations without using the payload motion signal was also studied. 

Simulink and MATLAB were used as a simulation platform and the exercises were conducted 

with Intel Core i7-5500U Processor, 2.4 GHz and 12 GB RAM. The double-pendulum 

overhead crane as used in Sun et al. (2017a) was considered with 𝑚 = 6.5 kg, 𝑚1 = 2 kg, 𝑚2 

= 0.6 kg, 𝑙1 = 0.53 m, 𝑙2 = 0.4 m and 𝑔 = 9.8 m/s2. The nonlinear model of the system can be 

obtained by substituting the parameters into equations (1)-(3). 

The fitness functions computed at each iteration were utilised to obtain the nine optimal 

control parameters for the case with the 3-PID control scheme. For a fair comparison between 

both approaches, the PSO parameters were set to the same values. The population size of 

particle was 20 with maximum iterations of 100, and the cognitive and social coefficients (𝑐1 

and 𝑐2) values were set as 2. The initial value, 𝑤 was 0.9 and linearly decreased to 0.4 at some 

stages in the iteration for global and local searching. This is to reduce the risk of trapping into 
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the local optimum and to enhance the convergence speed. The nine optimal PID parameters 

obtained using the PSO with the two fitness functions are listed in Table 1. It can be shown 

that the parameters for PID #2 and PID #3 for both approaches were significantly difference, 

in contrast to PID #1. This is due to the use of the vertical and horizontal distances in the fitness 

functions of the PSO algorithms. 

 

Table 1. Nine optimal PID parameters tuned using difference PSO algorithms 

  
Improved PSO-Tuned 

3-PID 

PSO-Tuned  

3-PID 

PID #1 

(trolley 

position) 

Kp1 19.7107 19.8320 

Ki1 0.0071 0.0060 

Kd1 19.8210 19.0922 

PID #2 

(hook 

oscillation) 

Kp2 8.0925 0.8064 

Ki2 0.2716 0.7613 

Kd2 21.0944 8.6851 

PID #3 

(payload 

oscillation) 

Kp3 0.1985 0.5052 

Ki3 28.3511 2.1890 

Kd3 1.1573 0.3776 

 

Figure 6 shows the changes in the control parameters in searching for the best values within 

the maximum number of 100 iterations. It was noted that the iteration searching process 

converged to the nine final values of optimal control parameters solution at the 79th and 92nd 

iterations for the improved and commonly used PSO algorithm respectively. The capability of 

the fitness functions is further illustrated with the convergence curve in Figure 7 that gives the 

relationship between the number of iterations and fitness values. At 79th iteration, the improved 

PSO algorithm reached the global optimal solution with a minimum fitness value of 6.8781, 

whereas the common PSO algorithm achieved a minimum fitness value of 6.8931 at 92nd 

iteration. This demonstrated that the proposed approach provided a fast convergence solution 

with a shorter processing time, together with a lower fitness value. 
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(a) 

 
(b) 

Figure 6. The nine optimal control parameters: 

(a) Improved PSO-Tuned 3-PID (b) PSO-Tuned 3-PID 
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Figure 7. Convergence curve of the PSO method using different fitness functions 

 

 

The first investigation was to study the performance of the improved PSO-tuned PID 

control as compared to the other approach. The 3-PID control scheme was implemented with 

the obtained optimal parameters as shown in Table 1. To investigate the controller stability, the 

closed-loop poles with PID gains were observed. Figure 8 shows the pole-zero map of the 

closed-loop system, where all poles lie on the left-half plane indicating a stable system. The 

poles were located at 𝑝1 = −380, 𝑝2 = −1.66, 𝑝3 = −0.00036, 𝑝4,5 = −1.302 ± 𝑗2.437 and 

𝑝6,7 = −1.630 ± 𝑗3.605. 
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Figure 8. Pole-zero map of the improved 3-PID control scheme 

 

The aim is to move the trolley to a desired position of 0.6 m with low oscillation. Figure 

9 shows the trolley position, hook and payload oscillations respectively with the control 

scheme. Table 2 summarises the overshoot (𝑂𝑆) and settling time (𝑇𝑠) for the trolley movement. 

For the oscillations, the maximum angles of hook (𝜃1_𝑚𝑎𝑥) and payload (𝜃2_𝑚𝑎𝑥) and the sum 

of squared error for both oscillations (𝑆𝑆𝐸𝜃1
and 𝑆𝑆𝐸𝜃2

) were considered. For the trolley position 

response in Figure 9, the proposed approach provided a better performance with a less 𝑂𝑆 and 

a faster 𝑇𝑠. It can be seen in Table 2 that the OS was reduced by 61.6% whereas 𝑇𝑠 was improved 

by 42.4%. As the trolley motion and payload oscillation are coupled, a better transient response 

of the trolley resulted in a less oscillation of the hook and payload. With the improved 

algorithm, the controller successfully suppressed the maximum oscillations of the hook and 

payload to 0.0745 rad and 0.1329 rad, respectively. The overall oscillations with the sum of 

squared error values are shown in Table 2 where the proposed approach provided up to 29.7% 

and 42.6% reductions in the hook and payload oscillations respectively, as compared to the 

other approach. The faster settling time achieved with the proposed PSO algorithm is not 

directly related to the fast convergence solution shown in Figures 6 and 7, as the nine optimal 
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PID gains were tuned offline. In fact, the faster transient response was due to the optimal PID 

gains, which also provided higher oscillation reductions. 
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(c) 

Figure 9. Response of a double-pendulum crane system with the 3-PID control schemes: 

(a) Trolley position (b) Hook oscillation (c) Payload oscillation 

 

Table 2. Performances of a double-pendulum crane system with the 3-PID control schemes 

 Trolley Position Hook Oscillation Payload Oscillation 

 𝑂𝑆 (%) 𝑇𝑠 (𝑠) 
𝜃1_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃1

 
𝜃2_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃2

 

Improved PSO-Tuned  

3-PID 
1.5167 2.0489 0.0745 0.5793 0.1329 1.3343 

PSO-Tuned  

3-PID 
3.9527 3.5568 0.0982 0.8235 0.1745 2.3232 

 

The next investigation was to study the effectiveness of the proposed approach for the 

case without a payload motion sensor and thus, without feedback of the signal, 𝜃2. This resulted 

in a less complex controller with a reduce control variable, as PID #3 in Figure 2 is not required. 

This corresponds to the 2-PID control scheme as shown in Figure 3. However, to ensure a 

satisfactory system performance, the optimal PID parameters are obtained by considering the 

payload oscillation in the fitness functions.  By analysing the hook and payload oscillations in 

Figures 9(b) and (c), it was found that 𝜃2 < 2𝜃1. In this work without the payload motion 

sensor, the extreme case with 𝜃2 = 2𝜃1 was considered in solving the fitness functions in 
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equations (15) and (17). The obtained six optimal PID parameters are listed in Table 3. Figure 

10 shows the pole-zero map of the proposed 2-PID control scheme, and it was noted that all 

poles lie on the left-half plane indicating a stable system. The poles were located at 𝑝1 =

−272, 𝑝2 = −6.066, 𝑝3 = −0.00006, 𝑝4,5 = −1.507 ± 𝑗1.245 and 𝑝6,7 = −0.565 ± 𝑗3.390. 

Figure 11 shows the trolley position, and hook and payload oscillation responses using the PID 

controllers, and Table 4 summarises the overall performance of the controllers. 

Table 3. Six optimal PID parameters tuned using difference PSO algorithms 

  
Improved PSO-Tuned 

2-PID 

PSO-Tuned  

2 PID 

PID #1 

(trolley 

position) 

Kp1 19.4514 19.7206 

Ki1 0.0012 0.0053 

Kd1 20.0034 18.4309 

PID #2 

(hook 

oscillation) 

Kp2 1.6580 0.8667 

Ki2 4.6724 0.9922 

Kd2 12.4030 3.5096 

 

 

 

Figure 10. Pole-zero map of an improved 2-PID control scheme 
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(c) 

Figure 11. Response of a double-pendulum crane system with the 2-PID control schemes: 

(a) Trolley position (b) Hook oscillation (c) Payload oscillation 

 

Table 4. Performances of a double-pendulum crane system with the 2-PID control schemes 

 Trolley Position Hook Oscillation Payload Oscillation 

 𝑂𝑆 (%) 𝑇𝑠 (𝑠) 
𝜃1_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃1

 
𝜃2_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃2

 

Improved PSO-Tuned 

2-PID 
1.9500 1.9444 0.0884 0.7235 0.1562 1.8560 

PSO-Tuned  

2-PID 
4.4333 3.5315 0.1118 1.0147 0.2284 3.5508 

 

Figure 11 shows that the proposed 2-PID controller outperformed the other approach 

in both aspects related to the trolley position and, hook and payload oscillations. The 𝑂𝑆 and 

𝑇𝑠 were reduced about two-fold whereas both maximum oscillations were reduced by at least 

20.9%. In addition, the overall oscillations were reduced by 28.6% and 47.7% for 𝜃1 and 𝜃2 

respectively. However, by comparing Tables 2 and 4, it was noted that the improved 3-PID 

control scheme still provided a better system performance. This was expected as all the states 

were used for the control action. Nevertheless, although without the payload oscillation signal, 

the improved 2-PID controller demonstrated a superior performance as compared to the control 
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scheme with 3-PID controller tuned using the previous PSO algorithm. Despite a slightly lower 

performance as compared to the improved 3-PID control scheme, the proposed 2-PID control 

approach provided an acceptable performance and can be more desirable as a less complex 

controller is used and a sensor for measurement of the payload motion is not required.  

 

5.1 Varying payloads 

To further evaluate the effectiveness of the controller, the double-pendulum overhead crane 

under various operating conditions were simulated. In industries, the hook is constant, but the 

payload, 𝑚2 may change for several applications. In this work, cases where 𝑚2 = 𝑚1 = 2 kg 

and 𝑚2 is twice of 𝑚1 (𝑚2 = 2𝑚1 = 4 kg) were considered. Using the proposed PSO 

algorithm, optimal PID gains for both control schemes are obtained as shown in Table 5. 

 

Table 5. Optimal control parameters tuned using the improved PSO algorithm under various 

payload masses 

  
2-PID 

(𝑚2 = 𝑚1) 

3-PID 

(𝑚2 = 𝑚1) 

2-PID 

(𝑚2 = 2𝑚1) 

3-PID 

(𝑚2 = 2𝑚1) 

PID #1 

(trolley 

position) 

Kp1 19.6485 19.9731 19.6766 19.8572 

Ki1 0.0046 0.0014 0.0073 0.0042 

Kd1 21.6775 22.8387 22.5265 23.2268 

PID #2 

(hook 

oscillation) 

Kp2 0.3193 1.6895 0.5599 0.3908 

Ki2 0.8339 5.7476 0.7252 0.5390 

Kd2 14.8849 13.8095 14.0651 15.8299 

PID #3 

(payload 

oscillation) 

Kp3 - 0.5671 - 1.1168 

Ki3 - 0.3620 - 4.7115 

Kd3 - 0.9138 - 0.5985 

 

Figure 12 shows the hook and payload oscillations using both control schemes, in which 

the optimal solution obtained by using the proposed approach provided almost similar crane 

performances. With a similar mass (𝑚2 = 𝑚1), the differences in the maximum of both hook 

and payload oscillations were small between 0.5-2.5%. With 𝑚2 = 2𝑚1, the differences in the 

maximum and overall oscillations using both control schemes were also small, which were 
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between 3-6%. Table 6 summarises the simulation results with difference control schemes and 

payload masses. 

 

 
(a) 

 

 
(b) 

Figure 12. Hook and payload oscillation responses using the improved PSO-tuned PID 

controllers with difference control structures and payload masses: 

(a) Hook oscillation (b) Payload oscillation 
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Table 6. Performances of hook and payload motions using the improved PSO-tuned PID 

controllers with difference control structures and payload masses 

 

Controllers 
Payload 

Mass 

Hook Oscillation Payload Oscillation 

𝜃1_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃1

 
𝜃2_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃2

 

2-PID 
𝑚2 = 𝑚1 

0.0691 0.5686 0.1201 0.8426 

3-PID 0.0674 0.5292 0.1195 0.8005 

2-PID 
𝑚2 = 2𝑚1 

0.0693 0.4157 0.0968 0.5269 

3-PID 0.0671 0.3963 0.0930 0.4987 

 

 

5.2 Varying cable lengths 

In normal practices, initially the cable length, 𝑙1 is longer than 𝑙2 (Sun et al. 2017a). However, 

𝑙1 is subjected to changes during hoisting where a payload needs to be lifted up and down to 

be placed at a desired location. It was reported in Mar et al. (2017) that if the two cable lengths 

are equal or ratio of both cable lengths near unity, the contribution of the second mode increases 

and significantly affects the payload oscillation performances of the crane. To investigate the 

performance of the controller under this special condition, analyses with 𝑙1 = 0.2 m < 𝑙2 =

0.4 m and 𝑙1 = 𝑙2 = 0.4 m were conducted. New optimal PID gains based on the improved 

PSO algorithm using both control schemes are shown in Table 7. 

Figure 13 shows the hook and payload oscillations with the two control schemes for 

both cases of cable lengths. The proposed PSO-tuned PID controllers were shown to be able to 

control the hook and payload oscillations for the extreme case (𝑙1 = 𝑙2) and the case with 𝑙1 <

𝑙2. Similarly, the 2-PID control scheme provided almost similar performances for the 

maximum and overall oscillations with only small differences between 2-6% as compared to 

the 3-PID control scheme. Table 8 summarises the simulation results with difference control 

schemes and various cable lengths of 𝑙1 and 𝑙2.  
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Table 7. Optimal control parameters tuned using the improved PSO algorithm under various 

cable lengths 

  
2-PID 

(𝑙1 = 𝑙2) 

3-PID 

(𝑙1 = 𝑙2) 

2-PID 

(𝑙1 < 𝑙2) 

3-PID 

(𝑙1 < 𝑙2) 

PID #1 

(trolley 

position) 

Kp1 19.5269 19.7805 19.6506 19.8390 

Ki1 0.0013 0.0013 0.0027 0.0049 

Kd1 19.5779 20.1317 18.0995 18.8312 

PID #2 

(hook 

oscillation) 

Kp2 0.8643 0.4338 0.0321 0.5341 

Ki2 11.1047 0.6883 7.6250 10.7880 

Kd2 13.1451 14.3799 12.9932 13.7726 

PID #3 

(payload 

oscillation) 

Kp3 - 0.5710 - 0.0128 

Ki3 - 6.1031 - 0.6816 

Kd3 - 0.7278 - 0.5890 
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(b) 

Figure 13. Hook and payload oscillation responses using the improved PID controllers with 

difference control structures and various cable lengths: 

(a) Hook oscillation (b) Payload oscillation 

 

Table 8. Performances of hook and payload motions using the improved PID controllers with 

difference control structures and cable lengths 

 

Controllers 
Cable 

Length 

Hook Oscillation Payload Oscillation 

𝜃1_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃1

 
𝜃2_𝑚𝑎𝑥 

(rad) 
𝑆𝑆𝐸𝜃2

 

2-PID 
𝑙1 = 𝑙2 

0.0886 0.6771 0.1576 1.8196 

3-PID 0.0864 0.6620 0.1542 1.7095 

2-PID 
𝑙1 < 𝑙2 

0.0908 0.6585 0.1586 1.8737 

3-PID 0.0881 0.6261 0.1531 1.7609 

 

In the future, the effectiveness of the control scheme for a double-pendulum crane with 

payload hoisting can be investigated. During this operation, the system oscillation frequencies 

and damping ratios change and resulted in a more challenging control system. Several 

intelligent methods including neural networks and fuzzy logic (Wang et al. 2017a; Wang et al. 

2017b) could be explored to enhance the PID control scheme.  
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6. Conclusion 

An efficient PID control of a nonlinear double-pendulum overhead crane tuned by using an 

improved PSO algorithm based on the vertical distance of oscillations and the system’s 

potential energy was proposed. Using the proposed algorithm, optimal PID gains can be 

obtained within a shorter processing time and with a lower fitness value. Simulation results 

showed that the proposed PID controller was superior with a better performance in the trolley 

position response and lower hook and payload oscillations, as compared to the commonly used 

approach. In addition, the proposed controller without a payload motion feedback signal 

provided almost a similar performance as compared to the case with a full-state feedback. This 

is useful in avoiding the need for measurement for the payload motion in practice. Extended 

simulations with different hook and payload masses, and different cable lengths further 

demonstrated the advantage of the PID control with the improved PSO algorithm.  
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