
Accepted Manuscript

The influence of low-temperature surface induction on evacuation, pump-out hole
sealing and thermal performance of composite edge-sealed vacuum insulated glazing

Saim Memon, Yueping Fang, Philip C. Eames

PII: S0960-1481(18)31456-3

DOI: https://doi.org/10.1016/j.renene.2018.12.025

Reference: RENE 10900

To appear in: Renewable Energy

Received Date: 31 May 2018

Revised Date: 6 November 2018

Accepted Date: 6 December 2018

Please cite this article as: Memon S, Fang Y, Eames PC, The influence of low-temperature surface
induction on evacuation, pump-out hole sealing and thermal performance of composite edge-sealed
vacuum insulated glazing, Renewable Energy (2019), doi: https://doi.org/10.1016/j.renene.2018.12.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.renene.2018.12.025
https://doi.org/10.1016/j.renene.2018.12.025


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 
 

The influence of low-temperature surface induction on evacuation, pump-1 

out hole sealing and thermal performance of composite edge-sealed 2 

vacuum insulated glazing 3 

Saim Memon13*, Yueping Fang2, Philip C. Eames3, 4 

1 London South Bank University, Centre for Advanced Materials, School of Engineering, 103 Borough Road, London, SE1 0AA, 5 
UK  6 

2 Coventry University · School of Energy, Construction and Environment, Priory Street, Coventry, CV1 5FB, UK 7 

3Centre for Renewable Energy Systems Technology (CREST), School of Mechanical, Electrical & Manufacturing Engineering, 8 
Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

*Corresponding Author: Saim Memon 27 

Address: London South Bank University, Centre for Advanced Materials, School of Engineering, 103 28 
Borough Road, London, SE1 0AA, UK  29 

Email: S.Memon@lsbu.ac.uk 30 

Tel: +44 (0)20 7815 7510 31 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 
 

Abstract 1 

 2 

Hermeticity of vacuum edge-sealing materials are one of the paramount requirements, specifically, to the 3 

evolution of energy-efficient smart windows and solar thermal evacuated flat plate collectors. This study 4 

reports the design, construction and performance of high-vacuum glazing fabrication system and vacuum 5 

insulated glazing (VIG). Experimental and theoretical investigations for the development of vacuum 6 

edgeseal made of Sn-Pb-Zn-Sb-AlTiSiCu composite in the proportion ratio of 56:39:3:1:1 by % (CS-186) 7 

are presented. Experimental investigations of the seven constructed VIG samples, each of size 8 

300mm·300mm·4 mm, showed that increasing the hot-plate surface temperatures improved the cavity 9 

vacuum pressure whilst expediting the pump-out hole sealing process but also increases temperature 10 

induced stresses. Successful pump-out hole sealing process of VIG attained at the hot-plate set point 11 

temperature of 50˚C and the approximate cavity pressure of 0.042 Pa was achieved. An experimentally and 12 

theoretically validated finite volume model (FVM) was utilised. The centre-of-pane and total thermal 13 

transmittance values are calculated to be 0.91 Wm-2K-1 and 1.05 Wm-2K-1, respectively for the VIG. FVM 14 

results predicted that by reducing the width of vacuum edge seal and emissivity of coatings the thermal 15 

performance of the VIG is improved.  16 

 17 
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1. Introduction 1 

 2 

Advancement in the vacuum sealing materials is one of the paramount need in leading smart windows [1] 3 

and solar thermal evacuated flat plate collectors [2] at the manufacturing level due to considerable issues of 4 

leakage in the vacuum edge sealing materials [3] and/or the cost of scarce semi-precious materials such as 5 

indium [4, 5]. There is also a serious challenge particularly in solar energy field of balancing the security of 6 

power supply and peak power demand [6]. Glazing technologies, such as double air-filled glazing [7] with 7 

low-e coatings [8] and gas filled glazing with cavities filled with heavy gases (Argon, Krypton or Xenon), 8 

could achieve the thermal transmittance value (U Value) up to 1.4 Wm-2K-1, depending on the cavity 9 

thickness [9, 10]. To improve the thermal performance further, without compromising the visible light 10 

transmittance, a vacuum insulation is an option. A vacuum insulation is a space, between two glass panes, 11 

of reduced mass of atmospheric-air. The rate of decrease of the density of air in a space determines the 12 

level of vacuum pressure. This provides thermal insulation, because with a lower density of air the mean 13 

free path between air molecules can be increased to above 1000 m [11], ultimately reduces the heat transfer 14 

path between air molecules in a space. In VIG, the space between two glass panes is evacuated to high-15 

vacuum pressure (0.13 Pa to 1.33·10-4 Pa) in order to reduce conductive and convective heat transfer [12] 16 

to negligible levels, however the heat transfer through radiation can only be minimised using low-emittance 17 

coatings to VIG [13]. In evacuated flat plate collectors, selective anti-reflective emissivity coatings onto the 18 

glass surface are required that improves optical transmission which is different to VIG in itself. Due to the 19 

difference between external atmospheric-air and internal vacuum pressure, spacers are required to prevent 20 

the glass panes touching each other [14]. These spacers are called support pillars and typically have radii 21 

from 0.1mm to 0.2 mm and height of 0.1mm to 0.2mm [15]. In VIG, even a small vacuum space gives the 22 

same thermal insulation because radiative heat transfer is same at any cavity thickness [16]. A vacuum 23 

edge seal around the periphery of the glass panes is required to maintain the high level of vacuum and 24 

avoid the problems of gas leaks, degradation of coatings, and absorption of moisture. However, heat 25 

transfer through conduction occurs because of the contiguous heat transfer path formed by the support 26 

pillar and edge sealing materials.  27 

 28 

The constructional components that mainly determines the thermal performance of VIG is its vacuum edge 29 

seal [17,18]. The vacuum edge seal of a VIG must be capable of maintaining a vacuum pressure of less 30 

than 0.1 Pa [19], in order to suppress gaseous conduction, for the expected life of 20 years. The edge of two 31 

glass panes was first sealed using a high power laser through a quartz window in a vacuum chamber [20] 32 

but the level of vacuum was not less than the required, 0.1 Pa, due to gases and vapour molecules caused 33 

by laser sealing technique [21, 22]. A high-temperature edge sealing material, Schott solder glass type 8467 34 

at the sealing temperature of 450˚C, was used by the group at the University of Sydney [12, 23, 24]. With 35 

this technique, it achieved centre-of-pane thermal transmittance (Ucentre) value of 0.8 Wm-2K-1  and 36 

subsequently developed to the production level under the trade name of ‘SPACIA’ in Japan by Nippon 37 

Sheet Glass (NSG) [25]. The problems with the high-temperature edge sealing method is that it causes 38 

degradation of soft low emittance coatings meaning that only hard coatings can be used [13]. Toughened 39 

glass also cannot be used due to the loss of temper at high temperatures [26]. Low-temperature solder glass 40 

materials were investigated to form a hermetic edge seal, but durability was a problem due to the 41 

absorption of moisture. Polymers have problems of both gas permeability and out gassing [4, 27]. A low-42 

temperature edge sealing materials, i.e. indium or indium alloys melts at about 160°C, were utilised and 43 

developed at the University of Ulster [13, 28, 29]. This technique achieved a Ucentre value of 0.9 Wm-2K-1 44 
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and allowed the use of low emittance soft coatings (such as silver), which reduce radiative heat transfer 1 

between the glass panes and permits toughened glass pane for an increase of support pillar spacing that 2 

reduces conductive heat transfer. The problems with the low-temperature based indium seal are the scarcity 3 

and the cost; because of this, the low-temperature indium sealed vacuum glazing process has not yet been 4 

commercialised [4,9, 30].  5 

 6 

In this paper, a particular focus is made on the design and construction of high-vacuum glazing fabrication 7 

system, including the modified vacuum cup, and a new method of vacuum edge seal utilised for the 8 

successful fabrication of the VIG, made of Sn-Pb-Zn-Sb-AlTiSiCu composite in the proportion ratio of 9 

56:39:3:1:1 by % weight respectively, developed by MBR Electronics Gmbh in the trade name of CS-186. 10 

A steel reinforced epoxy applied to support the vacuum edge seal, as illustrated in Fig. 1. One of the 11 

significant contribution in this paper is reporting the experimental investigations of seven VIG samples for 12 

evaluating the influences of hot-plate surface temperatures induction on evacuation and pump-out hole 13 

vacuum sealing of the VIG in order to achieve the relatively acceptable setup when the evacuation and 14 

pump-out hole sealing processes are performed. An experimentally and theoretically validated finite 15 

volume model (FVM) of Fang et al.(2005) [31]; Fang et al.( 2006) [15] and Fang et al. (2009) [22] was 16 

utilised for the thermal performance analyses of VIG, size of 300mm·300mm·4mm rebated by 10 mm in a 17 

solid wood frame and 10 mm main edge seal and the results are discussed. 18 
 19 

 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 

 33 
 34 
 35 

 36 
Fig. 1. A schematic diagram of novel edge sealed VIG showing the main vacuum edge seal 10 mm wide, 37 

made of Sn-Pb-Zn-Sb-AlTiSiCu composite in the proportion ratio of 56:39:3:1:1 by wt% respectively ) 38 

(CS-186), and a support edge seal 4 mm wide, made of steel reinforced epoxy. 39 
 40 
2. Design and construction of a high-vacuum glazing fabrication system 41 

 42 

A lab scale vacuum glazing fabrication system was designed and constructed to fabricate VIG. The vacuum 43 

glazing production system design, as shown in Fig. 2, consists of the vacuum pump, it is connected in 44 

series with the vacuum cup. For the measurement of pressure, a pressure gauge is connected in parallel 45 

with the vacuum pump. The angle valve with Swagelok adapter is included allowing the system to be 46 

purged with nitrogen (inert gas); this is connected in series with a square cross-section tube. An angle valve 47 

Not to scale 

Main vacuum edge seal 10 mm wide 
( Sn56Pb39Zn3Sb1- AlTiSiCu1 wt%) 
(CS-186) 

Support edge seal 4 mm 
wide 
(Steel reinforced epoxy) 

Pilkington k-glass panes 
300mm·4mm·300mm 

Spacers (support pillar 
array made of stainless 
steel 304) 
Separation: 24 mm 
Height: 0.15 mm 
Diameter: 0.3 mm 

Pump-out hole sealed with square 
cover slip using advanced edge seal 
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is connected in series between the vacuum pump and vacuum cup. The dimensions of the components used 1 

in this design are presented in Table 1. A dry type turbo-molecular with backing pump with an achievable 2 

pressure of 5·10-6 Pa was chosen. This is because the vacuum pump should be of an oil free/dry type as the 3 

contamination in the oil type with oil molecules could occur on the surfaces of tubes, valves, hose and/or 4 

vacuum cup preventing an achievement of effective vacuum level. A turbo-molecular vacuum pump has a 5 

pumping speed of 61 litres/sec. With proper venting, the turbo mechanism stops in less than a minute. This 6 

means that vacuum cup venting is accomplished without the need for a valve to separate the pump and 7 

vacuum cup. The EXT75DX T-Station selected for this vacuum system. It consists of a turbo molecular 8 

pump and a diaphragm-backing pump XDD1. The ATV (Atmosphere to Vacuum) transducer type 979, was 9 

connected to a PDR 900 digital pressure measurement readout, used in the present study for the 10 

measurement of vacuum pressure in the designed vacuum system. This pressure gauge is located at the 11 

closest possible location to the vacuum cup to measure the approximate pressure in the cavity of the VIG, 12 

as shown in Fig. 2. The ATV transducer enables measurement of a wide pressure range from ultrahigh 13 

vacuum (1.33·10-8 Pa) to atmospheric pressure (101.33·103 Pa). It consists of MEMS (Micro-Electro-14 

Mechanical System) based MicroPirani gauge and a miniaturised hot cathode ionisation gauge in a single 15 

transducer unit [32]. The MEMS based MicroPirani gauge measures pressure from 1.33·10-2 Pa to 16 

atmospheric pressure. The hot cathode ionisation gauge measures pressure from 1.33·10-3 Pa down to 17 

1.33·10-8 Pa. A good discussion and literature review of the fundamental theory of Pirani and hot cathode 18 

ionisation gauges can be found in text books by Dennis and Heppell (1968) [33] and Guthrie (1963) [34]. 19 

The PDR900 digital controller provides readout of the pressure measurements. It interfaced to a computer 20 

for real time data logging of the evacuation pressure of the vacuum system. 21 
 22 
Table 1 23 

Dimensions of the components used in the vacuum system design. 24 

Components D (cm) L (cm) V (cm3) 

Angle valve with 
Swagelok adapter 

D3=4.2  
D4=3.8  
D5=3.8  

L3=11 
L4=4.7 
L5=4.7 

152.4 
53.3 
53.3 

Square cross-
section tube 

D1=3.8  
D2=3.8  
D6=3.8  
D7=3.8  

L1=4.1 
L2=4.1 
L6=4.1 
L7=4.1 

46.5 
46.5 
46.5 
46.5 

Angle valve D8=4.2  
D9=3.8  
D10=3.8  

L8=11 
L9=4.7 
L10=4.7 

152.4 
53.3 
53.3    

hose/pipe D11=3.8  L11=69 782.54 
Vacuum cup D12=3.5  

D13=10  
D14=3.5  
D15=3.5  

L12=2 
L13=15 
L14=2 
L15=2 

1.1 
23.56 
1.1 
1.1 
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 1 

Fig. 2. A schematic diagram of the designed vacuum system showing the dimensions and connections of 2 

the tubes, angle valves, the vacuum cup and the vacuum pump. 3 

 4 

To obtain a vacuum in a volume of the system the density of gas must be reduced and is directly 5 

proportional to the gas pressure; in practice, the gas pressure measures the level of vacuum [35]. The rate at 6 

which the gas molecules are evacuated from the vacuum vessel, i.e. mass flow, determines the pressure 7 

drop.  The mass flow rate, M, can be expressed (in atomic mass unit of gas) by keeping the mass of gas, m, 8 

and temperature, T, in the vessel constant as Eq. (1), 9 
 10 
��

��
=

�

��
�                     (1) 11 

                           12 
Where ζ is the Boltzmann constant i.e. 1.38·10-23 Pa m2 K-1 and Q is the gas flow rate in Pa litres/sec. This 13 

can be expressed by knowing the pressure, P, and volume, V, of the gas as Eq. (2),  14 
 15 

� =
�(
�)

��
                                                                                                                                    (2) 16 

 17 
The gas flow, Q, through a vacuum vessel or hose occurs due to the difference of pressure depending on 18 

the inside diameter of the tubes. The average distance any air molecule travels before colliding with 19 

another molecule is its mean free path λ in m [34, 36]. The collisions between molecules can be calculated 20 

using Eq. (3). 21 
 22 


 =
�	�

√��
��
�                                                                (3) 23 

 24 
Where, T is the absolute temperature of the air in K (the tubes are under atmospheric air with an ambient 25 

temperature of 294.15K) and P is the air pressure in Pa. Dm is the gas kinematic diameter of the air 26 

molecule i.e. 4·10-10m, which is based on the assumption that the air molecules are smooth, rigid and elastic 27 

spheres [37]. 28 

 29 
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The turbo-molecular pump evacuated the air molecules continuously from the tubes, components, vacuum 1 

cup and cavity of the VIG. The rate at which the volumetric flow of gases evacuated from the system is the 2 

pumping speed in litres/sec, in this type of turbo-molecular pump the ultimate pumping speed is given to be 3 

61 litres/sec.  One of the considerations was taken into account when designing the vacuum system was to 4 

reduce the connections (tubes and pipe length) between the turbo-molecular pump and the vacuum cup so 5 

as to keep the pumping speed losses to a minimum level.  6 

 7 

Upon initiating a pump down the flow of air molecules, having air pressure of 101.325 kPa, was often 8 

turbulent, called viscous flow regime. In which  the mean free path between molecules was calculated to be 9 

56.35·10-9 m from the Eq. (3). As the air pressure decreases the mean free path increases, having a fewer 10 

air molecules in a space to make collisions with each other and the mean free path is considered to be 11 

roughly equivalent to the diameter of the tube,  called a laminar (transition) flow regime.  In a best-case 12 

scenario, when the achievable vacuum pressure is 5·10-6 Pa then the mean free path between molecules  is 13 

calculated to be 1142 m, called a molecular flow regime. 14 

 15 

The rate of evacuation, i.e. gas flow rate, is proportional to the rate of mass of air change. In addition to 16 

that, the layers of adsorbed gaseous molecules as a thin film on the internal surfaces within the tubes and 17 

vacuum glazing require evacuation of six hours to achieve a good level of high vacuum pressure. 18 

Increasing the temperature from 100˚C could help in desorbing the layers of gaseous molecules but this 19 

may cause glass bending. This increases internal compressive and external tensile stresses in the glass 20 

panes and increases the risk of cracking of the edge seal. With a constant temperature, up to 60˚C, and 21 

volume of the vacuum system the flow rate into the turbo-molecular pump (Qi) from the vacuum system 22 

can be written as Eq. (4), 23 
 24 
Qi=SoPv                        (4)   25 
 26 
The flow rate into the turbo-molecular pump (Qi) can be calculated to be 3.05·10-4 Pa litres/sec from the So 27 

ultimate pumping speed i.e. 61 litres/sec and the Pv ultimate pump pressure i.e. 5·10-6 Pa.  28 

 29 

A high-vacuum glazing fabrication system constructed is shown in Fig. 3. It is based on the design 30 

presented in Fig. 2.  The vacuum system was experimentally tested and the minimum achievable vacuum 31 

pressure was recorded to be 4.35·10-5 Pa. This deviates by 7.7% with the ultimate vacuum pressure of the 32 

turbo molecular pump due to tube air-flow conductances.  33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
Fig. 3. A photograph of the vacuum system developed based on the design presented in Fig. 2. 14 
 15 
2.1. Vacuum Cup for Pump-out hole sealing during Evacuation 16 
  17 
A number of vacuum cup designs were used in previous studies for the evacuation and sealing of the pump-18 

out hole of a vacuum insulated glazing. The first successful method of pump-out hole sealing was based on 19 

sealing a capillary glass tube [12, 25]. The capillary tube was bonded to the pump-out hole using solder 20 

glass during the edge sealing process and was then sealed after evacuation. An electrical resistance heater 21 

mounted inside a vacuum cup and looped around the capillary tube. Resistance heating permits the tube to 22 

be sealed at around 600°C when the correct vacuum was achieved. A modified pump-out sealing technique 23 

was reported by Zhao et al. (2007) [28], this approach has used low-temperature indium alloy soldered 24 

ultrasonically on to a glass disc for pump-out hole sealing and a cartridge heating element fixed inside a 25 

steel block in the pump-out cap to melt the indium and seal the hole. This method was found to be difficult 26 

in positioning the glass disc over the pump-out hole with a risk of dislocation of the heating block when the 27 

indium alloy on the glass disc melted during evacuation. In this paper, a new vacuum cup  design is 28 

presented for the evacuation and vacuum sealing, suitable for both high-temperature and low-temperature 29 

materials, of the pump-out hole on the VIG, as illustrated schematically in Fig.4.  In this design, the risks of 30 

dislocation and degradation of O ring (to avoid ingress of gas molecules from the atmosphere) were 31 

minimised to a negligible level by: (i) designing the vacuum cup diameter of 100 mm to make the Viton O 32 

ring sufficiently away from the heating element to avoid degradation, which is capable of sustaining 33 

temperatures up to 250˚C; and (ii) the heating element (cartridge heater) and K type thermocouple are 34 

mounted to a metallic rod controlled through a supporting Y shaped block to provide vertical motion of up 35 

to 10 mm, as shown in Fig. 5(a). A K type thermocouple fixed to the heating block measures the 36 

approximate pump-out hole seal, made of glass square, temperature as shown in Fig 5(c). Heat transfer at 37 

high vacuum occurs through both long wave radiation and conduction due to contact between the heating 38 

block and the glass disc, as shown in Fig 5(b) and Fig 5(d). The required temperature to achieve a vacuum 39 

979 series Pressure 
Transducer 

Hot Plate 
Vacuum Cup 

PDR 900 pressure 
display unit 

Turbo-molecular 
Pumping Station 

Swagelok 
adaptor 

Angle Valve 
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pump-out hole seal is approximately 40˚C greater than the melting temperature of the pump-out sealing 1 

material used to seal the pump-out hole.  2 
 3 
Fig. 4 also shows the pump-out hole on top of the VIG located inside the vacuum cup. The radius of the 4 

pump-out hole on the top glass pane was reduced to less than 1.5mm in order to minimise the use of pump-5 

out sealing material. To reduce the risk of glass fracture and risk of scratches on the glass surface due to 6 

manual drilling, a glass drilling machine at a local glass pane supplier was used for pump-out hole drilling. 7 

However, due to the limitations in the available drill radius, the minimum possible pump-out hole radius 8 

and volume was 2 mm and 50.26 mm3, respectively, were chosen. The volume of the vacuum gap in the 9 

VIG (area of 280·280 mm, subtracted the area of edge seal), shown in Fig. 4, was calculated to be 10 

11758.47mm3 (0.012litres) by taking into account the total number of pillars and volume occupied in a 11 

vacuum gap that are 144 (a pillar spacing of 24mm) and 1.53mm3, respectively. Thus, the total volume 12 

including the vacuum system was calculated to be 1.52 litres. The total volume of the system is considered 13 

to be sufficient for the evacuation of vacuum insulated glazing due to the high pumping speed of the 14 

selected turbo molecular pump i.e.61 litres/sec. 15 
 16 
 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

Fig. 4. A schematic diagram of the vacuum cup design showing the heating block used for sealing the 32 

pump-out hole on the VIG. 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 
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 1 
 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Fig. 5. Illustrations of the constructed vacuum cup system for the evacuation and sealing of the pump-out 17 

hole in a VIG.  18 
 19 

3. FIB-SEM and X-ray CT analysis of CS-186 composite (vacuum edge seal) 20 

 21 

Focus Ion Beam Scanning Electron Microscopic (FIB-SEM) and X-ray high resolution Computed 22 

Tomographic (CT) systems were used to analyse the micro-structural surface of the main edge seal’s 23 

smoothness and consistency of CS-186 composite. In the first part, a cover slip, size of 20mm·20mm·1mm, 24 

ultrasonically soldered with CS-186 composite. In the second part, two Pilkington K glass panes, each of 25 

size 10mm·10mm·4 mm, ultrasonically soldered CS-186 composite and then heated at 186˚C in a radiative 26 

oven. Fig. 6(a) shows the smooth and consistent flow of the spread of this composite onto the glass surface. 27 

It was found that the continuity of the composite-soldered layer on to the glass edges determines the 28 

integrity of the seal. Fig. 6(b) shows the cross-sectional views of the interface between the glass to CS-186 29 

composite. As it can be seen, the cross-sectional middle view of the glass- CS-186 composite seal has 30 

negligible traces of micro voids with trapped air inside, this determines the hermeticity and the contiguity 31 

of the edge seal when used for the construction of VIG. Although the trapped air inside the edge seal is one 32 

of the common issue in the formation of the edge seal as examined by Zhao et al (2007) [28]. This can 33 

greatly be reduced by applying carefully the ultrasonic soldering iron at the vibration frequency of 25-30 34 

kHz with the set-point temperature of 190˚C (the melting temperature of this composite is 186˚C). 35 

Overheating must be avoided [13, 21] and a secondary support seal is necessary to avoid the risk of 36 

external mechanical stresses due to manual handling of the VIG sample.  37 

 38 

(a) Heater with supporting block (b) Side view of the vacuum cup  

(c) Bottom view of the vacuum cup (d) Top view of the vacuum cup  

Y-shaped block 

Heating block 

Viton O ring 

K-type 
thermocouple 

230V ac power 
cables 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

Fig. 6. (a) FIB-SEM of 20mm·20mm·1mm slide cover slip sample with Sn56Pb39Zn3Sb1- AlTiSiCu1 wt% 11 

composite( also called CS-186 composite)  ultrasonically soldered on the surface magnified at 5000x (b)  12 

X-ray CT cross-sectional view at the interface of the glass and CS-186 composite seal.  13 

 14 
4. Design and construction of the VIG 15 
 16 
4.1. Four-stage design process 17 

 18 

The four-stage design process for the construction of vacuum edge seal is developed, as shown in Fig. 7, 19 

using the high-vacuum pump-out system. Two 4 mm thick Pilkington K-glass panes of area 20 

292mm·292mm (upper glass) and 300mm·300mm (lower glass) were used. The reason for using different 21 

sizes of glass panes was to apply support edge seal (steel reinforced epoxy) uniformly around the periphery 22 

of the VIG to support the main edge seal made of Sn56Pb39Zn3Sb1- AlTiSiCu1 wt% (CS-186) composite. 23 

The width of the primary edge seal was considered to be constant i.e. 10 mm and a support edge seal i.e. 24 

4mm to test and repeat the experiments for the successful fabrication of VIG based on this new method. A 25 

selection of 10 mm width of the edge seal was the result of experiments performed to increase the 26 

mechanical stability of the main edge seal. The process achieved after rigorous experiments is detailed 27 

section 4.2. 28 

 29 
 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

Fig. 7. Four stage design process for the construction of vacuum edge seal.  38 

 39 
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4.2. Construction process 1 

 2 

1) 4 mm thick K-glass panes were cut to the size of 292mm·292mm and 300·300mm. In the smaller pane, a 3 

4 mm diameter of pump-out hole drilled to allow the evacuation of the cavity between the two glass panes, 4 

located 75 mm from the corner of the smaller glass pane.  5 

 6 

2) The panes of glass were cleaned with water, acetone and isopropanol followed by an initial bake-out at 7 

120˚C in an oven.  8 

 9 

3) A 10 mm wide layer of CS-186 composite was ultrasonically soldered around the periphery on the SnO2 10 

coated sides of both glass panes in the arrangement, as shown in the Fig. 8. Subsequently, a square cover 11 

slip of 1mm thick cutting to a size of 18·18mm was prepared for the pump-out hole sealing by soldering 12 

with CS-186 composite.  13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 

 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
Fig. 8. The 10 mm wide primary seal soldered on the bottom glass pane around the periphery, displaced 34 

4mm from the glass edge. 35 

 36 

4) Stainless steel support pillars were located on the lower glass pane using a vacuum wand as illustrated in 37 

Fig. 9a. The pre-soldered upper glass pane was located on top of the support pillars. 38 

  39 

5) A CS-186 composite wire gasket was placed on the soldered area as illustrated in the Fig. 9b. 40 

 41 

6) The prepared sample, shown in Fig. 9c, was heated to 186˚C in the oven to join two panes of glass 42 

together for up to 2 hours. 43 

 44 

7) A support seal, steel reinforced epoxy, was applied around the edges of the main edge seal for enhancing 45 

the mechanical stability of the main edge seal, as shown in the Fig. 9d. 46 

 47 

 48 

 49 

 50 

Main vacuum edge seal 
(CS-186 composite)  Seal displaced 4mm from the 

glass edge area 
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edge sealing Hot plate 
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 1 
 2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
 21 

 22 

 23 

Fig. 9.  shows (a) support pillars placing on the lower glass pane using a vacuum wand, (b) the square cross 24 

section wire made of the Sn56Pb39Zn3Sb1- AlTiSiCu1 wt% composite (also called CS-186) 1.6mm in 25 

diameter placed on the soldered main edge seal to form a gasket, (c) the prepared sample before heating in 26 

the oven to 186˚C illustrates the upper glass pane (292mm·292mm) placed on the lower glass pane 27 

(300mm·300mm) separated by the edge seal and an array of support pillars, and (d) the edge seal made of 28 

CS-186 composite and steel reinforced epoxy around the periphery of the sample. 29 

 30 

8) The sample was then placed on the hot plate and heated to variable temperatures for improving 31 

evacuation of the cavity in the sample using the vacuum cup connected to the high-vacuum pump-out 32 

system. 33 

 34 

9) During evacuation, after 6 hours, the pump-out hole was sealed by heating the CS-186 composite coated 35 

glass square using the cartridge heater fixed inside the vacuum cup as illustrated in the Fig. 10.  36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 
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 1 

 2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Fig. 10. Experimental setup developed for the evacuation of VIG using a vacuum cup connected to a 17 

vacuum system and the pump-out hole sealed with a glass square. 18 

 19 

5. Influences of surface temperatures induction on evacuation and pump-out hole sealing of 20 

VIG   21 

 22 

An ability of VIG to withstand the mechanical stresses is contingent to the strength of the panes of glass 23 

and the edge seal. These are the characteristic attributes inherent to the consistent formation of the whole 24 

sample, when the cavity vacuum pressure of less than 0.1 Pa and the pump-out hole seal are achieved. Due 25 

to the mutual external and internal forces of such a complex procedure, keeping the concentration of the 26 

stresses around the pump-out hole area and keeping the minimum possible deflections of the glass surfaces 27 

are significant factors in achieving the successful VIG unit. It is important to mention here that uniform 28 

temperature distribution and cooling at a slower rate [38] must be introduced because of the thermal 29 

expansion mismatch between the glass pane and the main edge seal, i.e. 8 ·10-6/˚C and 23.5·10-6/˚C 30 

respectively. In this paper, the novel contribution is not only to fabricate VIG but to achieve the prominent 31 

vacuum pressure and sustainable surface temperatures with the minimum possible additional stresses. The 32 

hot-plate surface temperature and approximate cavity pressure measurements varying with time were 33 

performed simultaneously on the seven samples fabricated, each was 300mm·300mm·4mm in size made of 34 

K glass. These samples were sealed ,around the periphery of the two glass panes, with the main edge seal 35 

10 mm wide made of Sn56Pb39Zn3Sb1- AlTiSiCu1 wt% composite, and a support edge seal, 4 mm wide, 36 

made of steel reinforced epoxy. The hot-plate surface temperatures, reported here, were as measured for 37 

each sample and for each measurement the temperature controller was set to the appropriate value to study 38 

experimentally the influence of hot-plate surface temperatures on the evacuation of the cavity pressure and 39 

the pump-out hole sealing of the VIG for the purpose of achieving the viable high-vacuum pressure with 40 

the minimum possible stresses. Such stresses are because of shear forces occurred on the edge seal area 41 

forcing the glass into curve relative to the centre-of-pane surface. Both glass panes deflect, under the 42 

Vacuum Pump (Type 
Turbo-molecular) 

Vacuum Pressure Readout  

Pressure Gauge  

Hot Plate 

Vacuum Cup Vacuum Insulated Glazing. 

Glass square for pump-out 
hole sealing 
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induction of temperature differentials, in the same direction that are usually caused during the evacuation 1 

and pump-out hole sealing process. 2 

Fig. 11. Experimental measurements of hot-plate surface temperature induction and vacuum pressure regimes in 3 

which: (a) Sample A at the set-point of 21˚C achieved 0.1 Pa; (b) Sample B at the set point of 40˚C achieved 0.05 Pa; 4 

(c) Sample C at the set point of 60˚C achieved 0.04 Pa; (d) Sample D at the set point of 80˚C achieved 0.03 Pa; (e) 5 

Sample E at the set point of 95˚C achieved 0.02 Pa; and (f) Sample F at the set point of 110̊C achieved 0.009 Pa. 6 

 7 

Fig. 11a shows the experimental measurements of the approximate cavity pressure under the ambient 8 

temperature of 21˚C. As can be seen, the vacuum pressure of approximately 0.1 Pa was achieved during the 9 

evacuation. The glass square was heated, using the heating element inside the vacuum cup, gradually to the 10 

melting temperature of this composite, i.e. 186˚C, during evacuation. Due to the temperature gradients on 11 

the glass panes, the sample-A has experienced increasing  level of internal compressive and external tensile 12 

stresses. This results a small crack on the upper glass around the pump-out hole sealing area occurred after 13 

10 min during evacuation. It was noticed that that the sample-A must be subjected to an appropriate surface 14 

temperatures by making sure the surface temperature must not degrade the edge seal. These experimental 15 

results are in good agreement with the detailed mathematical model and calculations of the predicted 16 

temperature induced stresses reported by Collins et al. (1992) [24], Fischer-Cripps et al. (1995) [14], 17 

Lenzen and Collins (1997) [39], Wang et al. (2007) [21] and Wullschleger et al. (2009) [40].   18 
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 1 

The  Sample-B was fabricated, as shown in Fig. 11b, showing the experimental measurements of the 2 

approximate cavity pressure of 0.05 Pa at the set-point hot-plate surface temperature of 40˚C. The pump-3 

out hole of the Sample-B was sealed with glass square but it experienced a small leak, after 15 min of 4 

evacuation, on the pump-out hole seal due to the insufficient temperature distribution. However, it can also 5 

be seen that the vacuum pressure was improved as a result of increasing the Sample-B hot-plate surface 6 

temperature but a proper temperature gradient match was needed between the top-glass surface and the 7 

heating block inside the vacuum cup. Subsequent stresses observed are tensile on top glass pane and higher 8 

compressive on bottom glass pane as predicted by Wang et al. (2007) [21]. 9 
 10 
Fig. 11c shows the Sample-C temperature/pressure profiles in which the experimental measurements of the 11 

improved approximate cavity pressure of 0.04 Pa at the set-point hot-plate surface temperature of 60˚C 12 

were recorded. The Pump-out hole of the Sample-C was successfully sealed with glass square after 6 hours 13 

of evacuation. This is because the layers of adsorbed gaseous molecules as a thin film on the internal 14 

surfaces within the tubes and vacuum glazing require longer evacuation. The evacuation process time can 15 

be reduced by increasing the surface temperatures.  16 
 17 
To further improve the approximate cavity pressure, Sample-D was fabricated in which the approximate 18 

cavity pressure of 0.03 Pa at the set-point hot-plate surface temperature of 80˚C were recorded, as shown in 19 

Fig. 11d. During the pump-out hole sealing process, it was observed that the Sample-D experienced tensile 20 

stresses on the top pane whilst compressive on the bottom pane causing glass bending and fractured the 21 

sample from its edges after 1.5 hours of evacuation during the formation of the pump-out hole seal. 22 

 23 

Such initial experimental investigations show when the hot-plate surface temperature was set to 21˚C then 24 

it caused difficulty in the formation of pump-out hole seal leading to the growth of crack on the top glass 25 

pane. An increase of hot-plate surface temperature facilitates the sealing of the pump-out hole, whilst 26 

achieving improved vacuum pressure, but increases the stresses causing bending of the glass panes and 27 

produces a risk of fracture to the edge seal. Although the uniform glass surface temperatures are practically 28 

not possible due to the limitations of the edge seal temperature for the formation and the mechanical 29 

sensitivity of the main edge seal despite the fact the coefficient of thermal expansion of the glass and the 30 

edge seal are within their acceptable margins.  31 
 32 
Fig. 11e shows the temperature/pressure measurements of Sample-E in which the approximate cavity 33 

pressure of 0.02 Pa, at the set-point hot-plate surface temperature of 95˚C, was achieved. The pump-out 34 

hole of the sample-E was successfully sealed but it experienced higher level of internal compressive and 35 

external tensile stresses, after 20 min of evacuation, caused the fracture of the edge seal.  36 
 37 
To comprehend the limitation of the VIG sample surface temperatures and its maximum achievable 38 

vacuum pressure, Sample-F was fabricated in which the approximate cavity pressure of 0.009 Pa at the set 39 

point temperature of 110˚C were recorded, as shown in Fig. 11f, but cracks occurred, after 4 min of 40 

evacuation, on to the edge and the pump-out hole areas. It is because of the glass bends due to thermal 41 

stresses and higher temperature differentials fractured the glass. However, the vacuum pressure was 42 

improved before 4 min of evacuation by increasing the sample temperature but it also increased the 43 

stresses, glass deflections, and caused difficulties in sealing the pump-out hole. 44 

 45 
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A relatively acceptable, based on the aforementioned experimental observations, an improved VIG sample 1 

was made at the hot-plate set-point temperature of 50˚C, as shown in the Fig. 12. The approximate cavity 2 

pressure of 0.042 Pa was achieved and the hot-plate surface temperature and pressure regimes were 3 

recorded as shown in Fig. 13. It was fabricated after a series of six experiments. In which the influence of 4 

hot-plate surface temperatures on the cavity vacuum pressures and their limitations were experimentally 5 

studied. A practicable fabrication process was achieved from these experiments and effective sample 6 

successively constructed. More than five similar samples of this process having different sizes, re-7 

evacuated at the hot-plate set-point temperature of 50˚C, were fabricated which validates the recurrent 8 

sealing of the pump-out hole and achievable vacuum pressure. The experimental observations show 9 

repetitive behaviour of stress patterns across the support pillars indicated a vacuum-tight edge seal, as 10 

shown in Fig. 12. A new contribution to this study is that the temperature induces not only stress but it also 11 

improves vacuum pressure and achieving the match of hot-plate surface temperature of 50˚C for this type 12 

of edge seal was a prominent challenge in this study and contribution to the VIG sample. However, the 13 

preceding studies have already reported the mathematical modelling of the stresses in vacuum glazing and 14 

in this paper the repetition was avoided but mainly to follow and validate those predictions experimentally 15 

by achieving the successful VIG sample [21, 14]. A careful consideration need to be made when 16 

reproducing the VIG construction for larger size and the use of tempered glass could be used and to 17 

evaluate the applicability of the obtained results to samples of larger size, current findings are limited to 18 

smaller size VIG such as the dimensions of 300mm·300mm·4mm or 500mm·500mm·4mm. 19 
 20 
 21 

  22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

(a)        (b) 36 

Fig. 12. (a) An improved VIG sample, made of 300mm·300mm·4mm in size, showing the main edge seal 37 

10 mm wide made of CS-186 composite and a support edge seal, 4 mm wide, made of steel reinforced 38 

epoxy and (b) the pump-out hole made of the aforementioned composite protected with Araldite adhesive. 39 
 40 

Rear view of the pump-out seal 

Support Pillar array 

K-Glass Panes 

Main Vacuum edge seal 
(CS-186 composite) 

Secondary edge seal 
(Epoxy J-B Weld) 
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 1 

Fig. 13. The experimental temperature/pressure regimes of sample shown in Fig 12, in which a vacuum 2 

pressure of 0.042 Pa at 50˚C was achieved with the successful pump-out hole seal without any leak to the 3 

edge sealing area. 4 

 5 

6. Thermal performance analyses of the VIG 6 

 7 

6.1. Validated finite volume modelling approach  8 

 9 

An experimentally and theoretically validated finite volume model (FVM) of Fang et al.(2005) [31]; Fang 10 

et al.( 2006) [15]  and Fang et al. (2009) was utilised for the thermal performance analyses of VIG, size of 11 

300mm·300mm·4mm rebated by 10 mm in a solid wood frame and 10 mm main edge seal. The details of 12 

the analytical model are reported in Fang et al. (2006) [22]. A validated set of equations, including the 13 

direct depiction of the support pillars incorporated to the FVM, were solved for the fabricated design of 14 

VIG at the cavity vacuum pressure of 0.042 Pa. The reason to model only one quarter of the VIG is the 15 

symmetrical geometry of the whole sample of VIG under the ISO ambient conditions [41] representing the 16 

complete thermal performance. As per ISO (2000) [41] standard, the average air temperatures of the cold 17 

and warm sides of the glass panes are set to be 20˚C and 0˚C, respectively. The inside and outside surface 18 

heat transfer coefficients are 7.7 Wm-2K-1 and 25 Wm-2K-1,respectively. The cylindrical nature of support 19 

pillars in FVM is represented as a cube, with square base, support pillar (length of √�� ) having equivalent 20 

area utilised that conduct the same amount of heat transfer which is a validated approach of Fang et al. 21 

(2009) [22]. A higher density of nodes were utilised in the mesh that represents each support pillar to allow 22 

maximum possible levels of accuracy in the calculation of heat transfer and again the accuracy is validated 23 

in Fang et al. (2005) and the approach is comparable with the results of Wilson et al. (1998) [16] and 24 

Collins and Robinsons (1991) [19]. Initial tests of this FVM were performed with the 50·50 nodes 25 

distributed on the y and z directions on the glazing surface and with 20 nodes on the x direction. The 26 

thermal transmittance at the centre-of-pane for the indium based vacuum glazing with emittance of 0.03 27 

was determined to be 0.36 W m-2K-1 with a glass pane thickness of 6 mm. It was found identical with the 28 

findings of Griffiths et al. (1998) [13] thus this modelling approach is suitable to simulate a practical heat 29 

flow with high accuracy of predicting the thermal transmittance of VIG based on the achievable cavity 30 

vacuum pressure of 0.042 Pa. The boundary conditions implemented in the finite-volume model of the VIG 31 

are listed in Table 2.  32 

 33 
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Table 2 1 

Boundary conditions implemented in the validated finite-volume model of the VIG. 2 

 3 
Constructional element Property Value and/or material type 
Main edge seal  Material 

Width 
Thermal conductivity 

CS186 composite 
10 mm¥ 
46.49 Wm-1K-1* 

Glass pane (Pilkington K type) Thermal conductivity 1 Wm-1K-1 
Emittance Three surfaces (Hard coating) 0.15/tin-oxide ¥ 
Frame (wood) Thermal conductivity 0.138 Wm-1K-1 
Support pillar Material 

Diameter 
Height 
Pillar separation 
Thermal conductivity 

Stainless steel 304 
0.3 mm 
0.15 mm 
24 mm 
16.2 Wm-1K -1  

*Measured thermal conductivities are reported by Memon (2017) [30].  
¥ In the analyses the comparison is also presented by varying the emittance and edge seal on the thermal 
performance of VIG 
 4 
6.2. Thermal performance of the VIG 5 

 6 

The centre-of-pane (Ucentre) and total thermal transmittance (Utotal) values of the VIG predicted to be 0.91 7 

Wm-2K-1 and 1.05 Wm-2K-1, respectively. Isotherms of the cold and warm side of the VIG are presented in 8 

Fig. 14a. This is compared with [28] predictions based on an indium sealed vacuum glazing sample 9 

dimensions of 400mm·400mm·4mm with SnO2 coatings on the inner surface of two glass sheets with a 10 

pillar spacing of 25 mm, the Ucentre and Utotal values were reported to be 1 and 1.19 Wm-2K-1, respectively. A 11 

decrease of Ucentre (0.09 Wm-2K-1) and Utotal (0.14 Wm-2K-1) values were predicted due to the use of a 10 12 

mm rebated frame depth and the 10 mm main edge seal covered inside the frame as shown in Fig. 14b. 13 

Although the wider layer of edge seal caused increased edge-effects, which results in higher thermal 14 

transmittance values of the glazing. The total heat transfer can be reduced by reducing the edge seal width 15 

and emissivity of the coatings on the inner surfaces of VIG. For example, a 6mm wide indium edge sealed 16 

vacuum glazing was predicted to have Utotal and Ucentre values of 0.9 Wm-2K-1 and 0.36 Wm-2K-1, 17 

respectively, using soft low emittance coatings [13]. 18 

 19 
 20 

 21 

 22 
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(a)       (b) 1 

 2 

Fig. 14. (a) isotherms of the one quarter of the VIG where the thickness along the x axial direction is 3 

enlarged by factor of 2.5 compared to the length in y and z direction showing the temperature distribution 4 

from the vacuum edge seal towards the centre-of-pane glazing area. (a) Schematic diagram of the modelled 5 

VIG 6 

 7 

6.3. An influence of reducing the width of vacuum edge seal and the emittance of inner surface coatings on 8 

the thermal performance of VIG. 9 

 10 

Fig. 15 shows, that for the VIG size of 300mm·300mm·4mm with an emittance of 0.15, when the edge seal 11 

width decreased from 10 mm to 3 mm then the Ucentre and Utotal values also decreased from 0.91 Wm-2K-1 12 

and 1.05 Wm-2K-1 to 0.81 Wm-2K-1 (an improvement of 11.0%) and 0.91 Wm-2K-1 (an improvement of 13 

13.3%) respectively. For the aforementioned size of VIG with an emittance of 0.03, similar decrement of 14 

the edge seal from 10 mm to 3 mm further improved the Ucentre and Utotal values from 0.71 Wm-2K-1 and 15 

0.84 Wm-2K-1 to 0.62 Wm-2K-1 (an improvement of 12.7.0%) and 0.71 Wm-2K-1 (an improvement of 16 

15.5%) respectively. These results indicate that further work on reducing the main edge seal width would 17 

improve the thermal transmittance but experimentally reducing the edge seal width has not been possible as 18 

it compromises the integrity and hermeticity of the edge seal of VIG. However, the low-e coatings, such as 19 

silver thin films or transparent nano-structured thin films, could replace SnO2 coating on K glass as it 20 

improves the thermal transmittances of VIG.  21 

 22 

 23 

    24 

Fig. 15. Predicted U-value at the centre of glazing and total glazing areas of the 0.3 m by 0.3 m vacuum 25 

glazing with edge seal with of 3 mm, 6 mm and 10 mm. 26 
 27 
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6.4. An influence of increasing the size and reducing the width of vacuum edge seal on the thermal 1 

performance of VIG. 2 

 3 

Fig. 16 shows, when the glazing size increased from 300mm·300mm·4mm to 400mm·400mm·4mm with 4 

10 mm edge seal, the Ucentre and Utotal values decreased from 0.91 Wm-2K-1 and 1.05 Wm-2K-1 to 0.86 Wm-5 
2K-1 (an improvement of 4.4%) and 0.96 Wm-2K-1 (an improvement of 8.6%) respectively. For the VIG 6 

with 3 mm wide edge seal, the Ucentre and Utotal values decreased from 0.81 Wm-2K-1 and 0.91 Wm-2K-1 to 7 

0.79 Wm-2K-1 (an improvement of 2.5%) and 0.86 Wm-2K-1 (an improvement of 5.5%) respectively. These 8 

results indicate that larger the glazing size the lower the thermal transmittance values. Whilst with a wider 9 

edge seal, because of its edge effects, the thermal transmittance values are larger than that of the glazing 10 

with a narrower edge seal. As same as with other kind of edge seal, a larger sized vacuum glazing will 11 

provide better thermal performance compared to the one with small size.  12 

 13 

 14 

    15 

Fig. 16. Predicted U-value at the centre of glazing and total glazing areas of the 300mm·300mm and 16 

400mm·400mm VIG with edge seal width of 3 mm, 6 mm and 10 mm. 17 

 18 

 19 

7. Conclusions 20 

 21 

Hermeticity of vacuum edge-seal has been the paramount requirement, specifically, in the evolution of 22 

smart windows. In this paper, a composite (Sn56Pb39Zn3Sb1- AlTiSiCu1 wt%) edge-sealed vacuum insulated 23 

glazing successfully developed. The main conclusions are summarised into the following four features: 24 

 25 

(1) A high-vacuum glazing fabrication system, successfully designed and constructed, achieved 4.35·10-5 26 

Pa with a modified vacuum cup; this proved to reduce the risk of dislocation of the heating block and the 27 

degradation of Viton O rings due to unwavering heating required for sealing the pump-out hole with glass 28 

square inside the vacuum pump during evacuation.  29 

 30 
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(2) The microstructural investigations, using FIB-SEM and X-ray CT, of Sn56Pb39Zn3Sb1- AlTiSiCu1 wt% 1 

composite showed negligible traces of micro voids with trapped air inside, when sealed with k-glass, and 2 

homogeneity, when ultrasonically soldered on the glass surface at the vibration frequency of 25-30 kHz 3 

with the tip set-point at 190˚C. It led to the development of new methods for the formation of vacuum 4 

edge-seal.  5 

 6 

(3) Experimental investigations of the seven fabricated VIG samples, each of size 300mm·300mm·4 mm, 7 

showed that increasing the hot-plate surface temperatures improved the cavity vacuum pressure whilst 8 

expediting the pump-out hole sealing process but also increases temperature induced stresses. Successful 9 

pump-out hole sealing process of VIG attained at the hot-plate set-point temperature of 50˚C and the 10 

approximate cavity pressure of 0.042 Pa. More than five similar samples of this process having different 11 

sizes fabricated verifies the recurrent sealing of the pump-out hole and cavity vacuum pressure. The 12 

experimental observations show repetitive behaviour of stress patterns across the support pillars indicated a 13 

vacuum-tight edge seal. one of the vital issue in VIG is its durability and its ageing but in this paper the 14 

hermeticity of the composite edge seal itself was analysed by analysing the evacuation time in achieving 15 

and maintaining the cavity vacuum pressure before and after evacuation whilst analysing the surface 16 

temperature induction influence on vacuum pressure. The durability of the whole sample of VIG itself is 17 

significantly important and is a dynamic issue because, despite of successful constructions of VIG, there is 18 

always an uncertainty of the degradation of the cavity vacuum pressure because of some gas molecules 19 

may remained in the cavity that react when exposed to sunlight and/or under extreme climate conditions for 20 

longer time (e.g. after 10 years) due to the development of CO inside the cavity that degrades the vacuum 21 

layer. It is apparent that VIG will be exposed to sunlight and need to be designed to sustain at different 22 

climate temperatures and for over 20 years in order to avoid degradation of vacuum. For this the future 23 

work recommendation to tackle this issue is to utilise non-evaporable getters in VIG and perform ageing 24 

tests. 25 

 26 

(4) A validated finite volume model, incorporating support pillars, employed and calculated the Ucentre and 27 

Utotal values of 0.91 Wm-2K-1 and 1.05 Wm-2K-1 respectively for the fabricated VIG sample (size of 28 

300mm·300mm·4mm) rebated by 10 mm in a solid wood frame at the cavity vacuum pressure of 0.042 Pa.  29 

Improvements of 11 % (0.81 Wm-2K-1) and 13.3% (0.91 Wm-2K-1) in the Ucentre and Utotal values can be 30 

achieved by reducing the vacuum edge-seal width from 10 mm to 3 mm at the surface coating emittance of 31 

0.15. For the same size VIG with an emittance of 0.03, when the width of the edge seal decreased from 10 32 

mm to 3 mm the Ucentre and Utotal values were predicted to be from 0.71 Wm-2K-1 and 0.84 Wm-2K-1 to 0.62 33 

Wm-2K-1 (an improvement of 12.7.0%) and 0.71 Wm-2K-1 (an improvement of 15.5%) respectively. This 34 

result indicates that further work on reducing the main edge seal width would improve the thermal 35 

transmittance values but experimentally reducing the edge seal width has not been possible as it 36 

compromises the durability of the edge seal of VIG. However, the low-e coatings, such as silver thin films 37 

or transparent nano-structured thin films, could replace SnO2 coating on K glass as it improved the thermal 38 

transmittances of VIG and is suitable for this type of vacuum edge seal.  39 
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Highlights 

 

• Novel design and construction of vacuum insulated glazing (VIG) were discussed. 

 

• A vacuum edge-seal made of composite (Sn56Pb39Zn3Sb1- AlTiSiCu1 wt%) was analyzed.  

 

• Influences of temperatures on evacuation and pump-out sealing of VIG were studied. 

 

• A high-vacuum pressure of 0.042 Pa at 50°C surface temperature was achieved with VIG. 

 

• Thermal performance of VIG with surface-coatings and vacuum-edge seal was analysed. 
 


