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Abstract. In this paper, a deep learning-based approach is applied to high 

dimensional, high-volume, and high-sparsity medical data to identify critical 

casual attributions that might affect the survival of a breast cancer patient. The 

Surveillance Epidemiology and End Results (SEER) breast cancer data is 

explored in this study. The SEER data set contains accumulated patient-level 

and treatment-level information, such as cancer site, cancer stage, treatment 

received, and cause of death. Restricted Boltzmann machines (RBMs) are 

proposed for dimensionality reduction in the analysis. RBM is a popular 

paradigm of deep learning networks and can be used to extract features from a 

given data set and transform data in a non-linear manner into a lower 

dimensional space for further modelling. In this study, a group of RBMs has 

been trained to sequentially transform the original data into a very low 

dimensional space, and then the k-means clustering is conducted in this space. 

Furthermore, the results obtained about the cluster membership of the data 

samples are mapped back to the original sample space for interpretation and 

insight creation. The analysis has demonstrated that essential features relating 

to breast cancer survival can be effectively extracted and brought forward into a 

much lower dimensional space formed by RBMs. 

Keywords: Restricted Boltzmann Machines, Deep Learning, Survival Analysis, 

k-means Clustering Analysis, Principal Component Analysis. 

1 Introduction 

Breast cancer is the most diagnosed cancer in women, affecting over 2.1 million 

women each year globally, and it causes the greatest number of cancer-related deaths 

among women. In 2018, it is estimated that 627,000 women died from breast cancer – 

that is approximately 15 of all cancer deaths among women [1].  



In order to improve breast cancer survival and life expectancy, it is crucial to learn 

and understand the factors that might affect breast cancer survival rate and outcomes 

following certain treatments. In the past years, enormous studies have been 

undertaken intensively in this area aiming to identify the causal attributions of breast 

cancer survival from multiple perspectives including biological, diagnostical, and data 

mining techniques.  

From an analytical point of view, analysing breast cancer data has been challenged 

by a) The volume of the data to be explored tends to be quite big since it has been 

accumulated for several decades. For example, the SEER (Surveillance Epidemiology 

and End Results) data set [2] contains some 291,760 breast cancer incidences 

collected from 1974 up to date; and b) The number of variables (features) of the data 

usually is considerably high, e.g., over a thousand or even more. The high 

dimensionality is mainly caused by the categorical variables contained in the data that 

may have many distinct symbolic values, since each of the distinct values of a 

categorical variable needs to be transformed into a unit vector using, for example, the 

one-hot encoding (orthogonal encoding) method to make a categorical variable 

applicable for an algorithm. Due to these factors, some typical data mining 

algorithms, such as the k-means clustering algorithm, may not perform well with high 

dimensionality, high volume, and high sparsity data.  

The k-means clustering algorithm is a widely used unsupervised descriptive 

modelling approach for grouping (segmenting) a given data set based on similarities 

among the data samples with respect to the values taken by certain variables involved. 

The algorithm is simple, effective in general, and can converge within a few 

iterations. However, the algorithm has several problems when applied to a data set 

with high dimensionality and high sparsity: 

1. The typical Euclidean distance for similarity measure is inefficient when the 

number of variables is large, and the number of samples is relevantly small 

[3]; 

2. The computational complexity of the algorithm increases with the number of 

dimensions [4]; and 

3. It is difficult to determine the cluster centroids if the data values are sparse, 

i.e., only a small number of data entries having a non-null value. An example 

of such a data is the resultant data set transformed from a data that contains 

many categorical variables using the one-hot encoding method. This can also 

be viewed as an asymmetry data matrix. In addition, sparsity has made the 

algorithm very sensitive to noise.  

To address the high dimensionality problem involved in the k-means clustering, a 

proper dimensionality reduction approach is usually considered. The principal 

component analysis (PCA) is a popular approach for such a purpose. PCA forms a 

linear transformation to transform the original data into a new space spanned by a set 

of principal components. Depending on the significance of each principal component, 

only a few significant principal components could be selected to form a subspace with 

a low dimensionality, and then the k-means clustering can be performed in the 

subspace. The PCA-based subspace clustering approach has been applied to medical 

image segmentation [5].  



It should be noted that data samples may become insufficient when dealing with 

high dimensional data since it may lead a modelling process that involves too many 

parameters to learn and/or to optimize with relatively a very small number of samples.   

In this paper, a deep learning-based approach is applied to identify critical casual 

attributions that might affect the survival of a breast cancer patient. The SEER breast 

cancer data is explored in this study. The data set contains rich patient-level and 

treatment-level information on breast cancer incidences, such as cancer site, cancer 

stage, treatment received, and cause of death. Restricted Boltzmann machines 

(RBMs) are proposed for dimensionality reduction in the present analysis. RBM is a 

popular paradigm of deep learning networks and can be used to extract features from 

a given data set. RBMs transform data in a non-linear manner into a lower 

dimensional space for further modelling, for instance, clustering analysis and 

classification. In this study, a group of RBMs has been trained to sequentially 

transform the original data into a very low dimensional space, and then the k-means 

clustering is conducted in this space. Furthermore, the results obtained about the 

cluster membership of the data samples are mapped back to the original space for 

interpretation and insight creation. The analysis has demonstrated that essential 

features in the data set can be effectively extracted and brought forward into a much 

lower dimensionality space formed by RBMs. 

The remainder of this paper is organized as follows. Section 2 provides a literature 

review on the relevant works in relation to diagnosis analytics in breast cancer data. 

Section 3 discusses in detail the methodology adopted in this study including the 

entire analytical process and RBMs. The SEER data set is described in Section 4 

along with the essential data pre-processing performed on the data. Section 5 gives a 

detailed account about the analysis experiments, and further in Section 6, the findings 

from the analysis are interpreted and summarized. Finally, in Section 7, concluding 

remarks are discussed and the further research is outlined.  

2 Relevant Works 

Data mining techniques have been widely used in medical research, and especially, in 

medical diagnosis of diverse types of cancer. Various models have been developed for 

this purpose including qualitative models [6][7][8][9], quantitative models [10][11], 

and hybrid models [12]. Very recently, many deep learning-based models have been 

considered in several case studies [13]. 

Segmenting breast cancer patients was studied in [6] and it was found that the 

number and the types of the resultant clusters were similar in terms of symptom 

occurrence rates or symptom severity ratings. Five clusters were identified using 

symptom occurrence rates while six clusters were established using symptom severity 

ratings. The types of clusters were also similar. A bisecting k-means algorithm was 

applied to analyze three diseases: breast cancer, Type 1 diabetes, and fibromyalgia in 

[7]. Their results showed that, although the clusters established were different from 

each other, all the clusters had several common features. In [8] the time effect and 

symptom for patients who received chemotherapy was examined using clustering 

analysis. An ensemble learning-based algorithm for lung cancer diagnosis was 



investigated [14]. The algorithm can achieve a high classification accuracy with a low 

false no-cancer rate (false negative rate). The model contained two levels. The first 

level consisted of a group of individual neural networks which can be used to identify 

if a cell is a cancer cell or not. A cell was considered a cancer cell if any network 

classified it a cancer cell. The second level employed a group of neural networks to 

determine which type of cancer a recognized cancer cell belongs to. This algorithm 

has implemented a certain classification scheme. A Bayesian network structure was 

proposed for canner diagnosis purpose [10]. The network can be trained using a direct 

causal learner algorithm and has been applied to both simulated and real data sets.  

In addition, algorithms for dimensionality reduction and feature extraction have 

also been considered. A two-step algorithm was investigated to address the high 

dimensionality problem in genes analysis [15]. Interestingly in [16] a statistical test 

and genetic algorithm was utilized for feature selection, and further leave-one-out 

cross validation was used along with receiver operating characteristic curve to 

identify which features to be used in order to achieve the best classification 

performance. Several real-life data sets were chosen to testify and evaluate the 

effectiveness of the algorithm.  

Comparing different data mining algorithms for a better cancer risk or survival rate 

prediction and classification has received a great research attention. In [12] various 

Bayesian-based classifiers were explored for the prediction of the survival rate of 6 

months after treatment, including naive Bayesian classifier, selective naive Bayesian 

classifier, semi-naive Bayesian classifier, tree-augmented naive Bayesian classifier, 

and k-dependence Bayesian classifier. The performance of all these classifiers were 

evaluated and compared. Artificial neural networks (ANNs) were employed to 

examine mammograms [11]. The work has demonstrated that ANNs with two hidden 

layers performed better than ANNs with only one hidden layer. In [17] logistic 

regression, ANNs, and Bayesian networks were compared for accuracy. Their results 

showed that the Bayesian model outperformed other methods.  

Sensible new knowledge can be discovered when applying data mining algorithms 

in medicine. Yang [18] proposed a vicinal support vector classifier to handle data 

from different probability distributions. The proposed method had two steps: 

clustering and training. In the first step, a supervised kernel-based deterministic 

annealing clustering algorithm was applied to partition the train data into different soft 

vicinal areas in the feature space. By doing so, they constructed vicinal kernel 

functions. In the training step, the objective function, called vicinal risk function, was 

minimized under the constraints of the vicinal areas defined in the clustering step. 

Kakushadze [19] applied k-means to cluster different types of cancer with genome 

data without using nonnegative matrix factorization. They found that, out of 14 types 

of cancer, three had no cluster-like structures, two had high within-cluster 

correlations, and the others had common structure.  

In conclusion, many data mining technologies such as neural networks and 

Bayesian networks are applied to construct cancer diagnosis models. The constructed 

models can diagnose various cancer and have shown a high accuracy. On the other 

hand, there is still a clear lack of dealing with high-dimensional and high-sparsity 

medical data.  



3 Methodology 

In this paper a deep learning-based approach is proposed for feature extract and 

dimensionality reduction in order to identify crucial casual attributions with high 

dimensional, high-volume, and high-sparsity breast cancer data. The entire analysis 

process is illustrated conceptually in Figure 1 and the key techniques applied are 

discussed below.  

 

Fig. 1. The analysis process with the key steps. 

3.1 Restricted Boltzmann Machines for Dimensionality Reduction and 

Feature Extraction  

RBMs are used in this research for feature extraction and dimensionality reduction. 

Using an RBM, data from an original high-dimensional space can be transformed into 

a feature space with a much smaller number of dimensions for analysis, such as the k-

means clustering. It is our intention in this study to examine if this approach can 

effectively address the issues relating to cluster analysis in a high-dimensional and 

highly-sparse space in order to partition the breast cancer patients into various 

meaningful groups based on their similarities in relation to a set of features and 

measures.  

A typical topology of RBM is shown in Figure 2. An RBM is an energy-based 

generative statistical model with hidden and visible variables [21]. The energy of the 

visible node state and hidden node state is defined as 

 

        𝐸(𝑣, ℎ) = − ∑ 𝑏𝑖𝑣𝑖𝑖∊𝑣𝑖𝑠𝑖𝑏𝑙𝑒 − ∑ 𝑏𝑖𝑣𝑖𝑖∊ℎ𝑖𝑑𝑑𝑒𝑛 − ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗𝑖,𝑗                         (1) 

 

where 𝑣𝑖 and ℎ𝑗  are the ith visible variable and the jth hidden variable, i.e., the 

original input 𝑖 and the feature 𝑗 in the feature space; 𝑏𝑖 and 𝑏𝑗  are the biases to the 

nodes, and 𝑤𝑖𝑗  is the connection weight between them. The RBM assigns a 

probability to every possible pair of visible and hidden variables using the energy 

function  

 

                                             𝑃(𝑣, ℎ) =
1

𝑍
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where 𝑍 is the sum of all the possible pairs of the visible and hidden variables 

expressed as 

 

                                                           𝑍 = ∑ 𝑒𝐸(𝑣,ℎ)

𝑣,ℎ

                                                             (3) 

 

The probability of the visible v  is given as 

 

                                                  𝑃(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ                                   (4) 

 

To minimize the energy of that input data, the weights and the biases will be 

adjusted by  

 

                                          ∆𝑤𝑖𝑗 = 𝜂(〈𝑣𝑖ℎ𝑖〉 − 〈𝑣𝑖
′ℎ𝑖

′〉)                                    (5) 

 

where 𝜂 is the learning rate, and 〈•〉 denotes the expectation under the distribution of 

the variables 𝑣𝑖 and ℎ𝑖, and their reconstructed pair 𝑣𝑖
′ and ℎ𝑖

′. 

 

 

 

 

 

Fig. 2. Typical structure of RBM. 

In practice, a single RBM may not be sufficient to extract features with a reduced 

dimensionality. Often several RBMs are used in a sequential way, forming stacked 

RBMs layer-by-layer. The outputs of a trained RBM in the stack is used as the inputs 

to the next adjacent RBM for training. The number of RBMs to be used varies and 

usually is determined using a trial-and-error approach. For a detailed guidance on the 

training the readers can refer to, for example, [22].  

3.2 k-means Cluster Analysis 

k-means clustering is one of the most popular algorithms in data mining for grouping 

samples into a certain number of groups (clusters) based on Euclidean distance 

measure. Assume 𝑉1, 𝑉2, ⋯ , 𝑉𝑛 are a set of vectors, and these vectors are to be 

assigned to k clusters 𝑆1, 𝑆2, ⋯ , 𝑆𝑘. Then the objective function of the k-means 

clustering can be expressed as 

wij 

𝑣𝑖  ••

• 

••

• 

ℎ𝑗  ••

• 

••

• 



 

𝑓(𝑚1, 𝑚2, ⋯ , 𝑚𝑘) = ∑ ∑ ‖𝑉𝑗 − 𝑚𝑖‖
2

𝑉𝑗𝜖𝑆𝑖

𝑘
𝑖=1                                    (6) 

where 𝑚𝑖 represents the centroid of cluster 𝑆𝑖. 

4 Data Pre-processing 

The SEER breast cancer data explored in this study contains totally 291,760 

incidences registered in the US from 1974 to 2017. The data set has two separate 

collections with incidences from 1974 to 2014 and 2014 to 2017, respectively. Note 

that the number of variables in the two sets of collections is 134 and 130, respectively. 

Most of the variables in the data set are categorical type with a varying number of 

distinct values from 2 to more than 100. The original data sets need to be pre-

processed and transformed to a target data set for analysis. The most crucial task in 

the data pre-processing process is to identify if there are any data quality issues in the 

data and further to adopt appropriate strategies to address them accordingly.  

The SEER data under consideration has typical data quality problems, including 

inconsistent variables in the two collections of the data, some duplicate variables and 

therefore directly or indirectly correlated to each other, missing values, and in-

comparative value ranges for several numeric variables. As such, the main tasks 

involved in the data pre-processing are as follows: 

1. Select meaningful and common variables that are applicable to both sets of the 

data. Further, remove any duplicate variables that are identical from statistical 

perspective and/or from medical diagnostical perspective. As a result, a total 

of 130 variables have been chosen to use.  

2. Remove any incidences that contain missing value. The removal is reasonable 

and acceptable since the entire data set is big and there were only some 10,000 

incidences containing missing values. As such no replacement of missing 

value is needed. 

3. Transform the value range of each numeric variable into a unit interval [0,1] 

using the min-max normalization. 

4. Represent each distinct value of a categorical value as a unit vector using the 

one-hot encoding. This leads to a significant number of dummy variables to be 

created.  

The data pre-processing process was very time-consuming, and it has eventually 

led to a resultant target data set with 260000 incidences and 961 variables. The 

variable Survival that represents if a patient survived has been considered the target 

variable since this analysis is aiming at identifying crucial factors that potentially 

affect the survival of a breast cancer patient.  

It should be noted that no incidences have been removed although they may be 

considered outliers, and this is because each instance should be analysed.  



5 Experimental Settings 

Using the target data set created, RBMs have been implemented for dimensionality 

reduction and feature extraction, and further the k-means clustering analysis has been 

applied to the samples in the feature space formed by the RBMs. 

Three RBM models, RBM_1, RBM_2 and RBM_3, have been constructed in a 

sequential manner as follows: 

• RBM_1 has 961 input nodes and 625 (25 × 25 ) hidden nodes;  

• RBM_2 has 625 input nodes and 169 (13 × 13 ) hidden nodes; and  

• RBM_3 has 169 input nodes and 81 (9 × 9 ) hidden nodes.  

RBM_1 needs to be trained using the target data set; RBM_2 needs to be trained 

using the outputs of the trained RBM_1, and RBM_3 needs to be trained using the 

outputs of the trained RBM_2. In other words, the original data in a 961-dimensioanl 

space has been transformed into an 81-dimesional space for analysis.  

RBM_1, RBM_2, and RBM_3 have been trained with 10,000, 20,000, and 20,000 

iterations, respectively. The initial values of all the connection weights and the biases 

were randomly selected from a uniform distribution in the interval [-1, 1].  

Following the entire analysis process as shown in Fig. 1, the k-means clustering 

analysis has been applied to the outputs of RBM_3. The number of centroids was set 

to 6 with randomly selected initial centroids to start the clustering process.  

6 Pattern Interpretations and Findings 

In order to interpret each of the clusters created for diagnosis purpose, the results 

obtained about the cluster membership of all the samples have been mapped back to 

the original space (of 961 dimensions) since the variables in each of the lower 

dimensional spaces is not interpretable. 

Note that each instance of a patient’s records in each of the spaces, e.g., the 

original and all the RBM spaces, can be visualized by a “facial” like imagery and this 

enables each patient’s profile can be compared with each other in an initiative and 

easy way. Examples of such imagery description are provided in Figure 3, where each 

two rows from the top to the bottom contains 10 patients’ profile of the same cluster 

in the RBM_3 (81 dimensions) space and their counterparts in the original (961 

dimensions) spaces, respectively. Only samples from 4 out of the 6 clusters created 

were selected. The value for each pixel of the images is either 1 or 0 if a component 

associated is binary data type, or between 0 and 1 if the component associated is 

numeric data type, indicting a scale grading between black and white, especially in 

the original space. 

 



 

 

Fig. 3. Samples of a patient’s profile in a “facial” like imagery description. Each two rows from 

the top to the bottom contains 10 patients’ profile of the same cluster in the RBM_3 (81 

dimensions) space and their counterparts in the original (961 dimensions) spaces, respectively. 

The six clusters are labelled as Clusters 0, 1, …, and 5. To examine the clusters, 

and to compare them with each other, several variables have been used as shown in 

Table 1. In terms of factors affecting survival rate, there are several factors are crucial 

as highlighted in yellow in the Table.  

It appears that if a patient had a surgery performed and the stage of tumor are two 

essential casual attributors. The survival rate for those who either didn’t have surgery 

performed or were not recommended for a surgery had a very low survival rate (only 

25%). In addition, patients in this group usually had a stage IV or not known tumor. 

As such accurately and timely detect the stage of a tumor and recommend on having a 

surgery or not accordingly is crucial.  

Table 1. Table captions should be placed above the tables. 

Cluster 0 1 2 3 4 5 

Survival (%) 25.00 92.00 72.00 89.00 74.00 78.00 

Grade (%)       



Grade 1   7.00  23.00  10.00  14.00 3.00 32.00 

Grade 2 27.00  45.00  41.00 31.00 8.00 59.00 

Grade 3 31.00  24.00  43.00 27.00 80.00   3.00 

Grade 4   3.00    0.00    1.00   2.00   3.00   0.00 

Cell not 

Determined  32.00  8.00   5.00 26.00  6.00   6.00 

Number of 

Malignant 

Tumors       

1 58.00   1.00 68.00   47.00 64.00   57.00   

2 33.00   71.00   26.00   39.00   28.00   33.00   

3   7.00  23.00    5.00   11.00    7.00    8.00   

4   2.00     4.00   1.00    2.00    1.00    1.00   

5   0.00     1.00   0.00    1.00    0.00    1.00   

6   0.00     0.00   0.00    0.00    0.00    0.00   

7   0.00     0.00   0.00    0.00    0.00    0.00   

Treatment       

Surgery Performed 38.00   95.00   99.00   95.00   99.00   99.00   

Surgery not 

Recommended 34.00    2.00    1.00    3.00    1.00    1.00   

Contraindicated  2.00    0.00    0.00    0.00    0.00    0.00   

Died before  0.00    0.00    0.00    0.00    0.00    0.00   

Unknown Reason 

for No Surgery 15.00   1.00   0.00   2.00   0.00   0.00   

Refused  4.00   1.00   0.00   0.00   0.00   0.00   

Recommended  1.00    1.00    0.00    0.00    0.00    0.00   

Unknown if 

Surgery Performed  6.00    0.00    0.00    0.00    0.00    0.00   

Alive or Died due 

to Cancer 24.00    1.00   65.00   57.00   68.00   67.00   

Dead 41.00    0.00   15.00    1.00     7.00     3.00   

Not first Tumor 35.00   99.00   20.00   42.00   25.00   30.00   

In Situ     0.00     3.00       0.00   99.00      0.00       0.00   

Malignant 100.00   97.00   100.00     1.00   100.00   100.00   

Primaries       

One primary only 58.00     1.00   67.00   47.00   63.00   57.00   

First of Two or 

More Primaries   6.00     0.00   12.00   12.00   12.00   13.00   

Second of Two or 

More Primaries 30.00   79.00   18.00   34.00   22.00   26.00   

Third of Three or 

More Primaries 4.00   16.00   2.00   6.00     3.00     4.00   

Fourth of Four or 

More Primaries 1.00   3.00   0.00   1.00     0.00     0.00   

Fifth of Five or 

More Primaries 0.00   0.00   0.00   0.00     0.00     0.00   

Sixth of Six or 

More Primaries 0.00   0.00   0.00   0.00     0.00     0.00   

Seventh of Seven 

or More Primaries 0.00   0.00   0.00   0.00     0.00     0.00   

Eighth of Eight or 

More Primaries 0.00   0.00   0.00   0.00      0.00     0.00   



Ninth of Nine or 

More Primaries 0.00   0.00   0.00   0.00     0.00     0.00   

Unknown 0.00   0.00   0.00   0.00     0.00     0.00   

Stage       

Stage 0 0.00   3.00   0.00   99.00   1.00   0.00   

Stage I 2.00   62.00   1.00   0.00   62.00   84.00   

Stage IIA 2.00   21.00   36.00   0.00   30.00   12.00   

Stage IIB 2.00   6.00   28.00   0.00   3.00   1.00   

Stage III NOS 1.00   0.00   0.00   0.00   0.00   0.00   

Stage IIIA 2.00   2.00   22.00   0.00   0.00   0.00   

Stage IIIB 8.00   1.00   3.00   0.00   1.00   0.00   

Stage IIIC 4.00   1.00   9.00   0.00   0.00   0.00   

Stage IV 41.00   1.00   0.00   0.00   0.00   0.00   

Not Applicable 2.00   0.00   0.00   0.00   0.00   0.00   

Stage Unknown 36.00   3.00   2.00   0.00   2.00   2.00   

 

A consistent pattern can be identified if, for example, examining the two clusters, 

Cluster 0 and Cluster 1, using a radar graph as shown in Figure 3.   

It is evident from Figure 3 that high survival rate was closely correlated with if a 

tumor was localized and if a surgery was performed. On the other hand, low survival 

was in general related to a tumor was regional and distant, and a surgery was not 

performed.  

 

Fig. 3. Low survival rate (in blue) vs. high survival rate (in red) with several factors. 

7 Concluding Remark and Future Work 

In this paper, a deep learning-based approach is applied to high dimensional, high-

volume, and high-sparsity medical data to identify critical casual attributions that 
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might affect the survival of a breast cancer patient. The analysis has demonstrated that 

essential features in a high-dimensional sample space can be effectively extracted and 

brought forward into a much lower dimensionality space formed by RBMs. This has 

provided a novel approach to understand high-dimensional data.   

The analysis has also identified several crucial casual factors that significantly 

affect a patient’s survival rate among all the variables.  
Further research will focus on exploring what features RBM extracts, how to 

interpret the feature space established by an RBM and design an ideal imaginary 
description for visualizing a healthy person for comparison purpose.  
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