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Abstract

This paper discusses the usefulness of the long term memory property in price pre-

diction. In particular, the Hurst’s exponents related to a wide set of portfolios generated

by three crude oils are estimated by using the detrended fluctuation analysis. To this

aim, the daily empirical data on West Texas Intermediate, Brent crude oil and Dubai

crude oil for a period of more than ten years have been considered. It is shown that

specific combinations are associated to persistence/antipersistence long-run behaviors,

and this highlights the presence of statistical arbitrage opportunities. Such an outcome

shows that long term memory can effectively serve as price predictor.
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1 Introduction

A great strand of literature on time series deals with the analysis of the so-called persis-

tence or long term memory property. These two characteristics of the time series lead to an

accurate study of the long-run process behaviour with a focus on the autocorrelation. The

formalization of the concept of long term memory property was defined by Hurst (1951) for

the specific case of hydrological time series. The author analyzed the reservoir control of the

Nile flow for the project of a river dam, and identified a parameter H ∈ (0, 1) (the so-called

Hurst’s exponent) associated to the rate of decay of the autocorrelation as a function of the

autocorrelation lag.

If H = 0.5, the current value of the series would not dependent of past values of the se-

ries, so that the time series is uncorrelated. When the value of H belongs to the interval

[0, 0.5], the series becomes anti-persistent. Anti-persistent series describe ‘mean-reverting’

processes. If a value in the time series is high in one specific time interval, it is likely to

reduce in the following one, dropping toward the mean value. The strength of the mean

reverting behavior increases as Hurst’s exponent approaches to zero. When the range of

H exponent varies between 0.5 and 1, the series is persistent, which means that it is trend

reinforcing. The strength of the persistent behavior increases as H approaches 1.

Among others, Corazza and Malliaris (2002), Cajueiro and Tabak (2004), Kyaw et al.

(2006), Singh and Prabakaran (2008), Kloeden et al. (2011), Giles (2008) and Potgieter

(2009) show that the analysis of the main features of the time series provides some key

information on the prediction of related phenomenon. Baillie (1996) suggests that the exis-

tence of a long term memory associated with slow decay of autocorrelation functions in asset

returns indicates the existence of exploitable market inefficiencies. Booth et al. (2018) pro-

pose a novel agent-based simulation for exploring algorithmic trading strategies. They use
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the Hurst’s exponent to identify long memory processes. Zhao et al. (2015) focus on mul-

tifractal theory for investigating statistical properties of enormous and irregular datasets.

Multifractal structure diagnosis, tendency and singularity analysis are applied to oil prices

data and spatial physical data obtaining good performance. Castellano et al. (2018) use

the Hurst’s exponent to explore the long term memory property of the volatility of a new

temperature index that they propose. They find some long-run paths and regularities in

the index riskiness.

In the wide spectrum of information brought by the assessment of the long term memory

property, it is worthy to mention the presence of the so-called statistical arbitrage (StatArb,

hereafter). The StatArb could be described as the attempt to profit from pricing ineffi-

ciencies identified using statistical models. According to Burgess (2000) and Bondarenko

(2003) a StatArb is a generalization of the traditional zero-risk or pure arbitrage. In the

latter case, gains are received with no possibility of losses. Fair-price relationships between

asset pairs with identical cash-flows are constructed and pure arbitrage opportunities are

identified when prices deviate from these relationships. For Jarrow et al. (2005) a statis-

tical arbitrage is a long horizon trading opportunity that generates riskless profits. It is a

natural extension of the trading strategies utilized in the existing empirical literature on

anomalies. StatArb is defined without any reference to any equilibrium model, therefore, its

existence is inconsistent with market equilibrium and, by inference, market efficiency. We

could say that StatArb enables the rejection of market efficiency without invoking the joint

hypothesis of an equilibrium model and replacing it with an assumed stochastic process for

trading profit. For the concept of StatArb, see also Burgess (1999), Elliott et al. (2005), Do

et al. (2006), Bertram (2010), Avellaneda and Lee (2010). The term StatArb was used for

the first time in the 1990s and remained widely used by operators in financial markets until
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2002. However, by 2000 dramatic changes in market dynamics led to weak performance

of existing models and, consequently, StatArbs started to command less attention in the

market. According to Pole (2007), renewed interest for them returned only in 2006, when

more accurate algorithms secured better results.

We refer to StatArb as a zero-cost trading strategy for which the expected payoff is positive,

and the conditional expected payoff in each final state of the economy is nonnegative, in a

finite-horizon economy.

The persistence properties of a time series and StatArb are linked through the concepts of

strong stationarity and cointegration (Engle and Granger (1987)). In fact, it is important to

stress that the cointegration of the prices leading to a (strongly) stationary process identifies

the presence of statistical arbitrage for some portfolios generated by the assets themselves.

This paper deals with this theme. It is here proposed the employment of the persistence

properties as describing the strong stationarity of the price of a portfolio – hence leading to

StatArb – or as describing weak stationarity. In the latter case, some words can be prop-

erly spent for the prediction of the portfolio price. The paradigmatic case of commodities

is analyzed with a peculiar focus on crude oil markets. In the recent literature a lot of

authors as, for example, Ortiz-Cruz et al. (2012) and Kristoufek and Vosvrda (2014)), in-

vestigate the efficiency of crude oil markets, and many others analyze long-run dependence

phenomena for crude oil prices. We recall Alvarez-Ramirez et al. (2002) and Serletis and

Andreadis (2004) that study the long-run memory mechanism that affects the crude oil

price evolution, and Tabak and Cajueiro (2007) that show the temporal movement of the

crude oil market towards efficiency. Alvarez-Ramirez et al. (2008) empirically find evidences

of long-run autocorrelations in crude oil markets towards efficiencies and they analyze also

short-term autocorrelations on the basis of the estimation of the Hurst’s exponent dynamics.
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The authors employ the detrended fluctuation analysis as statistical methodological tool.

Wang and Liu (2010) extend the existing literature by testing for the efficiency of WTI

crude oil market through observing the dynamic of local Hurst’s exponents. They apply

the method of rolling window based on multiscale detrended fluctuation analysis, and find

that large fluctuations of WTI crude oil market have high instability, both in the short- and

long terms, while small fluctuations are persistent. Zhang and Ji (2018) discuss the long

term memory property of the oil-gas price relationship in order to clarify whenever such a

link is of permanent type or of transitory nature.

This paper adds to this strand of literature. Specifically, we consider one of the typical

examples of long-run relations on commodity markets: the relation among three crude oils,

quoted in different markets, WTI, Brent and Dubai. Indeed, it is natural thinking that

three assets, having same specific features and supply and demand with the same charac-

teristics, have prices that are influenced by market rumors with the same magnitude and

incremental direction.

In order to face the problem, we propose a statistical-based analysis of the empirical port-

folios obtained by the available commodities data, and discuss the long-run properties of

them through the estimation of the Hurst’s exponent H.

There is a wide set of quantitative tools for estimating the value of H (see e.g. Kirichenko

et al. (2011)). Among them, the most prominent one is the already mentioned Detrended

Fluctuation Analysis (DFA hereafter, Peng et al. (1994)). Indeed, this procedure overcomes

some shortcomings of the rescaled range R/S procedure of Hurst (1951). This explains the

popularity of the DFA for estimating H and also our choice to employ DFA for developing

the analysis in the present paper. For theory and discussion on DFA, we refer the interested

reader to Peng et al. (1995); Hardstone et al. (2012); He and Chen (2011).
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Our paper is close to Cerqueti et al. (2018), which deals with the long memory of crude oil

portfolios, but departs from it and extends it in many respects. Indeed, the quoted paper

considers only a scenario analysis on a few cases of portfolios – eleven of them, to be precise

– and makes inference on the statistical hypothesis that their prices have Hurst’s exponent

H = 0 or H = 0.5. We here implement a global analysis on a very large set of portfolios and

derive the Hurst’s exponents of their prices. This allows us to obtain simulated paths and

Hurst’s exponents distributions, to have more insights on the dynamics of the mispricing

portfolio prices. Moreover, we are also able to explore the relationships between the Hurst’s

exponents and the shares of capital involved in the considered crude oils, hence answering

to the key question on how the different capital allocation rules affect the long memory

property of the corresponding portfolios. Importantly – and differently with Cerqueti et al.

(2018) – we are here able to discuss also some stylized facts in commodity finance on the ba-

sis of the paramount view of the Hurst’s exponents. More in details, some interesting results

have been here obtained: first, a wide part of mispricing portfolios exhibits an antipersistent

long-run behavior, with Hurst’s exponent H < 0.5; second, we have shown the existence of

some portfolios following a geometric Brownian motion, which is strongly connected to the

presence of statistical arbitrage opportunities; third, the Hurst’s exponents of the portfolios

vary with an unexpected regularity as the quotes of portfolio change; fourth, in no cases one

can observe noteworthy long-run persistence of the related portfolios, hence confirming the

mean-reverting nature of the commodities portfolios prices; fifth, the simulated trajectories

when H = 0.5 represent a replication of the observed ones with one time lag. This last

finding is of particular interest, since it states that the estimation of the Hurst’s exponent

might lead to an excellent device for price predictability.

The rest of the paper is organized as follows: Section 2 contains the formalization of the
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model; Section 3 is devoted to the description of the data and of the employed methodol-

ogy; Section 4 describes and discusses the outcomes of the analysis; last Section offers some

conclusive remarks.

2 The model

We define a filtered probability space (Ω, F, (Ft)t≥0, P ) which satisfies the usual conditions

over an infinite horizon [0,∞), and where P is the statistical probability measure.

We consider a commodity market populated by J > 0 commodities. The price at time t > 0

of the j-th commodity is Cjt , for each j = 1, 2, . . . , J .

We state that there is a reference commodity in the market, whose price at time t is denoted

by Tt. An investor in the market considers the reference commodity as a target commodity

that can be replicated through a portfolio of the J no-reference commodities. The replicating

portfolio has the value Zt at time t. Then the following statistical fair-price relationship

holds for a generic t:

E[Tt|Ft] = E[Zt|Ft], (1)

where E[·|Ft] is the expected value under the objective probability measure conditional to

the information available at time t, Ft. Relation (1) represents a long term relationship

among variables that is broken when a mispricing of the considered commodities causes a

deviation Tt − Zt, t ≥ 0.

Then the mispricing is a long-short portfolio, with the assumption of a long position on the

target commodity and a short position on a synthetic asset (or viceversa).

Let Mt be the price of the long-short portfolio at time t; we have:

Mt = Tt − Zt = Tt −
J∑
j=1

βjC
j
t , (2)
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where Zt is the price of the synthetic asset at time t and (β1, β2, . . . , βJ) is its replication

portfolio.

In particular, an appropriate selection of the parameters (β1, β2, . . . , βJ) might lead to

the statement of the cointegration among the J + 1 commodities of the market. The

cointegration represents the financial concept of long-run equilibrium among asset prices,

and is strongly related to the long term memory of the resulting cointegrated process.

Indeed, if the J + 1 series are cointegrated and have a unitary root, then there exists a

linear combination of them which is a stationary process. Under the perspective of the

Hurst’s exponent, stationarity means H = 0.5. In the peculiar case of the financial series

we deal with, stationarity is also viewed as presence of statistical arbitrage opportunities.

We will enter the details below, when we deal with the analysis.

3 Data and methodology

We consider a set of commodities, crude oils:

• The West Texas Intermediate (WTI), traded on the New York Mercantile Exchange

(Nymex) was launched in March, 1983, and it is now the most liquid futures contract.

The WTI is deliverable to Cushing, Oklahoma which is accessible to the spot market

via pipeline.

• The Brent crude oil, which is traded on the Intercontinental Exchange (ICE) was

launched in July, 1989.

• The Dubai crude oil quote by Platt’s.

• Weekly time series: 25/10/2000-31/12/2010.
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Each contract is traded until the close of business on the third business day prior the 25th

calendar day of the month preceding the delivery month and it is assumed that the investor

will roll over the front month pair contracts the first day of the trading month.

The time interval [0,+∞) is conveniently discretized by introducing an increasing sequence

of trading dates {ti}i∈N.

In our case, WTI crude oil is the reference commodity with price Tti at time ti and Brent

and Dubai crude oils are held in the replicating portfolio whose value is Zti . Hence, J = 2

in equation (2).

Then, the price of the mispricing portfolio is:

Mti = Tti − Zti = Tti −
2∑
j=1

βjC
j
ti
, (3)

where β1 and β2 are the weights generating the portfolio replicating the synthetic asset,

while C1
ti is the price of the Brent oil and C2

ti is the price of the Dubai oil at time ti.

Definition (3) explains, in particular, that the selection of the couple (β1, β2) affects the

value of H.

The estimation of the Hurst’s exponent of the time series {Mti}ti is performed through the

Detrended Fluctuation Analysis (DFA).

The DFA is a method designed to reduce the effects of non-stationarities and trends in the

estimation of the Hurst’s exponent H. As in Alvarez-Ramirez et al. (2008), for a given

stochastic time series {y(i) : i = 1, ...,M}, with a sample period ∆t, the DFA method can

be implemented as follows:

1. Compute the mean y = 1
M

∑M
j=1 y(j) and obtain an integrated time series {x(i) : i =

1, ...,M}, as follows: x(i) =
∑i

j=1 y(j)− y, i = 1, ...,M .

2. Divide the time series {x(i) : i = 1, ...,M} into boxes of equal size m, with m obtained
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by the time horizon τ = m∆t.

3. Fit the time series in each box by a polynomial of order p, denoted by zp(i), in

order to describe the trend in each box. Compute the detrended sequence as wp(i) =

x(i) − zp(i), i = 1, ...,M . The fluctuation function Fpq(m) is the q-moment of the

sequence wp(i): Fpq(m) =
(

1
M

∑M
j=1 |wp(i)|q

) 1
q
, q ∈ R. In our empirical experiment

we perform the basic analysis with p = 1 and q = 2.

4. Repeat steps 1, 2 and 3 over all box sizes m, that is τ = m∆t, with m ∈ [5,M/5] (see

Peng et al., 1994, for further explanation).

5. A linear relationship on a double-logarithmic paper of Fpq(m) against the interval size

m indicates the presence of a power-law scaling of the form mH . The scaling exponent

H is the slop of the linear plot. If the detrended walk profile is a white noise then the

slope is roughly 0.5 and it has no autocorrelations. If the profile is persistent then the

slope is greater than 0.5 and the autocorrelations are positive; if it is anti-persistent

then the slope is less than 0.5 and the autocorrelations are negative.

The DFA with polynomial fit of order p removes trends of order p− 1.

4 Model Implementation and Results

The procedure of model implementation is divided into two parts: i) model estimation and

ii) model simulation. According to the latter division, we split the data-set into two time

series: the first time series spans from 2000 to 2009 and is used for an in-sample analysis in

order to estimate the Hust exponent, H, of {Mt}t, whereas the out-of-sample data of 2010

(52 weekly data) are used to assess the functioning of the model in a forecasting perspective.

We start by considering 10,000 couples (β1, β2) of portfolio (3), such that β1 +β2 = 1. β1 is
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a random draw from an uniform distribution U(−1.5, 2.5) and β2 is consequently calculated

as β2 = 1− β1. This means that we consider 10,000 portfolios, each of them representing a

choice of investment. For each couple (β1, β2) we obtain, by using in-sample data, mispric-

ing portfolio time series according to (3) and so we apply the DFA to estimate the Hurst’s

exponent for each scenario.

In Figure 1 we represent the frequency distribution of the Hurst’s exponents obtained

through the considered portfolios. It is interesting to note that the widest part of mis-

pricing portfolios exhibits an antipersistent long-run behavior, with H < 0.5. This means

that the combination of commodities leads often to portfolios with mean reverting prices,

hence implying a tendency to the return to the long-run equilibrium. This outcome con-

firms several studies, stating the property of mean reversion for commodities portfolios (see

Geman (2007) for a survey on this field). It is also worth pointing out the bimodal behavior

of the distribution of the Hurst’s exponents, with some of them being above 0.5. This out-

come meets the evidence that a proper selection of the β’s might lead to portfolios whose

price has a persistent behavior, with positive autocorrelations on the long-run.

It is also important to point out the presence of some portfolios leading to H = 0.5, which

means that statistical arbitrage opportunities can take place.

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 1: Hurst’s exponent frequency distribution

Interesting is also study the relationship between H and portfolio weights. Figure 2 show

that if we assume a short selling position (β1 < 0) on C1
ti , and consequently a long position

on C2
ti , the mispricing portfolio has a Hurst’s exponent lower than 0.5. This fact means that

mispricing portfolio dynamics such that a great amount of capital is invested on the Dubai

oil by short selling the Brent are weakly stationary and have a mean reverting behavior.

In particular we have anti-persistent time series, so that an increase will most likely be

followed by a decrease or vice-versa (i.e., values will tend to revert to a mean). This means

that future values have a tendency to return to a long term mean. Furthermore, the Hurst’s

exponent increases with respect to β1 when β1 ∈ [−1.5, 1) and decreases for β1 ∈ (1, 2.5].

Its minimum value is assumed for β1 = −1.5. Such results provide a confirmation of the

mean-reversion tendency as the long position on the Dubai is reinforced. Moreover, it is

interesting to highlight the substantial symmetry of the values of the Hurst’s exponents with

12

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



respect to β1 = 1, so that the persistence properties of the mispricing portfolios depend

on their distance from the entire capital invested in the Brent oil. This outcome allows to

identify the total investment in the Brent oil as a benchmark for assessing the long term

memory property of the mispricing portfolio price.

The mean-reversion tendency is less evident when considering a long position on both the

commodities, with a Hurst’s exponent close to 0.5 (greater than 0.4) when β1 ∈ [0, 1]. The

maximum value of the Hurst’s exponent is, in this case, 0.5421, and it is taken for β1 around

1. This means that if we do not allow short selling in the replicating portfolio, the mispricing

portfolio dynamics tends to become strongly stationary because H is around the value 0.5,

and we can observe that equally weighted portfolio leads to a H equals to 0.5. This specific

situation gives insights on the profile of the portfolios for which StatArb can be achieved.

We also find that the bigger the quantity of Dubai oil we short sell, the lower H becomes.

We can conclude that a short-selling of one of the commodities in the replicating portfolio

leads to the passage from around strong stationarity to antipersistent behavior.

It is important to observe that in no cases there is a very significant long-run trending

behavior of mispricing portfolio dynamics, i.e. with H > 0.5. In fact H ∈ (0.5, 0.55) only

when we decide to invest a quote of capital β1 ∈ (0.5, 1.5) in the commodity with price C1
ti .
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Figure 2: Hurst’s exponent frequency distribution with respect to the share of capital β1.

We now discuss the stochastic process generating the mispricing portfolio.

When H 6= 0.5, we adopt a fractional Brownian motion with parameter H, so that the

dynamics of the mispricing is:

dMt = αMtdt+ σMtdB
H
t , M0 = M, (4)

where α and σ are positive constants and BH
t is a fractional brownian motion with Hurst

parameter H. The Hurst parameter H characterizes a fractional brownian motion and

determines the behaviuor of the process {Mt}t in the following way:

(i) H = 0.5 means that {Mt}t is a strongly stationary process, and statistical arbitrage

opportunities occur. This is the case in which the fractional Brownian motion collapses

in the geometric Brownian motion, and we will discuss this peculiar case below;

(ii) H ∈ (0, 0.5) means that {Mt}t is weakly stationary, antipersistent on the long-run;
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(iii) H ∈ (0.5, 1) means that {Mt}t is weakly stationary, persistent on the long-run and

has the long memory property.

Then, when the Hurst’s exponent is equal to 0.5, it is the case of statistical arbitrage

portfolios. This is the specific case of geometric Brownian motion, so that:

dMt = αMtdt+ σMtdBt, M0 = M, (5)

where {Bt}t≥0 is a standard Brownian motion. It is known that there exists the solution of

(5), that is:

Mt = M0e
[(α− 1

2
σ2)t+σBt]. (6)

The calibration of the parameters of equation (5) is obtained by writing it in discrete time

form, so that the following expression for return dynamics is obtained:

∆Mt

Mt−1
= α∆t+ σ

√
∆tεt, where ε ∼ N(0;σ2),

where ∆Mt = Mt −Mt−1 , ∆t = 1/52, and α and σ represent respectively the expected

return value and the return volatility, whereas M represents the initial time series data. It

is straightforward that α and σ are estimated by using in-sample data.

For H = 0.5, we simulate the dynamics of Mt according to (6) over 52 weeks and in 10000

scenarios of Brownian Motion; thus, we can compare the simulated trajectories with the

actual trajectory, M̂t, obtained by building the mispricing portfolio by using the out-of-

sample data.

Figure 3 shows the comparison between Mt and M̂t in some scenarios, when the selected

mispricing portfolio has stationary dynamics (H = 0.5). The red line represents Mt, whereas

the green line is M̂t. As we can see from the figure, the simulated mispricing is an accurate

estimate of the actual one. In order to have an indicator of accuracy of the model, we

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



calculate the root-mean squared error. We obtained a root-mean squared error of 0.32,

meaning that our model possesses a high level of predictive quality. This results is relevant

from a financial point of view, because it reflects the forecasting capacity of the model,

that can represent a significant tool for developing statistical arbitrage strategy in crude oil

markets. In particular, one can simulate the mispricing portfolio dynamics at time t and

go one period back to t− 1 for having an excellent estimation of the future prices. We can

calculate the error series Ert = |Mt − M̂t| in order to obtain the standard error of each

scenario. In Figure 4 we display the scatter plot of the standard errors vs. the Hurst’s

exponent in all the scenarios with standard error below 0.3. By a visual inspection of the

Figure, we can reasonably argue that the simulated portfolio is an effective representation

of the empirical one whern H = 0.5.
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Figure 3: Actual vs simulated mispricings: the panels represent six scenarios for the simu-

lated mispricing portfolios.
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Figure 4: Standard error vs. Hurst’s exponent for all the considered scenarios with standard

error below 0.3.

Interesting considerations can be done from Figure 5 that shows the relationship between

the coefficient α and the standard error. We can say that the standard errors are more

scattered as α approaches zero, and this is totally in line with the evidence that the absence

of deterministic trend – or, differently, a null expected return – implies dynamics driven by

pure randomness.
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Figure 5: Scatter plot of the standard error vs. the deterministic trend α in (5) for all the

considered scenarios.

5 Conclusive remarks

This paper presents an analysis of the long term memory properties of selected portfolios

of commodities.

The estimation of the Hurst’s exponents H of the prices of such portfolios has been imple-

mented. Empirical data consists of the daily prices of Brent Dubai oil and WTI, being the

last one the reference commodity.

The series are proved to be cointegrated, and the considered portfolios exhibit generally an

antipersistent and mean-reverting behavior. Therefore, there are opportunities to predict

future portfolios prices, in that on the long-run they will tend to adhere to their statistical
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mean. Moreover, such a behavior is also driven by the investment strategies on the no-

reference commodities.

The presence of StatArb has been also observed. In particular, there are some portfolios

for which H = 0.5, and the predictability of the prices has been accordingly explored.

This paper differs and extend the existing literature on the following three main aspects.

Firstly, it proposes a statistical-based analysis of the empirical portfolios obtained by the

crude oils data, namely WTI, Brent and Dubai. Secondly, the Hurst exponent is estimated

through the detrended fluctuation analysis over a very large set of portfolios so that the

Hurst’s exponents distribution gives insights on the dynamics of the mispricing portfolio

prices. Finally, we are also here able to discuss some stylized facts in commodity finance on

the basis of the paramount view of the Hurst’s exponents, namely antipersistent long-run

price behavior, statistical arbitrage opportunities, regularity in portfolio Hurst’s exponent

changes, mean-reverting price behaviour, and price predictability.

Our results can be effectively employed by the policymakers for making forecast through

the analysis of the long-run equilibrium of the oils prices time series. In particular, in the

light of the efforts to be spent for having diversified crude oil sources at a country level, the

selection of shares of portfolio leading to a specific long term memory property allows also

its price prediction.
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