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Abstract

In this paper we propose an exchange rate model as solution of a

disutility based drift control problem. Given the exchange rate is a

function of the fundamental, we assume Government Authorities con-

trol the fundamental dynamics aimed at minimizing the discounted

expected disutility caused by the distance between the fundamental

and some specific target. The theoretical model is solved using the

dynamic programming approach and introducing the concept of vis-

cosity solution. We contribute to research on exchange rate control

policies by deriving the optimal interventions aimed at stabilizing the

exchange rate and preserving macroeconomic stability. We also show

that, under particular conditions, it is possible to derive the optimal

width of the currency band.

JEL classification: C6; E5

Keywords: drift control; dynamic programming; viscosity solutions;

∗University of Macerata, Italy. Email: castellano@unimc.it
†University of Macerata, Italy. Email: roy.cerqueti@unimc.it
‡University of Rome ”Sapienza”, Italy. Email: rita.decclesia@uniroma1.it

1



stabilization policies; exchange rates.

1 Introduction

Since the breakdown of the Bretton Woods system, the relevance of the

exchange rate stabilization policies has been causing frequent and forceful

interventions of the Government Authorities. The reactions to the Asian fi-

nancial crisis or the European Monetary System (ERM) accession represent

only some recent examples. The economies of East Asia have adopted a va-

riety of foreign exchange rate policies, ranging from currency board system

to “independently floating” exchange rates. Most of the Asian economies

have implemented “managed floats” that allow their local currency to fluc-

tuate over time within a limited range (Rajan and Zhang, 2002). The recent

enlargement of the European Union to 27 countries requires that the new

Member States fulfill a period of managed floating regime (ERM II) before

the adoption of the Euro. In this context, together with monetary and fis-

cal challenges, exchange rate policies have become a key tool for the new

EU members. Optimal exchange rate policies have to be set to manage the

hardening against the Euro. Interventions by Government Authorities are

required to stabilize the exchange rate even before the participation in ERM

II (Dean, 2004).

Another example is provided by the Chinese exchange rate system. On July

2005, the China’s Authorities announced that the Renmibi (RMB) would be

managed “with reference to a basket of currencies” rather than being pegged

to the dollar. According to the Public Announcement of the People’s Bank

of China (PBOC) on reforming the RMB Exchange Rate Regime, the Chi-

nese Authorities “make adjustment of the RMB exchange rate band when
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necessary according to market developments as well as the economic and

financial situation” and maintain “the RMB exchange rate basically stable

at an adaptive and equilibrium level, so as to promote the basic equilibrium

of the balance of payments and safeguard macroeconomic and financial sta-

bility”1. Although the RMB exchange rate adjustments initially were too

cautious, the announcement made possible transitional arrangements like

those applied in other emerging countries showing the PBOC’s awareness

of the unsustainability of the US Dollar pegging. The managed floating

exchange rate system, together with a more independent monetary policy,

might help the Chinese economy to cope better with both the internal and

external macroeconomic shocks to which a developing country may be ex-

posed (Goldstein and Lardy, 2009).

Exchange rate stabilization policies represent a crucial issue, and they have

been largely analyzed in the literature. Krugman (1991) emphasized the

role of official interventions at the margin of a currency band, when the

fundamentals driving the exchange rate follow a random walk with constant

variance. Most empirical results are controversial, leaving many questions

unanswered, such as the issues of the optimal monetary policy and the op-

timal width of the currency band (if adopted). Improvements of Krugman’s

framework are obtained thank to the extensions of the basic model (amongst

others: Jeanblanc-Picqué, 1993; Miller and Zhang, 1996; Mundaca and Ok-

sendal, 1998; Im, 2001; Zampolli, 2006; Castellano and D’Ecclesia, 2007).

Jeanblanc-Picqué (1993) applies impulse control methods to show that us-

ing a diffusion process with constant coefficients it is possible to keep the

exchange rate in a given target zone with discrete interventions. Miller et
1http://www.pbc.gov.cn
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al. (1996) find a subgame-perfect solution for a Central Bank aiming at

stabilizing the exchange rate in a target zone, given proportional costs of

intervention. Mundaca and Oksendal (1998), using a jump diffusion process

for the exchange rate dynamics, combine continuous and impulse controls

to stabilize the exchange rate. Im (2001) presents the central bank opti-

mal intervention strategies to find the policy which minimizes the value of

the loss function. Assuming the economy randomly switches between dif-

ferent regimes, with time-invariant transition probabilities, Zampolli (2006)

examines the trade-offs deriving from deviations of the exchange rate from

fundamentals and from extreme changes. Castellano and D’Ecclesia (2007)

solve a stochastic optimal control model to describe exchange rate dynam-

ics in a managed floating regime assuming Government Authorities aim to

keep the aggregate fundamental not too far from a predetermined target

and within an optimal currency band.

In this paper, optimal exchange rate stabilization policies are taken into

account. We assume that the exchange rate is a function of the aggregate

fundamental whose dynamics is described by a stochastic differential equa-

tion (SDE) with a general functional shape for the state-dependent drift and

variance. The drift of the fundamental is the control variable to maintain

the fundamental level as close as possible to a time-varying target. We in-

troduce a disutility function that depends: 1) on the difference between the

aggregate fundamental and its target dynamics; 2) on the control variable.

The implicit costs associated with the interventions are measured in terms

of disutility. The stochastic control problem is solved using the dynamic

programming approach. The optimal strategies are obtained in two steps:

first, deriving the unique solution of the Hamilton Jacobi Bellman (HJB)

in the viscosity sense (Barles and Rouy, 1998); second, formalizing the ex-
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istence of the optimal strategies and their related paths according to the

regularity properties of the value function. The optimal trajectory of the

exchange rate is fully characterized. We also show that, under particular

conditions, the optimal width of the currency band can be determined.

The main innovations of this paper are represented by: 1) the choice of a

general shaped function for the stochastic dynamics of the aggregate fun-

damental; 2) the introduction of a disutility function which measures the

implicit costs of the intervention; 3) the definition of the endogenous cur-

rency band.

The work is organized as follows: the next section describes the model and

the related optimal control problem; section 3 presents the properties of

the value function and the optimal strategies; in section 4 a particular case

is discussed; some concluding remarks are presented in section 5, and the

mathematical derivations are reported in the Appendix.

2 The Model

This section describes the model developed to study the interventions of

Government Authorities in a managed floating regime. The building blocks

of the model are given by the exchange rate dynamics depending on some

random fundamental, the presence of a time dependent target and the op-

timization problem.

2.1 The exchange rate dynamics

We assume that the exchange rate depends on both some current funda-

mentals and expectations of future values of the exchange rate. The (log) of
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the spot exchange rate at any time t, st, is assumed to depend on an aggre-

gate ”fundamental”, ft, and a speculative term proportional to the expected

change in the exchange rate. As stated in Svensson (1992), the fundamental

absorbs the driving forces of the exchange rate (i.e. monetary and fiscal

policy variables, domestic output, price level, foreign interest rate, etc.).

Given a filtered probability space (Ω,F , {Ft}t≥0,P), a simple representation

of the spot exchange rate dynamics is given by:

stdt = ftdt + λEt[dst] λ > 0, (1)

where:

• st is the logarithm of the exchange rate defined as unit of domestic

currency per unit of the reference currency;

• ft denotes the logarithm of the aggregate fundamental;

• λ is a constant positive parameter which can be interpreted as the

semielasticity of the exchange rate with respect to the instantaneous

rate of currency depreciation;

• Et[dst] measures the expected change of the exchange rate with respect

to time t.

The process for the fundamental, ft, is given by:

dft = µf (ft, θt)dt + σf (ft)dBt, (2)

where:

• θt ∈ Θ, represents the control variable, used by Monethary Authorities

to manage the current fundamental dynamics, Θ is the admissible
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region defined as

Θ :=
{

θ : [0,+∞)×Ω → [θm, θM ] Ft−adapted processes, θm < θM

}
;

(3)

• E[f2
t ] < +∞;

• µf : R× [θm, θM ] → R;

• σf : R→ R;

• Bt is a standard Brownian Motion.

We assume that the initial value of the fundamental, f0, is deterministic.

The effective aggregate fundamental, ft, consists of exogenous and endoge-

nous components. We further assume that Government Authorities, using

monetary, economic and fiscal policies, monitor the exchange rate and may

intervene in order to maintain the fundamental, ft, broadly in line with its

target. In particular, equation (2) states that Government Authorities in-

tervene on the control variable, θt, to manage the drift of the fundamental,

µf (ft, θt).

We set a target for the fundamental, f̃t, which includes a set of variables

affecting the exchange rate. For instance, some of the parameters set by

the European Commission during the process of EU accession have to show

some specific behavior, or some macroeconomic variables have to perform

according to given targets. In the case of China, the PBOC officially sets

targets for money supply (Burderkin and Siklos, 2008) and credit growth

”to maintain stability of the value of the currency and thereby promote eco-

nomic growth”2.
2http://www.pbc.gov.cn
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The evolution of the potential target is described by an ordinary differential

equation:

df̃t = βtdt, (4)

where:

• β is defined on [0, +∞);

• f̃0 is the deterministic initial value of f̃t.

We define the state-variable xt := ft− f̃t whose dynamics, given (2) and

(4), on the filtered probability space (Ω,F , {Ft}t≥0,P), is given by:

dxt = d(ft − f̃t) = µ(xt, θt)dt + σ(xt)dBt, t > 0 (5)

where:

• µ (xt, θt) = µf (ft, θt)− βt;

• σ(xt) = σf (ft) and σ(x) 6= 0, ∀x ∈ R;

• µ is a continuous real value bounded function with respect to the

process θ;

• x0 = x, is the deterministic starting point of the dynamics xt.

µ and σ satisfy the usual regularity conditions for the existence and

uniqueness of the solution for (5).

2.2 The optimization problem

The decision maker aims to reduce its disutility intervening on its preferences

as well as on the fundamental through the control variable θ. The expected
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disutility allows an assessment of the Government Authorities’ policies and

the total ”social” costs of the stabilization process.

The disutility function depends on the distance of the fundamental value

from its target, and it is controlled by θt. The larger the distance between

the fundamental and the target, the lower the satisfaction and the higher the

disutility. The control problem is solved finding the optimal control rule θt,

as a function of the state variable xt, that minimizes the expected discounted

disutility and the implicit costs of the control policies. We formalize the

dynamic optimization problem in terms of the value function, V : R → R,

presented as:

V (x) := inf
θ∈Θ

J(θ, x), (6)

with

J(θ, x) := Ex
{∫ +∞

0
e−γtu(|xt|, θt)dt

}
, for x0 = x, (7)

where:

• e−γt, with γ > 0, is the discount factor;

• u : [0,+∞) × [θm, θM ] → R is the Government Authority’s disutility

function;

• |xt| = |ft − f̃t| is the distance of the fundamental from its target;

• Ex is the expected value of the disutility, u, depending on the absolute

value of xt, whose dynamics are given by (5), with initial position x.

Since V is symmetric with respect to the origin we do not lose any

generality assuming x ≥ 0.

As stated above, u is increasing with respect to |xt| and continuous with

respect to θt. With no loss of generality, we assume that the disutility
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function is essentially bounded with respect to x and this implies, together

with the continuity of u with respect to θ in [θm, θM ], that also V is essentially

bounded with respect to x.

To clarify the concept of disutility function it may be useful to list some

specific functions:

• u(|xt|, θt) = θ2
t · e|xt|; the disutility grows rapidly as the distance of the

fundamental from its target, |xt|, increases; Government Authorities

should intervene as soon as possible to avoid an explosion of the disutil-

ity; the control variable θt should be pushed downward to compensate

the growth of e|xt|.

• u(|xt|, θt) = |xt|exp
[

1
θt

]
; the disutility grows linearly as the gap |xt|

increases at a rate depending on θt; Government Authorities should

intervene to reduce the growth of the disutility, by pushing upward

the control variable θt.

The introduction of the disutility in the objective functional and its

dependence on the control variable guarantees that the optimal solution is

also the one minimizing the costs of the controls. The smaller is the distance

between the observed fundamental and the target, the smaller is the cost of

the control measured in terms of disutility.

3 The optimal policies

In this section, following the dynamic programming approach, we study

the properties of the value function and derive the implied Government

Authority’s optimal strategies.
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Theorem 1 The value function V is the unique classical solution of the

HJB equation:

γV (x) =
σ2(x)

2
V ′′(x) + min

θ∈[θm,θM ]

{
u(x, θ) + µ(x, θ)V ′(x)

}
; (8)

in (0,+∞), with boundary condition V (0) = 0 and V (+∞) = M > 0.

The proof is reported in the Appendix.

By Theorem 1, the optimal strategies in feedback form can be obtained.

Theorem 2 Consider x ∈ [0,+∞) and define

θ∗ ∈ argminθ

{σ2(xt)
2

V ′′(xt) + u(|xt|, θ) + µ(xt, θ)V ′(xt)
}

.

1. The closed loop equation:




dxt = µ(xt, θ
∗)dt + σ(xt)dBt, t > 0

x0 = x,

(9)

admits a unique solution.

2. Assuming that x̄t is the solution of the closed loop equation, we obtain

θt depending on x̄t; so we set θ̄t := θ∗(x̄t) and obtain:




dx̄t = µ(x̄t, θ̄t)dt + σ(x̄t)dBt, t > 0

x̄0 = x.

Since J(x, θ̄) = V (x) holds, θ̄t is the optimal value for the control

variable, with the related optimal trajectory, x̄t.
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The proof is reported in the Appendix.

The existence of the optimal strategy x̄t implies the existence of an optimal

trajectory for the fundamental, f∗t := x̄t + f̃t, given the relationship between

xt and ft. Starting from the optimal fundamental, a characterization of the

optimal exchange rate dynamics, s∗t , can be provided.

Next result allows to define the optimal exchange rate dynamics.

Proposition 3 Given the optimal fundamental f∗t , then the optimal ex-

change rate dynamics can be written as s∗t = h(f∗t ), where the function h is

the solution of the following second order differential equation:

σ2
f (f∗t )
2

h′′(f∗t ) + Et[µf (f∗t , θ̄t)]h′(f∗t )− 1
λ

h(f∗t ) = −f∗t
λ

. (10)

Proof. We look for solution of (1) introducing a function h:

s∗t = h(f∗t ). (11)

Applying Ito’s Lemma to (11), we have:

ds∗t = h′(f∗t )df∗t +
1
2
h′′(f∗t )(df∗t )2 =

= h′(f∗t )[µf (f∗t , θ̄t)dt + σf (f∗t )dBt] +
1
2
h′′(f∗t )σ2

f (f∗t )dt. (12)

The conditional expectation of ds∗t is given by:

Et[ds∗t ] = h′(f∗t )Et[µf (f∗t , θ̄t)]dt +
1
2
h′′(f∗t )σ2

f (f∗t )dt.

Therefore, equation (1) can be rewritten as

h′(f∗t )Et[µf (f∗t , θ̄t)]dt +
1
2
h′′(f∗t )σ2

f (f∗t )dt =
1
λ

(s∗t − f∗t )dt. (13)

Given (11) and (13), h can be found as solution of (10).
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4 Some applications: derivation of the optimal

currency band

To provide an explicit formalization of the optimal values for the control

variable, θ, as given in Theorem 1, in this section some particular cases are

discussed. For our purpose, we remove the assumption that x > 0 and con-

sider x ∈ R.

First of all, we argue that µ and u are assumed to exhibit the same be-

havior w.r.t. θ in [θm, θM ], and this means that if |x| increases, then u

and µ increase. Therefore, the intervention of the Government Authorities

through the control θ should push downward simultaneously µ and u. In

this particular example we assume the existence of A, B,C ⊆ R such that

A ∪B ∪ C = R and

A = {x ∈ R |µ(x, θ), u(|x|, θ) increasew.r.t. θ in [θm, θM ]} ;

B = {x ∈ R |µ(x, θ), u(|x|, θ) are constantw.r.t. θ in [θm, θM ]} ;

C = {x ∈ R |µ(x, θ), u(|x|, θ) decreasew.r.t. θ in [θm, θM ]} .

The optimization problem can be represented introducing the map gx :

[θm, θM ] → R such that:

gx(θ) = u(|x|, θ) + µ(x, θ)V ′(x), ∀x ∈ R. (14)

According to Theorem 1, the optimization problem is solved by minimizing

the function gx w.r.t. θ. By assuming the right regularity for the functions

µ and u and applying the first order condition we get:

g′x(θ) =
∂u(|x|, θ)

∂θ
+ V ′(x)

∂µ(x, θ)
∂θ

= 0. (15)
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Under particular conditions, we are able to derive some intervention bands

for x, i.e. the regions where the optimal control rule is invariant. In partic-

ular, it is easy to choose µ and u such that two thresholds x1, x2 ∈ R, with

x1 < 0 < x2exist, with:

(i) A = (−∞, x1), B = [x1, x2], C = (x2, +∞);

(ii) A = (x2, +∞), B = [x1, x2], C = (−∞, x1).

A and C represent two intervention bands for x. The optimal strategies

can be written as follows:

(i)

θ∗(x) =





θm when x < x1

θM when x > x2.

(16)

(ii)

θ∗(x) =





θM when x < x1

θm when x > x2.

(17)

When x ∈ [x1, x2], then θ∗(x) can freely fluctuate. If x ∈ [x1, x2], then

f∗0 ∈ [x1 + f̃0, x2 + f̃0]. Furthermore, the behavior of the optimal exchange

rate dynamics is fully described by the function h in (11), which depends

on µf , σf , λ. Thus, when h is strictly monotonic, for instance increasing,

then f∗0 ∈ [x1 + f̃0, x2 + f̃0] implies that s∗0 ∈ [h(x1 + f̃0), h(x2 + f̃0)]. The

interval [h(x1 + f̃0), h(x2 + f̃0)] represents the optimal currency band for the

exchange rate dynamics, where no interventions occur.

To provide an intuitive understanding of the optimal strategies, we introduce
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the functions: u1, µ1, α : R → R and u2, µ2 : [θm, θM ] → R, such that the

drift and the disutility functions can be defined, respectively, as:

µ(x, θ) = µ1(x)µ2(θ), (18)

u(|x|, θ) = u1(|x|)u2(θ) + α(|x|), (19)

where (18) and (19) satisfy the regularity conditions given in Section 2 and

µ1 is increasing in [0, +∞) and decreasing in (−∞, 0).

In (18), the Government Authorities may apply a control θ, through µ2, in

order to let µ(x, θ) be close to µ(0, θ) and drive the process of the funda-

mental, ft, closer to its target, f̃t. Equation (19) provides a general example

of the specific disutility functions introduced in subsection 2.2.

Given (18) and (19), the map gx becomes:

gx(θ) = u1(|x|)u2(θ) + µ1(x)µ2(θ)V ′(x) + α(|x|), (20)

and applying the first order condition we get:

g′x(θ) = u1(|x|)u′2(θ) + µ1(x)µ′2(θ)V
′(x) = 0, (21)

from which, by assuming u1(|x|) 6= 0,

u′2(θ)
µ′2(θ)

= −µ1(x)V ′(x)
u1(|x|) . (22)

Assume that µ′2, u
′
2 6= 0 and the convexity of u2 and µ2 in [θm, θM ]. If

u′′2(θ)
u′2(θ)

>
µ′′2(θ)
µ′2(θ)

or
u′′2(θ)
u′2(θ)

<
µ′′2(θ)
µ′2(θ)

, ∀ θ ∈ [θm, θM ], (23)

then the function ρ(θ) = u′2(θ)
µ′2(θ)

is invertible and the optimal control θ∗(x) is

given by:

θ∗(x) = ρ−1

(
−µ1(x)V ′(x)

u1(|x|)
)

. (24)
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It is possible to consider the limit case of two dominant optimal policies:

one expansionary and the other restrictive (i.e.: optimal policies of bang-

bang type). In this case, the optimal currency band collapses to a single

value that is necessarily 0.

Now, assume µ2(θ) = u2(θ) = n(θ) twice differentiable and convex in

(θm, θM ).

The map gx becomes:

gx(θ) = n(θ)[u1(|x|) + µ1(x)V ′(x)] + α(x), (25)

and the first order condition gives:

g′x(θ) = n′(θ)[u1(|x|) + µ1(x)V ′(x)] = 0. (26)

For µ1(x) 6= 0 in R, we have two cases:

• if

V ′(x) +
u1(|x|)
µ1(x)

= 0, for x ∈ R, (27)

then (26) is satisfied for each θ ∈ [θm, θM ] and the value x repre-

sents a specific distance between the fundamental and its target for

which Government Authorities may apply arbitrary decision rules. It

is natural that it must be x = 0: here, the target of the Government

Authority is reached and no intervention is needed;

• if

V ′(x) +
u1(|x|)
µ1(x)

6= 0, for x ∈ R, (28)

then (26) cannot be satisfied assuming an increasing (decreasing) n,

i.e. when n′(θ) > 0(< 0) for θ ∈ [θm, θM ]. However, the continuity of

gx and Weierstrass’ Theorem guarantee the existence of the optimal
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strategies, belonging to {θm, θM}. More precisely, a critical region

Γ ⊆ R can be defined as follows:

Γ :=
{

x ∈ [0, +∞) |V ′(x)+
u1(|x|)
µ1(x)

> 0
}
∪

{
x ∈ (−∞, 0) |V ′(x)+

u1(|x|)
µ1(x)

< 0
}

.

(29)

We have:

– if n′(θ) > 0 in [θm, θM ], then

θ∗(x) =





θm when x ∈ Γ

θM when x ∈ R\ (Γ ∪ {x})
(30)

– if n′(θ) < 0 in [θm, θM ], then

θ∗(x) =





θM when x ∈ Γ

θm when x ∈ R\ (Γ ∪ {x}) .

(31)

Since u is an increasing function of |x|, then by (6) and (7) V increases

in [0, +∞) and decreases in (−∞, 0). As a consequence, further assumptions

on u1 and µ1 allow to derive some intervention bands for x. As a particu-

lar example, we have that if µ1(x) · u1(|x|) > 0, for each x ∈ [0,+∞) and

µ1(x) · u1(|x|) < 0, for each x ∈ (−∞, 0), then V ′ + u1
µ1

> 0 in [0, +∞) and

V ′ + u1
µ1

< 0 in (−∞, 0). Hence, Γ = R.

By (30) and (31), when Γ = ∅ or Γ = R, then there exists a unique opti-

mal strategy θ∗ ∈ {θm, θM} that the Government Authority can apply. In

particular:

• for Γ = ∅ and n increasing (decreasing), then θ∗(x) = θM (θ∗(x) = θm)

for each x ∈ R;
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• for Γ = R and n increasing (decreasing), then θ∗(x) = θm (θ∗(x) =

θM ), for each x ∈ R.

When Γ = (−∞, x), then Γ and (x, +∞) represent two optimal inter-

vention bands for x.

In this particular case, the optimal currency band for the exchange rates

collapses to a singleton. Given the optimal fundamental path f∗t := x̄t + f̃t,

then x = x implies f∗0 = x + f̃0. By definition of the function h in (11), we

have that s∗0 = h(x + f̃0) is the threshold for the exchange rate where no

intervention is applied by the Government Authority. The set {h(x + f̃0)}
is the degenerate currency band.

4.1 Interpretation of the results

The optimal control is defined as a function of the gap registered between

the theoretical and the observed fundamental, (24).

To fix ideas, assume x > 0 (the case x < 0 is analogous). Given (23), ρ−1 is

an increasing function of its argument and the relationship between the op-

timal control, θ∗, and the variable x can be derived. θ∗(x) is directly related

to the disutility function, u1(|x|), and inversely related to the drift µ1(x)

of the state variable, xt, and to the growth rate of the expected disutility

function V ′(x).

In other words, if the Government Authority’s disutility is large, need for

strong interventions occur and a large value of θ∗ is chosen; on the other

hand, if the deterministic trend of xt or the change in the disutility is large,

then there may be a need for a small intervention of the Government Au-

thority.

For instance, considering the current international context, one can observe

18



that some countries are experiencing a much lower growth rate than ex-

pected, and this causes a large value of the state variable, i.e. the distance

between theoretical and observed fundamental, and high level of disutility.

According to our model, this would require incisive interventions represented

by large value of θ, i.e strong measures of fiscal and monetary policy.

The optimal control, θ∗, described by (24) is applied whenever θ ∈ (θm, θM ).

This means that theoretical and observed fundamentals may differ one from

the other, but the difference is still within the optimal tolerance band:

x ∈ [x1, x2].

When x becomes too large (x > x2), or too small (x < x1), the optimal

strategies are given by (16) and (17) -or (30) and (31)-, which may repre-

sent the extreme interventions that Government Authority have to choose

in order to bring the fundamental closer to its target value.

In the case of the current economic situation, the observed fundamental may

result very far from the theoretical one, therefore strong interventions have

to be adopted, meaning large values of θ have to be chosen. For instance, in

terms of monetary policies this may be translated in monetary control ex-

ercised via manipulation of the monetary base or control of domestic credit

or bank credit or net foreign assets. The monetary policies to be adopted

are defined according to the each country’s internal targets such as infla-

tion and unemployment, and external targets such as competitiveness, the

current accounts, and reserves.

5 Conclusions

This paper presents a disutility based drift control model for exchange rate

dynamics, in the framework of managed floating regimes. The dynamics of
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the exchange rate is described as a function of the aggregate fundamental

at time t, ft, which follows a Brownian Motion with state dependent drift

and volatility. The process for the fundamental dynamics are obtained as

the solution of a stochastic control problem describing the Government Au-

thorities’ aim to keep the value of the fundamental as close as possible to its

target. An expected disutility function minimization problem is developed,

and the related Hamilton Jacobi Bellman equation is solved in viscosity

sense.

We show that under particular conditions, it is possible to obtain the opti-

mal width of the currency band. The model is realistic since it suggests a

more adequate process to describe the exchange rate dynamics and provides

an accurate analysis of the observed phenomenon with respect to simple

diffusion processes which may lack in economic content. The model takes

into account the time-varying features of the dynamics of the exchange rates

and the optimal strategies that can be applied by Government Authorities

to stabilize the exchange rate within a band.

Appendix

Proof of Theorem 1

By Dynamic Programming Principle (see Yong and Zhou, 1999), we have

the following result:

Proposition 4 If V ∈ C0[0,+∞) ∩C2(0, +∞), then (8) holds in (0,+∞),

with the boundary condition V (0) = 0 and V (+∞) = M .

Equation (8) with the boundary condition holds formally, in the sense

that the regularity conditions required for the function V are assumed. Since
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V is generally not twice differentiable, then we proceed by proving the ex-

istence and uniqueness of the solution of (8) with boundary conditions in a

weak sense. To this end we use the concept of the viscosity solutions (for

a complete survey on viscosity solutions we refer to Crandall et al., 1992;

Barles, 1994; Fleming and Soner, 2006). The following result states the ex-

istence and uniqueness of the solution of the HJB (8) in the viscosity sense.

Such solution coincides with V .

Theorem 5 The value function V is continuous in (0,+∞) and can be

extended continuously on [0, +∞). Moreover, V is the unique viscosity so-

lution of the HJB equation (8) with the boundary condition V (0) = 0 and

V (+∞) = M .

Proof. The proof is a direct consequence of a result in Barles and Rouy

(1998).

We now need to discuss the regularity properties of the value function to

prove Theorem 1. In fact, if V is at least twice differentiable, then Theorem

5 guarantees that it is the unique classical solution of (8) with boundary

condition V (0) = 0 and V (+∞) = M .

We firstly need to prove that V is concave. To this end, we fix x ∈ [0, +∞)

and real-valued function v ∈ C0[0, +∞) ∩C2(0, +∞) and define the Hamil-

tonian:

H(x, v(x), v′(x), v′′(x)) :=

γv(x)− σ2(x)
2

v′′(x)− min
θ∈[θm,θM ]

[
u(x, θ) + µ(x, θ)v′(x)

]
. (32)

Writing

−H(x,−v(x),−v′(x),−v′′(x)) = 0, ∀ x ∈ (0, +∞),
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we obtain:

γv(x)− 1
2
σ2(x)v′′(x) + min

θ∈[θm,θM ]

[
u(x, θ)− µ(x, θ)v′(x)

]
= 0, (33)

for each x ∈ (0, +∞). The following lemma holds:

Lemma 6 (Barles, 1994) ϕ ∈ C0(0, +∞) is a viscosity supersolution (sub-

solution) of (8) if and only if ψ := −ϕ is a subsolution (supersolution) of

(33).

The previous result implies the following corollary.

Corollary 7 If ϕ is the unique viscosity solution of (8), then ψ := −ϕ is

the unique viscosity solution of (33).

In the following lemma we recall an important general result due to

Alvarez et al. (1997). This result is useful to prove concavity.

Lemma 8 (Alvarez et al., 1997) Let us consider an interval I ⊆ R and

define an hamiltonian operator

H̃ : Ī × R× R× R→ R.

Assume that H̃ satisfies the following properties:

• there holds

H̃(x, v, p, q) = 0 ∀x ∈ I; (34)

• H̃ ∈ C0(Ī × R× R× R);

• H̃ is elliptic;
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• It results

(x, v) 7→ H̃(x, v, p, 0)

concave, for every p.

Let v lower semi-continuous in Ī be a viscosity supersolution of (34) and

define the convex envelope v∗∗ of v as

v∗∗(x) := inf
{

λ1v(x1) + λ2v(x2) |x = λ1x1 + λ2x2,

with xi ∈ I, λi ≥ 0, i = 1, 2, λ1 + λ2 = 1
}

.

Then v∗∗ is lower semi-continuous in Ī and it is a viscosity supersolution of

(34).

Theorem 9 V is a concave function in [0, +∞).

Proof. In order to prove the theorem, it is sufficient to prove that

u := −V is a convex function. We use Corollary 7 and apply it to equation

(33).

Let us now define:

0 = γv(x)− 1
2
σ2(x)q + min

θ∈[θm,θM ]

[
u(x, θ)− µ(x, θ)p

]
=:

=: H̃(x, v, p, q) ∀x ∈ [0, +∞). (35)

It results:

H̃(x, v, p, 0) = γv(x) + min
θ∈[θm,θM ]

[
u(x, θ)− µ(x, θ)p

]
.

A direct computation gives us that the map

(x, v) 7→ H̃(x, v, p, 0)
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is concave for every p.

Furthermore, since σ 6= 0, for each x ∈ [0, +∞), then H̃ is an elliptic

operator.

Since the hypotheses of Lemma 8 hold, the convex envelope v∗∗ of v is a

viscosity supersolution of (35).

Using the definition of convex envelope, for each x ∈ [0, +∞), we have:

v∗∗(x) = inf
{

λ1v(x1) + λ2v(x2) |x = λ1x1 + λ2x2

}
≤ v(x), (36)

with the choice λ1 = 1, λ2 = 0, x1 = x, x2 arbitrary in [0, +∞).

If w1 is a viscosity subsolution and w2 is a viscosity supersolution of (35)

then, from the Existence and Uniqueness Theorem 5, we get w1 ≤ w2.

Given this result and (36), the convex envelope v∗∗ of v is a viscosity sub-

solution of (35).

By Theorem 5 and Corollary 7, v∗∗ is the unique viscosity solution of (35)

and, hence, the unique viscosity solution of (33). Therefore v = −V is

convex in [0,+∞) and the theorem is completely proved.

Next result guarantees that the viscosity solution of the HJB equation

is a classical solution.

Theorem 10 V is twice differentiable in (0, +∞).

Proof. Since σ(x) 6= 0, for each x ∈ (0, +∞), equation (8) is uniformly

elliptic in (0, +∞). Furthermore, given the concavity/continuity and adapt-

ing Alexandrov’s Theorem to this case (see Fleming and Soner, 2006), we

know that V is twice differentiable a.e. in (0, +∞). Therefore, it follows

that V ′ ∈ L∞(0, +∞), given µ, σ, u ∈ L∞(0, +∞), by definition.

Moreover, we can write, a.e. in (0,+∞),

V ′′(x) =
2

σ2(x)

{
γV (x)− min

θ∈[θm,θM ]

[
u(x, θ) + µ(x, θ)V ′(x)

]}
. (37)
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The right-hand side of the (37) is the sum of functions that are in L∞(0, +∞)

and, hence, we can state that V ′′ ∈ L∞(0, +∞).

Using previous arguments, we obtain that V is a function in the Sobolev

space W 2,∞(0, +∞).

Since (0, +∞) is an interval, the hypotheses of the Sobolev’s Embedding

Theorem (see Gilbarg and Trudinger, 1977) are trivially true and we get

V ∈ Cm(0, +∞), ∀m ∈ [0, 2). Therefore, V ′ is a continuous function, and

the second term of (37) is a combination of continuous functions: V ′′ ∈
C0(0, +∞).

The result is proved.

Proof of Theorem 1. By Theorems 5 and 10, we have the thesis.

Proof of Theorem 2

We first present a Verification Theorem to identify the optimal strategies

and the related optimal trajectories.

Lemma 11 Assume that v ∈ C0[0, +∞)∩C2(0, +∞) is the (classical) solu-

tion of (8) with the boundary condition V (0) = 0 and V (+∞) = M . Then:

• v(x) ≤ V (x), ∀x ∈ [0,+∞).

Let us, now, consider a pair of stochastic processes, (θ∗, x∗) with x∗0 = x,

such that

θ∗ ∈ argminθ

{σ2(x∗t )
2

v′′(x∗t ) + u(|x∗t |, θ) + µ(x∗t , θ)v
′(x∗t )

}
,

then, θ∗ is optimal in x, and x∗ is the related optimal trajectory, if and only

if v(x) = V (x), ∀x ∈ [0, +∞).
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A detailed proof can be found in Fleming and Soner, 2006.

Given Theorems 1, 5 and 10, we can rewrite the HJB as:

0 = H(x, V (x), V ′(x), V
′′
(x)) = inf

θ∈[θm,θM ]
Hθ(x, V (x), V ′(x), V

′′
(x)), (38)

where

Hθ(x, V (x), V ′(x), V
′′
(x)) :=

γV (x)− σ2(x)
2

V ′′(x)− u(x, θ)− µ(x, θ)V ′(x). (39)

Since µ, u ∈ C0[θm, θM ], then the function Hθ ∈ C0[θm, θM ] and Weier-

strass’s Theorem guarantees the existence of the absolute minimum point

θ∗ ∈ [θm, θM ] of the function Hθ defined in (39).

Proof of Theorem 2.

1. The proof follows from the existence of θ∗, shown in Lemma 11, and

by the existence and uniqueness of the solution for the state equation

(5).

2. The proof is due to Lemma 11.
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