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Abstract

Over the past two decades, the challenge of accurately positioning objects or users indoors,

especially in areas where Global Navigation Satellite Systems (GNSS) are not available,

has been a significant focus for the research community. With the rise of 5G IoT networks,

the quest for precise 3D positioning in various industries has driven researchers to explore

various machine learning-based positioning techniques.

Within this context, researchers are leveraging a mix of existing and emerging wire-

less communication technologies such as cellular, Wi-Fi, Bluetooth, Zigbee, Visible Light

Communication (VLC), etc., as well as integrating any available useful data to enhance the

speed and accuracy of indoor positioning. Methods for indoor positioning involve combining

various parameters such as received signal strength (RSS), time of flight (TOF), time of

arrival (TOA), time difference of arrival (TDOA), direction of arrival (DOA) and more.

Among these, fingerprint-based positioning stands out as a popular technique in Real Time

Localisation Systems (RTLS) due to its simplicity and cost-effectiveness.

Positioning systems based on fingerprint maps or other relevant methods find applications

in diverse scenarios, including malls for indoor navigation and geo-marketing, hospitals

for monitoring patients, doctors, and critical equipment, logistics for asset tracking and

optimising storage spaces, and homes for providing Ambient Assisted Living (AAL) services.
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A significant challenge facing all indoor positioning systems is the objective evaluation

of their performance. This challenge is compounded by the coexistence of heterogeneous

technologies and the rapid advancement of computation. There is a vast potential for

information fusion to be explored. These observations have led to the motivation behind our

work. As a result, two novel algorithms and a framework are introduced in this thesis.
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Chapter 1

Introduction

1.1 A preamble to Indoor Positioning in 5G Networks

Indoor positioning or localisation of either valuable assets or personnel is the process of

tracking and locating them through a wireless device, usually carried by users themselves

or attached to the assets. Research in positioning methods and techniques has been carried

out for many decades in both indoor and outdoor settings. However, since the introduction

of the 5G IoT[6], real-time positioning is becoming increasingly required by context-aware

and location-based use cases. Typical scenarios include hospitals for locating doctors and

patients, malls for navigating and advertising products to target groups, oil and gas plant

monitoring, precision agricultural applications, positioning to identify victims in public

protection and disaster recovery, etc. Moreover, several advanced applications can provide

cellular phone fraud detection, location-sensitive billing, as well as navigation from and to

almost everywhere through the use of heterogeneous wireless technologies, the fusion of

sensor and IoT data ([7], [8], [9], [10]). A recent report published by IEEE has estimated

50 billion [11] mobile devices will be connected to the cloud. These devices will need
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constant access to data anywhere. Cisco has predicted that 26 billion [12] of these devices

will be IoT or Wireless Sensor Network (WSN) devices. In this respect, technologies like

Cloud Radio Access Network (C-RAN), Millimeter Wave (mm-Wave) communication,

ultra dense communication [13], device-to-device (D2D) communication and Vehicle-to-

everything (V2X) [14], [15] and protocols like IEEE 802.11be (Extremely high Throughput

WLAN)[16], IEEE 802.11az (Next Generation Positioning)[17] are not only introduced to

increase the bandwidth of communication, but also to offer the possibility of cooperative and

precise localisation.

Furthermore, with 5G paving the path for seamless collaboration among heterogeneous

wireless systems (cellular, WiFi, WSN, IoT, etc.), a great opportunity has arisen in the area

of indoor localisation in urban areas under the framework of smart cities. Such high dense

networks could be utilised to solve multi-agent positioning and offer agility and scalability

for accurate positioning as a service. Finally, to standardise this technological hype, in their

3GPP technical report [18], European Telecommunication Standards Institute (ETSI) focused

on several criteria and use cases to achieve high precision for indoor and outdoor positioning

for 5G networks. In this respect, the aforementioned observations have motivated us to set

three main research scopes for this thesis:

• To improve 3D indoor positioning in 5G IoT network through cooperative learning.

• Leverage 5G IoT heterogeneous networks signal data to improve vertical and horizontal

indoor positioning using a novel technique for information fusion
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• To solve the issue of a standardised localisation platform through a novel Positioning

as a Service (PaaS) architecture for massively deployed assets.

In this direction, the following concepts are introduced in this thesis.

• A Deep Learning-based with Co-operative Architecture (DELTA) for enhanced 3D

indoor localization using multilayered radiomap as described in Chapter 3.

• Information fusion for 5G IoT 3D localisation using K-Nearest Neighbour (KNN),

Deep Neural Networks (DNN), and multilayered hybrid radiomap as demonstrated in

Chapter 4.

• PaaS architecture for massively deployed assets in 5G IoT Networks, as presented in

Chapter 5.

1.2 3D Positioning using Deep Learning

Deep learning is a subclass of machine learning algorithms based on artificial neural networks

(ANN) and representation learning [19]. The Artificial Neural Network (ANN) itself was

inspired by the biological network. Figure 1.1 shows the similarity between the human

biological neuron and a calculation node in ANN.

These types of algorithms are more powerful than traditional machine learning algorithms

as they use multiple connected layers to extract complex patterns from raw data [20]. The

training technique used in deep learning can be supervised, semi-supervised, or unsupervised

[19]. Nowadays, deep learning has emerged as a powerful approach to 3D indoor positioning,
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Fig. 1.1 The human neuron and its similarity to the neural network perceptron [1]

leveraging its capacity to automatically learn complex representations from large datasets.

Using techniques such as Convolutional Neural Networks (CNNs) [21] for image-based

positioning or Recurrent Neural Networks (RNNs)[22] for sequential data analysis, deep

learning models can extract relevant features from WiFi signal strength [23], Bluetooth

beacons[24], geomagnetic fields [25] and other sensor inputs commonly available in indoor

environments. These models not only offer high accuracy, but also adapt well to dynamic

indoor conditions, making them particularly suitable for real-time positioning applications

as studied in [26] [27] and [28]. However, it is important to address challenges such as

data variability, data quality, model robustness, and the need for extensive training data to

fully harness the potential of deep learning in indoor positioning systems. This has made

the concept of improved cooperative 3D localisation through collaboration between deep

learning models as a solution to face these challenges, as we analyse in Chapter 3.

1.2.1 Contribution to the Knowledge

Chapter 3 describes a DELTA algorithm for improved 3D indoor localisation. The contribu-

tions of this part of the thesis can be summarized as follows:
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• A realistic 3D indoor localization scenario for 5G IoT networks has been designed

using an emulated 5G C-RAN and Zolertia IoT nodes.

• We present a novel approach to Received Signal Strength (RSS)-based fingerprint

using 3D multilayered radiomap to enhance the learning of network signal behaviour.

• A deep learning cooperative algorithm is implemented on the constructed multilayered

radiomap for an improved 3D localization indoor localization. The proposed method

targets improving vertical and horizontal localization for use case scenarios such as

indoor navigation or people tracking in multi-floor smart or large complex buildings.

Based on the results of the emulated realistic radio-planning, we have shown how the

DELTA outperformed KNN and Support vector Machine (SVM).

1.3 Information Fusion

Information fusion for indoor positioning is a crucial area of research and development

aimed at enhancing the accuracy and reliability of location-based services within indoor

environments. This approach involves the integration and combination of data from multiple

sensors and sources, such as Wi-Fi signals, Bluetooth beacons, Inertial Measurement Units

(IMUs), magnetometers, and visual data, to provide a more robust and precise indoor

positioning solution.

The concept of information fusion for indoor positioning is well established in the

research community, and various fusion algorithms have been proposed to optimise the

integration of sensor data. To further improve positioning accuracy, researchers have focused
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on various hybrid approaches. For 5G IoT networks, the location of the user’s equipment is

estimated using a combination of signal propagation characteristics such as Angle of Arrival

(AoA), Time of Arrival (ToA), Time Difference of Arrival (TDoA), RSS, RSS Difference

(RSSD), Direction of Arrival (DoA), Frequency Difference of Arrival (FDoA)[29]. These

hybrid approaches have recently been further surveyed in [30, 31] and [32]. Among all these

approaches, the RSS fingerprint-based method is the most widely used for real-time tracking

because It is capable of determining the location solely through the utilization of current

network infrastructure[33]. Additionally, most of the existing approaches consider the use

of RSS from specific radio technology. However, the offline phase of fingerprint collection

requires a considerable amount of human resources and is also time consuming, especially

for complex buildings. For this reason, in Chapter in 4, we propose a K-Nearest-Neighbour

and Deep Neural Network (K-DNN) algorithm to improve 3D indoor positioning. The

concept presented is a continuation of our previous work in [34] [35] towards cooperative

localization.

1.3.1 Contribution to the knowledge

The main contribution of chapter 4 can be summarised as follows:

• A realistic information fusion scenario for 5G IoT networks has been planned and

deployed utilizing a 5G IoT gateway, a Bluetooth Low Energy (BLE) network and

a set of wireless IoT access points without requiring any extra information such as (

magnetic-inductive sensor, acoustics, visible light or powerline)
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• Our implementation uses a novel data-augmentation concept for RSS-based finger-

print technique to produce a 3D fused hybrid. This concept was supported by the

Interquartile Range (IQR) method for the detection and elimination of outliers.

• To improve 3D positioning accuracy, a K-DNN cooperative algorithm has been imple-

mented on the constructed hybrid multilayered radiomap.

1.4 Positioning as a Service

In the context of 5G, PaaS refers to the innovative capability of accurately determining the

geographical position of massively deployed devices or users within a 5G IoT network’s

coverage area, leveraging advanced localisation techniques. This service has significant

implications for various industries, such as transportation, logistics, emergency services, and

augmented reality applications [36]. With the advent of 5G’s higher data rates, lower latency,

and enhanced connectivity, PaaS can achieve remarkable precision and responsiveness in

real-time location tracking, providing crucial data for critical decision-making processes.

One of the key technologies driving PaaS in 5G is the integration of multisensor systems,

including GPS, Wi-Fi, and cellular signals, along with the utilisation of advanced signal

processing algorithms. This combination allows for more accurate positioning, even in

challenging environments where GPS signals may be weak or obstructed. Additionally,

the high bandwidth and low latency capabilities of 5G networks enable fast and reliable

data exchange between devices and the central positioning infrastructure, facilitating real-
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Fig. 1.2 5G large scale positioning

time updates and reducing latency in location-based services (LBS). Figure 1.2 shows how

massively connected UEs can be tracked through the concept of 5G large-scale localisation.

PaaS has the potential to revolutionise industries that rely on precise location information.

For example, in the transportation sector, PaaS enabled by 5G can improve autonomous

vehicle navigation, optimise fleet management, and improve traffic flow through intelligent

routing as suggested in [37]. Emergency services can benefit from faster and more accurate

location information during rescue operations conducted either by drone [38] or UAV [39],

leading to more efficient response times. Furthermore, augmented reality [40] applications

can create immersive experiences that are tightly integrated with users’ real-world locations.

The combination of 5G and PaaS represents a powerful synergy that unlocks new possi-

bilities for various sectors. As 5G networks continue to expand and mature, the impact of

PaaS is expected to grow, creating a foundation for innovative LBS that can redefine how we
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interact with technology and the physical world. Several recent studies have highlighted this

impact, especially in [41] and [42]

1.4.1 Contribution to the Literature

Despite the existence of encouraging works in the literature like [43], [44] and [45], most of

the existing literature does not highlight the role of 5G, machine learning, and big data to

cater for massively tracked assets in indoor environments. This has been our main motivation

for proposing our architecture. In chapter 5 , we contribute with the following:

• A solid scalable and expandable architecture for decentralised positioning in a 5G

enabled environment such as warehouses, malls, and factories.

• An implementation use case of vertical and horizontal positioning model for massively

deployed positioning in complex buildings

1.5 Research Motivation

The challenges in indoor positioning systems (IPS) have created a crucial need for innovation.

The need for a paradigm shift in positioning technology is evident in the current landscape.

The proposed approaches are driven by the following motivations:



1.6 Research Publications 10

1. Although commercial off-the-shelf solutions boast high accuracy, their prohibitive costs

and independence from existing network infrastructure create hurdles for widespread

adoption.

2. Collaboration between machine learning models, especially deep learning, remains

largely unexplored, leaving untapped potential to take advantage of the power of these

advanced algorithms for precise localisation in 5G IoT rich signal data.

3. The lack of a standardised platform to track critical assets and personnel limits the

promotion of a single architecture for positioning as a service. It is imperative that we

bridge these gaps, unlocking new avenues for location-based services, indoor naviga-

tion, and asset tracking, ultimately empowering organisations with a comprehensive,

cost-effective, and reliable platform.

4. Although information fusion has addressed 2D and floor localisation and area segmen-

tation, the challenge of achieving both horizontal and vertical localisation, essential for

complex building navigation, remains unmet.

1.6 Research Publications

As an outcome of this research, the following academic journals and conference papers have

been published:

• Journal paper: El Boudani, B., Kanaris, L., Kokkinis, A., Kyriacou, M., Chrysoulas,

C., Stavrou, S. and Dagiuklas, T., 2020. Implementing deep learning techniques in 5G
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IoT networks for 3D indoor positioning: DELTA (DeEp Learning-Based Co-operaTive

Architecture). Sensors, 20(19), p.5495.

• Conference paper: El Boudani, B., Kanaris, L., Kokkinis, A., Chrysoulas, C., Dag-

iuklas, T. and Stavrou, S., 2021, February. Positioning as service for 5g iot networks.

In 2021 Telecoms Conference (ConfTELE) (pp. 1-6). IEEE.

• Conference paper:Gosh, S., El Boudani, B., Dagiuklas, T. and Iqbal, M., 2021, March.

SO-KDN: A Self-Organised Knowledge Defined Networks Architecture for Reliable

Routing. In Proceedings of the 4th International Conference on Information Science

and Systems (pp. 160-166).

• Journal paper: El Boudani, B., Dagiuklas, T., Kanaris, L., Iqbal, M. and Chrysoulas,

C., 2023. Information Fusion for 5G IoT: An Improved 3D Localisation Approach

Using K-DNN and Multi-Layered Hybrid Radiomap. Electronics, 12(19), p.4150.

1.7 Structure of thesis

The rest of this thesis is structured as follows: Chapter 2 introduces localisation techniques

for 5G networks and highlights the predominant methods for indoor location applications. A

literature review focuses on the main objectives of this work, starting with advances in finger-

print methodologies discussing their advantages and limitations. The chapter also examines

the commonly used performance evaluation processes in indoor Positioning Systems (IPS)

and provides an overview of hybrid indoor positioning platforms proposed by the research

community.
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Chapter 3 showcases our contribution to improving 3D positioning using multilayered

radiomaps for 5G IoT networks. In Chapter 4, we introduce a novel algorithm which involves

combining different technologies and fusing data to enhance indoor localisation accuracy.

These contributions are supported by experimental performance evaluations, result analysis,

and scientific publications. Chapter 5 introduces a new architecture for the localisation of

massively deployed assets and personnel in a 5G IoT network environment. Lastly, Chapter

6 concludes the work and outlines potential directions for future research.

1.8 Chapter Summary

Chapter 1 provides an introduction to the topic of indoor positioning in 5G networks. It begins

by defining indoor positioning and highlighting its increasing importance in various contexts,

such as transportation, first responders, and augmented reality. The chapter emphasises

the role of 5G IoT in driving the need for real-time positioning and discusses the potential

applications and challenges in this domain. It also touches on the concept of information

fusion, deep learning, and the idea of PaaS in the context of 5G networks.

The chapter outlines the main research scope of the thesis, which includes improving 3D

indoor positioning through cooperative learning, leveraging 5G IoT signal data for better

indoor positioning, and creating a standardised positioning platform for mass deployment. It

introduces the concepts of DELTA for enhanced 3D indoor localisation, information fusion

techniques using K-DNN, and the PaaS architecture for 5G IoT networks.
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Furthermore, the chapter discusses the significance of deep learning in indoor positioning,

highlighting its advantages over traditional machine learning approaches. It mentions the

contributions of the research, such as the development of the DELTA algorithm and the

information fusion techniques, as well as their implications for indoor positioning accuracy.

The chapter concludes by emphasising the motivation behind the research, including

the need for cost-effective positioning solutions, collaboration between machine learning

models, the standardisation of positioning platforms, and achieving horizontal and vertical

localisation in complex indoor environments.

The structure of the thesis is briefly outlined with references to subsequent chapters that

delve into specific research contributions and experimental evaluations.



Chapter 2

Related Work

As previously highlighted, this thesis focuses on three main aspects: cooperative localisation

of 3D multilayered radiomap, information fusion based on hybrid radiomaps and PaaS for

5G. This chapter provides an extensive overview of positioning techniques in 5G networks,

specifically focusing on their applications in IoT heterogeneous networks. It also introduces

the positioning techniques and their limitations as it sets the stage for the development of

a novel indoor positioning system that addresses the challenges and limitations identified

in the literature. The rest of this chapter is structured as follows: Section 2.1 explores

various positioning methods, categorizing them into four primary groups: cell-identity-based,

angle-based, range-based, and fingerprinting-based techniques. RSS-based fingerprinting

in 2D and 3D environments is extensively covered in Section 2.2. Section 2.3 introduces

the use machine learning in indoor positioning is with a discussion of probabilistic and

deterministic approaches, emphasizing the use of algorithms like KNN and Deep Learning

methods. Section 2.4 examines existing positioning frameworks and their limitations and

challenges . Section 2.5 delves into research made in information fusion. It studies the
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systems developed and locates the research gap in this area. Section 2.6 provides a summary

of this chapter.

2.1 Positioning Techniques in 5G Networks

This section presents a comprehensive overview of the most relevant positioning techniques

used in 5G IoT hetrogenous networks. Positioning technologies within the cellular domain

can be categorised into four primary groups: cell-identity-based, angle-based, range-based,

and fingerprinting-based [13].

2.1.1 Cellular-Identity-Based Positioning

The Cell Identity (CID) or proximity-based method represents the most straightforward of

the four techniques, primarily depending on determining if the target object exists within a

specific radio coverage zone. This approach requires knowledge of the serving base station’s

location and the coverage region of the serving cell to estimate the location of the User

Equipment (UE). However, it requires a significant number of base stations to achieve an

accuracy comparable to alternative methods, making it unsuitable for extensive regions or

areas with sparse populations as highlighted in [46]. This technique is very useful for outdoor

localisation. Figure 2.1 demonstrates how CID determines the position of a user device.



2.1 Positioning Techniques in 5G Networks 16

Fig. 2.1 Cell-ID based localisation [2]

2.1.2 Angle-Based Positioning

Angle-based positioning determines the position or orientation of an object or device relative

to a reference point or axis using angles. This approach measures angles between known

reference points or devices, which can then be used to calculate the object’s position or

orientation. Angle-based techniques can employ either the Angle-of-Arrival (AoA), Angle-

of-Departure (AoD), or both. The AoA corresponds to the direction from which a radio signal

is received, as illustrated in Figure 2.2, while the AoD signifies the direction in which the

signal is transmitted. Angle-based positioning solutions are used in various fields, including

navigation, robotics, and wireless communication.
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Fig. 2.2 Angle of Arrival (AoA) based localisation

In 5G networks, especially those equipped with massive Multiple-Input, Multiple-Output

(MIMO) technology, base stations (BS) are fitted with multiple antennas, often in the tens

or even hundreds. This vast antenna array creates a substantial aperture and supports beam

operations [47]. In angle-based positioning systems, precise measurements of angles are

essential, and errors in angle measurements can lead to inaccuracies in position or orientation

calculations. Therefore, these systems often incorporate advanced sensors and algorithms

to minimise errors and improve accuracy. In terms of positioning for 5G IoT networks, a

major limitation of this technique stems from the fact that the accuracy of the AoA obtained

depends on the number of antennas involved and the size of the array. In other words, better

position estimation can only be achieved if an increased number of antennas and large arrays

are deployed as studied in [48–50].
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2.1.3 Range-Based Positioning

Range-based positioning technique determines the position of the User Equipment (UE) by

calculating distance measurements between transmitters and a receiver (or vice versa). These

measurements are derived from the data within the received signal, such as RSS, Time of

Arrival (ToA), or Time Difference of Arrival (TDoA) [51].

Fig. 2.3 Localisation by range [3]

2.1.4 Fingerprint-Based Positioning

Fingerprint-based positioning is based on unique radio frequency signal characteristics and

patterns present in indoor space to create a robust fingerprint database. This database con-

tains signal strength measurements, signal propagation models, and other relevant features

collected from multiple reference points in the environment. When a target device, such

as a smartphone or wearable, measures the signals it receives, the fingerprinting algorithm

compares these measurements to the stored reference database, allowing it to determine the lo-

cation of the device with relatively high precision [52]. The effectiveness of fingerprint-based
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methods lies in their ability to capture the intricate details of the indoor signal environment.

This includes factors such as signal attenuation, multipath effects, and interference, which are

characteristic of indoor spaces due to the presence of walls, obstacles, and varying materials.

Using this rich information, fingerprinting-based techniques can overcome the limitations of

angle-based and range-based techniques, especially in areas where line-of-sight communica-

tion is obstructed [53] . This has been a big factor for us in choosing the fingerprint-based

technique. However, to be fair to each method, we have listed in Table 2.1 the limitations of

all four.
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Table 2.1 Limitations of Indoor Positioning techniques

Positioning Technique Limitations

Cell-Identity-Based[54]

1) Limited precision in densely populated areas
2) Susceptible to signal attenuation and interfer-
ence
3) Cannot differentiate between nearby cells if
they have similar signal strengths
4) Prone to non-uniform cell size and coverage
gaps

Angle-Based [55]

1) Requires complex hardware for accurate angle
measurements.
2) Sensitive to multipath effects, especially in
indoor environments
3) Challenging to implement in environments
with obstacles or blockages.
4) Often requires line-of-sight (LOS) for optimal
accuracy

Range-Based [51]

1) Susceptible to signal attenuation and interfer-
ence, affecting accuracy
2) Performance affected by obstructions and re-
flections in indoor environments
3) Accuracy decreases with increasing distance
from signal source
4) Requires careful calibration and updates to
maintain accuracy.

Fingerprinting-Based [56]

1) Requires extensive and labour intensive site
surveys for fingerprint creation.
2) Vulnerable to environmental changes, requir-
ing frequent updates
3) Limited scalability due to the need for exten-
sive fingerprint databases
4) Performance affected by dynamic changes in
the indoor environment
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2.2 RSS-based Fingerprinting

2.2.1 Received Signal Strength

RSS is a way to measure the signal power strength received by a user’s equipment. This is

expressed in decibels milliwatts (dBm) or milliwatts (Mw). The RSS-based method is one

of the widely adopted methods by the indoor localisation research community. RSS can be

used to approximate the distance between a user device and a transmitting device, as shown

in Figure 2.4.

Fig. 2.4 RSS based positioning

Using Received Signal Strength Indicator (RSSI), a relative measurement of RSS, and a

Free-Space Path-Loss (FSPL) propagation model [57], the distance δ between a UE and Tx

can be estimated using the formula below:

FSPL(dB) = 20log10(d)+20log10( f )+Φ (2.1)
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Where d is the distance expressed in metres; f is the frequency measured in kilohertz,

megahertz, or gigahertz. φ is a constant depending on the frequency unit. During location

determination, this formula assumes that the antennas are lossless and their polarisation is

the same. However, this is not often the case in complex and unpredictable environments

with continuous noise.

2.2.2 RSS-based Fingerprinting for 2D and 3D Indoor Positioning

In RSS-based fingerprint-based method, unlike the FSPL model, the location is estimated

by matching the received signal from user equipment with a database of a preconstructed

location’s radiomap. The most significant advantage of this method is its ability to maintain

high accuracy in a cluttered multipath environment based on studies conducted in [58]

and [59]. As shown in Figure 2.5, this technique has two phases: offline and online. In

the offline phase, a site survey or measurement campaign is conducted by which a set of

RSS signals is collected and linked to its corresponding location XY in 2D and XYZ in

3D case. The constructed radiomap is then used to train a localisation algorithm with a

distance error loss function such as least squares [60], weighted least means [61], maximum

likelihood estimation [62] or convex optimisation [63]. To construct a radiomap, the most

commonly used method for collecting signal fingerprints is called war-diving [64]. After

identifying the indoor area of interest, the user equipment stays in each position for a specific

time interval to obtain enough fingerprint information. As the monitoring device moves

along the grid, the collected RSS single is stored in the database along with a reference

point. Regarding the positioning of the 5G IoT indoors, the use of this technique has been
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Fig. 2.5 Fingerprints-based positioning phases

investigated by Huan et al. in [65]. The authors used the Kalman filter to remove the noisy

RSS values. Next, a Universal Kriging (UK) algorithm was used for spatial interpolation for

data augmentation to reduce dependency on the fingerprinting database. Finally, the authors

have trained a KNN model to calculate the user equipment’s location achieving a 1.44 m

positioning error. Although this approach is interesting, it has not been established whether

the system could perform equally in a 3D environment. Additionally, the use of a single

base station might seem power saving, but it does not guarantee the same accuracy given

the changes in the environment and the LOS issues in cluttered space. Similarly, Gong et

al. [66] have suggested a two-step KNN (2-KNN) that uses reference signals from the state

information of the channel (CSI). During the offline phase, a Smooth Rank Sequence (SRS)

estimates the number of received signal paths. During the online phase, a trained 2-KNN is

used to determine the 2-D location of the user equipment. Most studies have overlooked 3D

localisation, which is essential for scenarios like robots navigation, immersive shopping, and
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virtual reality. This is the main motivation for us to investigate this area. Further studies for

5G and beyond (6G) can be found in the following survey papers [67, 68].

2.3 Machine Learning

In fingerprint-based localisation method, the application of machine learning involves training

a model on a radiomap dataset that has been collected during the offline phase. Given a

radiomap database, the localisation model aims to infer the state or location of the user device

from the received measurement vector σ , which includes RSS values σi from several access

points. According to the literature, widely used algorithms can be classified into deterministic

and probabilistic algorithms. The principle behind these methodologies is based on searching

a database of fingerprints and finding one or more locations whose RSS values have the

highest similarity to the one currently observed.

2.3.1 Probabilistic Approach

In the probabilistic approach, the position is determined based on the likelihood that the user

is in the location ’x’ given vector or RSS values received during the online phase. Assuming

that a set of location candidate L is L = {L1,L2,L3,...,Lm} for any obtained RSS vector values

’s’ Select Li if:

P(Li|σ)> P(L j|σ) for j,k = 1,2,3, ....n, i ̸= j (2.2)
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Where P(Li|σ) is the probability that a user device is at location Li, given the RSS vector

σ if its likelihood is higher than that of P(L j|σ).

Finally, using equation 2.2, 3D location (x̂, ŷ, ẑ) can be estimated using the weighted

average probability as follows:

(x̂, ŷ, ẑ) = Σ
n
i=1(P(Li|s)(xLi,yLi,zLi)) (2.3)

2.3.2 Deterministic Approach

In the deterministic positioning approach, location λ is considered a non-random vector[69].

The main objective is to estimate λ̂ at every step. Usually, the location estimate is treated

as a linear combination of calibrated points pi. The principle behind this approach can be

summarised in the following equation:

λ̂ = Σ
k
i=1

wi

ΣM
j=1w j

λi (2.4)

Here, the set {λ1 . . .λk} denotes the sequence of reference points associated with ∆i,

which is the distance between the respective radiomap fingerprint r̄i and the measurement x

taken during live positioning, i.e., ∆i = ||xi− r̄||. The norm ||.|| in this equation can be any

arbitrary formula. This can be the Mahalanobis norm [70], the Manhattan norm (1 norm)
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[71], or the Euclidean norm (2 norm) [69]. As this thesis focusses on the latter, wi can be

written as follows:

∆i =

√√√√ N

∑
j=1

xi j− s j)2 (2.5)

In equation 2.4, wi is a set of non-random weight coefficients assigned to each reference

point based on its importance in distinguishing it from other fingerprints. Consequently, the

value of wi assigned to each fingerprint impacts the location estimation. In this case, the

weight allocation expressed in equation 2.4 refers to the Weighted K-Nearest-Neighbour

(WKNN) algorithm [71]. A possible value for wi can be the inverse of the RSS information

[71], which can be expressed as follows:

wi =
1

||x− r̄||
[72][72] (2.6)

If equation 2.4 is simplified, it can be assumed that all fingerprints are assigned equal

weights. As a result of this assumption, wi is eliminated and the formula becomes the

KNN method. Thus, setting K = 1, the equation yields the simple Nearest-Neighbour (NN)

method[69] [73]. In terms of performance, it has been demonstrated in [69] and [71] that

the KNN and WKNN methods offer a higher degree of accuracy than the NN method in

the cases of K = 3 and K = 4, respectively. However, the NN method appears to perform
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satisfactorily and offers the same results in the presence of high-density RSS radiomaps [74].

In terms of performance, It has been demonstrated in [69] and [71] that the KNN and WKNN

methods offer a higher degree of accuracy than the NN method in the cases of K = 3 and K

= 4, respectively. On the other hand, the NN method appears to perform satisfactorily and

offers the same results in the presence of high-density RSS radiomaps [74].

Several researchers have addressed the question of indoor localisation in 5G networks

using KNN in [66, 65, 75–79]. Despite this, the KNN method alone fails to deal with a highly

dense 3D radiomap, as studied in [80], [81], and [82]. This has motivated us to propose

a combination of deep learning and KNN methods to improve localisation in complex 3D

environments. Since the main focus of this thesis is on the deterministic positioning approach

based on deep learning and KNN approaches, more complex methods such as the database

correlation method (DCM) and linear discriminant analysis (LDA) can be found in [83] and

[84] respectively. The following subsection deals with existing research contributions related

to deep learning.

2.3.3 Indoor Positioning Using Deep Learning

In the fingerprint-based approach, deep learning techniques have been widely used to extract

common patterns from a sparse radiomap database and to improve localisation[85, 86]. In

recent years, it has gained great popularity among researchers in indoor localisation, in

particular due to its robustness and high accuracy [87]. Supervised and unsupervised deep

learning algorithms have recently been implemented in 2D localisation [88] and multi-floor

localisation [89]. Wafaa et al. [90] have studied the use of CNN to reduce the localisation
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error and improve accuracy. Their approach converts a 2D fingerprint radiomap and its

kurtosis values to a 3D RSS radio image. This 3D tensor is then used as an input for their

proposed model. This localisation framework was tested in a 20 m x 20 area. The reported

results suggest that this concept can achieve a precision of up to 94.13% in a grid size of 2 m

x 2 m and 10 anchors. Although it sounds promising, this concept has not been tested in a

3D environment. Additionally, a similar system was also implemented in [91] and usually

requires a large number of access points deployed in a small space to achieve this result.

Similarly, Yang et al. [92] have proposed an indoor 3D localisation scheme based on 1D

CNN and BLE signal fingerprinting. This approach was tested in a 3D space of 4.0 m x

2.0 m x 3.0 m. The authors have deployed eight BLE beacons and divided the 3D space

into 16 grids of 1 m x 1 m x 1 m in size. Following these steps, the system was able to

achieve a 0.25 m error and a precision of almost 100%. A serious limitation of this work is

that the framework was tested in a small, uncluttered environment. Furthermore, to achieve

the same result, according to the adopted setup, a BLE must be deployed for each 1 m2.

This is usually not cost-effective, especially for large complex buildings. To overcome these

two limitations, we suggest the use of hybrid radiomap and a combination of KNN and

DNN to realise a cost-effective scalable solution. In [93], authors have implemented Deep

Belief Network (DBN) on active RFID tag system for accurate location estimation. Their

solutions consisted of set of stacked Restricted Boltzmann Machine (RBM) layers called

autoenconders trained using Contrastive Divergence with one-step iteration (CD-1). This

algorithm has improved the 2D positioning. To achieve this, the authors have deployed a large

number of radio-frequency identification (RFID) tags in 12m x 12m indoor environment
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which does not take into account the power consumption of the devices. Finally, Wang

et al. [94] have suggested a hybrid deep learning solution combining a regression DNN

with a Convolutional AutoEncode (CAE) using Visible Light Communication (VLC). To

overcome the issue of fluctuated signal reading in RSS-based fingerprint method, the authors

have proposed an algorithm taking into account a set of consecutive signal readings and

converts them into an RSS Temporal Image (RTI), instead of implementing traditional RSS

measurements processing technique. However, despite having been used in several works

[95, 96], VLC suffers from issues such as interference with other ambient lights, signal

shadowing, and generally requires the receiver to be in LoS, which can affect the accuracy

of location estimation. A detailed comparison of deep learning and other machine learning

algorithms used in the localisation for theIoT environments is covered in [97, 98].

2.3.4 Challenges and Limitations

There are major challenges facing 3D indoor localisation field. Despite their high precision,

commercial off-the-shelf solutions are costly and do not rely on existing network infrastruc-

ture. Until now, most of the existing IoT-based indoor localisation solutions have focused

mainly on 2D localisation or floor detection. However, in some special use cases, scenarios

such as indoor navigation for Unmanned Aerial Vehicle (UAV) or Automated Guided Vehicle

(AGV) in smart factory or large supermarket, precise 3D positioning is indispensable for

daily operations. Furthermore, there is limited research work on collaboration between

machine learning models and specifically deep learning. To address these challenges and
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limitations in Chapter 3, we propose the DELTA to maximise the localisation accuracy and

minimise distance error in a 3D indoor environment.

2.4 Positioning as a Service for 5G Networks

Indoor positioning in 5G IoT networks is still a very new research area. It involves making use

of new emerging radio technologies to improve the location accuracy. In [99], authors have

proposed an indoor positioning architecture for 5G. Their concept depends on MEC (Multi-

Access Edge Computing) to determine the current location. The idea is a very promising

start but does not support concepts such as big data and edge device scalability. However,

offering positioning services on the MECs might expose sensitive users’ data. The bottleneck

here is related to the location-based service scaling to support thousands of user equipment.

In the context of indoor positioning for multiple tracked assets and people, Michal et

al.[100] have proposed an architecture for real-time location tracking using information

fusion from both Wi-Fi and dead reckoning sources. However, since the current position

of the tracked item is calculated using the previous location, the distance error becomes

cumulative and increases over time. Moreover, this system does not offer 3D positioning,

which is critical nowadays for indoor settings. Additionally, it suffers from attenuation, and

additional hardware is always required to support the accuracy. Therefore, it is not effective

for tracking multiple agents in complex environments. The concept of data fusion can be

found on [101]. Similarly, to recognise the location of an item inside a warehouse, authors

in [102] a passive radio-frequency localisation system which utilises passive RFID . The
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systems attach reference tags to each item and recognise the position through scanning. Since

it relies purely on installation and configuration RFID localisation system. This solution is

costly to setup and maintain especially for mega-warehouses and massively stored assets.

Another interesting system for positioning called SnapLoc has been presented in [103]. The

authors have implemented a UWB (Ultra Wide-Band) system, which they claim to be scalable

to unlimited tags. However, UWB is known for slower adoption, high implementation cost,

and signal penetration, especially inside complex buildings [104]. A survey of similar

applications and systems can be found in [105].

2.4.1 Challenges and Limitations

Despite the existence of encouraging works in the literature like [43], [44] and [45], there

is undoubtedly a lack of a standardised platform to track critical assets and personnel.

Additionally, most of the existing literature does not highlight the role of 5G, machine

learning, and big data to cater for massive indoor positioning. This is one of the motivations

for proposing this architecture. The second motive is the lack of 3D positioning for complex

environments. These challenges and limitations have motivated us to propose solid scalable

and expandable architectures for centralised positioning in 5G-enabled environments such as

warehouses, malls, and factories.
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2.5 Information Fusion for 5G Networks

2.5.1 Information Fusion for 5G IoT

Information fusion for the 5G IoT has attracted considerable attention from the research

community. This technique, as shown in Figure 2.6 , involves blending data from various

sources or sensors using a data fusion system to gain better inference and improve accuracy/-

precision. This concept produces an effective and reliable IPS (Indoor Positioning System)

while saving the cost of expensive infrastructure[106]. Over the last decade, researchers have

attempted to merge data readings from sources such as RFID [107], GPS [108], Pedometer

[109], BLE [35], VLC and many other technologies as stated in [110] and [34]. Very recently,

Klus et al [111] have examined combining Global Navigation Satellite Systems (GNSS)

with WLAN data in a 5G network to improve positioning. The authors’ have implemented a

Neural Network as their main algorithm. Based on the authors’ conclusion, the proposed

approach has achieved an accuracy of 1 m in an open space and 3.4 m in a cluttered area.

A serious limitation of this study is the inability of GNSS to penetrate walls of different

materials, especially in complex environments. In a more recent work, Alvarez-Merino et al.

[112] have investigated using WiFi fine-time measurement (FTM), UWB and Cellular-Based

radio fusion to improve the indoor location accuracy. The authors’ approach has shown

promising results. However, unlike [111], this system does not rely on existing infrastructure

but requires the UWB setup that can be costly and limited to user equipment with this

capability. These limitations have motivated us to propose a cost-effective setup based on
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BLE and WiFi. A detailed discussion of these techniques can be found in these resources

[113–115].

Fig. 2.6 Information fusion localisation process

BLE Technology

BLE has emerged as a low-cost wireless solution for localising people and assets, offering

both traditional Bluetooth protocol capabilities over ultra-low power consumption circuits

[116]. BLE enabled devices communicate over 2.4GHz and use 40 channels (PHY channels)

divided by 2MHz of frequency gap. Channels 37, 38, and 39 are used for advertising, while

the rest are used for data transfer during a connection. This technology uses a Neighbor

Discovery Process (NDP) in which a BLE-enabled device, often referred to as a "scanner",

searches for nearby BLE devices called "advertisers" [117]. Once the discovery process has

finished, a list of available devices is returned based on availability and RSS value. According

to the core specification, BLE 5.0 has improved drastically compared to version 4.2, offering

two types of discovery processes: basic and advanced [118]. Recently, BLE has become a

central source of information fusion amongst the research community. several research papers
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have explored the use of this technology to improve indoor localisation accuracy. Kanakareja

et al [119] have investigated using the BLE protocol along with LoRa to reduce the distance

error of an indoor tracker called "The Things Network" (TTN). The idea is very promising;

however, it only works for environments where Low-Powered Wide Area Network(LP-WAN)

is deployed like WSNs. To track elderly movements indoors, Kolakowski et al [120] have

used BLE and Ultra-Wide Band technologies. While this is a very effective low-powered

solution, realising it requires the deployment of UWB infrastructure. Additionally, UWB

suffers from clock synchronisation issues due to the time-sensitive nature of its pulses,

which is not practically real-time localisation systems [121]. Finally, to get localisation

information labelled areas like parking lots and meeting rooms etc., Hu et al [122] proposed

a system called Grid-Loc that combines both active RFID and BLE. Similarly, this solution

needs a pre-setup to start tracking and does not make use of wildly existing infrastructure

technologies such as WLAN.

2.5.2 Challenges and Limitations

The previous subsection highlights the research work conducted in the area of fusion of

information for 5G IoT indoor positioning systems (IPS) using technologies such as GNSS,

BLE, RFID, UWB and VLC. While this approach offers various advantages, including

cost-effectiveness and improved accuracy, there are several limitations and challenges as-

sociated with it. Some of these techniques mentioned, such as combining active RFID and

BLE, require pre-setup and do not leverage existing infrastructure technologies like WLAN.

This can be costly and limit the applicability to user equipment with specific capabilities.
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Additionally, it is important to consider environmental factors such as the materials of walls

and obstacles within indoor spaces. These factors can affect the effectiveness of various

fusion techniques.

In general, the limitations outlined in this section highlight the need for a cost-effective

set-up based on BLE and WiFi for indoor positioning systems, addressing some of the

challenges associated with other fusion techniques. These limitations also underscore the

importance of considering specific technologies and infrastructure limitations when designing

indoor localisation solutions. In our work, to address these limitations, we have implemented

a novel fusion concept as discussed in Chapter 4.

2.6 Chapter Summary

Chapter 2 focuses on related work in the field of indoor positioning, particularly in the

context of 5G networks. The chapter covers various positioning techniques and the challenges

pertaining to them. It starts by providing an overview of different positioning techniques

used in 5G IoT heterogeneous networks, categorizing them into four main methods:

• Cell-identity-based positioning relies on determining if a target object is within

a specific radio coverage zone. It requires knowledge of the serving base station’s

location but may need a significant number of base stations for high accuracy.

• Angle-based positioning measures angles between known reference points or devices

to calculate an object’s position or orientation. These methods are used in various

fields and can be complex due to the need for precise angle measurements.
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• Range-based positioning calculates distances between transmitters and receivers

based on signal measurements like RSS, Time of Arrival (ToA), or Time Difference of

Arrival (TDoA).

• Fingerprint-Based positioning relies on unique radio signal characteristics in indoor

spaces to create a robust database for localization. It can overcome the limitations of

other techniques, especially in obstructed environments.

Furthermore, the chapter delves into RSS-Based Fingerprinting as a method for estimat-

ing the distance between a user device and a transmitter. It discusses the challenges and

limitations of RSS-based methods. Additionally, in the machine learning subsection, we

explore how machine learning techniques, such as KNN and Deep Learning, can be applied

to fingerprint-based positioning for improved accuracy. Next, the PaaS for 5G Networks sub-

section discusses the emerging concept of offering positioning services within 5G networks

and the challenges associated with it. It also mentions existing solutions and their limitations.

Lastly, information fusion for 5g networks subsection explores how combining radio signal

data from heterogeneous technologies can improve the accuracy in both 2D and 3D settings.

Throughout the chapter, various challenges and limitations of existing positioning tech-

niques and information fusion methods are highlighted. These include cost, infrastructure

requirements, and environmental factors. In summary, Chapter 2 provides an overview of the

various positioning techniques and machine-learning approaches used in 5G IoT environ-

ments for indoor positioning, highlighting their limitations and challenges. It sets the stage

for proposing the DELTA and K-DNN architecture in the subsequent chapters.



Chapter 3

Deep Learning for 3D Indoor Positioning

As highlighted in Chapter 2, indoor positioning is a key enabler of the 5G IoT context-

aware localisation application. It will significantly improve various location-based scenarios,

including tracking assets in smart factories, precise management of hydroponic indoor vertical

farms, and wayfinding within smart hospitals. In this context, this chapter introduces an

experimental 5G testbed that combines C-RAN and IoT networks. This testbed is designed to

enhance both vertical and horizontal localisation (3D localisation) in a 5G IoT environment.

To accomplish this, we propose the use of the DELTA machine learning model, implemented

on a 3D multilayered fingerprint radiomap. The DELTA model starts by estimating the 2D

location and then recursively predicts the 3D location of a mobile station. This approach is

particularly beneficial for scenarios like 3D indoor navigation in multi-floor smart factories

or complex large buildings. Notably, our observations demonstrate that the proposed model

outperforms traditional algorithms such as the support vector machine (SVM) and KNN.

The remaining of this chapter is organised as follows: Section 3.1 describes the problem

related to indoor positioning in 3D environment. Section 3.2 gives a detailed description of

the underlying architecture of the DELTA model. Section 3.3 consists of a discussion and
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analysis of the performance results produced by our proposed approach compared with other

traditional models. Lastly, Section 3.4 provides an overall summary of this chapter.

3.1 System Model & 3D Localization Problem

In this section, we introduce our proposed system model using DNN and multilayered ra-

diomap to perform 3D indoor localisation. To the best of our knowledge, this is a novel

approach to implementing deep learning on multilayered radiomaps for localisation purposes.

The main benefit of the proposed method is improved localisation accuracy and computa-

tional complexity minimisation during online fingerprinting through the adoption of deep

learning techniques, while at the same time utilising the widely spreading WSN and/or IoT

infrastructure, making it an economical solution. To realise these steps, we consider N to be

the number of transmitters in the environment, and x, y, and z, the corresponding coordinates

of each fingerprint entry on the constructed radiomap. The 3D multilayered fingerprint

database has been constructed by linking the RSS values received from the transmitters to a

3D location on the radiomap [123]. This can be mathematically expressed as:

M = {(L1,S1),(L2,S2), . . . ,(Ln−1,Sn−1),(Ln,Sn)} (3.1)

Where M is the ratio-map database, S ∈ RNxM is a vector of RSS signal values and L is a

vector of three values: L≡ {x,y,z} and Ln represents the total number of sample location of

xn, yn and zn associated with each signal vector sample Sn collected during the offline-phase.
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In this respect, the estimation problem is defined by solving the 3D localisation problem

using a matrix of historical location points and their corresponding signal values. However,

the challenge is to model the non-arbitrary relationships between N transmitters members of

S signal matrix to accurately predict the 3D location L using a deep learning algorithm. To

achieve this, the 3D localisation has been segmented into two sets of problems:

Problem 1: Given a matrix of S signal sent from N transmitters, predict the x and y

coordinates of a 2D mobile station location. This can be written as follows:

λ1 = f (S̄i j) (3.2)

Where λ1 represents xi and yi location which we would like to estimate, and f (Si j) represents

the function that utilizes RSS values received by the transmitters to predict the location of

mobile station.

Problem 2: Given a matrix of S signal sent from N transmitters to the mobile station

and xi, yi, known from problem 1, estimate the coordinate zi. This can be mathematically

expressed as :

λ2 = f (S̄i j,λ1) (3.3)

Where λ2 is the zi location, λ1 is the output of problem 1 solution, and Si j represents a matrix

of signal values S as previously stated in problem 1.
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3.2 DELTA 3D Localisation For 5G WSN Network

In this section, the DELTA system has been developed for 3D multilayered indoor environ-

ment localisation. Figure 3.1 depicts the steps undertaken to realise a cooperative system for

accurate 3D prediction.



Rx1

Rx2

Rx3

Rx4

Rx5

Fig. 3.1 Detailed architecture of DELTA
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3.2.1 Test Environment Description

In this subsection, we describe the test environment. The area of interest is a typical laboratory,

with open spaces as well as private rooms defined by the following dimensions: 8m width x

16m depth x 2.75m height.The lab environment is dynamic during this experiment. .

Step I: The Physical Network Setup

For the physical setup, an indoor test environment has been deployed where a 5G network is

emulated by typical IoT network with Zolertia RE-Mote Revision B nodes connected to a

LoWPAN Border Router as illustrated in Figure 3.2. We have randomly placed 5 Zolertia

nodes, with their antennas at vertical polarization as shown on the Figure 3.2. The nodes and

the ray tracing propagation mechanisms have been configured as per Tables 3.1 and 3.2

Step II: Connecting the IoT to 5G C-RAN

To simulate the 5G WSN environment, each Zolertia node has been connected to an experi-

mental 5G C-RAN. The setup has been built using the GNS3 network simulator[124] and

the OpenDaylight Software Defined Controller[125]. These two can control the network

setup behaviour at the network layer level. Figure 5 shows a set-up built using GNS3, a

network simulator and a software-defined controller OpenDaylight dashboard for the network

topology. These two elements can control the network setup behaviour at the network layer

level.
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Fig. 3.2 Network setup topology

Table 3.1 WSN and radio propagation parameters

Parameter Value
Operating Frequency 2.4GHz
Rx sensitivity (dBm) −97

Tx power (dBm) 7
antenna Type omni

Max refractions 12
Max reflections 12

Max diffractions 1

(a) 5G emulated C-RAN testbed on GNS3
(b) WSN and GNS3 emulated 5G

C-RAN connected on OpenDaylight

Fig. 3.3 5G C-RAN setup on GNS3 and WSN network connected to OpenDaylight SDN
controller
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Table 3.2 Material constitutive parameters of the test environment

Material El. Relative. (F/m) Loss
Concrete 3.9 0.23

Wood 2 0.025
Brick 5.5 0.03
Metal 1 1,000,000

Plasterboard 3 0.067
Glass 4.5 0.007

Fig. 3.4 TruNET wireless simulator radiomap for access point 3

Step III: Simulating the Test Environment

Using a 3D deterministic simulator called TruNET Wireless [126], we have constructed a

multilayered fingerprint radiomap dataset, in order to conduct the offline training phase as

illustrated in Figure 3.1. During this procedure, in addition to the network setup configuration,

the constitutive parameters of all environment object materials have been also configured

as per Table 3.2, in order to retrieve realistic results [127]. The benefits of utilizing a

deterministic simulation are to construct radiomaps instead of launching measurement

campaigns as analysed in [128]. The summary correlation results of this study is covered in

Section 3.3. The simulation environment for this study is shown on Figure 3.4.
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Fig. 3.5 PRR vs RSSI signal CC2420 chip Baccour et al[4]

Physical Network Behaviour

The signal propagation can be affected by various factors leading to the degradation of

the signal quality especially in low power radio networks such as WSNs. For a successful

simulation, it is always crucial to observe the physical network behaviour during the offline

measurement campaign. The effects of physical layer and the various factors contributing

to changes in the environment have been extensively in [4]. Using Link Quality Estima-

tion(LQE) metrics such as Packet Reception Ratio (PRR) and Signal-to-Noise-Ratio (SNR),

Baccour et al [4] have studied the factors affecting similar transmitter chip used in this

experiment. It is very crucial to note, that the simulated environment can be affected by

various changes happening at the physical network. For the nodes used in this simulation,

Figure 3.5 shows how the change in RSSI can affect the PRR.

Sometimes, measurement campaigns can be affected by various environmental noises

which may lead to unrealistic readings, either due to signal spikes or fluctuations. This noise

can be either thermal noise or interference from other people’s equipment operating at the
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Fig. 3.6 RSS values measured vs TruNET Kanaris et al [5]

same frequency. To ensure signal samples obtained from TruNET Wireless are realistic,

Figure 3.6 depicts the RSS coverage correlation analysis experiment conducted in [5]. The

samples have been collected from Zolertia nodes over a week period at different instants

with an interval of 15 minutes for each sample. The produced measurements for each RP

have been averaged using the mean value. During this experiment, the IoT nodes have been

always fixed and the environment was dynamic with people moving around.

Finally, it is clearly indicated that the simulated RSS values from TruNET wireless

simulator highly approximate the measured ones reaching a correlation level of more than

73%.
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Fig. 3.7 Layers of DELTA architecture network

(δ1) (δ2)

3.2.2 DELTA Architecture

Deep learning is a fundamental building block of the proposed architecture. It allows

computational models consisting of multiple processing layers to learn the representation

of data within multiple abstract levels [19]. One of the most important elements of deep

learning is DNN. Bengio et al [129] refer to this as either deep feed forward networks or

Multiple Layers Perceptron (MLP) since they have more than two hidden layers.

Our proposed architecture, as illustrated in Figure 3.7, consists of two DNNs. The first

is a regression model δ1 used to predict the 2D location of a mobile device. The second is

a classification model referred to as δ2. Figure 3.7 illustrates the number of layers, neuron,

input and output parameters used for both models. Based on numerous trials and hyper-

parameters tuning, we observed that three hidden layers were the best fit model for both

networks.
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3.2.3 DELTA Layers

Input Layers

For δ1, the input is a transposed vector of RSS signals that can be expressed as follows:

S = [s1,s2, . . . ,sn]
T .

For δ2, the input is slightly different to δ1. It consists of RSS signal input S and the output of

δ1. Each observation has a set of signals and predicted locations. This can be written as:

δ2_input = S∪ (Lx,Ly) (3.4)

Where S is the signal and Lx,Ly are the corresponding x and y locations. These two value

are approximated using δ1 as shown on Figure 3.7

Hidden Layers

Each element of this input gets multiplied by a its specific weight vector w⃗ and the product is

added to a bias b. For the first hidden layer, this is expressed as follows:

h1 =
n

∑
i=1

w1
i Ii +b1

i (3.5)

Where Ii is an element from the input vector. Each Ii represents an input from a transmitter

in the constructed fingerprint database. A summation of all these inputs is then fed to an
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activation unit A. In this case, the type of activation function used is called Rectified Linear

Unit (ReLu).

A1 = max(0,h1) (3.6)

Where A1 is an activation unit for the first hidden layer. The output of this hidden layer is

the number of hidden neurons specified in the first hidden layer. Similarly, equation 3.7 for

hidden layer 2 is expressed as follow:

h2 =
n

∑
i=1

w2
i a1

i +b2
i (3.7)

This result is then fed into a further activation unit A2:

A2 = max(0,h2) (3.8)

The hidden layer three receives the output of equation 3.8 and makes similar calculations

to h2:

h3 =
n

∑
i=1

w3
i a2

i +b3
i (3.9)
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Finally, the results returned in equation 3.9 is fed into the activation unit A3.

A3 = max(0,h3) (3.10)

Output Layers

For δ1 model, since the desired output is a real-valued number, a linear function has been

applied using the following equation :

g(y = j|ai) =
n

∑
i=1

w4
i a3

i + εi (3.11)

For δ2 model, the output is multiple class labels, therefore the Softmax function equation

below has been used:

θ(ai) =
exp(a3

i )

∑ j exp(a3
j)
[19] (3.12)

To obtain the best final approximation, δ1 supports δ2. Algorithm 1 explains how both

networks cooperate to make a final localisation.
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Algorithm 1: DELTA algorithm for 3D localization
Input :RSS ▷ Get Signal Vector
Output :3D Location
Require: Signal UpperThreshold η ;
Require: Signal LowerThreshold µ;
for RSSi in RSS do

r← RSSi−µ

µ−η
▷ Normalize signal

2D← δ1(r) ▷ Apply first model prediction
1D← δ2(r,δ1) ▷ Apply second model prediction
3D← 2D∪1D ▷ merge δ1 and δ2 results

end
return 3D Location

3.2.4 Prepossessing

Fingerprints Radiomap Database

As previously mentioned, we begun by constructing the radiomap database using eight

features. Table 3.3 gives a detailed explanation of each variable. The constructed radiomap

consists of 2880 3D References Points (RPs) associated with RSS values from five different

WSN Access Points(APs). Each AP is placed at least three meters away. The position of

these APs is shown on the lab floor-plan illustrated in Figure 3.8. To ensure that there is

no redundancy in the information collected, a Pearson correlation test has been conducted

Table 3.3 The features used to construct the fingerprints database

Variable Min. Value Max. Value Type
X 0 8 coordinates
Y 0 16 coordinates
Z 0.25 1.75 coordinates

AP1 -120 dBm -28 dBm RSS value
AP2 -100 dBm -30 dBm RSS value
AP3 -100 dBm -40 dBm RSS value
AP4 -90 dBm -50 dBm RSS value
AP5 -100 dBm -60 dBm RSS value
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Fig. 3.8 Access Points position on the setup environment floor-plan

Fig. 3.9 WSN access points correlation matrix

between each AP and the result is shown in Figure 3.9. There is clearly no high negative

or positive correlation between the APs used in this experiment. In addition to this, Figure

3.10 shows each layer on the radiomap database constructed is significantly different from

the other layer. The Figure shows the signal at 0.25 meter, 0.75 meter and 1.75 meters for

Access Point 1.
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Fig. 3.10 Signal strength map for WSN access point 1 for each Z layer

One-hot Encoding

One-hot encoding is one of the most common techniques for converting a token into a vector

[130]. The conversion is achieved by associating each unique integer with every unique value

from the column z. This turns every unique value into a binary vector having the size of the

unique values. As a result, every column will have zero except for where the unique value is

occurred. In our case, we have used the steps followed in Algorithm 2 to one-hot encode our

target variable:

Min-Max Normalization

Min-Max normalization has been implemented to make sure the learning of signal representa-

tion data is faster for DELTA architecture models to converge quickly. This concept works by
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Algorithm 2: One hot encoding
Input :Column Z ▷ get Z columns
Output :Result Matrix of N binary vectors unique values from Z
Dictionary D=[];
Results R={[],[],[],[]};
for i in Z.length do

if i ̸∈ D:▷ If value not in dictionary add it
key=D[i]
D[i]=Z[i]

end
return D
Map D into results R columns as binary vector {[Z1], [Z2], . . . , [Zn]}

fitting the original data into a new scale between 0 and 1. After this numeric transformation,

the highest value becomes close to 1 and the lowest value is close to 0 as stated in [131]. The

formula used to achieve this, is the following:

RSSi−min(RSS)
min(RSS)−max(RSS)

(3.13)

Where min(RSS) represents the values minimum threshold signal specified during the training

signal i.e −120dBm and max(RSS) represents the maximum value measured i.e −30dBm.

Each signal measurement we want to convert is denoted by RSSi where i is the ith row in N

Transmitter. For other scenarios, it is important to use the receiver sensitivity level as the min-

imum value and the strongest measured signal during the offline-phase as the maximum value.
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3.2.5 Hyper-Parameters Fine-Tuning

Loss Functions

• Using Euclidean Distance as loss function for δ1 model, the purpose is to train the

model to minimize the Mean Euclidean Distance (MED) error between the actual and

the predicted location.

D(Lact ,Lpred) =
1
M

m

∑
n=1

√
(xact

j − xpred
j )2 +(yact

j − ypred
j )2 (3.14)

Lact here denotes the actual location and Lpred denotes the predicted location.

• for the δ2 model, Categorical Cross-entropy is implemented as a loss function . This

can be written as:

H(Lact ,Lpred) =−
M

∑
j=0

N

∑
i=0

(zAct
i j · log(zpred

i j ) (3.15)

Where Lact denotes the actual location and Lpred denotes the predicted location. While zi j

denotes the ith observation in the jth z output class or level.

Hidden Layers and Neurons Size Determination

The number of hidden layers and neurons count used in the DELTA has been determined

using the loss function specified the previous subsection. Figure 3.11 shows the performance

of each network for each neuron count and layers number selected. As demonstrated in this
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Fig. 3.11 The Number of hidden layers and neurons vs each loss functions

figure, the categorical cross entropy loss is minimized after a 3rd hidden layer has been added

and the neurons count has been set to 300. Similarly, the average error was decreased in delta

one after the parameters has been changed to 300 neurons and 3 hidden layers.

Batch Normalization

A batch is the number of samples propagated through the neural network model before the

parameters are updated. To train each neural network faster, we have supported each layer

with batch normalization. This sort of normalization is applied to input samples of the same

batch size. This fine-tuning technique has been proven to speed up the training and learning

process by 12 times faster than the normal architecture as described by authors in [132]. The

formula for the batch normalization implemented on each DNN of DELTA system is:

Ti =
(Ti−µ(T )√

σ2(T )+ ε
(3.16)

where T is training batch, µ(T ) is its mean, σ2(T ) is its variance and ε is a small constant

number added to support the variance. For this to work in Keras deep learning library[130],
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a layer of batch normalization with explicit parameters has to be added at the beginning of

each hidden layer.

Regularization

To avoid over fitting, a regularization technique has been implemented to switch off certain

neurons for some layers. This technique is called dropout. Details for this technique are

provided by Nitish et al in [133]. The dropout rate used in DELTA is 0.20 as suggested by

[133]. After experimentation, we have concluded that for better results are achieved when

implementing batch normalization before dropout.

3.2.6 Optimization

Optimization is the process of training a network using mini-batches and iterations to get

the optimum configuration for its parameter. One of the widely used stochastic optimization

algorithm in deep learning ADAptive Momentum (ADAM). The algorithm can be viewed as

a combination of RMSprop and Momentum [134]. It works by correcting the bias b and the

weight w after each iteration. To get the best results from ADAM’s parameters, we specified

a learning rate α = 0.001, β1=0.9 for the momentum control, β2=0.99 for squared weight in

RMSprop section and ε = 10−8 as specified by the authors in [134]. To implement this in

Keras, ADAM parameters has to be specified before the model is compiled.
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Fig. 3.12 δ1 Model mean euclidean distance error in meter (m) vs the number of epochs

3.2.7 Scoring

Using 900 hidden neurons and three hidden layers, we have constructed model δ1 to predict

x and y locations. This has yelled 279,302 number of parameters to be to trained. Our cost

function is the euclidean distance difference between each predicted observation and the

original location. To minimize it, hyper-parameters have been fine-tuned such as the batch

sizes and the number of time an algorithm will iterate through entire training dataset. One

iteration is referred to as epochs. The aforementioned methodology resulted to an average

positioning error of 1.6m average (less than 2m error over all) in both training and validation

phases. Figure 3.12 shows how δ1 model mean Euclidean distance error in meters decreases

over the number of epochs chosen, in this case 3000 epochs. However, by the end of epoch

3000, the model has converged and stopped improving it’s accuracy.

Similarly, after an iterative tweaking of the architecture parameters, using 810 number

of neurons and 3 hidden of layers, we have constructed model delta 2 where z layer is the
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Fig. 3.13 δ2 Categorical cross-entropy vs the number of epochs

target variable. The total number of 235,592 parameters were trained in this model. The cost

function is the multi-categorical cross entropy which is used widely for classification scoring.

Figure 3.13 shows how the categorical cross-entropy has been minimized after 2500 epochs.

3.3 Performance Evaluation Results

In this section, we explore, evaluate and critically analyse the simulation results against

commonly used industry methods such as SVM and KNN. However, before going through

the results analysis, it is worth mentioning that KNN and SVM modeling tasks have been

carried out using Scikit-learn [135], a widely used Python library toolset for machine learning

and statistics. More specifically, SVM models have developed using an SVM class from

the Scikit-learn library and KNN models have been built using a classifier class called

KNeighborsClassifier [136]. The DELTA models have been constructed using Keras API
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[137], a deep learning library also available in Python. During the evaluation phase, the

three algorithms were implemented using python software on the same machine with Intel

i7-4790@3.60GHz CPU and 16 GB of RAM. In terms of time complexity, KNN has finished

after 230ms while SVM has taken 450ms. The proposed DNN has used 160ms to execute

making it more efficient than KNN and SVM.

3.3.1 Results Analysis

δ1 vs KNN and SVM

Using 180 random samples [127], we have benchmarked and assessed DNN model δ1 against

KNN and Support Vector Regression (SVR) models. The samples have obtained for each z

layer making a total of 540 RPs. The SVR has been trained using a linear kernel, a degree of

1 and an epsilon value of 1 using 80% training and 20% validation data sets. Similarly, KNN

model has been trained with a K value set to 3. The results in Figure 3.14 show the error

distribution in meters for all three models. SVR has scored a rather worse error distribution

where the peak of its distribution ranges between 4 and 6 meters error. KNN has done

slightly better compared to SVR. However, a large proportion of the distribution error falls

between 3 and 5 meters, which makes it the second worse performing after SVR. DNN δ1

has performed better. The peak of its distribution error samples falls between zero and two

meters with a mean error of 1.6m. A detailed result is provided on Table 3.4.
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Fig. 3.14 δ1 vs KNN vs SVR

Table 3.4 Frequency count of distance error (m) for each model

DNN KNN SVR
Less Than 2m 79 51 9

Between 2m and 7m 39 64 60
More than 7m 2 5 51

δ2 vs KNN and SVM

Using the aforementioned samples, the z layer (z coordinate) has been estimated. The results

are depicted in Figure 3.15 illustrating a visual comparison of each classifier in a bar-chart

using misclassification count as measure. Each model has been given an equal number of

three classes 0.25m, 1.25m and 1.75m. At first glance, Figure 3.15 shows that Support Vector

Classifier (SVC) has performed very badly in terms of classification of observations.The

model has failed to accurately classify during the online phase. More than 66% - circa 120

samples- have been wrongly classified. With a total of 40 misclassified samples, KNN has

performed better than SVC but still does not differentiate between certain classes properly.

Our proposed δ2 model of DNN, has made excellent classification compared to both later

models. As an effect, 100% of 0.25m layer has been accurately classified while more than
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Fig. 3.15 Model comparison: δ2 vs KNN vs SVC

Table 3.5 Misclassification count for each model

Model 0.25m 0.75m 1.75m
DNN 10 10 0
KNN 20 11 9
SVC 60 57 3

95% of the other two classes, 1.25m and 1.75m, have been also properly predicted. The total

number of misclassified samples is 20 bringing the classification accuracy rate to 89%. This

shows how the proposed 3-D multilayered model has outperformed the traditional models.

Table 3.5 gives a detailed count of each model and its misclassification count. The worse

performing model is highlighted in red and the best performing model is highlighted in blue.

3.4 Chapter Summary

Chapter 3 of this thesis focused on the use of Deep Learning for 3D Indoor Positioning.

The chapter introduced an experimental 5G testbed designed to enhance both vertical and
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horizontal localisation. The proposed approach employs the DELTA machine learning model

implemented on a 3D multilayered fingerprint radiomap. The DELTA model predicts 3D

indoor positions, starting with 2D location estimation and recursively estimating the 3D

location of a mobile station. This approach is particularly useful for scenarios like 3D

indoor navigation in multi-floor smart factories or complex large buildings. The chapter

demonstrates that the DELTA model outperforms traditional algorithms like SVM and KNN.

Section 1 Highlights the importance of indoor positioning in the context of 5G IoT

applications. Section 2 Introduces the proposed system model using DNN and multilayered

radiomap for 3D indoor localisation. It defines the problem of 3D localisation and breaks it

down into two sub-problems: 2D location prediction and 3D location prediction. Section 3

Describes the DELTA system developed for 3D multilayered indoor environment localisation,

including details of the network setup, material parameters, and simulation environment. Sec-

tion 4 presents the results of performance evaluations that compare DELTA with traditional

models such as KNN and SVM. DELTA outperforms these models in terms of accuracy

and efficiency. Finally, Section 5 summarises the key findings of the chapter and suggests

potential future research directions, such as extending the model to incorporate information

from other types of networks as covered in Chapter 3 or exploring more vertical layers.

The chapter demonstrates the effectiveness of the proposed DELTA model for 3D in-

door positioning in 5G IoT environments and provides valuable insights into the potential

applications and improvements for indoor localisation systems.



Chapter 4

Information Fusion for 3D Positioning

As demonstrated in Chapter 3, improved 3D positioning is possible through a Deep Learning

cooperative learning and RSS fingerprints-based technique implemented on a multilayered

radiomap. To further develop this concept, in this chapter, we propose a K-DNN algorithm

to improve 3D indoor positioning. Our implementation uses a novel data-augmentation

concept for the RSS-based fingerprint technique to produce a 3D fused hybrid. In the offline

phase, a machine learning approach is used to train a model on a radiomap dataset that has

been collected during the offline phase. The proposed algorithm is implemented on the

constructed multilayer hybrid radiomap to improve the 3D localisation accuracy. In our

implementation, the proposed approach is based on the fusion of BLE and ubiquitous WLAN.

The concept presented is a continuation of our previous work in [34] [35] towards cooperative

localisation. This chapter has been divided into the following parts: The proposed system

model and the underlying algorithms are presented in Section 4.1. The 5G IoT physical

network environment is explained in Section 4.2. The experimental setup is covered in

Section 4.3. Section 4.4 shows the performance evaluation and Section 4.5 analyses the

results obtained. Finally, a chapter summary is drawn in Section 4.6.
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4.1 The proposed Approach

Our proposed approach aims to improve indoor positioning using several 5G IoT wireless

signal data sources. This can be achieved by merging BLE and WiFi’s actual 3D location

data with BLE and WiFi’s simulated location data into a multilayered hybrid radiomap

to save the tedious time spent constructing the fingerprints database. To support this data

augmentation approach, K-DNN, a new cooperative positioning algorithm that combines

KNN and DNN, was developed to reduce the localisation error. Figure 4.1 provides an

overview of the algorithmic flow of the proposed K-DNN system. The following subsections

describe in detail the K-DNN algorithm.

Fig. 4.1 The flow of K-DNN proposed system model

4.1.1 K-DNN Architecture and Hybrid 3D Localisation to 5G IoT

K-DNN is a novel cooperative positioning algorithm. Given a set of WLAN transmitters

N and a set of BLE transmitters M connected to a set of 3D locations (XY Z), two machine

learning models are trained to support each other to achieve minimal distance error. During
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the offline phase, the algorithm receives two matrices of hybrid radiomaps. This can be

mathematically expressed as:

BLE_RSS : {(x1,y1,z1,ble1...blem), ...,(xi,yi,zi,ble1...blem)}

WLAN_RSS : {(xi,yi,zi,wlan1.....wlann), ....,(xi,yi,zi,wlan1.....wlann)}

K-DNN begins by eliminating outliers from the given radiomaps using the IQR (In-

terquartile) method [138]. The cleaned fingerprint datasets are then merged into a single

radiomap. Next, a Min-Max normalisation technique is implemented to convert RSSI values

of BLEs and WLAN into the same scale. As a final step in this phase, KNN is trained first to

predict the 2D location (X, Y) and the DNN is trained to predict the 1D location (Z).

During the online phase, the K-DNN receives the following input:

BLE_RSSonline : {ble1, ...,blem}

WLAN_RSSonline : {wlan1, ...,wlann}.

Given this, KNN attempts to approximate the 2D (XY) locations as an output. This outcome

is then fed along with the original input received by KNN into DNN, which in turn predicts

the 1D (Z) location. As a result, the 3D (XYZ) location is realised through this cooperative

prediction approach. The main reason for having these two models is due to the nature of the

output of 1D (classes) and 2D (continuous values).
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4.1.2 K-DNN Models Architecture

KNN

The KNN algorithm is a non-parametric supervised machine learning algorithm used for

pattern classification and regression. This means it does not make any assumptions about

the data currently analysed. Since learning in KNN is supervised, the trainer has to choose

the parameters to achieve the best results. This algorithm was first proposed in 1951 by

Evelyn Fix, Joseph Hodges [139], and Thomas Cover [140], who later expanded on it. In the

K-DNN algorithm, KNN is used to predict the 2D (XY) location. As previously highlighted

Algorithm 3, this algorithm receives a set of RSS signal values as input R. This can be written

as: R = [RSS1,RSS2, ...,RSSn]

The input given to KNN consists of a vector of 7 normalised RSS values. This part of

K-DNN attempts to reduce the localisation error of the X and Y location using the Euclidean

distance. The output of this model is then combined with the original input R and fed the

DNN model.

DNN

Deep learning is a crucial building block in the proposed K-DNN system. It allows learning

complex patterns and data representations through multiple processing layers [19]. One of

the most important architectures in deep learning is DNN, a.k.a. Multiple Layer Perceptron

(MLP) or deep feed forward networks[129]. The DNN considered in K-DNN is a classifica-

tion model. Figure 4.2 shows the number of layers, neurons, input and output parameters

used in this model.
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Fig. 4.2 Layers of DNN network

The input layer of this network receives a transposed vectors of signal values and 2D

locations. This can be expressed as:

DNNinput = [X ,Y,RSS1,RSS2, . . . ,RSSn]
T (4.1)

Where X and Y are the 2D points predicted by KNN and RSSi represent the signal value of

the ith transmitter (BLE or WLAN).

The calculated result for this layer is then fed into the first hidden layer. each input

element from Equation 4.1 is multiplied by a specific weight vector w⃗. The product of this

operation is then added to a bias b. The formula for this can be expressed as follows:
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h1 =
n

∑
i=1

w1
i Ii +b1

i (4.2)

Where Ii is the element ith of the input vector. The summation of all these inputs is then

passed onto an activation function unit A. In our proposed network, this is the Rectified

Linear Unit (ReLu).

A1 = max(0,h1) (4.3)

Here, A1 is the activation function of the first hidden layers. The output of this layer is

128 neurones. In the same way,

h2 =
n

∑
i=1

w2
i a1

i +b2
i (4.4)

The result of this hidden layer is passed onto a further activation unit A2:

A2 = max(0,h2) (4.5)
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Finally, the output of Equation 4.5 is received by hidden layer 3 to make a similar

calculation to h1 and h2:

h3 =
n

∑
i=1

w3
i a2

i +b3
i (4.6)

The calculated values of Equation 4.6 are then fed into the activation function below:

A3 = max(0,h3) (4.7)

To predict the correct height of the mobile device, the softmax function equation below

has been used:

θ(ai) =
exp(a3

i )

∑ j exp(a3
j)

(4.8)

Here Θ is a partition function, and exp(a3
i ) is a single probability output over the some of

all the probability output ∑ j exp(a3
j).

4.1.3 K-DNN Psuedocode

For clarity purposes, the pseudocode below explains how K-DNN works.
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Algorithm 3: K-DNN algorithm for 3D localisation
Input :BLE_RSS : {(x1,y1,z1,ble1...blem)} ; ▷ Get Hybrid BLE RSS
Input :WLAN_RSS : {(x1,y1,z1,wlan1.....wlann)} ; ▷ Get Hybrid WiFi RSS
Output :Λ ; ▷ Output 3D location
Require: Signal UpperThreshold µ;
Require: Signal LowerThreshold η ;
Require: First quartile Q1;
Require: Third quartile Q3;
IQR← Q3−Q1 ; ▷ Calculate Interquartile
for blei in BLE_RSS and wlani in WLAN_RSS do

if blei<Q3+(1.5*IQR) and blei>Q1-(1.5*IQR) then
ble_r←blei ; ▷ Apply IQR method to BLE

if wlani<Q3+(1.5*IQR) and wlani>Q1-(1.5*IQR) then
wlan_r←wlani ; ▷ Apply IQR method to WLAN

RSS←wlan_r ∪ble_r ; ▷ Fuse BLE and WLAN Radiomaps
end
for RSSi in RSS do

R← RSSi−µ

µ−η
; ▷ Normalize signal

X_Y ← KNN(R) ; ▷ Apply first model prediction
Z← DNN(R,X_Y ) ; ▷ Apply second model prediction
Λ← X_Y ∪Z ; ▷ merge results output

end
return Λ

4.2 5G IoT Physical Network Environment

In this part of the section, we explain the main components of the 5G IoT Network that is used

in this experiment. For clarity purposes, Figure 4.3 shows the logical network architecture:
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Fig. 4.3 5G IoT network logical architecture

4.2.1 5G Core Network

In this experimental testbed, we adopt 5G NSA(Non-Stand-Alone) access as suggested by the

3GPP release 15[18]. This concept uses dual connectivity (eNodeB/gNodeB) to provide radio

access to 5G enabled UE (user equipment) via 4G EPC infrastructure as demonstrated in

Figure 4.4a.The 5G core network complies with the 3GPP release 16[141] and uses an open-

source called Open5gs[142]. This platform implements both 5G Core (5GC) and Evolved

Packet Core (EPC) using C-langauge. The Open5G has evolved from 4G NextEPC and comes

with a WebUI to manage network subscribers. The 5G core network developed has been used

to configure NR/LTE networks for a private cellular network infrastructure. The core network

has been virtualised and deployed on a 64-bit Linux machine on VMWARE workstation. At

the time of writing this thesis, there are other projects such as OpenAirInterface [143] and

free5GC [144]. However, these solutions are not stable yet. A detailed description of these

three projects can be found in [145].
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4.2.2 eNodeB (4G)/ gNodeB(5G):

Evolved/ E-UTRAN Node B is a component in the E-UTRA of 4G LTE11. This component

connects subscribers to service providers through the S1-AP protocol linked to S1-MME from

the Mobility Management Entity side. The eNodeB has its own radio control functionality

that manages a USRP B210 SDR (Software Defined Radio) as shown in Figure 4.4a. This

component offers radio service via the air interface. The operating frequency of this radio

unit for 4G is going to be between 800MHz and 2600MHz as per the OfCom Regulations. A

duplexer has also been used to reduce the number of antennas used to keep the transmitter

(Tx) and receiver (Rx) synchronised for both radio units. The software side of this solution

has been implemented on a custom-built PC powered by an i9 CPU and a total memory of

32 GB. This unit is an implementation of 3GPP release 15 [18] as previously highlighted.

This means that it uses dual connectivity to offer the service to the user equipment. The 5G

capable device has to first connect to the MME through eNodeB to attach to a gNodeB. This

is why it is called the NSA mode. This unit uses the X2AP protocol to communicate with

eNodeB nearby. The dedicated hardware for this base station is similar to the eNodeB. In

order to reduce the clock drifting, the 5G radio is offered through a USRP B210 attached to a

5G band 7 cavity duplexer.

4.2.3 5G IoT Modem:

The 5G gateway implemented in this testbed consists of a Raspberry Pi 4 model B and a

Quectel 5G Quectel RM500Q-GL Modem [146] as shown in Figure 4.4b. This gateway links

the 5G cellular network to the WLAN and BLE networks used to extract fingerprints.
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4.2.4 Wireless Local Area Networks

During the experimental design, 5 IEEE 802.11ac [147] wireless access points were consid-

ered for deployment at the assigned site. Figure 4.4d depicts one of the access points used in

this setup. In this configuration, each transmitter operates at 2.4 Ghz and a coverage range of

45 m, although dual band is possible, as this technology also supports 5 Ghz.

4.2.5 Bluetooth Low Energy

As a secondary source for information fusion, we have considered using the IEEE 802.15.1

standard, which is BLE version 5.0 [148]. The devices used in this experiment operate at 2.4

Ghz and 350 m. Figure 4.4c illustrates one of the BLE units used in this setup. The following

section covers the testing environment of this architecture.



(a) 5G testbed setup (b) 5G modem gateway

(c) Bluetooth Low Energy 2 (d) 5G wireless access point 4

Fig. 4.4 5G IoT test environment
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4.3 Test Environment

The K-DNN algorithm was tested by combining actual and simulated measurements. the

experiment that took place in two teaching laboratories at London South Bank University of

approximately 126 m2 as shown in Figure 4.5. To achieve this task, a 5G IoT network has

Fig. 4.5 Floor plan with access points and BLE position

been deployed in the two laboratories. The network consisted of 5 IEEE 802.11 access points

and 4 IEEE 802.15 BLE that were randomly placed based on Table 4.1. Two radiomaps were

constructed: the first was generated using actual measurement campaign; and the second

using TruNet wireless, a 3D ray tracing deterministic simulator [126]. It is worth mentioning

that each antenna polarisation choice is based on access point within the room. This is to

provide the optimum coverage for the network users. Additionally, this will ensure less

correlation between access points close to each other. Thus, a better multi-layered radiomap

is constructed.
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Table 4.1 The 5G IoT setup location and antennas orientation

Device X Y Z Antenna Orientation
AP1 0 0 2 Vertical
AP2 6 6.5 1.5 Horizontal
AP3 0 11 1.5 vertical
AP4 0 13 1 Horizontal
AP5 3 15 0.5 Horizontal

BLE01 4 0 1 N/A
BLE02 1 9 1.5 N/A
BLE03 6 13 2 N/A
BLE04 3 21 0.5 N/A

4.3.1 Radiomap from 5G IoT actual measurements

During data collection, fingerprints were collected in 2236 equally spaced locations (0.5 m

spacing) at 0.5 m, 1 m, 1.5 m and 2.5 m height, as shown in Figure 4.6a. At each measurement

location, 30 distinct measurements were recorded at an interval of 1 second using the iFused

Fingerprints Data Collector developed for Android-based devices as shown in Figure 4.6b.

The RSS values stored in the radiomap ranged from -103 dBm to -28 dBm. During the

measurement campaign, the application has recorded data from 5 APs and 4 BLE devices.

(a) FW-208 Classroom Grid Setup (b) iFused Fingerprints Data Collector

Fig. 4.6 Physical Environment and the Fingerprints Data Collector
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Simulated Radiomap

The second radiomap was constructed using the TruNet simulator. RSS fingerprints were

collected according to the procedure used by the authors in [149, 82]. To ensure that the

measurement recorded by the iFuse application matches the simulated measurements, 5

APs and 4 BLE were configured according to the antenna radio propagation characteristics

in Table 4.2. Furthermore, the building structure and furniture were configured based on

the calibration procedure in [150]. As a result, the same 2236 measurement points were

generated and defined as receiver cells. At the end of this process, two layers of fingerprints

(2 m and 1.5 m high) have been merged merged with the actual measurement radiomap.

Table 4.2 The BLE and WLAN radio propagation parameters

Parameter BLE WLAN
Rx sensitivity (dBm) -70 -120

Tx power (dBm) 8 12
Antenna Type Omnidirectional Omnidirectional

Max refractions 5 12
Max reflections 5 12

Max diffractions 1 1

The propagation parameters specified are based on TruNET simulator pre-sets. These

have been adjusted as per the available WLAN and BLE chipsets in the market.

The physical Network Behaviour

It is evident that the obtained RSS signal can be affected by noise from the environment.

To ensure that the radiomap constructed the simulation is matching with the measurement

campaign carried out. As a result, Figure 4.7 shows a strong correlation between the real

RSS values and the Trunet measured for access points and BLEs.



(a) Measured vs simulated fingerprints AP 01 (b) Measured vs simulated fingerprints BLE 02

Fig. 4.7 BLE 02 and AP 01 simulated vs real measurement comparison
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4.3.2 Preprocessing

Multilayered Radiomap Hybridisation

Hybridisation of radiomap refers to the process of merging simulated and real measurements

of the same environment but different height levels. This preprocessing technique merges

multiple 3D layers from various available sources. In this experiment, we combined two

simulated measurements (2m and 1.5m height) with two layers of real measures (0.5m and

1m measures). This technique is novel as far as we know and has not been implemented in

previous papers. It can be beneficial for scenarios where complex buildings are in which

extensive human resources and time are allocated. To ensure that there is correlation between

the simulated and the real measures, we have compared location ids of the same layer

belonging to the same BLE and access points. As demonstrated in Figure 4.8, there is

a strong correlation between the measurements obtained in the simulation and the actual

measures. Furthermore, to prove the feasibility of this technique, we compare the non-fused

and fused models along each other at later stage in this chapter.

(a) Access Point 03 Hybrid Radiomap (b) Access Point 03 Simulated Radiomap

Fig. 4.8 Simulated vs Hybrid radiomap
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Features Selection

During the feature selection process, a Pearson correlation test was performed between the

BLEs and APs as this was necessary to ensure no redundancy in the information provided

to the K-DNN models. Figure 4.9 clearly shows no high positive or negative correlation

between the selected BLE and AP used in this experiment.

Fig. 4.9 Pearson correlation matrix for the radiomap

Outliers Elimination

Outliers are generally values that lie an abnormal distance from other values in a normal

distribution. In the case of RSS-based positioning, these types of values find their way to the

radiomap during the measurement campaign when a signal fluctuation occurs or when there

is interference, such as human activity. To deal with this quality data problem, we applied

the interquartile method introduced by Upton and Cook in [151] as shown in Figure 4.10.

In this work, we have implemented this method to prevent K-DNN from learning extreme

RSS values that have been picked up by the receiver during the data collection process. After



4.3 Test Environment 82

Fig. 4.10 Outliers removal using IQR technique

treating the outliers, 2031 observations have been left to train K-DNN. Table 4.3 shows a

summary of the considered features and their minimum and maximum values.

Table 4.3 The features used to construct the fingerprints database

Variable Min. Value Max. Value Type
X 0 6 coordinates
Y 0 21 coordinates
Z 0.5 2 coordinates

AP1 -84 dBm -28 dBm RSS value
AP2 -86 dBm -30 dBm RSS value
AP3 -84 dBm -35 dBm RSS value
AP4 -87 dBm -32 dBm RSS value
AP5 -109 dBm -37 dBm RSS value

BLE01 -105 dBm -32 dBm RSS value
BLE02 -86 dBm -32 dBm RSS value
BLE03 -97 dBm -35 dBm RSS value
BLE04 -120 dBm -42 dBm RSS value
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Data Normalisation

To preserve the relationship between the original data values while speeding up the learning

process, a min-max normalisation technique was implemented to scale the original values

between 0 and 1. The equation used is:

RSSi−min(RSS)
min(RSS)−max(RSS)

(4.9)

Where min(RSS) refers to the minimum values of the threshold signal in the training signal,

that is, -120 dBm and max(RSS) represents the maximum measured value, that is, -28 dBm.

Each measurement of the signal that we need to convert is denoted by RSSi where i is the ith

row on the N BLE or Access Point transmitter. For a different scenario, it is preferable to rely

on the receiver sensitivity level as the minimum value, while choosing the strongest measured

signal value during the offline phase as the maximum value. This process is important for

both KNN and DNN models, as it changes the values of each access point and BLE to a

common scale, without affecting the differences in the range of values.

One-hot encoding

One hot encoding is the process of converting a column of continuous ordinal numeric values

to binary columns based on the distinctive values [82] as shown in the Algorithm 4. This

process was applied in this experiment to the 1D (Z) values. Mapping the distinctive values

0.5 m, 1.0 m, 1.5 m and 2.0 m to four binary columns was the result of this process.
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Algorithm 4: One hot encoding
Input :Column Z ▷ get Z columns
Output :Result matrix of N binary vectors unique values from Z
Dictionary D=[];
Results R={[],[],[],[]};
for i in Z.length do

if i ̸∈ D:▷ If value not in dictionary add it
key=D[i]
D[i]=Z[i]

end
return D
Map D into results R columns as binary vector {[Z1], [Z2], . . . , [Zn]}

4.4 Performance Evaluation

Testing the performance of K-DNN involved training DNN using the ADAM (ADAptive

Momentum) algorithm [134] and KNN using the elbow method [152]. The former is useful

for learning highly sparse datasets , while the latter is a technique used to cross-check the

model performance against the number of K chosen. Figure 4.11a reveals how DNN has

converged in the 1000th training iteration. The KNN achieved the lowest error rate at K = 6,

as illustrated in 4.11b.



(a) DNN epochs vs the model accuracy (b) KNN MSE vs the number of K selected

Fig. 4.11 5G IoT simulated environment radiomap example
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Table 4.4 DNN hyperparamters

Hyperparameter value
Learning Algorithm Adam

Learning Rate 0.001
β1 0.9
β2 0.999

Dropout 0.35
momentum 0.99
batch size 64

ε 1e-07
number of hidden layers 3

number of hidden layers in each neurons 128

Additionally, it is worth noting that DNN have been trained using the hyperparameters on

Table 4.4. In the following section, we evaluate and compare the performance of this model

on different radiomaps.

4.5 Results Analysis

4.5.1 DNN Scoring

To assess the impact of the proposed approach, we have trained 4 models using different

combinations of radiomaps to compare with the concept proposed in this chapter. The four

models have been trained as follows:

• Model 1: Hybrid radiomap (Proposed approach).

• Model 2: Hybrid radiomap without information fusion

• Model 3: Simulated radiomap
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• Model 4: Simulated radiomap without information fusion.

Fig. 4.12 DNN misclassification count results by height

Using 180 random samples as suggested by the authors in [127], we have tested the

misclassification performance of each DNN model at various height levels: 0.5m, 1m, 1.5m

and 2m as illustrated in Figure 4.12. In the graph, it is clear that the hybrid approach with

information fusion has achieved the lowest misclassification count out of the 4 models. As

can be seen in Table 4.5, 91% of the samples - cerca 164- have been accurately classified.

The model trained using the proposed hybrid approach without information fusion has come

second with a classification rate of 87% (152 out of 180 samples). The third model was

trained with information fused simulated radiomap, and it has performed badly compared to

the two previous models. This model has scored a classification rate of 73% (132 out of 180

samples). The fourth model that was trained using a simulated radiomap without information
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Table 4.5 DNN misclassification count detailed results

Hybrid Hybrid No Fusion Simulated Simulated No Fusion
0.5m 0 9 17 18
1m 8 8 14 17

1.5m 3 5 10 11
2m 5 6 7 10

Total 16 28 48 56

fusion has performed worse with a classification score of 56 out of 180. These results

demonstrate how the proposed hybrid approach has outperformed the rest of the training

scenarios. Given this, it can be concluded that the hybrid information fusion technique can

drastically improve localisation in a 1D environment. Detailed misclassification counts for

each height are provided in Table 4.5. The model with the poorest performance is indicated

in red, while the model with the highest performance is denoted in blue.

4.5.2 KNN Scoring

As in the previous subsection, to assess the feasibility of our proposed technique in 2D

localisation, 4 KNN models have been evaluated using 180 samples . The trained models are

as follows:

• Model 1: A hybrid radiomap with information fusion

• Model 2: A hybrid radiomap without information fusion

• Model 3: A simulated radiomap with information fusion

• Model 4: A simulated radiomap without information fusion
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Fig. 4.13 KNN CDF results

Figure 4.13 shows the Cumulative Distribution Function (CDF) of error in meters for each

KNN model. At the 75th percentile, it demonstrates that Hybrid with fusion, simulated with

information fusion, hybrid and simulated models have achieved 90cm, 1m, 1.10m, and 1.20m

errors, respectively. Using CDF as a metric, the proposed 3D multilayered hybrid approach

has achieved a submetre accuracy in comparison with the rest of the models. Therefore,

given KNN and DNN, it can be strongly argued that the K-DNN proposed method drastically

reduces the localisation error.
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4.6 Chapter Summary

Chapter 4 of this thesis discussed the development and implementation of a novel algorithm

to improve indoor positioning in 5G IoT networks. The chapter begins by highlighting the

need for improved 3D indoor positioning, building on concepts discussed in the Chapter 3.

However, the primary focus is on the proposed algorithm called K-DNN for enhancing 3D

indoor positioning. This approach combines data from Bluetooth Low Energy (BLE) and

Wi-Fi (WLAN) signals in a multilayered hybrid radiomap. This algorithm consists of two

main models:

• KNN: This model predicts the 2D (XY) location based on the RSS values.

• DNN: This model predicts the 1D (Z) location based on the output of the KNN model

and the original input RSS values.

The chapter also explains the 5G IoT physical network environment used for the experiments,

including the 5G core network, eNodeB/gNodeB, 5G modems, and wireless access points

(APs) for WLAN. The performance of the K-DNN models is evaluated and compared to other

models with different combinations of radiomap data. Both DNN and KNN models achieve

competitive results, with the hybrid approach outperforming others in terms of accuracy. The

chapter concludes by summarizing the findings, highlighting the submeter-level accuracy

achieved in 2D positioning and the 91% classification rate in 1D positioning. It also suggests

possible future research directions, including azimuth angle data integration and floor-level

detection. Overall, this chapter presents a comprehensive exploration of the proposed K-DNN
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algorithm for 3D indoor positioning in 5G IoT networks, demonstrating its effectiveness in

improving accuracy and reducing errors.



Chapter 5

5G Indoor Positioning as a Service

The combination of big data and Artificial Intelligence (AI) are important to improve indoor

localisation. It focuses on the use of machine learning probabilistic algorithms to extract,

model and analyse live and historical signal data obtained from several sources. In this respect,

the data generated by the 5G IoT network is quintessential for precise indoor positioning

in complex building environments. In this chapter, we present a new architecture for assets

and personnel location management in a 5G network with an emphasis on vertical sectors

in smart cities. Moreover, we explain how Big Data and machine learning can be used to

offer positioning as a service. Additionally, we implement a new deep learning model for

3D positioning using the proposed architecture. The performance of the proposed model is

compared against other Machine Learning algorithms. The rest of this chapter is structured

as follows: Section 5.1 describes a five-tier architecture for positioning concept. Section

5.2 explains the different functionalities of the proposed knowledge plane. Section 5.3 deals
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with a 3D positioning algorithm implemented on 5G emulated environment. Section 5.4

concludes with an overall summary of this chapter.

5.1 Five Tiers Architecture for 5G Smart cities

There is no doubt that 5G is going to connect IoT device and transform dummy equipment

into smart ones. However, smart warehouses, malls and factories are currently facing major

challenges managing their assets especially when they are scattered around the entire sites.

First, assets such as forklifts, mobile shelving systems and inventory scanning devices are

of high value that can be easily lost if the staff either change shifts or forgot to place back

equipment’s. Second, waste management also represents a challenge especially when the

bins are filled with products that can go for days or weeks without being picked up by

the waste management teams. To prevent these scenarios from happening, we propose an

architecture for positioning as a service for complex environment. In this section, a five tier

novel architecture is presented for location management using Big Data and machine learning.

Figure 5.1 depicts different components of this architecture. These different components

belong to different planes as shown in Figure 5.2.



5.1 Five Tiers Architecture for 5G Smart cities 94

Fig. 5.1 Positioning as a Service for 5G IoT networks

5.1.1 Data Plane

The Data plane, as suggested by 5GPPP [153], works by decoupling the hardware and

software components. From an SDN (Software Defined Network) prospective, the aim

of this separation is to move certain network functionalities to a distributed softwarized

subsystems. Thus, the softwarized programmable networks can be realized. The new

5G C-RAN architecture is one example of this decoupling concept where several RRH

(Remote Radio Heads) antennas are deployed and interconnected to a single BBU (Base

Band Unit). The architecture suggested in this work follows similar patterns by providing a

decentralized positioning as service of massively connected hardware equipment in complex

indoor environment. This plane provides data links to connected network hosts.It consists of

a set of hardware and software nodes. A software node can either be a virtual switch like

Open Vswitch [154] or a cloud-based BBU (Base Band Unit), while a hardware node can

be a C-RAN, RRH (Remote Radio Head) antenna, a WSN , a WiFi 6 hotpot, a BAN (Body
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Area Network). In Figure 5.2, the data plane represents all elements from tier one to tier

three illustrated in Figure 5.1.

Network Edge

the network edge slice compromises of network-connected hosts such as inventory scanning

devices, indoor operating vehicles(Autonomous and semi-autonomous) and tagged personnel.

The tracked devices usually come with RFID, WiFi or BLE capabilities enabled in them. The

slice acts as a signal transmitter for the positioning service in the knowledge plane. Every

single node on this edge can be viewed as user equipment that needs to be tracked.

Network Access

In the second tier, network access consists of a set of networks such as Wireless Sensors

(temperatures, humidity etc.), BLE and WiFi Networks. These Wireless networks bands in

5G are expected to range between 1Ghz and 6 Ghz. These technologies can either be used

together or separately during the radio planning process of the positioning. It is suggested a

combination of two or three from these technologies to get better accuracy in [101].

Network Core

The third tier consists of 5G Cloud Radio Access Network. This a unique 5G concept divides

the Radio Access Network into two separate entities: an RRH antenna and BBU unit placed

on the cloud. An implementation of this concept is mentioned in Section 5.3.
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5.1.2 Control Plane

This plane, as proposed by 5GPPP [153], includes Software Defined controllers responsible

for orchestrating the network and managing the packets flow. Usually, this plane is reserved

for SDN controllers like OpenDaylight [155]. Its functionalities can be further expanded

to include event-triggered geo-fencing options through out writing or blocking flows to a

specific connected device based on previously defined geographical fences.

Network Control

The Software defined nature of 5G makes it necessary to have a control plane. Tier four

includes an SDN (Software Defined Network) Controller responsible for managing network

flows and packing matching and blocking. The role of this slice is to patrol the incoming and

outgoing traffic in a 5G environment.

5.1.3 Application Plane

From the SDN architecture, an application plane includes an application built on top of the

control plane. As shown in Figure 5.2, we developed an application to collect signal data and

aggregate them. The functionalities of this application are discussed further in Section 5.2.

5.1.4 Knowledge Plane

This plane has been added to the original architecture to serve the purpose of decentralized

positioning. As depicted on Figure 5.2, this plane is made up of four components: Data

Aggregation and Standardization Gate, Position Visualizer, Historical Big Data Aggregator

and Machine Learning Engine.
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The knowledge plane is a member of last tier. Tier five concerns the positioning service

or the knowledge plane and the service/alerted users. The knowledge slice consists of three

main components: Machine Learning/AI engine that conducts the modeling, a positioning

service for both live and historical location tracking and a Big Data component to store both

historical data and the positioning model parameters.

The alerted users are the second members of tier 5. They are the system users and they

have direct access to the positioning service but no direct access to the Machine Learning

engine or the Big Data repository. The alerted users can be systems like a mall management

system, a smart factory operation application or a smart home application. The next section

covers the functional architecture of this framework and the different interactions between

each component.

5.2 Knowledge Plane Framework Components

In this section, as previously mentioned, we have extended the original architecture introduced

in [153]. Furthermore, we demonstrate the different components of the knowledge plane and

their functionalities. The plane collects and store signal data from various 5G IoT sources

using client collector to provide positioning as a service. Figure 5.2 illustrates the proposed

plane along with its interconnections with data, control and application planes.
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Fig. 5.2 Positioning as a Service architecture for 5G IoT network

5.2.1 Clients Collector

This application is deployed on the UE (User-Equipment) on the edge of the network with

the purpose of collecting wireless signal data and send it to the master collector periodically.

It runs as a daemon while establishing a reliable secure shell connection with the Master

Collector application as show in Figure 5.3 . An example of a UE can be either a handheld

scanning devices that supplies personnel with the necessary information about the inventory

status or a Wearable Tagging device deployed to locate the staff within buildings. The main
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function of this component is sending RSS and other signal data to the Master Collector to

be aggregated. The following subsection explains thoroughly this client application.

5.2.2 iFuse: RSS Signal Collector for Bluetooth and WiFi

As a Proof-of-Concept (PoC), an application has been developed from scratch to perform

measurements for various scenarios and radio technologies in this research. As shown in

Figure 5.3, iFuse stands out as a hybrid RSS (Received Signal Strength) signal collector,

designed to seamlessly operate with both Bluetooth and WiFi technologies. This application

was developed in Java programming language using Kootlin Android application framework.

iFuse is equipped with a plethora of features, making it very useful for signal gathering and

analysis. The following are the key features incorporated:

1. Dual-Mode Connectivity: iFuse supports both Bluetooth and WiFi, ensuring versatil-

ity in signal collection across diverse wireless communication protocols.

2. Real-time Signal Monitoring: The device provides instantaneous monitoring of RSS

signals, enabling users to promptly assess signal strength variations and fluctuations.

3. Extended Range Coverage: iFuse leverages advanced signal processing capabil-

ities to extend its range coverage for both Bluetooth and WiFi signals, ensuring a

comprehensive understanding of signal behavior.

4. Data Logging and Analysis: iFuse includes robust data logging capabilities, fa-

cilitating the recording and analysis of signal strength data over time for long-term

monitoring and trend analysis.



5.2 Knowledge Plane Framework Components 100

5. User-Friendly Interface: With an intuitive and user-friendly interface, iFuse ensures

accessibility for users of all expertise levels, facilitating easy navigation through the

configuration and data extraction processes.

6. Battery Efficiency: Unlike GPS based signal collectors,iFuse is designed with en-

ergy efficiency in mind, it optimizes battery usage, extending its operational lifes-

pan—particularly crucial for applications requiring prolonged usage.
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Fig. 5.3 Client collector android application

In summary, iFuse presents itself as an effective RSS signal collector, offering features

tailored for both Bluetooth and WiFi technologies. Its dual-mode connectivity, real-time

monitoring capabilities, extended range coverage, and user-friendly interface, make iFuse

as a powerful tool for signal analysis and optimization in various wireless communication

environments.

5.2.3 Master Collector

The Master Collector receives RSS signal data from several IoT application collectors. First,

it establishes and maintains a reliable and secure (TCP, SSH) connection with one or multiple

client collector on the Data plane. Second, it aggregates the fetched data and stores centrally

for location estimation and visualization at the knowledge plane level as demonstrated in

Figure 5.4.
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Fig. 5.4 Master collector web application

5.2.4 Data Aggregation and Standardization Gate

To ensure the data received as standardized and unified, an API (Application Programming

Interface) platform has been created to service data in a structure manner to the different

components of the knowledge plane. The platform has been created used Flask web-server on

Python version 2.7. The API acts as a link between the application plane and the positioning

knowledge plane. This component receives data via a POST request and serve the available

data via a GET request.

5.2.5 Machine Learning Engine

This component performs data pre-processing, offline and online training. It builds position-

ing model capable of locating several assets and personnel within the designated environment.

The end results is an accurate location for each tracked device. The tasks involved in this

components are: Pre-processing, offline training, online training, positioning modeling.
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• Pre-processing: In this sub-component, a staging area is created for the model the train-

ing units. It performs data acquisition, data quality checks and validations, imputing

and standardization. Typically, 70% of the overall process time is spent on this phase.

• Offline Training: Once the pre-processing tasks are completed, the offline training

starts by dividing the data into training, validation and testing for the machine learning

model.

• Online Training: This sub-component validates the positioning accuracy of the model

built during offline training. This can be in the form of real-time signal data fed from

the client collector of the IoT devices.

• Position Modelling: positioning modelling constructs a model using a machine learning

library such as Keras, Pytorch or Tensorflow [130]. It learns from the fed dataset, and

generates a model for online position estimation. There might exist several models if

the localization area consists of complex set of buildings.

5.2.6 Historical Big Data Aggregator

In this plane, Big Data supports two use cases. On one hand, it stores offline training and

prediction performed by machine learning engine in a data repository. Network signal data

collected from the Aggregator API are processed into a individual time-series and stored

centrally. On the other hand, the repository provides the historical visualizer with time-

stamped locations of the devices connected to the positioning service. A Cloudera-HBase

server is used for this purpose.
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5.2.7 Live/Historical Position Visualizer

A web-based data visualization / dashboard tool has been developed to have a global view of

assets tracking. The main two services offered are the following: live location and historical

location of people and devices. Position visualizer makes use of the data aggregation API

to get the live location of the tracked device while it uses Big Data Aggregator to show the

historical position of each device.

5.2.8 The System Workflow

As presented in Figure 5.2, the steps followed to achieve positioning as a service are the

following:

Step 1: The client collector sends RSS signal collected from the surrounding network.

Step 2: The Master Collector receives the data after establishing a connection with the

Client Collector and post it to the data aggregation API.

Step 3: The data aggregation API sends the aggregated signal data to the big data

aggregator.

Step 4: Machine learning engine requests the signal data from the API platform and re-

turns a set of 3D position points and their corresponding IoT device ID to the data aggregation

API.

Step 5: The machine learning engine stores the received signal data and the estimated

3D position for each IoT device into the big data repository.

Step 6: The live/historical position visualizer gets the current position for each IoT

device.
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Step 7: The live/historical Position visualizer sends GET request to the data aggregation

API for the current position of each IoT medical device.

Step 8: The live/historical Position Visualizer requests historical data stored by the

machine learning engine into the big data repository to be presented in a graphical form.

5.3 Indoor Positioning for complex environment: Imple-

mentation and Results.

In this section, we explain the steps followed to set up the simulation environment for 5G

IoT Network and the 3D positioning model implementation.

5.3.1 Network Setup

The network setup provided in this experiment consists of a set of hardware and software

components put together to emulate an IoT network in 5G environment. The setup is used to

leverage signal data for the purpose of 3D positioning.

5G Wireless IoT Network

In this test environment, we consider an outdoor to indoor 5G wireless network, emulated

by typical IoT network with Zolertia RE-Mote Revision B nodes as illustrated in Figure 5.5.

This WSN is a typical network found in a smart buildings as illustrated in tier 2 Figure 5.1.

The Zolertia devices measure the temperature of the rooms, the pollution level, the humidity
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etc. We have deployed five nodes in this testbed. We have constructed a radiomap from

this environment following the steps mentioned in [156]. The database of RSS signal with

corresponding location reference points will be used to create a positioning model in the

Machine Learning Engine component.

Fig. 5.5 Network setup topology

5G C-RAN on GNS3 Emulator

5G C-RAN is made up of two main components: A RRH (Remote Radio Head) and a BBU

(BaseBand Unit). The former is responsible for handling the analogue signal processing

functionality while the later performs digital packets processing. To build this concept, we

have used GNS3 version 2.2.6 [157], an open source network emulator. The latter, as shown
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(a) 5G emulated C-RAN testbed on GNS3
(b) WSN and GNS3 emulated 5G C-RAN
connected on OpenDaylight

Fig. 5.6 5G C-RAN setup on GNS3 and WSN connected to OpenDaylight SDN controller

on Figure 5.6a, the BBU component is placed on a cloud environment connecting it to the

core network.

OpenDaylight Controller

The OpenDaylight [155] is a controller used to patrol the incoming and the outgoing traffic

in a network. To make the testbed support a SDN (Software Defined Network), each node

has Open vSwitch [154] installed on it. Each Open vSwitch on the C-RAN is connected to

the OpenDaylight controller via the openflow port number 6633. Figure 5.6b shows how

a group of 5 Zolertia RE-Mote Revision B node is connected to the C-RAN in blue. The

interface shown is from the controller topology view of OpenDaylight.
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5.3.2 3D positioning simulation

The concept of Indoor Positioning can be implemented on various types of environments and

usage scenarios involving both person and asset tracking in complex building environment,

such as: locating the personnel during their shift and monitoring the assets arrangement

inside the building. In this 3D positioning simulation, a DNN and RSS fingerprint-based

localization approach has been implemented in a 5G IoT setup testbed as previously discussed

in Section 3.2 of Chapter 3.

5.4 Chapter Summary

Chapter 5 introduces a novel architecture for providing positioning services in complex indoor

environments. The primary motivation for this architecture is to address the challenges facing

smart warehouses, malls, and factories in managing their assets and ensuring efficient waste

management in large, scattered sites. The proposed architecture is designed to leverage big

data and machine learning for location management in 5G IoT networks.

The key components of this architecture are organized into five tiers.The workflow of

the system involves data collection from client collectors, aggregation, machine learning

modeling, and visualization. A 3D positioning model is created and trained using DNNs,

allowing for accurate location tracking.

The chapter also presents a simulation setup for the 5G IoT network and the results of

the 3D positioning simulation. It discusses the data collection, pre-processing, modeling,
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and analysis, showing that the proposed 3D model outperforms other models like KNN and

SVM.

In conclusion, the chapter introduces a comprehensive architecture for indoor positioning

as a service in 5G IoT networks, addressing complex indoor environments. The proposed

architecture leverages big data, machine learning and 5G IoT signal data to provide accurate

location management, and the simulation results demonstrate its effectiveness. Future work

may involve extending this concept to cover more outdoor-to-indoor positioning scenarios

and heterogeneous data sources.



Chapter 6

Conclusion and Future Work

Accurate indoor positioning for both people and assets is a crucial factor for provide a variety

of improved location-based services to the military and civilian sectors. These services

include real-time tracking of friendly and enemy forces, addressing threats and managing

crises, coordinating first responders during natural disasters, and serving various civilian

applications in fields like healthcare, transportation, marketing, finance, commerce, energy,

and more.

In the age of 5G IoT, rapid and technological advancements have made 3D indoor

positioning a prominent and continuously evolving research area where the primary challenge

lies in improving accuracy and ensuring reliable performance. In this regard, researchers have

explored aspects such as self-improvement, adaptation to environmental changes, minimising

energy consumption, and reducing runtime complexity. These studies are carried out in a

landscape characterised by heterogeneous wireless technologies and a wide range of radio

and nonradio parameters.
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Among the prevailing wireless technologies used for indoor localisation in 5G IoT net-

works, IEEE 802.11 and IEEE 802.15 stand out due to their popularity and cost-effectiveness.

Regarding the dominant indoor localisation technique, fingerprinting occupies a prominent

position, as concluded by the research outlined in Chapter 2. This has been the rationale

behind the positioning techniques and technologies adopted in this thesis.

In Chapter 3, we have proposed a novel approach for 3D Indoor Localization using DNN

cooperative networks algorithms implemented on 3D multi-layer radiomaps. To emulate

5G infrastructure IoT indoor Scenario, an IoT network is interconnected to an experimental

5G C-RAN. Using only an offline fingerprint database, we have also demonstrated how

the proposed model has outperformed industry traditional models such as KNN. We have

accurately implemented this model to the indoor environment. If the steps shown in Figures

3.1 and 3.7 are properly followed, a reliable and fast 3D localization can be achieved. This

concept can also be further developed to cover more complex indoor positioning scenarios,

involving radio data from heterogeneous network (HetNEt) such as 5G microinfrastructure

(Microcells, femtocell, picocells,etc.). Finally, the proposed DELTA model works very well

with RSS based IoT and WSNs. Thus, a possible extension of this work could be improving

the model by including information fused from other networks such as WiFi and BLE as

explored in Chapter 4. Another research direction could be experimenting with more vertical

layers. and adding floor level detection for buildings with multiple floors.

In Chapter 4, we have proposed a novel algorithm for improved indoor positioning in 5G

IoT networks. The proposed approach uses IQR to deal with outliers and hybrid radiomap

to reduce the labour cost incurred during the data collection phase. Additionally, we have
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demonstrated how cooperative machine learning localisation can be implemented on top of

this technique. Using this approach, we have shown how information fusion implemented

on 3D multilayered radiomaps can be used to reduce the localisation error to submeter in

2D, and 91% classification rate in 1D. This result can be achieved in similar environment

if the steps in Figure 4.1 is followed. This concept has the potential for expansion into

more intricate indoor positioning scenarios, encompassing diverse radio data sources from

a heterogeneous network like 5G microinfrastructure (including microcells, femtocells,

picocells, etc.). Additionally, our proposed K-DNN model demonstrates strong performance

with RSS-based IoT and WSNs. As a result, our future endeavours will focus on enhancing

the model by integrating data from different azimuth angles (45 °, 90 °, 180 °, and 360 °).

Another avenue of research could involve incorporating floor-level detection for buildings

with multiple stories.

Throughout Chapter 5, we have concluded our contribution to body knowledge by

introducing the knowledge plane to provide PaaS for the 5G IoT network in an indoor

environment. We have also demonstrated how this can be implemented in the use case of

localisation for complex buildings. This concept can also be implemented in other smart

city use cases such as stadiums, malls navigation systems and indoor AGV(Automated

Guided Vehicle) control. As for future work, other radio technologies can be implemented to

extend the data plane of this architecture. lastly, implementing localisation rules like smart

geofencing is also be a potential research direction.
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