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Highlights 

 Comprehensive analysis of a large number of F-gas leakage records was conducted. 

 A methodology of categorizing refrigerant leakage incidents is summarized. 

 Common locations and system components prone to leakage are identified. 

 Long term solutions to control refrigerant leakage are discussed. 

 

ABSTRACT 

Given that refrigerant demand is set to rapidly increase, long term solutions for leakage prevention are 

required to effect change in the industry. This paper presents the results of a project which investigated 

refrigerant leakage within two of the UK’s major supermarket chains. Leakage data from 1,464 maintenance 

records were analysed. The analysis categorized the type, location of each leak and volume of refrigerant 

replaced during repair. Over 82% of the recorded leaks were from R404A refrigeration systems, and mainly 

consisted of pipe or joint failures or a leaking seal/gland/core located in the compressor pack and the high 

pressure liquid line. It is recommended that the industry focuses on improving design, installation and 

maintenance of pipework and valves, at the components that most often develop faults to minimize 

refrigerant leakage.  
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1. INTRODUCTION 

A study by  Gschrey et al. (2011) indicated that the contribution of fluorinated gases (F-gases) to global 

warming will increase from approximately 1.3% (2004) to 7.9% (2050) of projected total anthropogenic CO2 

emissions in a business-as-usual scenario. Gschrey et al. highlighted that additional efforts are required from 

both developed and developing countries in order to achieve significant reductions in F-gas emissions. Many 

refrigerants used in RACHP (refrigeration, air conditioning and heat pump) systems are F-gases (Bauer et 

al., 2015). Leakage of refrigerant gases from these systems impacts the environment in two ways (Koronaki 

et al., 2012). Firstly there is a direct effect due to the global warming potential (GWP) of the leaked gas, and 

secondly, there is an indirect effect due to the decreased efficiency of the refrigeration system (due to the loss 

of charge) which leads to increased energy consumption (Grace et al., 2005). In particular, emissions of 

hydrofluorocarbons (HFCs) refrigerants have been increasing mainly due to their widespread use as 

replacements for chlorofluorocarbons (CFCs), and hydrochlorofluorocarbons (HCFCs) (Montzka et al., 

2014). This is in addition to the rapidly increasing demand for RACHP systems in emerging economies 

(Davis and Gertler, 2015).   

 

Commercial refrigeration is considered to be one of the applications that contribute most to global warming 

(Mota-Babiloni et al., 2015a). The growth in the commercial refrigeration sub-sector is of concern, since it is 

reported to have the highest CO2-equivalent emissions for the whole RACHP industry equivalent to 40% of 

total annual refrigerant emissions (UNEP, 2014), despite it being responsible for only 22% of worldwide 

refrigerant consumption (Devotta et al., 2005). Leakage in commercial refrigeration systems varies greatly 

from one system to another (Coulomb, 2008). Annual leak rate can be an average of 11% (Koronaki et al., 

2012) and up to 30% in some cases (Beshr et al., 2015). Refrigerant leakage can also have a significant 
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financial impact for the user depending on how quickly the leak is found and repaired (ETSU, 1997 and 

Koronaki et al., 2012).  

 

The design of the refrigeration system is a crucial decision from both an economic and environmental 

viewpoint (Söğüt, 2015).  Although, numerous investigations have been carried out in order to reduce CO2 

emissions, these efforts have not yet been sufficient to reduce climate change to sustainable levels (Mota-

Babiloni et al., 2015b).  Design options tend to include using alternative refrigerants and improving the 

efficiency of the system (Beshr et al., 2015). However, designs for leak tight systems remain fundamental for 

reducing refrigerant leakage and associated costs. To date, limited results from comprehensive analyses of F-

gas leakage and/or maintenance records have been published and used to inform design. Leak tight design 

and installation requires practical knowledge and understanding of the locations and system components 

where leaks are most commonly found in refrigeration systems. 

 

This paper investigates and presents a detailed study of refrigerant leakage based on a total of 1,464 F-gas 

service records compiled from two major supermarket chains and builds on some preliminary results 

reported by Cowan et al. (2015). In section 2, the current article provides some background information on 

regulations and the results of other leakage studies on commercial systems. The methodology used in the 

present study is described in section 3, and in section 4 the results of the analysis are reported and discussed. 

In section 5, long term solutions for leak control are highlighted and section 6 outlines the main conclusions 

of the study. 

2. STRATEGIES TO CONTROL REFRIGERANT LEAKAGE 

The commercial refrigeration sector comprises the equipment, technologies, and services used to store and 

dispense frozen and fresh foods at appropriate temperatures (Devotta et al., 2005). The sector includes: a) 

stand-alone systems; b) condensing unit systems; and c) full supermarket systems. Stand-alone systems are 

self-contained whereby the components are integrated. Condensing unit systems are small commercial 

systems with compressors and condensers located external to the sales area, but with the evaporators located 

in display cases in the sales area, or in a cold room for food storage. Full supermarket systems can be either 

(i) centralized; or (ii) distributed, systems. Centralized systems generally have a central plant in a remote 

location with a series of compressors and condenser(s) circulating liquid refrigerant or secondary heat 

transfer fluid to display cabinets and cold storage rooms in other parts of the building. In contrast, distributed 

systems use multiple smaller compressor/condenser units which are located in close proximity to the display 

cases.  According to UNEP (2014), 93% of emissions from this sector arise from system types b) and c). 

This is partly due to the volume of the refrigerant bank in these systems, and partly due to the long lengths of 

distribution pipework and the number of joints needed, which both increase the risk of leakage.   

 

Since 2006, the F-gas regulations (Regulation (EC) No 842/2006) along with other strategies have been 

applied in Europe with the aim of minimizing the emissions of fluorinated gases (F-gases), including HFCs. 

The regulations have been recently revised, and it is anticipated that there will be a global phase down of 

HFC refrigerants to more climate friendly alternatives through the aid of the revised Regulation (EU) No 

517/2014 (European Commission, 2016) and amendment to the Montreal Protocol (Deol et al., 2015). 

Likewise, the US Environmental Protection Agency (US EPA) (2015a) published a regulation on acceptable 

and unacceptable substitute refrigerants under the SNAP (Significant New Alternatives Policy) program. 

 

The F-gas regulations have led to several successful initiatives, such as the REAL Zero (Refrigerant 

Emissions and Leakage - Zero) project developed in the UK. This was aimed at reducing refrigerant leakage 

in industrial and commercial refrigeration systems (REAL, 2016). Since then several “REAL” branded 

projects have evolved offering multi-lingual training guides and e-learning tools on refrigerant leakage and 

safe handling of alternative refrigerants (REAL, 2016). In the US, a similar programme is administrated 

under the GreenChill Partnership with food retailers (US EPA, 2015b).  

 

A number of certification schemes have also been developed to ensure maintenance personnel are competent 

in the safe handling of RACHP systems such as the ISO 5149, EU No. 517/2014 Regulation and EN 13313 

(Coulomb et al., 2015).  Of particular note, the Dutch STEK (Stichting Emissiepreventie Koudetechniek: 

Foundation for the Prevention of Emissions in Refrigeration) certification program is credited with reducing 
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emissions from 20% to 3.5% on average since its inception (EFCTC, 2011). However most of these 

qualification schemes are not mandatory worldwide (Coulomb et al., 2015) and RACHP systems are 

reported to continue to leak. In fact, all refrigeration systems have the potential to leak, because pressures in 

the system are usually many times higher than atmospheric (Tassou and Grace, 2005). Refrigerant loss has 

been attributed to a range of factors (Tassou and Grace, 2005 and Koronaki et al., 2012), for example: 

a) Gradual leakage through components over long periods of time before the leak is detected 

b) Catastrophic or physical damage resulting in large refrigerant losses over a short period of time 

c) Operation of pressure relief devices  

d) Small losses during routine maintenance, repair and/or recovery of refrigerant 

 

A number of authors have reported on the reasons why refrigeration systems continue to leak. Following an 

extensive survey of professionals, ETSU (1997) identified the 6 most common leakage sites as flare joints, 

shaft seals, other mechanical joints, signal lines/small bore lines, valves/glands, and vibration (chaffing). 

Birndt et al. (2001) have summarized the results of the research project “Tightness of Refrigeration 

Systems”, which was conducted in two states in Germany and involved leak tests of selected commercial 

refrigeration systems, focussing particularly on supermarkets. It was found that 14.4% of the identified leaks 

(i.e. 15 out of 104) accounted for 85% by weight of the refrigerant loss. Of the 104 identified leaks, 18 

occurred in the cycle components and 86 in the assembly joints. Meurer and Nicoletti (2005) also reviewed 

the same survey and further highlighted that 22% of all measurable leaks were from flared joints, which were 

responsible for 50% of the refrigerant losses. Overall 96% of the total refrigerant loss was through field 

assembled joints. Rhiemeier et al. (2009) compiled a comparative assessment of similar studies on 

refrigerant leakage undertaken in other parts of Europe and the US. A few of these studies are reviewed later 

in section 4 of this paper. Whilst the results of these studies were fairly detailed, they were based on 

relatively small samples.  

 

The current paper examines the extent and reasons why leakage occurs in supermarket refrigeration systems, 

based on a survey of 1,464 service records from two major UK supermarket chains. It describes the 

methodology used in developing a refrigerant leakage analysis tool to examine the most common 

locations/system components where leakage/faults were found. It builds on some preliminary results reported 

in Cowan et al., (2015). It also highlights some of the common practices used within the refrigeration 

industry for service maintenance or leakage repair.  

3. METHODOLOGY 

3.1 Data Profile 
Collection of refrigerant usage log data was undertaken from 2010 onwards, across multiple sites from two 

of the UK’s major supermarket chains identified as Company A and Company B. The records for Company 

A involved supermarkets with a typical sales floor area of 2,787 m
2
, with each store operating with 5 or less 

centralized refrigeration pack systems, and a total refrigerant charge estimated at 500 kg. The packs were 

installed in internal plant rooms, with roof-mounted condensers feeding shop-floor cabinets, freezers, and 

cold stores. Approximately 20% of service technician call-outs involved adding/removing refrigerant. In 

contrast, Company B records covered over 300 stores with a typical floor area of 3,716– 4,645 m
2
. Each 

store consisted of up to 20 refrigeration systems including central refrigeration packs, condensing units, and 

integral systems with a total accumulative charge of over 1,000 kg. The refrigeration systems were mostly 

centralized direct expansion systems with roof-mounted compressor packs feeding several different types of 

evaporators. For Company B, less than 5% of the records were related to service technician call-outs that 

involved adding/removing refrigerant. 

 

The reason for the disparity shown between the technician call-outs for Company A and Company B is 

unknown. However, the retrieved data were recorded in two different formats, each unique to the culture of 

the particular organization. Company A provided detailed paper-based maintenance records and work orders, 

whereas Company B provided a simplified summary report of refrigerant usage in an electronic data log 

spreadsheet. The different formats of the data presented some difficulties in ensuring consistency of the data 

analysis. Therefore, a structured methodology was developed for categorizing the fault types and fault 

locations, down to the individual component level. 
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3.2   Data Analysis  

A strategy was developed to standardize the data within a set of 25 predetermined data input fields, which 

consisted of questions with a range of possible answers. Microsoft Excel software was used to tabulate the 

results of the analysis. The structured approach used for the analysis included critical information about the 

leak/fault incident report (e.g. previous (related) incidents, call out initiator, response time, leak detection 

method, number of leaks detected, repair actions, and system downtime), as well as more basic information 

about the nature of the faults and the quantities of refrigerant added.   

 

The locations of the faults were categorized using a simplified schematic of a typical refrigeration system 

found in a supermarket as outlined in Fig. 1. The refrigeration system typically comprised a roof-mounted or 

service room-located multi-compressor pack including either an integral or remote condenser, with 

evaporators remotely located in the sales/display cabinet area and connected by long pipe runs. System 

boundaries were created to define distinct regions for the typical supermarket refrigeration system. The 

system boundaries consisted of 6 main regions referred to as system level fault locations, and listed as: 

Compressor Pack; High Pressure (HP) Gas Pipe; Remote Condenser; HP Liquid Line; Evaporator; and Low 

Pressure (LP) Suction Lines.  

 

In the Excel spreadsheet analysis, each region or “system level-fault location” can be selected from a drop-

down list menu. The selected “system level-fault location” then allows a variety of corresponding sub-

components to be selected via the “component level-fault location” drop-down list menu.  An option has 

been provided for updating the drop-down list with additional components, as necessary.  To deal with the 

large number of reasons recorded for faults, similar faults were often grouped as a single category. Each fault 

category could also be selected from a drop-down list menu. This process facilitated comparison between the 

fault types and locations.  In some cases, relatively little information about the fault was provided. However, 

a minimum set of data input fields were required for adequate analysis, which allowed data to be 

consolidated and compared from different sources. The minimum data input fields needed for the analysis 

were specified as: 

 Refrigerant Type 

 Fault Category 

 Fault Location- System Level AND/OR –Component Level 

 Net Refrigerant Added 

 

The structure of the data analysis ensured standardization and compatibility for all users of the Excel leakage 

analysis tool. In addition, it is considered that the research methodology should enable the study to be readily 

replicated by other researchers. 

3.3  General Assumptions 

A number of general assumptions were made for analysis of the service records: 

 

1) All fault repairs on a leaking valve were attributed as leaking seal/gland/core, if not otherwise indicated. 

2) Incident reports labelled as pipe or joint failure were assumed to represent a leak in a pipe; however the 

recorded data on the pipe or joint failure was sometimes incomplete. In most cases of this type, the fault 

location at the system and component level was known, but in some cases the fault category had not 

been clearly specified in the report. For example, where the incident report stated that the “Service 

Technician found and repaired leak on discharge pipework,” it was assumed that the discharge pipework 

was located within the compressor pack and the fault location at the system and component levels could 

then be indicated. However, in this example the report did not specify whether the leak was due to a 

fracture/rupture/crack or due to a leaking flange/union/joint. Therefore, the fault category was simply 

recorded as pipe or joint failure.  

3)  If a pressure relief valve (PRV) had been blown and fixed, it was designated in the 

fracture/rupture/crack fault category. 

4) Faults categorized as mechanical components were those which directly related to repairs or 

replacements of the main mechanical components of a RACHP system such as the compressor pack, 

evaporator, thermal expansion valve and condenser. 

Page 4 of 13



5) Faults categorized as ancillary components included devices such as fans and pumps. 

6) Transducers, switches, and gauges were grouped together in the analysis as monitor/control hardware. 

4. RESULTS 

This section presents the results and information from a total of 1,464 faults compiled from two data sources, 

with approximately 46% of the data from Company A and 54% from Company B.  For companies A and B 

combined, an estimated 36,000 kg of net refrigerant was added to the two supermarket refrigeration systems.  

The majority (82%) of the refrigeration systems in companies A and B used R404A refrigerant. The 

remainder used R134a and R410A refrigerants. Approximately 31% of the records were considered 

incomplete, since some critical information was not included.  In cases where the fault category was 

unknown, it was recorded in the Excel spreadsheet as other/not stated. In cases where the fault location at the 

system and/or component level was not known, it was designated as “unspecified” in the Excel spreadsheet.  

 

It was also observed that no leak was found, or another fault was identified in 17% of the total records. 

However, these refrigeration systems were still topped-up with refrigerant without providing any other 

explanation. These refrigerant additions accounted for 10% of the total refrigerant added by weight. The 

current analysis aims to review and analyze all faults identified within the incident reports where refrigerant 

was added, in an effort to determine common practices used within the industry. The results from the 

analysis should help to improve good practice guidelines, as well as identifying problematic leakage prone 

components. 

4.1 Common Fault Types of Refrigeration Systems 
The common fault types found in the supermarket refrigeration systems were grouped into 18 categories and 

the percentage number of faults for each category was compared for companies A and B. It was anticipated 

that the frequencies of some fault categories should decrease over time due to increased maintenance; 

however no clear evidence of this was apparent within the time period of this study. However, this could 

have been due to reduced reliability as a result of aging of the system. The percentage of total refrigerant 

mass added as a result of each fault was determined, which revealed that although the frequency with which 

the fault occurs is of course important, attention should also be given to the average amount of refrigerant 

required to be added to the system each time the fault occurs. Therefore, the refrigerant addition per incident 

by fault category was also determined from the records for companies A and B.  

4.1.1 Refrigeration system fault types 

A comparison of the frequencies of particular fault types for the two companies is shown in Fig. 2. Fig. 2 

indicates that both companies recorded the same eight top faults in each case, with pipe or joint failure 

accounting for an overall average of 27% of the combined data, (i.e. 29.65% and 23.54% of the number of 

faults within Company A and Company B, respectively). This is followed by leaking seal/gland/core of 

valves, whereby Company A and Company B accounted for 26.25% and 16.03%, respectively. Almost 17% 

of the faults for Company A and 40% of faults for Company B were not identified in the leakage data. These 

faults were recorded as other/not stated where faults were not specified or stated as “refrigerant shortage” or 

“cause not known.” 

 

If the other/not stated faults are excluded, and the contribution of the identifiable faults are compared, the top 

two faults account for over 66% of the reported identifiable faults (i.e. pipe or joint failure at 37% and 

leaking seal/gland/core at 29%). The Miscellaneous category in Fig. 2 refers to a small number of faults 

which are not listed in the other categories. Miscellaneous faults included electrical/ electronic hardware, 

dirt/corrosion/blockage, moisture issue, loose item/cap/seal, vibration, physical damage (3rd party), and 

missing cap/seal. 

4.1.2 Refrigeration system fault types and refrigerant added 

The two most commonly occurring faults by mass (i.e. pipe or joint failure at 28% and leaking 

seal/gland/core at 26%), are also responsible for over 53% of the total refrigerant mass added on average for 

both companies (see Fig. 3) and over 73% of the refrigerant mass added if the other/not stated fault 

contributions are excluded. However, it is considered that the other/not stated faults’ contribution to the total 
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refrigerant mass added (i.e. 27%) should be included, as this represents the addition of significant quantities 

of refrigerant, although the fault was either not known or not reported. This suggests that significant 

refrigerant leakage occurred, on a number of occasions, where the problem was not subsequently identified 

and therefore, may not have been completely rectified. However, further investigation is required to verify 

this. In terms of the remaining leakage fault categories, the fracture/rupture/crack fault was responsible for 

8% of the refrigerant mass added, while less than 11% of the total refrigerant mass added was due to the 

other identifiable fault categories. 

 

Interestingly, pipe or joint failure and leaking seal/gland/core, which were the two most frequently occurring 

types of faults, were not the top faults when considering the amount by mass of refrigerant added per 

incident. Fig. 4, which shows the refrigerant additions by mass per incident for the identifiable faults, 

indicates that physical damage caused by a third party and fracture/rupture/crack were responsible for the 

highest addition of refrigerant mass (at an average of 30 kg per incident).  

 

In the case of third party damage to refrigeration systems, although this occurred in less than 0.3% of 

reported incidents, this was responsible for the greatest refrigerant leakage per incident (i.e. up to 37 kg per 

incident as shown in Fig. 4). This concurred with a German leak tightness study cited by Bostock (2007) 

which also reported that catastrophic losses accounted for a very large proportion of the total refrigerant 

losses. Faults identified as fracture/rupture/cracks required refrigerant mass additions of on average 

approximately 32 kg per incident, which accounted for the second largest leakage quantity per incident.  

 

The leaking seal/gland/core faults for the present study which refer to leaks from valves and pipe or joint 

failure faults were responsible for refrigerant mass additions per incident of on average 30 kg and 26 kg, 

respectively (see Fig. 4 for details). These results were similar to those of the study presented by Colbourne 

(2004), as cited by Rhiemeier et al., (2009) whereby pipework (mechanical joints) and valves (general) 

accounted for 50.3% of the total quantity of leaked refrigerant. Therefore, as expected, these types of leaks 

were both frequent and had a high leakage rate. 

 

In contrast, the faults of loose item/cap/seal and vibration indicated a low frequency of less than 0.5%, which 

accounted for a total of 0.45% of refrigerant mass leaked in the data sample considered here. This differed 

from the results of a US study presented by Hoglund (2006) in which mechanical wear (i.e. loose-fitting, 

damaged, or worn gaskets, worn packing, missing gaskets, and missing caps) and vibration were more 

prevalent, and resulted in 86% of the mass of the refrigerant leaked (as cited by Rhiemeier et al., 2009). 

Despite the low frequency and  relatively low overall contribution to the total refrigerant mass leakage for 

loose item/cap/seal and vibration found in this study,  in instances where they occurred, these faults resulted 

in significant leakage mass per incident, of 26 kg and 16 kg, respectively (see Fig. 4 for details). The 

difference in the results between the present study and Hoglund’s study may be due to the different methods 

of categorization used. For example, loose fittings in Hoglund’s report included Schrader caps, rotalock 

valves, service port caps etc., which have been included in the leaking seal/gland/core fault category in the 

present report. If the leaking seal/gland/core contribution is included with the loose item/cap/seal and 

vibration, then the total refrigerant mass addition increases to 26% of the total for the present study, although 

this is still much lower than that reported by Hoglund (2006). 

 

4.2 Fault Location in RACHP Systems 
Fig. 5 categorizes the fault locations at the system level (i.e. 6 main regions and unspecified location) and 

indicates that in 611 of the 1,464 faults reported, the record failed to clearly identify the fault location at the 

system level.  The highest number of faults (471) for which a location was identified, were concentrated in 

the compressor pack followed by the high pressure (HP) liquid line and evaporator. This same trend was 

observed in the analysis of the total refrigerant mass added for each system level, resulting from a fault in a 

specified location.  The lowest number of faults and mass of refrigerant added (i.e. 2 and 26 kg) were 

reported for the HP gas pipeline. 

  

Information on the manufacturers/suppliers of the refrigeration systems for Company A and B were not 

provided to the authors in the study. Hence it was difficult to determine whether there was a correlation 
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between the fault location/category and the supplier. However, it should be noted that the results recorded for 

the fault locations at system level were consistent with those reported in the US study presented by Hoglund 

(2006), as cited by Rhiemeier et al. (2009), whereby the mechanical service room, which houses the 

compressor, experienced the largest refrigerant mass losses (56%). Hoglund also highlighted that display 

cases, condensers, and store piping provided many refrigerant leakage reduction opportunities. Display 

cases, condensers, and store piping are accounted for in the evaporators, remote condenser and HP liquid line 

system level boundaries in the present study, respectively. Similarly, the US EPA (2011) indicated that 39% 

of sources of leakage for a regional supermarket chain in the US were located within the compressor pack 

which agrees with the present study. 

 

The high number of faults in the compressor pack relative to other system components is of particular 

concern. It is likely that the faults within the compressor pack can be attributed to the continuous vibration 

and significant fluctuations in temperature and pressure during the on/off cycling of the compressor. It is 

possible that the design of the compressor pack could be improved, making it more resilient to leakage at the 

relevant locations. However, further investigation is required to identify the root causes of the faults at these 

locations. 

4.3  Impact of Individual Stores 

Fig. 6 shows the distribution of leaks per store for 257 stores and illustrates that a small number of stores 

leak a large amount of refrigerant. Therefore, it is considered that standardization of best practices of leakage 

control measures across multiple chain stores would be advantageous. 

 

5. LONG TERM SOLUTIONS FOR LEAKAGE CONTROL 

Long-term joint venture relationships between the equipment owners and their service organisations to 

undertake proactive maintenance is a reasonably effective leakage control strategy.  One supermarket 

company in the UK, has demonstrated over a 14-year period that through employing best practices, 

refrigerant leakage rates were effectively reduced from 54% to 8% (Cowan et al., 2015). Similarly, there has 

been good progress in reducing refrigerant emissions, as a result of the contribution of regulatory, fiscal, and 

voluntary agreements and initiatives, as well as through technological developments (Cowan et al., 2014).  

Zieger et al. (2014) suggested that developing countries have the chance to leapfrog the adoption of high 

GWP HFCs and switch from their current predominantly HCFC refrigerants to new climate-friendly 

substances and technologies, both in the short and medium term. Several alternative refrigerants have been 

proposed however the adoption of these new refrigerants has not been mainstream due to issues such as 

flammability and relative under performance (Mota-Babiloni et al., 2015b). Leakage minimization will 

therefore continue to be an essential strategy in reducing overall emissions in the RACHP sector. Hence, the 

achievements made in controlling refrigerant leakage in industrial countries such as the Dutch STEK and 

REAL projects should be instrumental and immediately applicable in driving change in other countries. 

Moreover, leakage prevention is important with all refrigerants for a range of reasons discussed earlier. The 

likelihood of refrigerant loss in refrigeration systems is inevitable; therefore other long term solutions are 

required in the industry to effect change.  

In addition to good housekeeping practices in reducing refrigerant leakage, manufacturers of RACHP 

systems and equipment installers also have a role to play in leakage prevention. Analysis of this type, along 

with further investigation into the problematic components identified in the study as prone to leakage is 

recommended. It is considered that the findings can be used to influence and modify common practices in 

equipment design, installation and maintenance within the industry. This is also being encouraged by recent 

legislation such as the EU F-gas regulations. 

6. CONCLUSIONS 

To ensure a sustainable future, the adoption of climate friendly (low GWP) alternative refrigerants will be 

essential for the RACHP industry. However, the benefits of continuous refrigerant leak control measures can 
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be realised worldwide and is effective immediately. Similarly, given that refrigerant demand is set to 

increase, manufacturers, equipment installers and service technicians also have a role to play in providing a 

long term solution for leakage prevention to effect change in the industry. This paper presents the results of a 

refrigerant leakage analysis for two of the UK’s major supermarket chains. The analysis was aimed at 

providing a better understanding of common leaking components and exploring ways to reduce these faults. 

The investigation showed that the most common faults are pipe or joint failure and leaking seal/gland/core, 

which agreed with the findings from previous studies. These faults were predominantly found within the 

compressor pack and HP liquid line.  It is recommended that further research into developing leak tight 

design, installation and maintenance of refrigeration system components that frequently develop faults 

should be conducted. In contrast, third party physical damage to refrigeration systems is responsible for the 

greatest leak per incident, although in terms of number of incidents, it is relatively rare. The current research 

also illustrated that it is common practice to recharge refrigeration systems without identifying leaks or faulty 

components. Ten percent of the total refrigerant added by weight was used to recharge refrigeration systems 

without explanation. In several such incidents, it was reported that no leak was found, or another fault was 

identified. It is important that ongoing leak checks are recorded accurately, so that other technicians can 

follow-up appropriately on measures from previous checks.  
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Fig. 1 - Refrigeration system schematic partitioned to show potential leakage points 

 
1-3.Compressor     13. Evaporator-Low Temp. Chiller   23-28.  Non-Return Valve 

4.Oil Reservoir 14. Evaporator-Med. Temp. Chiller 29-31.  Evaporator Pressure Regulators 

5.Oil Separator 15. Evaporator-Cold Store 32-34.   Compressor Suction Valve        

6.Desuperheater  16. Suction Header 35-37.  Compressor Discharge Valve 

7.Condenser 17-19. Suction Filter    38-39.  Sight Glass 

8.Liquid Receiver  20.  Liquid Line Filter Drier 40. In-Line Filter 

9.Liquid Subcooler 21. Solenoid Valve 41. Shut Off Valve 

10-12.Thermal Expansion Valve 22. Thermal Expansion Valve  
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Fig. 2 - Comparison of refrigeration system fault types for two companies 

 
 

 

 

Fig. 3 - Percent of total refrigerant added by mass (in response to a particular fault category) for both 
companies (total refrigerant added = 35, 808.18 kg) 
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Fig. 4 - Refrigerant addition per incident (by fault category) (kg) for both companies (“other/ not stated” 
faults not included) 

 
 

 

 

Fig. 5 - Frequency of faults and total refrigerant added at system level fault location for both companies 

 
 

 

Fig. 6 - Recorded leakage and frequency of leakage for a range of stores 
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