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Abstract: The aim of the present study is the optimization, construction, and workbench validation
of a double-tuned 1H- 23Na volume radio frequency (RF) coil suitable for human head imaging at
7 T, based on the birdcage geometry. The birdcage-like design which is considered is the four-ring
model, in which two standard birdcage-like structures with the same diameters are nested along
the longitudinal axis. Simulations based on Maxwell’s equations are performed to evaluate the RF
magnetic field homogeneity and the RF coil efficiency varying the coil geometrical parameters. The
RF magnetic field homogeneity is evaluated both on the transverse (z = 0) and longitudinal (y = 0)
planes without performing the impedance matching procedure, so that the RF coil symmetry is not
perturbed by the matching network. The RF coil efficiency is instead dependent on the effective coil
input RF power, and it is evaluated after matching the coil, so that the reflected power is minimized,
assuming that the stimulation power is totally delivered to the RF coil. Considering the simulation
results and the target application, the useful RF coil geometrical parameters are fixed. The four-ring
model, which showed the best performances, has been built and tested on a workbench, using a
cylindrical phantom filled with a 0.05 M saline solution as load. This provides the first example of a
four-ring realization intended 1H- 23Na for human head imaging at 7 T.

Keywords: UHF MRI; 7 T MRI; RF coils; double tuned; sodium imaging

1. Introduction

After its introduction in 1985 by Hayes [1], birdcage geometry has become the most
extensively studied and discussed RF coil for low field and high field MRI. Its structure
consists of conductive paths, called legs and end-rings. In the standard design, the legs,
arranged on a cylindrical surface and equally spaced to each other, are connected through
a pair of so-called end-rings. When the birdcage RF coil is excited, ‘waves’ propagate along
the periodic structure and for some frequencies they combine constructively and create
stationary states, corresponding to the resonant modes. The circuital model of the birdcage
coil is a ladder network of elementary meshes. Each mesh can be described as a two-port
L network, corresponding to each physical mesh of the RF coil [2]. The coil is tuned at
the working frequency by inserting capacitors along the conductive paths. Depending on
the position of the tuning capacitors, a birdcage coil can be implemented in two different
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designs, called Low-Pass (LP) or High-Pass (HP). The spectral distribution of the birdcage
coil resonant modes depends on the chosen design (LP or HP) and on the number of legs,
and it can be derived in a relatively simple way by the circuital model [2,3]. Elegant analytic
descriptions of the birdcage resonant modes, including explicit formulation of all mutual
interaction between adjacent meshes, can be found in the literature [4].

More recently, birdcage RF coils have been successfully used in the field of X-nuclei
MRI, where the signal of a first nucleus (1H) and a second nucleus (e.g., 13C, 23Na, 31P,
etc.) need to be detected with high signal-to-noise-ratio (SNR) and excellent spatial homo-
geneity. There has always been significant interest to investigate structural MRI together
with signals from non-proton nuclei, either MRI or MRS. However, most applications
were constrained by limited SNR. With the growing availability of 7 T MR scanners, there
is new hope that valuable information from nuclei with low concentrations and low gy-
romagnetic ratios can be used as new biomarkers in a variety of diseases, ranging from
neurodevelopmental disorders to those of the elderly population. Sodium 23Na can provide
important information for diagnostic and prognostic evaluations, in pathological processes
with suspected links to sodium ion channels, with change in sodium compartmentalization
(e.g., shift from extra- to intra-cellular), and/or with sodium accumulation within the tissue.
The increasing amount of complementary information (anatomical, metabolic and from
different nuclei) accessible by MRI and MRS, can become a major driver of personalized
medicine using 7 T equipment.

A range of designs have already been explored to implement double-tuned (DT) vol-
ume RF coils, including the recent configuration of nested birdcage RF coils [5,6]. Basically,
the following three designs have been proposed. The first involves an LP birdcage in
which the legs are alternatively tuned to the two working frequencies, adding a shunt LC
network (trap circuit) in series to the Low-Frequency (LF) tuning capacitor tuned at the
High-Frequency (HF) [7–10].

The second design, called nested in the following, involves two concentric and in-
dependent birdcages with different diameters placed one inside another [11–13]. The
outer birdcage is usually longer than the inner one, so that the coupling between the inner
and outer birdcage end-rings is minimized. Furthermore, the coupling between the two
structures can be minimized by rotating the outer coil with respect to the inner one of a
proper angle [6].

The third design, called the four-ring (4R) model, consists of three resonant struc-
tures [14,15]. The inner structure is a standard LP birdcage usually tuned at the low
frequency, corresponding to X nucleus rather than 1H [16] and its efficiency is like that of
an equivalent single-tuned birdcage coil [17]. The two outer structures are nested on the
inner one sharing the legs and one end-ring with the internal LP birdcage. They are usually
tuned at high frequency, and they can be designed as HP or LP birdcage-like configurations,
depending on the position of the tuning capacitors. If the tuning capacitors are inserted in
the external segments of the shared legs, the LP–LP configuration is achieved. Otherwise,
when the tuning capacitors are inserted in the two outer end-rings, the LP–HP configura-
tion is achieved [18]. The LP–HP configuration is usually chosen when the ratio between
the two working frequencies is relatively large (>2), as in the case of proton–sodium DT-RF
coils [14]. In general, obtaining the maximal SNR requires an optimised inner and outer leg
length ratio, which can cause a remarkable increase in overall coil length [14]. However,
an excessive distance between outer end-rings can restrict the accessible space, which
could limit its application for in vivo brain studies performed with small coils. When the
RF coil length increases, its use becomes impractical, then different 4R designs can be
employed, characterized by short [19] and folded [15] configurations or based on different
coil structures [20]. In addition to those described, a further RF coil structure based on the
birdcage was constituted by a “modified” DT 1H/31P birdcage for simultaneous imaging
and spectroscopy studies of the head at 7 T, where the capacitors in the end-rings were
removed and other capacitive branches were positioned between the leg extremities and the
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shield. Such configuration provided additional transverse electromagnetic modes (TEM) to
the birdcage spectrum [21].

Sodium MRI applications are vast and diverse for both preclinical and clinical appli-
cations [22–37]. However, the current study has been focalized on the sodium MRI of the
human head at ultra-high-field (UHF) (>3 T). Since sodium nuclei have lower concentration
than hydrogen in the human body and lower gyromagnetic ratio, the relevance in using
UHF MRI is mainly related to its capability of enhancing the SNR.

The goal of the current work is the optimization and construction of a proton–sodium
DT birdcage RF coil prototype for 7 T human head MRI. To this purpose, the 4R birdcage
model was designed and characterized through electromagnetic simulations. In a first
stage, the B+

1 field homogeneity and the RF coil efficiency of the 4R model were optimized
with respect to the coil geometrical parameters through electromagnetic simulations. In a
second stage, the geometrical parameters of the 4R DT-RF coil model, which showed the
best performances, were fixed and a 7 T RF coil prototype was designed, built, and tested
on the workbench.

2. Materials and Methods

The 7 T DT-RF birdcage coil model described in the following is designed to be driven
in quadrature at both frequencies (1H, 298 MHz; 23Na, 79 MHz). This choice is motivated
by the fact that a birdcage coil driven in quadrature mode produces a circularly polarized
magnetic field with an improvement in the effective B+

1 field amplitude of a
√

2 factor [38].
In the design optimization, two parameters were considered: the magnetic field

homogeneity and the RF coil efficiency. Both parameters were evaluated though electro-
magnetic simulations (CST Microwave Studio, http://www.cst.com, accessed on 15 De-
cember 2022) [39]. Figure 1 shows the surface current distributions for both frequencies. We
notice that the lower 23Na and higher 1H modes are provided, respectively, by the longer
and shorter rings.
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First, the B+
1 field homogeneity and the DT-RF coil efficiency of the 4R birdcage model

were evaluated by varying the geometrical parameters. The 4R RF coil internal diameter
and lengths were fixed considering the final target application, which is an MRI of the
human head.

The complex magnetic field B(x,y,z) in a sub-volume of the computational space can
be obtained through electromagnetic simulations [39]. We are interested in extracting the
circularly polarized component of the transverse magnetic field, B+

1 (x,y,z), which generates
the MRI signal. Thus, two slices, corresponding to the central transverse plane (z = 0) and
longitudinal plane (y = 0) were chosen, and the transverse B+

1 (x,y) and longitudinal B+
1 (x,z)

fields were calculated from:

B+
1 = [Re{Bx(x, y, z)}+ j Im{Bx(x, y, z)}] + j

[
Re
{

By(x, y, z)
}
+ j Im

{
Re
{

By(x, y, z)
}}]

(1)

Once the field maps were obtained, the RF homogeneity on the transverse (xy) and
longitudinal (xz) planes were evaluated as [34]:

RF f ield homogeneity =

[
1−

max
(∣∣B+

1

∣∣)−min
(∣∣B+

1

∣∣)
max

(∣∣B+
1

∣∣)+ min
(∣∣B+

1

∣∣)
]

(2)

To better understand the DT-RF coil behavior, the transverse and longitudinal profiles
were extracted from the B+

1 (x,y) and B+
1 (x,z) field maps, respectively.

At this stage, the matching procedure was not performed. Indeed, the matching
network introduces geometrical asymmetries which cause an increase in the RF field
inhomogeneity related to the matching network itself and not to the RF coil geometry.
Anyway, in practical conditions the asymmetry introduced by the matching network can
be restored following the procedure described in [40].

The second optimization parameter considered was the RF coil efficiency, which
depends on the effective input power coupled to the RF coil [5]:

RF f ield E f f =
average(

∣∣B+
1

∣∣/max
(∣∣B+

1

∣∣)√
Pinput

(3)

The matching procedure was performed to guarantee that the reflected power at
each input port was minimized and negligible (less than −12 dB), to make reasonable the
statement that the transmit power is totally delivered to the RF coil.

After evaluation of the two optimization parameters for a total of six different geomet-
ric models in unloaded and loaded (with a spherical phantom, mimicking the human head
dimension: diameter 180 mm; εr = 80, σ = 0.6 S/m to reproduce the average human brain
tissues characteristics at 7 T) condition, we selected three geometrical configurations with
variable length that may be useful for specific human head applications.

Finally, one optimized 4R birdcage coil prototype was built. The layout was designed
using Eagle software and the flexible printed-circuit-board (PCB) prototype printed on a
Kapton 50-micron-thick substrate. A dedicated mechanical support for the RF coil was
designed in Autocad and 3D printed using acrylonitrile butadiene styrene (ABS) plastic
material. The other materials used in the design are non-magnetic chip capacitors (ATC
100C from American Technical Ceramics, RICHARDSON RFPD, Milano, Italy), RG-58
cables (Belden, RS Components Ltd., Corby, UK) and a metallic mesh (200 holes per linear
inch—004 mm wire—0.077 mm aperture) arranged on the external tubes to shield the coil.
The coil was characterized on the workbench measuring the Sii parameters with a vector
network analyzer (VNA, E5080A Agilent Technologies, Microlease S.r.l., Milano, Italy) and
the coil Q factor as [5]:

Q =
f0

∆ f−3dB
(4)
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at the two working frequencies. The workbench test was performed both for the empty
RF coil and when loaded with a spherical phantom consistent with the one used for the
numerical simulations.

3. Results
3.1. 4R Birdcage Model Optimization

Since the final target of the current study is the realization of a DT-RF birdcage coil
prototype for human head imaging, the 4R coil diameter was fixed to 240 mm considering
the average diameter of the human head (Figure 2). Instead, the studied three 4R birdcage-
like structures require the choice of the inner and outer lengths, determining the total
length. Thus, full-wave simulations based on Maxwell equations were performed to study
the DT-RF coil behavior, by varying the coil length (see Figures 3–5). We started tuning
each geometrical configuration of the DT-RF 4R birdcage coil model with different lengths
at the two frequencies of interest with the coil without loading sample (in air). To this
purpose, we have considered the following three conditions: (i) inner 23Na birdcage gap
between end rings (gapER) variable, having the inner 23Na birdcage legs length (lNa) fixed
(Figure 3); (ii) inner 23Na birdcage legs length (lNa) variable, taking the gap between end
rings (gapER) fixed (Figure 4); (iii) inner 23Na birdcage legs length (lNa) variable, taking the
total coil length (lcoil) fixed (Figure 5).
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lNa variable parameter is in green, while the parameters changing with the lNa parameter are in
orange (gapER). In red are the fixed parameters (lH, lcoil, lshield).

Then, a cylindrical phantom model was included in the simulation models (Figure 6).
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Figure 6. EM CAD model of the four-ring DT-RF coil model with the spherical phantom positioned
at the center.

We performed full-wave simulations of all the above configurations and the B+
1 field

maps were extracted. From those maps we calculated the RF field homogeneity at the 23Na
and 1H Larmor frequencies (f1H and f23Na) on the transverse (z = 0) plane (Table 1) using
Equation (2).
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Table 1. |B+
1 | field homogeneity calculated on the transverse plane (z = 0) using Equation (2).

|B+
1 | Homogeneity (%)

lNa = 160 mm (Figure 3)

gapER = 24 mm gapER = 36 mm

@f1H 44 @f1H 50
@f23Na 97 @f23Na 97

gapER = 12 mm (Figure 4)

lNa = 144 mm lNa = 132 mm

@f1H 36 @f1H 32
@f23Na 97 @f23Na 97

lcoil = 232 mm (Figure 5)

lNa = 144 mm lNa = 132 mm

@f1H 38 @f1H 45
@f23Na 97 @f23Na 96

To give a closer look on the spatial RF field homogeneity in the following we will
concentrate on the comparison among three geometrical configurations, named accordingly
to the length of the proton birdcage lH as: long (lH = 256 mm, Figure 3b), short (lH = 180 mm,
Figure 4b), and intermediate (lH = 208 mm, Figure 5b). The normalized transverse

∣∣B+
1

∣∣
field maps on the central plane (z = 0) of these configurations are reported in Figure 7 for
the 23Na and 1H Larmor frequencies. Figures 8 and 9 show, respectively, the

∣∣B+
1

∣∣ profiles
along the x-axis and z-axis for the three considered geometrical configurations.
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Figure 7. Normalized transverse |B+
1 | field maps of the four-ring DT-RF coil model on the central

plane (z = 0). In (a–c) for the 7 T sodium Larmor frequency of the ‘long’, ‘short’ and ‘intermediate’
configuration, respectively. In (d–f) as for the first row but for the 7 T proton Larmor frequency.
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Figure 9. Longitudinal |B+
1 | profiles along the z-axis at the sodium (a), and proton (b), Larmor

frequency of the 7 T four-ring DT-RF coil model for the ‘long’ (red line), ‘short’ (blue line) and
‘intermediate’ (green line) configurations.

Thereafter, all geometrical configurations were matched at the two frequencies of
interest and the resulting diagonal elements of the scatter matrix calculated (Table 2). With
reflection coefficients always smaller than −14 dB, we proceeded with the evaluation of the
RF efficiencies (Table 3) as defined in Equation (3).

3.2. The Four-Ring DT-RF Coil Prototype Workbench Testing

Taking into account the target application, the ‘intermediate’ configuration was chosen,
built and tested on the workbench (Figure 10). Indeed, if the RF coil prototype is too long,
the desired positioning of the patient’s head at the coil center could be problematic. The
previous limitation holds for the human head imaging, but it may become irrelevant for
other clinical applications (e.g., limbs).
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Table 2. Simulated scattering parameters (Sii) of the four-ring DT-RF coil models after matching.
Port 1 refers to the first proton port; the reflection coefficient of the second proton port, S22, is equal
to S11. Port 3 refers to the first sodium port; the reflection coefficient of the second sodium port, S44,
is equal to S33.

Sii Parameters (dB) after Matching

lNa = 160 mm (Figure 3)

gapER = 24 mm gapER = 36 mm

S11 (f1H) −27 S11 (f1H) −22
S33 (f23Na) −23.8 S33 (f23Na) −30

gapER = 12 mm (Figure 4)

lNa = 144 mm lNa = 132 mm

S11 (f1H) −17 S11 (f1H) −16
S33 (f23Na) −29 S33 (f23Na) −32

lcoil = 232 mm (Figure 5)

lNa = 144 mm lNa = 132 mm

S11 (f1H) −14 S11 (f1H) −18
S33 (f23Na) −32 S33 (f23Na) −32

Table 3. Efficiency of the four-ring DT-RF coil models.

Efficiency (µT/
√

W)

lNa = 160 mm (Figure 3)

gapER = 24 mm gapER = 36 mm

@f1H 1.8 @f1H 1.8
@f23Na 3.0 @f23Na 3.0

gapER = 12 mm (Figure 4)

lNa = 144 mm lNa = 132 mm

@f1H 1.5 @f1H 1.7
@f23Na 3.0 @f23Na 2.9

lcoil = 232 mm (Figure 5)

lNa = 144 mm lNa = 132 mm

@f1H 1.6 @f1H 1.7
@f23Na 2.9 @f23Na 2.9
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Figure 10. The four-ring DT-RF prototype view after removing the external case (left). Detail of the
coil structure with two of the four rings visible (right).
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The prototype construction started by independently tuning the inner LP birdcage
at the sodium Larmor frequency and the two outer birdcage-like structures at the proton
Larmor frequency. The full spectra of the inner and outer structures were measured with
a pick-up loop connected to the VNA and placed close to the corresponding resonating
structures. Each outer birdcage-like structure behaves as a standard HP birdcage in the
absence of capacitors inserted on the inner and the opposite outer structures (Figure 11).
When the second birdcage-like structure is added by soldering the proper tuning capacitors,
a small increase (less than 3 MHz) in the resonant frequencies was observed (Figure 12). It
was likely due to a residual small inductive coupling between the two structures [41].
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Figure 12. Full spectrum of the two outer birdcage-like structures in absence of capacitors on the
inner structure (frequency sweep for 250 to 400 MHz).
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After independently tuning each resonant structure at the appropriate frequency
(sodium for the inner birdcage, proton for the outer ones), all the tuning capacitors (for
inner and outer birdcages) were soldered again. A minor detuning was observed and
adjusted. The full spectrum of the complete 4R-DT birdcage is reported in Figure 13. The
homogeneous mode of the inner LP birdcage was identified as the resonance at the lowest
observed frequency in the measured spectrum (marker 1 in Figure 13).
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Figure 13. Measured S11 full spectrum of the four-ring DT-RF coil prototype with both sodium and
proton resonant structures connected, frequency sweep from 50 to 450 MHz. Numbers without
apex refer to the LF resonant modes (1 to 8) with frequencies 81.8, 130.4, 162.1, 184.6, 197.7, 203.3,
205.1, 207.0 MHz. Numbers with apex refer to the HF resonant modes (8′ to 2′) with frequencies:
209.8, 213.6, 217.3, 222.0, 226.6, 237.9, 250.9 MHz. Counter-Rotating and co-rotating HP modes have
frequencies of 273.4 and 306.1 MHz, respectively, and the LG label refers to the end-rings mode of the
HP structures, which generates a longitudinal magnetic field.

Then, a cylindrical phantom model was included. The load consists of a phantom filled
with a 0.05 M saline solution with the same dimensions (diameter = 180 mm) and electrical
characteristics (σ = 0.6 S/m, εr = 80) used for the load included in the electromagnetic
model of the DT-RF coils. The Q factor at both working frequencies was measured (Table 4)
both in absence (Qunloaded) and in presence (Qloaded) of a spherical phantom.

Table 4. Q factors of the four-ring model measured at the sodium and proton Larmor frequencies at 7
T in the unloaded and loaded conditions.

Unloaded Qunloaded (f23Na) 387

Qunloaded (f1H) 337

Loaded Qloaded (f23Na) 181

Qloaded (f1H) 172

Finally, the prototype was matched in the presence of the spherical phantom using
series capacitive matching networks. The workbench measurements of the S parameters
are reported in Table 5.
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Table 5. Measured Sii parameters of the ‘four-rings’ DT-RF coil prototype.

Sii Parameters (dB)
S11 (f1H) −24

S22 (f1H) −20

S21 (f1H) = S12 (f1H) −15

S33 (f23Na) −14

S44 (f23Na) −16

S43 (f23Na) = S34 (f23Na) −16

4. Discussion

By numerical simulations, we have shown that all the considered geometrical configu-
rations can be successfully tuned and matched. The comparison among the models selected
based on the proton resonant structure length shows that the B+

1 field homogeneity at the
proton frequency for the ‘long’ configuration is 18% higher than the ‘short’ one while the
B+

1 field homogeneity at the sodium frequency does not show a significant variation. We
put emphasis on this result because at UHF-MRI the field distribution at proton frequency
is a critical factor, related to the length matching among the effective electromagnetic wave-
length and the sample’s dimension. Indeed, the proton frequency wavelength (λ0 ≈ 1 m
in the free space at about 300 MHz) becomes λ ≈ 0.11 m when the cylindrical phantom
(with εr = 80) is present. We also note that the improvement of the field homogeneity in
the longitudinal plane at the sodium frequency, obtained by increasing the total length
of the DT-RF coil, is clearly visible when comparing the ‘long’ and ‘short’ z-profiles (see
Figure 9a).

From the inspection of data in Table 3, we observe how the four-ring DT-RF coil
efficiency does not change significantly varying the geometrical parameters. This is an
indication that, for this type of coils, the design can be optimized in terms of the desired
homogeneity at the two resonant frequencies (with the constraints related to the target
body district), with limited trade-off in terms of coil efficiency. The latter is instead highly
dependent on the coil-to-shield ratio [6], a parameter we did not considered in this study.

In our prototype, during workbench tests, we noticed how when all the resonant
structures are joint together, the two outer birdcage-like structures become strongly coupled
through the inner legs and a splitting of the proton homogenous mode in a co-rotating
and counter-rotating mode is observable (Figure 13). For the counter-rotating mode, no
net current flows in the legs. Instead, for the co-rotating mode, the flowing RF currents
generate the desired transverse magnetic field, and this is the mode useful for imaging [14].
We also demonstrated that the 4R-DT coil can be efficiently tuned and matched with return
losses that, as from simulations (Table 2) and workbench tests (Table 5), are compatible
with a practical implementation.

To the best of our knowledge there are no other 4R-DT coils for human head at 7 T
to compare with. As previously discussed, the coil realization is relatively simple, and
the main limitation of this approach is related to the increased total length of the resonant
structure (when compared with the alternatively tuned legs or the concentric birdcages).
This issue could be mitigated by the folded approach developed in [15] for preclinical
applications but its applicability to the human head has not been demonstrated yet.

A qualitative comparison with the other two approaches is worthwhile. The alternated
leg design has two main limitations: (i) because of the inductor tolerances, it is very hard
to achieve N/2 trap circuits accurately tuned at the same frequency, and the birdcage
symmetry is perturbed, with degraded magnetic field homogeneity; (ii) the insertion of
N/2 trap circuits significantly degrades the birdcage Quality factor (Q) and the image
SNR. We can also state that its construction is complex and, considering the large number
of discrete components, the tuning/matching procedure can be very time-consuming.
The concentric birdcages approach is attractive but, even with the optimal geometrical



Electronics 2023, 12, 901 14 of 16

orientation of the legs of the two resonators [5,6], end-rings coupling is an issue. It can be
reduced, increasing the length mismatch among the two resonators [6] with the drawback
of an increased total length. In this respect, it shares this disadvantage with the 4R approach
but with the extra cost of a more time-consuming tuning/matching procedure.

5. Conclusions

In this study, suitable design criteria to optimize four-ring DT-RF coil designs have
been reported. The design procedure has been applied to a family of numerical 4R DT-RF
coil models for proton and sodium MRI of the human head at 7 T. These models have
been numerically characterized considering B+

1 field homogeneity and coil efficiency. The
simulations showed how good performances, in terms of both parameters, can be achieved
for human head imaging, with a careful optimization of the design parameters. A close to
optimal configuration was manufactured and tested on the workbench. The experimental
test was useful to define the tuning and matching procedure, verify the resonance spectrum
and check the achievable conditions in terms of scattering parameters.

In conclusion, the final geometrical parameters of the 4R DT-RF coil model and
prototype were selected considering the final target of MRI imaging of the human head at
7 T. We anticipate that other geometrical conditions could be selected to allow a wider class
of clinical applications at 7 T with the 4R DT-RF coil design.
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