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Abstract— Penalised PET image reconstruction algo-
rithms are often accelerated during early iterations with the
use of subsets. However, these methods may exhibit limit
cycle behaviour at later iterations due to variations between
subsets. Desirable converged images can be achieved for
a subclass of these algorithms via the implementation
of a relaxed step size sequence, but the heuristic selec-
tion of parameters will impact the quality of the image
sequence and algorithm convergence rates. In this work,
we demonstrate the adaption and application of a class
of stochastic variance reduction gradient algorithms for
PET image reconstruction using the relative difference
penalty and numerically compare convergenceperformance
to BSREM. The two investigated algorithms are: SAGA and
SVRG. These algorithms require the retention in memory of
recently computed subset gradients, which are utilised in
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subsequent updates. We present several numerical studies
based on Monte Carlo simulated data and a patient data set
for fully 3D PET acquisitions . The impact of the number of
subsets, different preconditioners and step size methods
on the convergence of regions of interest values within
the reconstructed images is explored. We observe that
when using constant preconditioning, SAGA and SVRG
demonstrate reduced variations in voxel values between
subsequent updates and are less reliant on step size
hyper-parameter selection than BSREM reconstructions.
Furthermore, SAGA and SVRG can converge significantly
faster to the penalised maximum likelihood solution than
BSREM, particularly in low count data.

Index Terms— Positron emission tomography, image
reconstruction, stochastic optimisation, variance reduction
algorithms, relative difference penalty.

I. INTRODUCTION

PENALISED maximum likelihood image reconstruction
algorithms for Positron Emission Tomography (PET) have

demonstrated improved desired image properties due to the
inclusion of accurate statistical models and a priori informa-
tion for promoting sharp edges and preserving smoothness
in uniform regions [1], [2]. To find the (unique) Penalised
Maximum Likelihood (PML) solution for PET reconstruction,
there are various classes of optimisation algorithms, e.g., pre-
conditioned gradient ascent [3], primal-dual algorithms [4]
and surrogate methods [5]. However, these algorithms remain
computationally intensive for clinical data as a consequence
of the repeated projection operations between the image and
measured data spaces. Hence, there has been interest in
accelerating these algorithms.

Iterative optimisation algorithms may be accelerated with
the use of subsets, also known as blocks or batches, e.g.,
Ordered Subset Expectation Maximisation (OSEM) [6],
Block Sequential Regularized Expectation Maximisation
(BSREM) [7] and Ordered Subset Separable Paraboloidal Sur-
rogates (OSSPS) [5] for PET reconstruction. There are several
subset methodologies, e.g., list-mode events subsets [8], [9]
and projection bin based subsets [6], [10]. In this study,
we consider the latter methodology. In these algorithms at
each image update, the projection operations are performed
only over a fraction (“subset”) of the data set, which greatly
reduces the computational cost per update. In current practice,
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the aforementioned PET algorithms typically cycle through
the subsets in a deterministic Ordered Subset (OS) sequence
[6], [10]. Initial acceleration for these methods is almost linear
with respect to the number of subsets employed, if subsets are
reasonably “balanced” [6]. Nevertheless, the variance existing
between subset data leads to image estimate voxel value
variations between successive updates, which is commonly
referred to as limit cycle behaviour [11].

This variance is especially pronounced when large numbers
of subsets are utilised. With a constant step size, after many
updates, the iterates may only oscillate in a neighbourhood
of the PML solution, without convergence. The size of this
neighbourhood depends on the step size [6]. While OSEM
is generally stopped before a limit cycle is observed, this
behaviour is undesirable for PML, and may incur practical
consequences in quantitative imaging [12]. Subset algorithms
can converge to the PML solution with the use of a relaxed
step size sequence [3], [12]. However, in practice the choice
of relaxation parameters may greatly impact convergence
behaviour and convergence rate may be impeded if poorly
selected [1].

We assess the application of two gradient-based Stochastic
Variance Reduction (SVR) algorithms to PET reconstruction
to reduce variations in successive image updates and to allow
the image to quickly converge to the PML solution under suit-
able criteria [13], [14]. These algorithms reduce the variance
of the gradient estimate by storing and utilising previously
computed subset gradients in the determination of the update
direction. A number of SVR algorithms have been proposed
in recent years, including SAGA [14], Stochastic Variance
Reduced Gradient (SVRG) [13], Stochastic Average Gradient
(SAG) [15] and StochAstic Recursive grAdient algoritHm
(SARAH) [16]; see a recent review for an overview of SVR
techniques [17]. We elected to use the Relative Difference
Penalty (RDP) in this work due to its smoothness and edge
preservation properties coupled with its extensive use in clini-
cal evaluation [12], [18], [19]. However, due to the lack of
a convex conjugate or a surrogate function, we limit our-
selves to gradient-based reconstruction algorithms and forgo
comparison with other non-gradient-based algorithms, e.g.,
stochastic Primal-Dual Hybrid Gradient (sPDHG) [20] or
Stochastic Variance Reduced Expectation Maximisation
(SVREM) [21].

We aim to demonstrate that SVR optimisation algorithms
are at least as fast and stable as the BSREM algorithm when
applied to a 3D non-TOF PET objective function regularised
using the RDP [2]. We investigate different algorithm imple-
mentations using various step sizes, number of subsets and
preconditioner configurations. Aside from our own preliminary
work [22], [23], to the best of our knowledge, this is the
first study of this kind. In Section II, the problem of iterative
PET reconstruction is formulated and properties of gradient-
based SVR algorithms are explained. Section III describes
the experimental setup used to evaluate the reconstruction
algorithms. Section IV contains the results of these experi-
ments and Section V provides a discussion of the key findings.
The primary conclusions of this research are presented in
Section VI.

II. THEORY

A. Penalised Maximum Likelihood PET Reconstruction

PML PET reconstruction is founded on an affine transform
that maps the unknown tracer distribution x = {xi }Nv

i=1 to
measured projection data y = {y j }Nb

j=1, where Nv and Nb

are the number of image voxels and detector bins, respec-
tively [1]. This is achieved via a system matrix operator A =
{a j i}Nb ,Nv

j=1,i=1, where the entry a j i models the probability of an
emission from the i th voxel being detected by the j th detector
element. Models of detector normalisation and attenuation may
be included in A. The model is complicated by the presence
of random and scattered events, which may be accounted for
using an additive expected background b̄ = {b̄ j }Nb

j=1. Hence,
the acquisition model, which is also known as the forward
model, is given by

ȳ j (x) =
Nv∑

i=1

a j i xi + b̄ j , j ∈ {1, 2, . . . , Nb}, (1)

where ȳ = {ȳ j (x)}Nb
j=1 is the expected data for a tracer

distribution given by x. In PET, a good approximation for
the measured data y is that y j are statistically independent
and follow a Poisson distribution with mean ȳ j (x).

PML methods optimise an objective function:
�(x) = L(x)− β R(x), (2)

where L(x) measures the goodness of fit with the measured
data y, R(x) imposes a penalty on the image and β ≥ 0 is a
global scale factor between the two functions. Given the Pois-
son assumption, it is natural to use the Poisson log-likelihood
function L(x), given by

L(x) =
Nb∑
j=1

y j log(ȳ j (x))− ȳ j (x),

as the goodness of fit. The function is concave with respect to
ȳ j (x)and x.

PET PML methods typically optimise the objective func-
tion �(x) with the tracer distribution x constrained to be a
non-negative vector. For most common penalties R(x), the
objective function �(x) := L(x) − β R(x), β ≥ 0, has
a unique maximiser, i.e., the PML solution x̂, under mild
conditions [11]. Gradient based algorithms aim to converge to
the PML solution x̂ by iteratively adding a weighted objective
function gradient ∇�(xk) = ∇L(xk) − β∇R(xk) to the
current estimate xk , and often take the form

xk+1 = Px≥0
[
xk + αk D(xk)∇�(xk)

]
, (3)

where k is the update number index, Px≥0[·] is a voxel-
wise non-negativity projection operation, αk > 0 is a scalar
step size and D(xk) ∈ R

Nv×Nv is a strictly positive defi-
nite preconditioner. One example algorithm of this form is
Maximum Likelihood (ML) Expectation Maximisation (EM)
(MLEM) [24] written in the additive form [25], when αk = 1,
β = 0 and D(xk) = diag[xk/A�1], where the operator diag[·]
constructs a diagonal matrix from a vector and the vector
division is element-wise [26].
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B. Subset Methods

The computation of the log-likelihood gradient ∇L(x) gen-
erally dominates the computational effort for iterative methods,
even when utilising an efficient vectorised implementation [1].
This is due to the application of the forward and backward pro-
jection operators, A and A� respectively. Image reconstruction
may be accelerated by evaluating only sub-likelihood gradients
at each update. This is achieved by projecting into and from
a subset of the data. The measured projection data y may be
divided into a set of M subsets {Sm}Mm=1 that are pairwise
disjoint, that is, Sm ∩ Sn = ∅,∀m 	= n, and complete, that is,⋃M

m=1 Sm = {1, 2, . . . , Nb}.
The objective function �(x) may be written as a sum of

sub-objective functions �m(x) as

�(x) =
M∑

m=1

�m(x) =
M∑

m=1

(
Lm(x)− β

M
R(x)

)
, (4)

where Lm is the log-likelihood of the mth subset. The gradients
are given by

∇�(x) =
M∑

m=1

∇�m(x) =
M∑

m=1

(
∇Lm(x)− β

M
∇R(x)

)
. (5)

The additive preconditioned subset update may be recast as

xk+1 = Px≥0
[
xk + αk M Dm(xk)∇�m(xk)

]
, (6)

where Dm(xk) is a preconditioner of the mth subset. Many
PET reconstruction algorithms utilise this format, e.g., (addi-
tive) OSEM [6], BSREM [7], [11], OSSPS [5] and Row-
Action ML Algorithm (RAMLA) [3], each of which differ
by the choice of Dm(x) and αk . These algorithms generally
use a deterministic cyclical sequence to select the subset index
m at each image update [6], [10].

Computing only a subset gradient at each update leads to
almost linear acceleration during early iterations if the subsets
are balanced [6], [11]. The subset balancing amounts to

∇�1(xk) ≈ ∇�2(xk) ≈ . . . ≈ ∇�M (xk). (7)

The diagonal preconditioner may be used to further balance
the weighted subset gradients, e.g., OSEM’s subset dependant
EM preconditioners. If the subsets and preconditioners are
chosen properly, the subset balancing condition holds when xk

is far from the solution x̂. However, the assumption of subset
balance does not generally hold due to various physical factors,
e.g., projection angle geometry, attenuation and data noise.
Discrepancies between subset data will lead to variations
between subset functions and gradients. Thus, while a subset
reconstruction algorithm efficiently optimises �(x) when the
iterate xk is far from the solution x̂, after a number of passes
through the data (epochs), the performance generally suffers
when approaching x̂. This is exacerbated when large numbers
of subsets are utilised.

As an alternative to deterministic cyclic subset selection,
stochastic algorithms select m randomly at each update,
usually with uniform probability. Stochastic Gradient Ascent
(SGA) is a popular stochastic algorithm used to optimise a
finite sum of separable functions, in the form of (4), using

an update equation comparable to (6) with D(x) = I ∈
R

Nv×Nv , the identity matrix [27]. This results in an unbiased
estimate of �(x) and ∇�(x), i.e., E[M�m(x)] = �(x) and
E[M∇�m(x)] = ∇�(x), where the expectation is taken with
respect to the random subset index m [27]. Note the inclusion
of M in these expectations and (6). These are included to
allow for comparable gradient magnitudes between algorithms
implemented with varying numbers of subsets.

C. Step Size Relaxation

Subset methods, in the form of (6), may converge
to the PML solution x̂ if a relaxed step size sequence
{αk}∞k=0 is applied [3], [7], [11]. A common relaxation
method is to diminish step sizes over the iterations k so
that limk→∞ αk = 0. The sufficient conditions on relaxation
sequences for global convergence are given by [3], [7], [28]

∞∑
k=0

αk = ∞ and
∞∑

k=0

α2
k <∞. (8)

Deterministic algorithms, e.g., BSREM [3] and RAMLA [7],
utilise this methodology. However, the selection of hyper-
parameters for the relaxation sequence can greatly impact
reconstruction performance.

D. Stochastic Variance Reduction Algorithms

Variance between subset gradients may impede reconstruc-
tion performance as xk approaches x̂. Recently, a novel
class of stochastic variance reduction techniques have been
proposed to combat this. In this work, we investigated the
application of SAGA (Algorithm 1) [14] and SVRG (Algo-
rithm 2) [13] to PET image reconstruction. These algo-
rithms approximate the full gradient ∇�(xk) with a low
computational cost gradient estimate ∇̃k,m(xk), but with a
lower variance than the (randomly selected) subset gradient
∇�m(xk) [17]. This is achieved by computing ∇�m(xk) for a
randomly selected subset index m at each update and utilising
M previously computed subset gradients gm stored in memory.
Under certain convexity assumptions, SVR methods converge
linearly in expectation where as traditional subset algorithms,
e.g., (6), are sub-linear [17].

Generally, SVR algorithms formulate the update direction
∇̃k,mk (xk) as

∇̃k,mk (xk) = ξ
(
∇�mk (xk)− gmk

)
+

M∑
m=1

gm, (9)

where ξ = M for SAGA and SVRG [29], which results
in an unbiased estimator of the gradient, i.e., ∇�(xk) =
E[∇̃k,m(xk)] [17]. Different choices for ξ result in a biased
estimator, e.g., ξ = 1 for SAG [15].

Compared with SAGA, SVRG does not store the subset
gradient gmk

← ∇�mk (xk) at each iteration and instead
periodically updates each of the gm terms from an anchor
image x̃. This periodic computation occurs every γ epochs,
i.e., γ passes over the entire data set. For convex optimisation
problems, γ = 2 is heuristically suggested [13]. This periodic
computation of M gm terms is equivalent to the computation
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Algorithm 1 SAGA Algorithm

Given x0 ∈ R
Nv , M , K and {αk > 0}Kk=0

Store gm = 0, ∀m ∈ {1, 2, . . . , M}
for k = 0, 1, . . . , K do

Choose mk uniformly in {1, 2, . . . , M}
Compute ∇�mk (xk)

∇̃SAGA
k,mk

(xk)← M

(
∇�mk (xk)− gmk

)
+∑M

m=1 gmk

Store gmk
← ∇�mk (xk)

xk+1 ← xk + αk∇̃SAGA
k,mk

(xk) # Update step
end for

Algorithm 2 SVRG Algorithm

Given x0 ∈ R
Nv , M , K , {αk > 0}Kk=0 and γ > 0

for k = 0, 1, . . . , K do
if k mod γ M ≡ 0 then

x̃← xk

for m ∈ {1, . . . , M} do # Loop over all subsets
Compute ∇�m(x̃)
Store gm ← ∇�m(x̃)

end for
∇̃SVRG

k,mk
(xk)←∑M

m=1 gm
else

Choose mk uniformly in {1, 2, . . . , M}
Compute ∇�mk (xk)

∇̃SVRG
k,mk

(xk)← M
(∇�mk (xk)− gmk

)+∑M
m=1 gmk

end if
xk+1 ← xk + αk∇̃SVRG

k,mk
(xk) # Update step

end for

of the full gradient (i.e., an epoch) with a single image update
applied. This allows for the evaluation of the objective function
without additional projection operations and, to the best of our
knowledge, this is a unique feature for a subset algorithm.

Note, the M factor in (9) is not present in the works of [13]
and [14] because the objective functions in the said works are
formulated as �(x) = 1

M

∑M
m=1 �m(x), whereas this work

uses (4).

E. Adaptation to PET

The PET problem tends to be ill-conditioned. Thus, direct
application of the aforementioned standard SAGA or SVRG
algorithms may result in slow reconstructions. We replace
the update step of Algorithms 1 and 2 with a preconditioned
update, given by

xk+1 = Px≥0
[
xk + αk Dk∇̃k,m(xk)

]
, (10)

where the positive-definite diagonal preconditioner Dk ∈
R

Nv×Nv can depend on k. Furthermore, this modification also
includes the projection operation onto non-negative vectors
and thus the optimisation problem is constrained [14]. The
resulting update closely resembles (6). We will denote these
preconditioned algorithms with their original abbreviations
(SAGA and SVRG) in the remainder of this paper.

There are several possible choices for the preconditioner
Dk and step size αk , which can lead to different convergence
behaviour. The simplest choice is to set the preconditioner Dk

to be constant, diagonal and positive definite, and the step
size constant as well. Then SAGA and SVRGthe SVRG and
SAGA will converge almost surely to the PML solution x̂
provided that the step size α is upper bounded by a critical
value αLD , which depends on the global Lipschitz constant
LD > 0 (that is assumed to exist) of the preconditioned system
[21, Theorem 4.1].1 The convergence result remains valid if
the preconditioner and step size are fixed after a finite number
of epochs.

Due to the challenge of determining the optimal step size a
priori, we also investigated a diminishing step size sequence
of the form (8) for these stochastic algorithms. Building upon
the convergence proof of [11, III.B], for a diagonally scaled
incremental gradient method of the type (6), we expect that
the aforementioned almost sure convergence remains valid
for relaxed step size sequences satisfying (8) and a constant
preconditioner, although a complete proof is still unavailable.
Nonetheless, the experiments below confirm the convergence.

III. NUMERICAL EXPERIMENTS

A. Synthetic Data Generation and System Modelling

To assess the applicability of SVR algorithms for
PET reconstruction, a numerical OpenGATE (GATE)
simulation [30] of the GE Discovery 690 scanner [31],
with uniform crystal efficiencies, was performed via the
STIR-GATE-Connection [32]. A photon emission simulation
was performed using back-to-back 511 keV photon emissions
from a voxelised XCAT torso phantom [33] with activity
concentrations representative of an 18F-FDG study (see
emission and attenuation distributions in Fig. 1a and Fig. 1b,
respectively). A 1 cm diameter, 1 cm long, cylindrical hot
lesion, with 2.5:1 lesion to lung contrast, was inserted into
the lung of the XCAT emission. Cardiac and respiratory
motion, along with radioactive decay, were not modelled. The
resulting list mode data were re-binned into sinograms with
288 projection angles.

Normalisation factors are required for an accurate system
model. A cylindrical phantom, the size of the scanner’s Field
of View (FOV), was forward projected in both GATE and
Software for Tomographic Image Reconstruction (STIR) [34]
without attenuation using ray-tracing with 10 rays per bin.
The normalisation was computed, as per component-based
normalisation factors with crystal efficiencies and “geometric”
effects, using maximum likelihood computation with STIR-
GATE-Connection tools [32], [35]. However, as the GATE
simulation did not contain any variability between blocks, the
crystal efficiency aspect of the normalisation may be ignored.

An estimation of random coincidence events was also made
with STIR-GATE-Connection tools. Singles were estimated

1A modified likelihood function is required if b̄ j = 0 for any j [21], but for
any realistic PET reconstruction (like those included in this work) b̄ j > 0 ∀ j .
The proof also requires ∇�m to be bounded upon B � {x ∈ R

p : 0 ≤ xi ≤
U, ∀i} (where U is an upper bound [11, appx A]) and �m(x) to be concave
over this bounded region.
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Fig. 1. Transaxial slices of various distributions for the 50 million event
simulated XCAT data set. (a) Emission and (b) attenuation consisted
of (141,141, 47) voxels of size (3,3, 3.27) mm. Reconstructed images
(c) and (d) contained (251, 251,47) voxels of size (2.13, 2.13, 3.27) mm.

from the delayed coincidence events (recorded by GATE)
using a maximum likelihood algorithm and then multiplied
to find the randoms rates [36]. However, we observed a
discrepancy between the total number of delayed coincidence
events and the true number of random coincidence events.
Therefore, the estimated randoms were globally scaled to
match the true randoms count [32].

An estimation of the scatter contribution was similarly
computed using STIR’s iterative single scatter simulation and
estimation utilities [34], [37]. Image reconstructions were
performed using custom reconstruction software, based on
STIR.

To assess reconstruction algorithm performance, the list
mode file was sampled to acquire sinogram data with 50, 250,
and 1200 million events with a true-to-background ratio of
0.93:1, where background is random plus scattered events.
This resulted in data sets with low to high Signal-to-Noise
Ratio (SNR), respectively. The aforementioned data correc-
tions were computed individually for these data sets. Attenua-
tion factors and normalisation factors were incorporated within
the system matrix A.

B. Patient Data

A 150 second 18F-FDG static patient scan was acquired on a
5 ring GE Discovery MI (272 projection angles) [38] and 143
million events were recorded. Non Time Of Flight (TOF)
quantitative data corrections were computed using vendor-
provided procedures but image reconstructions were per-
formed similarly to the aforementioned simulated data. The
patient was part of a prospective study approved by the ethical
committee (BASEC-Nr 2018-01012) investigating whole body
dynamic PET. The patient gave informed consent for further

Fig. 2. Coronal slices of the patient data set reconstruc-
tion with a bronchial carcinoma (arrow) in the left upper lobe
(kBq/mL). Reconstructed images consist of (323, 323, 89) voxels of size
(2.21,2.21, 2.76) mm.

use of their data. The patient was diagnosed with a bronchial
carcinoma in the left upper lobe (Fig. 2).

C. Subset Methodology

Equally spaced rows of a sinogram were binned into a
subset. Subsequent subsets were constructed similarly but were
offset from one another by their respective subset index m.
BSREM and OSEM utilise the cyclical and deterministic
subset sampling methodology, as discussed in Section II-B.
The stochastic algorithms select m uniformly at random at
each update.

D. Algorithm Warm Starting

The proposed SVR algorithms have been observed to be
sensitive to initial conditions [39]. This is because the initially
stored subset gradients, which are computed when xk is far
from the PML solution x̂, are not representative of the subset
gradients when xk approaches x̂. These gradients are retained
in memory and can lead to undesirable update directions once
the image has begun to resolve. Therefore, we initialised the
investigated algorithms from an image computed by one epoch
of OSEM (xOSEM). A 24 subset OSEM was performed for the
simulated data (Fig. 1c) while 17 subsets were used for the
patient data (Fig. 1a).

E. Penalty

Ideally, the penalty function R(x) in (2) reduces the impact
of noise in the data while promoting structural edges [1]. Due
to its use in modern clinical PET scanners, we implemented
a spatially-variable [40] RDP [2] to achieve this, given by

R(x) =
Nv∑

i=1

∑
l∈Ni

√
δiδl

(xi − xl)
2

(xi + xl)+ ω|xi − xl | , (11)

where Ni is a 3 × 3 × 3 neighbourhood about the i th image
voxel, and ω = 2 is a parameter used to control edge
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preservation. δi and δl are spatially variable penalty strengths
with the image κ = {δi }Nv

i computed by

κ =
√

A�diag

[
y

ȳ (xOSEM)2

]
A1. (12)

The computation of κ requires two forward projections and
one backward projection but this is ignored in our analysis.
The RDP encourages smooth cold background (low activity)
regions and can improve lesion detectability when compared
with regularisers that are less edge-preserving, such as the
quadratic penalty [12], [18].

F. Diagonal Preconditioner

The EM preconditioner D(xk) = diag[xk/A�1] is used in
the MLEM and BSREM algorithms. However, this precondi-
tioner is not positive definite and prevents a voxel with zero
value (xi = 0) from updating, regardless of the gradient’s
value. The authors of [11] proposed a modification to the
update equation to prevent this occurrence by projecting
xi ≤ 0 to a small positive value. In this work, we implemented
a different modification of the EM preconditioner, given by

D(x) = diag

[
x + δ

A�1

]
, (13)

where δ is a uniform image of heuristic pixel value 10−6,
which is included to allow voxels with value 0 to be updated.
The δ is small enough that it does not significantly impact
reconstruction performance in this work.

We investigated the impact of different preconditioner inputs
on the convergence of SAGA and SVRG. These included
D(xk), freezing the preconditioner at D(xOSEM), and freez-
ing the preconditioner after 5 and 10 epochs, D(x5M) and
D(x10M) respectively.

G. Step Sizes

As per Section II-E, SAGA and SVRG are guaranteed to
converge for constant step sizes (if small enough) but the
sharp upper bound on the step size magnitude is difficult to
compute. Regardless, we investigated the application of αk = 1
with preconditioner given by (13), a configuration that has
been explored in previous studies [22], [23]. We additionally
investigated the application of a relaxed step size sequence
that satisfies the conditions stated in (8), given by

αk = 1
η
M k + 1

, (14)

where the relaxation factor η is scaled by the number of
subsets M so that step sizes of reconstructions, using different
numbers of subsets, are comparable at similar epochs.

H. Converged Comparison and Performance Metrics

In PML, it is assumed that the penalty term R(x) encourages
local smoothness and edge preservation so the PML solution
x̂ is desirable [1]. Therefore, we assessed reconstruction
performance by comparing each algorithm updates xk to the
converged image x̂, which was obtained by reconstructing the

data using (10) with ∇̃SVRG
k,mk

and the modified-EM precondi-
tioner (13). The reconstruction algorithm’s step size αk was
reduced if �(xk) ≤ �(x(k−γ M)) when measured periodically
at each epoch.

The algorithm was terminated and x̂ = xk when the
estimate satisfied the Karush-Kuhn-Tucker conditions (within
numerical precision) [41].

The following metrics were employed to assess the recon-
struction performance. A Region Of Interest (ROI) was drawn
exactly over the XCAT data’s inserted lung lesion. Similarly,
a (20 × 26 × 20) mm3 ROI was drawn over the bronchial
carcinoma and Standardized Uptake Value peak (SUVpeak)
values [42] were computed. The ROI contains the entire carci-
noma hot spot. Furthermore, a (50×60×60) mm3 ellipsoidal
ROI was drawn within the patient’s liver with a minimum
10mm distance was maintained from the organ’s boundary.
ROI percentage error was computed for each update k, with
respect to x̂, given by

ROI Percentage Errork = 100% · θk − θ̂

θ̂
, (15)

where θk and θ̂ are mean ROI voxel values for the kth image
estimate and converged image, respectively. Furthermore, the
objective value �(x) was computed after every epoch of the
reconstructions.

Unlike deterministic algorithms, SVRG and SAGA generate
additional noise in the reconstruction performance metrics due
to stochastic subset sampling at each update. Thus, a set of
15 independent reconstructions S were run for each stochastic
algorithm configuration. The mean and standard deviation
values of each metric were computed over the stochastic reali-
sations. Additionally, the general convergence performance of
these algorithms was assessed using a percentage Normalised
Root Mean Squared Error (NRMSE) metric at each update k,
given by

NRMSE%k = 100% ·
√

1
|S|

∑
s∈S(θs,k − θ̂ )2

θ̂
. (16)

IV. RESULTS

Sections IV-A to IV-C, we evaluate the impact of the number
of subsets, various preconditioner configurations and various
step size relaxation parameters with the SAGA and SVRG gra-
dient estimators. Reconstructions in these sub-sections utilise
the noisy XCAT data with 50 million prompt events. The
impact of noise levels on SAGA’s and SVRG’s performance
is investigated in Sections IV-D and IV-E demonstrates the
algorithms’ reconstruction performance when applied to a
patient data.

A. Varying the Number of Subsets

Standard PET subset algorithms (e.g., BSREM) are linearly
accelerated but, at later iterations, limit cycle behaviour may
be observed in the reconstruction sequence. An example of
these variations is exhibited by the BSREM profile in Fig. 3a,
even with step size relaxation.
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Fig. 3. Lung lesion percentage error of (a) BSREM, (b) SAGA
and (c) SVRG reconstructions using various numbers of subsets. The
implemented preconditioner is D(xk). BSREM is shown with various η
values, which were chosen to demonstrate strong metric performance,
but were not optimised. The stochastic algorithms utilised no step size
relaxation (η = �) with 15 stochastic realisations of each configuration.
The 96 subset SAGA profile is not included for figure clarity.

SVRG reconstructions using various numbers of subsets,
the D(xk) preconditioner (13), and no step size relaxation are
shown in Fig. 3c. Note, SVRG’s full gradient re-computation
parameter γ was fixed at γ = 2. The usage of fewer subsets
resulted in slower convergence of the mean performance
but the standard deviations were greatly reduced. The mean
values, for each of the configurations, converged to 0% lung

Fig. 4. Lung lesion percentage NRMSE over multiple stochastic realisa-
tions with preconditioners anchored at different epochs. The BSREM
NRMSE value was computed for a single deterministic realisation
with (16).

lesion error with the deviations reducing dramatically at later
epochs. SAGA reconstructions exhibited similar behaviour
to SVRG, albeit with larger deviations. Based upon these
results, Figs. 4, 5, 6 and 7 plot the performance of SAGA
and SVRG using 72 subsets, which demonstrated a rea-
sonable trade-off between convergence rate and stochastic
variation.

B. Constant Preconditioner and Step Size

In Section IV-A, the SVR algorithms were implemented
with the diagonal preconditioner D(xk), which was updated
at each iteration k. In Fig. 4 we investigate the impact of
anchoring input x for the preconditioner D(x) after various
periods of computation by plotting the NRMSE%.

The SVR reconstruction NRMSE% performances are com-
parable for the D(xk), D(x5M) and D(x10M) preconditioners.
However, the D(xOSEM) lesion values do not converge to the
solution x̂. SVRG appears to converge closer to the PML
solution x̂ than SAGA for similar configurations.

In Fig. 5 we plot ROI values of a region outside of the torso.
The voxels in this region do not converge to zero when the
preconditioner D(xOSEM) is implemented without step size
relaxation.
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Fig. 5. Mean XCAT reconstruction (50 million event) image background
region values across multiple stochastic realisations of SAGA and SVRG
with preconditioners anchored at different epochs and relaxation para-
meters η = 0.0 and 0.4.

C. Relaxed Step Size and Constant Preconditioner

The global convergence of the SVR algorithms is not
guaranteed when using a constant step size that is too large.
Here we investigate the impact of using step size relaxation
when a poor performing anchored preconditioner is utilised.

Fig. 6 indicates that the lesion ROI value converges to the
PML solution x̂ with relatively little relaxation, even when the
preconditioner is fixed at an un-optimised one.

D. Data Noise

Impact of data noise on the performance of the investi-
gated algorithms is shown in Fig. 7. The stochastic algo-
rithms were implemented with a combination of previously
observed advantageous configurations. The SVRG reconstruc-
tions demonstrate similar performance when optimising �(x),
regardless of step size relaxation, for all data sets. The SAGA
reconstruction profiles with η = 1.5 result in performance
comparable to that of SVRG but the algorithm is sensitive to
the selected step size parameters.

E. Patient Data

Multiple reconstructions of the selected patient data set
were performed with various step size relaxation parameters η.
Algorithm configuration performance was evaluated in terms
of the average MSE obtained over the first 10 epochs (10M),

i.e., 1
M

∑10M
k=0 (θk − θ̂ )2, where θ is the mean bronchial carci-

noma ROI value for this data. This was done in an attempt to
identify optimal η values with fast SUV convergence within
10 epochs. Using this grid search, the best performing BSREM
(17 and 34 subsets) and SAGA and SVRG (68 subsets)
reconstructions are plotted in Fig. 8. The mean bronchial
carcinoma values (Fig. 8a) converged quickly to an SUV
peak value of 6.138 for both SAGA and SVRG with minimal
deviations after 3 epochs. The liver mean ROI value converged
to 7.82 kBq/mL using SAGA and SVRG within a similar
number of epochs (plots not shown). Additionally, the standard
deviation of voxel values within the liver ROI converged to a
value of 0.83 kBq/mL, see Fig. 8b.

Fig. 6. XCAT 50 million event data set lung lesion percentage error
of (a) SAGA and (b) SVRG reconstructions using various step size
relaxation factors η, 72 subsets and the D(xOSEM) preconditioner.

V. DISCUSSION

A. Impact of Number of Subsets

As observed in Fig. 3, increasing the number of subsets of
the SAGA and SVRG algorithms results in greater variations
in metric performance between stochastic realisations during
early epochs. However, the magnitude of these variations are
still comparable to the BSREM reconstruction inter-update
variations, which utilised a step size relaxation sequence, while
SAGA and SVRG used a constant αk = 1. SVRG demon-
strated reduced variations between stochastic realisations but
does exhibit slower convergence. This is likely due to peri-
odically recomputing the g terms from x̃ and keeping much
of the ∇̃k,m (xk) computation constant, improving stability, but
incurring the periodic additional computational cost.

The stochastic variance observed during early epochs of
Fig. 3 and Fig. 4 appears greater for SAGA than SVRG.
For SAGA, although it is expected that a subset index m ∈
{1, 2, . . . , M} is selected once every epoch, the expected
number of epochs required to select each m once grows as
O(log(M)) [43, Sec. 4]. Hence, a number of SAGA’s stored
subset gradients may not have been computed from recent
iterates. Thus, for some m, gm 	≈ ∇�m(xk). This will result in
increased variance between stochastic realisations. This issue
is exacerbated by SAGA’s initialisation of gm = 0, ∀ m
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Fig. 7. Mean objective function evaluations of 15 stochastic realisations
measured at every epoch of BSREM, SAGA and SVRG reconstructions
for XCAT data sets with (a) 50, (b) 250 and (c) 1200 million prompt events.
SVR algorithms utilised a D(x5M) as a preconditioner and 72 subsets.
Various step size methodologies are demonstrated. Standard deviation
markers are removed for clarity.

because the variance reduction properties of these algorithms
are obtained when gm approaches ∇�m(xk) as k grows [17].
In contrast, SVRG recomputes all gm terms periodically and
therefore gm ≈ ∇�m(xk).

The 72 subset SAGA and SVRG reconstructions demon-
strated a good balance between faster initial performance than
BSREM and reduced stochastic influence after about 5 epochs
(Fig. 3).fast initial performance (in mean) and reduced stochas-
tic influence after about 5 epochs. This evidence suggests that

Fig. 8. Reconstruction performance of the patient data for BSREM,
SAGA and SVRG reconstruction algorithms. (a) Bronchial Carcinoma
ROI-mean profile and (b) ROI standard deviation in the patient’s liver.

while a larger number of subsets can be used for with SAGA
and SVRG than BSREM, too great a number may result in
issues, particularly for SAGA.

B. Convergence

In order to ensure convergence to the PML solution,
we applied a modified version of the EM preconditioner,
frozen at different epochs and investigated several step size
relaxation parameters η. We observed a systematic error
in the later epochs of reconstructions utilising D(xOSEM)
without step size relaxation, both in the lung lesion
(Figs. 4a, 6b and 6b) and the region surrounding the patient
(Fig. 5). We hypothesise that is related to a step size that is
too large coupled with the non-negativity constraint. A large
step size induces oscillations between updates of the voxel
values. However, in the background region this leads to a
positive overall bias due to the truncation to non-negative
values. This positive bias then leads to a (small) negative
bias inside the torso. Our results indicate that this is resolved
by using a diminishing step size sequence (e.g., (14)) as
well as by deferring the anchoring of the preconditioner
until later epochs (e.g., D(x5e)). Note that the latter achieves
a smaller effective step size in the background, reducing
the need for relaxation. The implementation of a delayed
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anchoring of the preconditioner might therefore allow for
significantly improved performance. Our experiments indicate
that the implementation of a moderately relaxed step size
sequence, along with an anchored preconditioner, allows for
fast and (almost sure) convergence, but this remains to be
theoretically confirmed. We note that these observations are
specific to EM-like preconditioners. Performance of these
algorithms with a preconditioner that does not iteratively
reduce effective step size near zero values, e.g. the OS-SPS
“precomputed denominator” [11] and related row-sum of the
Hessian preconditioners [26], remains to be investigated but
would likely suffer due to the non-negativity constraint.

C. Impact of Data Noise

Fig. 7 indicates that SVR algorithms are particularly effec-
tive in reducing the impact of subset imbalance for noisier
data. The SAGA and SVRG reconstructions generally achieve
higher objective function values faster than BSREM with the
50 million event data set.SVRG and SAGA reconstructions
resulting in generally higher objective function values much
faster than BSREM for 50 million events. Yet, as the number
of events increased, BSREM reconstructions became compet-
itive in optimising the objective �(x). Moreover, as the data
set SNR increases, all reconstruction algorithms appear less
sensitive to relaxation parameter η.

D. Patient Data

Commonly, noise and bias trade-offs are evaluated in PML
reconstruction analysis [12], [44]. This evaluation is sensitive
to the reconstruction algorithm, epoch number and objective/
penalty function. Due to the criteria used to optimise η
in Section IV-E, the bronchial carcinoma converged quickly
with BSREM, although some inter-update variations were
present (Fig. 8a). However, the liver standard deviation did
not converge within 10 epochs in Fig. 8b. Both of the
BSREM reconstructions exhibited standard deviation values
that were consistently greater than the converged value and
significant inter-update variations. Therefore, usage of SAGA
and SVRG effectively removes a source of potential error due
to selection of the reconstruction algorithm, number of subsets
or reconstruction length (after 4 epochs).

SAGA’s performance appears more sensitive to step size
selection than SVRG’s. This is evidenced by the discrepancy
between SAGA’s and SVRG’s optimal η values and SAGA’s
larger standard deviations in Fig. 6. A plausible explanation for
this phenomenon is the initial high frequency fluctuations in
the SAGA reconstructions, which are not present for SVRG,
that are likely caused by the lack of pre-set gm terms. Yet,
even with the larger η value, SAGA converges with similar
speed to SVRG and this indicates that the SVR algorithms
are less sensitive to step sizes than compared to BSREM.

E. Practical Implementation for PET

For this study, we found that the memory requirement for
storing M subset gradients gm terms was insignificant on a
modern computing system with each gm corresponding to

approximately 20MB in memory. Furthermore, the SAGA and
SVRG algorithms do incur some additional computational cost
in the computation of ∇̃k,m(xk), compared to BSREM due
to the additional image manipulations associated with (9).
However, in an efficient software implementation, the impact
of this should be negligible with respect to the computation
of ∇�m(x), which requires subset forward and backward
projection operations. Therefore, an epoch of the SAGA or
SVRG algorithms is expected to require slightly increased, but
comparable, computational effort to gradient-based algorithms
(e.g., BSREM) [21].

An alternative SVRG implementation that benefits from
reduced memory requirements can also be employed. Only
the full gradient G = 1

M

∑M
m=1 gm and anchored position

x̃ are stored in memory and ∇�m(xk) and ∇�m(x̃) are
computed at each update. We note that this implementation
should generally be unnecessary for PET reconstruction due to
the relatively small memory requirements for PET distribution
volumes and the additional, but significant, computational cost
of evaluating ∇�m(x̃) at every update.

F. Comparisons to Other Work

While the studied SVR algorithms were designed to utilise
stochastic subset selection, results from a preliminary study
indicated that the application of an OS selection methodology
resulted in superior performance during early iterations but the
convergence rate was diminished after 10 or so epochs [23].
In these works, the SAG algorithm [15] was also investigated.
SAG utilises a similar algorithm methodology as SAGA but,
as aforementioned in Section II, sets ξ = 1 in (9). This
makes ∇̃SAG

k,m (xk) a biased estimator of ∇�(xk). SAG was
not evaluated in this work because it was observed to be less
stable than SAGA under the same conditions [22], [23].

The SARAH algorithm [16] is closely related to the pre-
viously described alternative SVRG algorithm (Section V-E).
SARAH also periodically recomputes all gm terms from a
common iterate x̃ but only stores x̃ and G in memory.
The algorithm evaluates two subset gradients at each update,
∇�m(xk) and ∇�m(xk−1). This additional computation is the
reason that SARAH is not included in this work.

Another SVR algorithm is SVREM, which was developed
and applied to PET reconstruction in a preliminary study [21].
This algorithm is a member of the EM family involving a
closed-form formula for iterate updates based on parabolic
surrogates and features non-negativity preservation.

Furthermore, the sPDHG algorithm has been recently devel-
oped [20] and applied to PET image reconstruction [45].
This algorithm guarantees (almost sure) convergence to the
PML solution x̂ by solving a saddle point problem and
has been applied to PET image reconstruction [45]. When
combined with preconditioning, sPDHG reconstructions can
utilise a large M and have shown great promise for 3D PET
reconstruction [46]. However, the selection of sPDHG step
sizes is generally heuristic and may impact performance.

This study focused exclusively on optimisating �(x) with
the RDP, which enjoys differentiability but the associated prox-
imal operator and surrogate function are currently unknown.
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Consequently, neither SVREM or sPDHG were compared to
SAGA and SVRG in this work.. In the future, we aim to com-
pare each of these recently proposed stochastic algorithms for
clinical PET reconstruction, although an alternative regulariser
may be required.

G. Future Work

Clinical reconstructions often only require a few epochs
of computation before the algorithm is terminated. In this
work, an epoch of the OSEM algorithm preceded all the
PML reconstructions, which provided a warm start for SAGA
and SVRG (see Section III-D). During this first epoch, when
initialising from x0 = 1, standard subset gradient algorithms
(e.g., OSEM and BSREM) are highly effective and demon-
strate almost linear acceleration [1]. However, in future work,
it may be beneficial to investigate alternative strategies for
warm starting, e.g., performing a fraction of an epoch of
initial OSEM computation. Alternatively, one may consider
pre-populating gm terms for the SAGA algorithm to improve
its stability, akin to SVRG’s initial computation. This has been
discussed in [27].

Regarding alternative step size relaxation methodolo-
gies, an adaptive step size selection methodology based
on the periodic evaluation of objective function values
could be beneficial. Such a methodology would be partic-
ularly suitable for SVRG-like algorithms that can compute
the objective function value, almost for free, every few
epochs.

In this work, we observed that the performance of stochastic
algorithms was impacted by the choice of step size and pre-
conditioner. The optimal preconditioner is the inverse Hessian
of the objective. However, computation of this is infeasible
for the 3D PET problem [1]. Yet, a number of limited
memory stochastic second order methods have been proposed
in the literature that are combinations of the Limited-memory-
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm [47],
[48] and SGA [49] or SVRG [50]. These algorithms approxi-
mate the inverse Hessian based on the gradient information
in the last few epochs. Alternatively, one might consider
the use of nonuniform step sizes [51], the Barzilai-Borwein
method [52] or momentum methods [53]. Using these meth-
ods, one may be able to further improve the convergence
rate.

While in this work we focused on an azimuthal projection
angle subset methodology, other methods of dividing the data
exist and could be considered for SVR algorithms. List mode
event based sampling and subset construction may yield addi-
tional reconstruction benefits, e.g., improved subset balance
with large numbers of subsets by constructing subsets that
are not limited by the geometry of the scanner [8], [9] or
as an alternative to sparse projection data [54]. Therefore,
construction and usage of subsets over alternative sinogram
data dimensions (e.g., TOF bins, oblique angles (“segments”),
or axial positions) may be viable with the presented SVR
algorithms. In addition, in the context of motion compensated
reconstruction, motion gates can also be used as subsets [55].

An initial investigation using sPDHG demonstrated promising
results for stochastic algorithms [56]. Moreover, the accel-
eration that these SVR algorithms realise and the reduced
sensitivity to subset selection indicates the potential benefit
of their application to other low event reconstructions, such as
and motion compensated parametric reconstructions. However,
the impact of sparsity or greater subset imbalance may lead
to additional challenges.

VI. CONCLUSION

We have shown that SVR algorithms SAGA and SVRG
can be successfully adapted (10) for 3D non-TOF PET recon-
struction. The investigated lung lesion, inserted into the XCAT
volume, and patient data bronchial carcinoma converge to
the respective PML values within 20 epochs in the majority
of tested configurations cases. We observed that increasing
the number of subsets accelerates convergence. While this
increases stochastic variability during early epochs, this vari-
ability reduces to virtually zero within 10 epochs in most
cases. Step size and preconditioner selection have dramatic
impact algorithm performance, particularly in the region sur-
rounding the emission object. Best results were obtained
using moderate step size relaxation and allowing the image
in the EM preconditioner to vary for a short period before
anchoring.

In the tested configurations, SVRG generally optimises the
objective function faster than SAGA and, when compared
to the BSREM reconstructions, the investigated algorithms
demonstrated superior convergence properties by every inves-
tigated metric.

Implementation of these algorithms in future studies, involv-
ing the variation of objective function parameters (e.g., priors
and penalty strength), may realise improved quantification
results, at lower computational cost, especially for low count
data reconstructions.
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