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Summary. Wide empirical analyses investigated size and growth rate distri-

bution of business firms, providing a relevant empirical support to economic

theory. We rely on such analyses and on studies on technology renewal costs

and productivity, in order to draw sufficient conditions for the optimality of

firms’ profit with respect to the time. The relationships that hold among pro-

ductivity, costs of renewal and growth rates of the companies at the optimal

profit time are shown and suggestions for firms’ policies are proposed.
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1 Introduction

One of the possible targets of a firm holder is to maximize his/her expected

profit. Several strategies can be implemented to achieve such target. Firms’

financial policies are strongly correlated to investments for technology re-

newal processes. Such investments are usually driven by the firm productiv-

ity, which depends on the growth rate and the size of the company.

This paper aims at analyzing the profit of a firm producing a single com-

modity. The analysis relies on firms’ renewal and productivity cost theories,

combined with the work of statistical physics research groups who discovered

empirical regularities about the growth of the firms. The approach presented

here thus, while maintaining the theoretical approach, is driven by empirical

facts on size and growth rate leading to conclusions closer to the real estate

of the business firms than the ones that can be drawn by pure theoretical

models.
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We use the technological renewal costs model presented in Chambers (2004).

This approach differs from the pioneering work of Schumpeter (1939) about

the innovation theory, because the introduction of a new technology is not

considered as an exogenous shock leading the economic system to jump from

a walrasian equilibrium to another.

Our model also differs from the approach followed in Caballero and Ham-

mour (1994), because we do not consider responses to external demands.

The modeling of productivity takes into account the suggestions pointed out

in Diewert et al. (2001), about the separation of effects due to productivity

price changes and growth, and in Ahn (2001), who proposes a complete sur-

vey on empirical studies showing how productivity depends on companies’

size and growth rate.

This paper starts reviewing the main features of the firms and the related

empirical literature, and it continues introducing the model and drawing the

relationships among costs and productivity parameters at the optimal profit

time.
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2 Main features of the firms and related lit-

erature

This section gives an overview of both theoretical and empirical studies re-

ported by the literature on business firms, and outlines the approach used in

the present paper.

2.1 Analysis of firms’ distribution

This section reviews literature results on size of business firms, pointing out

the analysis of the validity of Gibrat’s law.

Many empirical studies on size and growth rate of firms discuss the validity

of Gibrat’s rule of proportionate growth (also called Gibrat’s law), which

states that the proportional change in the size of a company in an industry is

the same for all companies irrespective of their original size (Gibrat, 1931).

Depending on some assumptions on the growth rates, this statement implies

that firms’ sizes are log-normally distributed (Gibrat’s law in strong form) or

at least skewed (Gibrat’s law in weak form). In both cases, a small number of

large firms coexists alongside a large number of small firms. Thus, the avail-

ability of databases containing information on small firms becomes relevant
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for this analysis. Most data have been obtained by Census and COMPUS-

TAT. The former has more data on small firms than the latter. Empirical

analyses that examine the firms’ size distribution give different results also

because of the choice of the measurement unit for the size of a firm, for the

hypotheses tested and the data set used. Gibrat’s law in a weak form is

confirmed by the detection of right skewness in the distribution of firms’ size

independently on the adopted definition of firms’ size (Amaral et al. 1997a,

1997b, Axtell 2001, Gaffeo et al. 2003, Stanley et al. 1996). Moreover, the

skewness has been shown to be robust over time (Axtell 2001).

Gaffeo et al. (2003) extend the analysis of Axtell (2001) performing empir-

ical analyses showing that firms are more evenly distributed during reces-

sions than during expansions of markets. Therefore, their statistics add an

economic meaning to the skewness proving its relevance as an indicator of

economic cycles.

The investigation of the companies distribution plays an important role in

order to provide estimates of the reaction of the market to external shocks:

as an example, Delli Gatti et al. (in press) show that, if data are log-normally

distributed, shocks are absorbed, whilst shocks lead to strong oscillations in

the case of Pareto distribution.
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Although previous studies (Hart and Oulton 1996, 1997) do not completely

reject the log-normal hypothesis, or discover it to be valid on limited time

data (Stanley et al. 1995) or categories (Amaral et al. 1997), more recent

papers (Axtell 2001, Gaffeo et al. 2003) propose the power law distribution

instead of the log-normal one. This result points out the limit of the validity

of the strong form of Gibrat’s law, reducing it to an approximate descrip-

tion. The detection of the power law distribution is consistent with the weak

form of Gibrat’s law. As an example in Simon’s model (Delli Gatti et al.

in press), Gibrat’s law is combined with an entry process to obtain a Levy

distribution for firms’ size. Under particular hypothesis on the growth rate,

Gibrat’s law and the power law have been shown to be both acceptable de-

scription for the distribution of firms bigger than a fixed threshold (Fujiwara

et al. 2000). This property is not valid in general (Kertesz et al. 2003), but

the behavior of biggest companies plays a crucial role in order to describe

the macroeconomic situation. The power law behavior seems to be common

also to parameters involving the economies of the G7 countries (Gaffeo et al.

2003). The results reported in Di Guilmi et al. (2003) can be interpreted

as the existence of a significant range of the world GDP distribution, where

countries share a common, size-independent average growth rate.
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Therefore, empirical analyses show the log-normal distribution to appear

only on particular data, whilst the power law behavior is much more widely

spread, and thus robust to the industry sector data choice.

2.2 Relationship between growth rate and size

The limits of Gibrat’s law on the firms’ size have been pointed out allowing

the modeling of firms’ sizes through a power law. It can be shown that the

logarithm of a power-law distributed variable obeys a Laplace distribution;

thus, the Laplace law for firms’ growth rate represents a consequence of power

laws for firms’ size.

Sutton (2003) proposes a model that explains the power law relation between

firms’ size and the variance of growth rates.

Stanley et al. (1996) show that the variance σ(s) of the growth rate decreases

as the size of the firm s increases. Moreover, such decay can be described

by a power law with an exponent β close to 0.20 (Amaral et al. 1997a, De

Fabritiis et al. 2003), that opens the way to further universality assumptions.

In the framework that we are going to set up, we suppose that the growth

rate is a deterministic parameter.
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Despite this distinction between our case and the stochastic growth rate

models, we assume that the number of companies with fixed size can be

described functionally by the Laplace’s law depending on the growth rate, in

accordance with the approach of Stanley et al. (1996).

2.3 Productivity and technology

The analyses explained in the literature involve several different measures for

innovation technology, and examine data about firms operating in different

sectors of the economy and belonging to several different countries. Technol-

ogy diffusion patterns are not the same across the surveyed technologies. The

reaction to innovation technology also depends on countries (Sharpe, 1998,

Milana and Zeli, 2002) and the causality is explored through linear or log

regression models (McGuckin et al. 1996). Whilst the data are not homoge-

neous, the emerging results through all these papers are quite homogeneous:

there exists a positive correlation between the adoption of a new technology

and the productivity, and establishments adopting advanced technology ex-

hibit high productivity levels (McGuckin et al. 1996).

However, the positive correlations could be a consequence either of the in-
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dependent effects of innovation on performance, or of the contributions of

good managers tending to adopt the best practices. Therefore, the relation-

ship between productivity growth and renewal processes can’t be thought

as completely explored. The comprehension of such cause-effect phenomena

could provide very important information on social policies. Several authors

focus on the key role played by improving education and training policies,

representing sometimes a preferred strategy rather than research support.

McGuckin et al. (1996), and Milana and Zeli, (2002) have developed this

aspect in the case of dominant sources of enhanced performances strongly

related to good management and skilled workforce. Moreover, the age of

technology is not connected to the age of the firm adopting it: new firms

could adopt an old toolkit because of budget constraints.

Information technology plays a crucial role in the economic system. Studies

on companies’ productivity performances reveal that the industries with the

largest productivity acceleration in the 1990s have been at the same time the

main producers and most intensive users of information technology.

On the basis of this analysis, we assume that the productivity function de-

cays as the technological renewal process age increases, as it happens for

information science technology. Such decay can be modeled by a power law.
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2.4 Costs of renewal of technology

The basic level of technology usage in society is continuously growing. Also

companies whose workforce improve their skills and expertise with the age,

like law firms, and whose character do not seem to rely on sophisticated

machinery, are obliged to go on with technological renewal processes. The

above remark suggests that innovation spreads across firms and is positively

connected both to their size and their growth rate.

Many authors analyze the relationship between technological improvements

and renewal costs.

Balcer and Lippman (1984) investigate the profitability of investments in the

creation rather than in the purchasing new technology depending on time.

Substantially, a technology could become profitable as time passes without

new technological advances.

The problem of profit maximization considering the costs of the renewal of

technology has been exploited by Chambers and Kouvelis (2003), in the case

of a single firm in a fixed sized market. The production costs are significantly

affected by the acquisition of new production technologies and by the accu-

mulation of the firm experience in the production of its product.
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Chambers (2004) focuses on temporal persistence of technological renewal

processes, decisions on multiple adoption over a long horizon, impact of the

knowledge due to production on decisions and relative strategies, in the case

of a company producing a single product. In agreement with this paper, we

assume that the dynamic of the costs is decreasing as the age of technology

increases.

Moreover, we suppose a dependence of technological costs and firms’ growth

rate, consistently with most of the part of the technological improvements

cases.

3 The Model

In this section we set up an optimal profit model for firms producing a single

commodity, and we analyze the related policies on productivity and costs

management.

For each time t, we need to provide a function approximating the number of

production units, based on t− τ aged technology.

For each fixed firms’ size s, empirical studies reviewed in a previous section

provide an analytical approximation for the number of companies, supporting
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the choice of a Laplace density.

We base on this functional approximation, in order to describe the number of

units (for each fixed size) contributing to the production of one commodity.

We remark that this approach is in agreement with the actual trend of firms’

management, to distribute the work across self-organized firms’ networks,

more than merging into new companies. Moreover, we take into account the

positive correlation between growth rate r and age of technology t − τ and

the evidence of a Laplace distribution with linear variance with respect to s

for growth rates. Therefore, we use an exponential function f(r, τ, t) defined

as follows:

f(r, τ, t) = λ exp
[
c|r|(t− τ)

]
, (1)

where c < 0 and λ > 0. Fixing the growth rate r ∈ (−1, 1), we obtain for f

an exponential decay with respect to t− τ .

Amaral et al. (1997a-b) choose λ ∼ σ(s)−1 and c ∼ −σ(s)−1. Thus, for

each fixed s, t, τ , (1) is in accordance with the empirical results. For sake of

simplicity, we drop the constants and we set λ = σ(s)−1 and c = −σ(s)−1.

We remark that f(r, τ, t) is not a density distribution.

Therefore, by Amaral et al. (1997a), De Fabritiis et al. (2003), we can
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assume σ(s) = s−β, and we obtain the relationship between the parameters

in (1) and the size s of the firm under consideration. We have

c = −sβ, λ = sβ. (2)

Formulas in (2) allow to reach a very general description of the relationships

that must hold at the optimal profit date, providing the financial sense of the

best strategies on productivity and costs. At first the size will be assumed

fixed, then a comparison analysis with respect to the change of the size will

be performed.

In this framework, the output produced depends on the age t − τ of the

last technological improvement. The productivity is strongly influenced by

events happening at the observation date t: a monetary government policy,

the aggregation of different companies with different sizes and growth rates,

the fluctuations of the prices of the gold or the oil, a report on the expected

forecasts for the agriculture products are just a few examples.

According to Ramsden and Kiss-Haypal (2000), we distinguish a term linked

to the observation time t, a term associated to the growth rate of the firm r

and one linked to the distance of the company from the technological frontier

t− τ . Thus, we propose a productivity function G splitted into three terms
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related to t, t− τ and r, as follows:

G(r, τ, t) = g1(r, t)g2(r)g3(t− τ).

The aggregated output at time t is given by

Q(r, t) =
∫ t

0

[
g1(r, t)g2(r)g3(t− τ) · f(r, τ, t)

]
dτ. (3)

We don’t make further hypotheses on the behavior on the function g2.

The function g3 decays as the distance of the firm from the technological

frontier increases. Such decay can be described using a power law.

Thus, in our model, there exists αg ∈ (0, 1) such that

g3(t− τ) = α(t−τ)
g . (4)

Therefore, (3) can be rewritten as

Q(r, t) = λg2(r)
∫ t

0

[
g1(r, t)α

(t−τ)
g · exp

[
c|r|(t− τ)

]]
dτ. (5)

In order to describe the technological renewal costs, we build a function, that

captures the idea of the dependence of such amount on the distance from the

technological frontier t− τ , on the firm growth rate r and on the observation

time t. We refer at this aim to Chambers (2004).

The technological costs are assumed to be decreasing with respect to the

14



distance from the technological frontier t − τ . Specifically, we define the

marginal cost per unit in t− τ as αt−τ
1 , where α1 ∈ (0, 1) is the learning rate.

Furthermore, if a company adopts a new technology in the date t, then it is

obliged to pay an adoption cost. In this sense we define the cost function at

time t, assuming that a new technology has been adopted at a previous time

τ .

Differently with respect to the previous literature, we assume that the cost

function depends on the growth rate r of the referred firm, in order to analyze

the renewal process by this economically relevant viewpoint. This assumption

is totally consistent with most of the part of the technological improvements

cases.

Therefore, the renewal process aggregate cost function K is

K(r, t) =
∫ t

0
k(r, t, t− τ) · f(r, τ, t)dτ. (6)

For each t > 0, r ∈ (−1, 1) and τ ≤ t, we define

k(r, t, t− τ) = k1(r, t) + k2(r) · αt−τ
1 , (7)

Given t > 0, r ∈ (−1, 1), k1(r, t) and k2(r) are terms related to the cost of

the renewal process for companies, depending on the observation date t and
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on the growth rate r.

Thus (6) can be written as:

K(r, t) = λ
∫ t

0

[
k1(r, t) + k2(r) · αt−τ

1

]
· exp

[
c|r|(t− τ)

]
dτ. (8)

Although it is not requested by a mathematical viewpoint, it is reasonable

to assume that the technological renewal costs are always positive. In fact, it

is economically consistent to assume, that the adoption of a new technology

admits always the payment of a positive amount. Therefore

k1(r, t) > 0, k2(r) > 0, ∀ r, t.

4 The optimal profit

This section investigates the relations on firm productivity and costs, allowing

the formalization of the conditions for the aggregate profit optimization.

As usual, the aggregate profit function is the difference between the aggregate

output and the aggregate costs. We denote the profit at time t, for companies

with growth rate r, as P (r, t). Therefore, in our model, we write

P (r, t) = Q(r, t)−K(r, t), (9)
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where Q and K are defined respectively in (5) and (8).

We search for an optimal time variable value t∗ > 0 such that

P (r, t) ≤ P (r, t∗), ∀ t > 0, r ∈ (−1, 1). (10)

Moreover, we use standard analytical arguments in order to provide a char-

acterization at t∗ of relationships among productivity and cost function. We

start determining an uniqueness condition for the existence of an unique time

t∗ for the optimal profit.

Remark 1 For each r ∈ (−1, 1), let us consider P (r, ·) ∈ C1(0, +∞) and t∗

such that

∂

∂t
P (r, t∗) = 0 (11)

and 



∂
∂t

P (r, t) > 0, for t < t∗,

∂
∂t

P (r, t) < 0, for t > t∗.

(12)

Then t∗ is the unique point such that (10) holds.

Remark 2 A sufficient condition for (11) is that t∗ satisfies the following
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system: 



∂
∂t

Q(r, t∗) = 0;

∂
∂t

K(r, t∗) = 0.

(13)

As long as aggregate output Q and aggregate costs K are mutually indepen-

dent, the condition is also necessary.

A sufficient condition for t∗ fulfilling (13) is formalized in the next proposi-

tion, and is related to the functional shape of g1 and k1 for t = t∗.

Proposition 3 Let us assume that




g1(r, t
∗) =

1

|(ec|r|αg)t∗ − 1| ,

k1(r, t
∗) = − c|r|k2(r)

(c|r|+ log α1)
· (ec|r|α1)

t∗

ec|r|t∗ − 1
.

(14)

Then (13) holds.

Proof. By a direct computation, we have




∂
∂t

Q(r, t) = λg2(r)
{
g1(r, t) +

∫ t

0

∂

∂t

[
g1(r, t)α

(t−τ)
g · exp

[
c|r|(t− τ)

]]
dτ

}
,

∂
∂t

K(r, t) = λ
{
k1(r, t) + k2(r)

+
∫ t

0

∂

∂t

{[
k1(r, t) + k2(r)α

t−τ
1

]
exp

[
c|r|(t− τ)

]}
dτ

}
.

(15)
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(13) is equivalent to





g1(r, t
∗) +

1

c|r|+ log αg

[
g1(r, t

∗)(c|r|+ log αg) +
∂

∂t
g1(r, t

∗)
]
[(ec|r|αg)

t∗ − 1] = 0,

k1(r, t
∗) + k2(r) + 1

c|r|
[
[c|r|k1(r, t

∗)+

+ ∂
∂t

k1(r, t
∗)](ec|r|t∗ − 1) + k2(r)

[
(ec|r|α1)

t∗ − 1
]

= 0.

(16)

Putting in order the terms of (16), we get the following system of ordinary

differential equations:




(ec|r|αg)
t∗ − 1

c|r|+ log αg

∂

∂t
g1(r, t

∗) + (ec|r|αg)
t∗g1(r, t

∗) = 0,

∂
∂t

k1(r, t
∗) ·

[
1

c|r|(e
c|r|t∗ − 1)

]
+ k1(r, t

∗)ec|r|t∗ + k2(r)(e
c|r|α1)

t∗ = 0.

(17)

(14) is a solution of (17), and the proposition is completely proved.

As shown in Lemma 1, the fact that t∗ satisfies the system (13) is a station-

arity condition, and it is not sufficient to state that t∗ is the optimal profit

date. We have to formalize a result related to the validity of monotonicity

conditions on the profit functions stated in (12).

Proposition 4 Let us consider

• for t = t∗,
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g1 and k1 as in (14);

• for t < t∗,

g2(r) > 0, g1(r, t) > 0,
∂

∂t
g1(r, t) > 0 (18)

and

∂

∂t
k1(r, t) <

c|r|(k1(r, t) + k2(r))

1− ec|r|t . (19)

• for t > t∗,

g2(r) > 0, g1(r, t) > 0,
∂

∂t
g1(r, t) < − c|r|+ log αg

(ec|r|αg)t − 1
· g1(r, t) (20)

and

∂

∂t
k1(r, t) > 0. (21)

Then t∗ is the unique optimal profit date.

Proof. By Proposition 3, we need only to check the validity of conditions

(12).

A sufficient condition for

∂

∂t
P (r, t) > 0 ∀ t < t∗

20



is that 



∂
∂t

Q(r, t) > 0, for t < t∗,

∂
∂t

K(r, t) < 0, for t < t∗.

(22)

We use the explicit expression of the partial derivatives of Q and K with

respect to t, given in (15).

Therefore, a sufficient condition for

∂

∂t
Q(r, t) > 0 ∀ t < t∗

is the following:

g2(r) > 0,
∂

∂t
g1(r, t) > − c|r|+ log αg

(ec|r|αg)t − 1
· (ec|r|αg)

tg1(r, t). (23)

Conditions stated in (18) imply (23).

Analogously, the relation formalized in (19) implies

∂

∂t
k1(r, t) <

c|r|
[
k1(r, t)e

c|r|t + k2(r)(e
c|r|α1)

t
]

1− ec|r|t , (24)

and from (24) we obtain ∂
∂t

K(r, t) < 0 for t < t∗.

Similar arguments provide the analysis of the case ∂
∂t

P (r, t) < 0, for t > t∗.

By (20), we obtain

g2(r) > 0,
∂

∂t
g1(r, t) < − c|r|+ log αg

(ec|r|αg)t − 1
· (ec|r|αg)

tg1(r, t). (25)
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(25) implies that ∂
∂t

Q(r, t) < 0 in (t∗, +∞).

Furthermore, the relation formalized in (21) implies

∂

∂t
k1(r, t) >

c|r|
[
k1(r, t)e

c|r|t + k2(r)(e
c|r|α1)

t
]

1− ec|r|t , (26)

that is a sufficient condition for ∂
∂t

K(r, t) > 0 in (t∗, +∞).

5 Economic interpretation

This section aims at providing the economic sense of the analytic development

of the model.

5.1 The situation before and after the optimal profit

date

Proposition 4 describes the behavior of the outputs and costs before and after

reaching the optimal profit date.

The productivity functions g1 and g2 must be in all the cases positively

signed, because we don’t address here any meaning to negative production.

Before t∗, the productivity grows with respect to the time. On the other

hand, the costs have to decrease with the time. The reduction of the costs

22



is driven by the costs level, and it depends on the time t and on the growth

rate r. To optimize his/her profit, a firm holder has to reduce drastically and

very fast her costs, if they are huge. Analogously, if such costs are small, a

smaller reduction is requested.

After t∗, firm output decreases with respect to the time. The rate of decay

has to be proportional to the productivity level. On the other hand, the costs

have to increase, and the speedy of such growth has to be not less than a

threshold, depending on the growth rate r and the costs levels.

5.2 The situation at the optimal profit date

The productivity and cost function k1 and g1 allow to state relationships

between growth rate, size and optimal profit date. The explicit expressions

of k1 and g1 at the optimal profit date t∗, that have been provided in (14) in

Proposition 3, admit an economic interpretation. First of all, a preliminary

remark is needed. Since k1(r, t) > 0, for each t and r, the second formula in

(14) can be written if

c|r|+ log α1 < 0,

that is trivially true. Moreover, the following result holds:
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Proposition 5 Let us consider t∗ the optimal profit date. Then

• g1(r, t
∗) is increasing for r > 0, decreasing for r < 0.

• If it results 



k2(r) = log 1
r

for r > 0

k′2(r) < 0 for r < 0.

(27)

then k1(r, t
∗) is decreasing w.r.t. r.

Proof. Fixed t = t∗, the first order derivatives with respect to r are





∂
∂r

g1(r, t
∗) = −

∂
∂r

(|(ec|r|αg)
t∗ − 1|)

|(ec|r|αg)t∗ − 1|2 ,

∂
∂r

k1(r, t
∗) = c(α1ec|r|)t∗

(1−ec|r|t∗ )(c|r|+log α1)
·
{
k2(r)

[
− c|r|sign(r)

c|r|+log α1
+

+sign(r) + cec|r|t∗ |r|sign(r)

1−ec|r|t∗ + c|r|t∗sign(r)
]
+ |r|k′2(r)

}
.

(28)

By the first condition of (28) we have

∂

∂r
g1(r, t

∗) = −ct∗sign(r)(ec|r|αg)
t∗

|(ec|r|αg)t∗ − 1|2 . (29)

Therefore

∂

∂r
g1(r, t

∗)





> 0 for r > 0

< 0 for r < 0

and the first part of the proposition is proved.

A direct computation shows that, if k2(r) satisfies the conditions listed in
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(27), then

∂

∂r
k1(r, t

∗) < 0, for r ∈ R.

that is the second part of the proposition.

Remark 6 The conditions stated in (27) allow to obtain a complete infor-

mation on the costs at the optimal profit date t∗, in both cases of companies

in expansion and recession. The cost function k2 follows a logarithmic law,

for companies in expansion, and is decreasing, for companies in recession.

Furthermore, at the optimal profit date, the productivity function g1 grows

for firms in expansion, decreases for firms in recession.

A further analysis of the behavior of g1 and k1 with respect to the size of

the firms s, at the optimal profit date t∗ can be done. Referring to the

relationships between the parameters of the function f and the companies’

size, given by (2), we can define the functions




ḡ1(r, s, t
∗) =

1

|(e−sβ |r|αg)t∗ − 1| ,

k̄1(r, s, t
∗) = − −sβ|r|k2(r)

(−sβ|r|+ log α1)
· (e−sβ |r|α1)

t∗

e−sβ |r|t∗ − 1
.

(30)

Proposition 7 Fixed r ∈ R, for t = t∗, it results

• ḡ1(r, s, t
∗) is increasing with respect to s.
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• For s ∈ S ⊆ R, then k̄1(r, s, t
∗) is increasing with respect to s and it is

decreasing otherwise, where

S =
{
s ∈ R | |r|sβt∗

e−|r|sβt∗ − 1
+

|r|sβ

log α1 − |r|sβ
+ 1 > 0

}
. (31)

Proof. We have

∂

∂s
ḡ1(r, s, t

∗) =
∂

∂s

1

|(e−sβ |r|αg)t∗ − 1| =

=
1

|(e−sβ |r|αg)t∗ − 1|2 · (e
−sβ |r|αg)

t∗ · |r|βsβ−1, (32)

that is always greater than 0. Therefore, ḡ1 is an increasing function of the

variable s.

Moreover, it results

∂

∂s
k̄1(r, s, t

∗) = |r|k2(r)α
t∗
1

βs−1+βe−|r|s
βt∗

(e−|r|sβt∗ − 1)(log α1 − |r|sβ)
·

·
[
|r|sβ

( t∗

e−|r|sβt∗ − 1
+

1

log α1 − |r|sβ

)
+ 1

]
. (33)

Numerical computations considering bounds on the parameters guarantee

that S 6= ∅. Therefore, a direct computation shows that, if s ∈ S, then it

results

∂

∂s
k̄1(r, s, t

∗) > 0,

and for s /∈ S the converse inequality holds.

This completes the proof.
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Remark 8 The renewal costs grow with the firms’ size, depending on the

belonging of s to a critical region S, that depends on the learning rate, the

company growth rate and the optimal profit date. Under parameters calibra-

tion, it can numerically be shown that S = (s1, s2), with s1 < s2. Therefore,

there exists a critical size range in which firms’ holders should exit or entry,

depending on the different adopting policies.

The productivity increases with the size: at the optimal profit date, the bigger

is the company, the higher is the productivity level.

6 Conclusions

This work proposes a model for profit optimization, investigating the case

of companies adopting new technologies. The main feature of such model is

the introduction of the dependence of productivity and costs on growth rate

and size of the firms.

The novelty of the paper is the use of empirical facts for the modeling of the

number of production units.

Analytic expression for the functions that model productivity and costs as

function of the growth rate and time are drawn at the optimal profit time.
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Moreover, the consequences of such a modeling in terms of growth rate and

size are examined.

A firm holder can use the analysis addressed in this paper and the results

formalized in the previous section in order to calibrate his/her financial poli-

cies to reach productivity levels and to control renewal costs at the optimal

profit time, by using appropriate policies on growth rate and size.

The effects of external events on the costs and productivity of the firms as

size and growth rate change can also be examined. In this case, more ap-

propriately, a dynamic stochastic model can be proposed and analyzed. We

leave this topic to future research.
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