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Abstract: Growing deployment of more efficient communication systems serving electric power
grids highlights the importance of designing more advanced intelligent electronic devices and
communication-enabled measurement units. In this context, phasor measurement units (PMUs) are
being widely deployed in power systems. A common block in almost all PMUs is a phase locked
oscillator which uses a voltage controlled oscillator (VCO). In this paper, a triple frequency based
voltage controlled oscillator is presented with low phase noise and robust start-up. The VCO consists
of a detector, a comparator, and triple frequency. A VCO starts-up in class AB, then steadies oscillation
in class C with low current oscillation. The frequency of the VCO, which is from 13.17 GHz to
16.03 GHz, shows that the frequency is tripling to 41.14–48.11 GHz. Therefore, its application is not
limited to PMUs. This work has been simulated in a standard 0.18 µm CMOS process. The simulated
VCO achieves a phase noise of −99.47 dBc/Hz at 1 MHz offset and −121.8 dBc/Hz at 10 MHz offset
from the 48.11 GHz carrier.
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1. Introduction

Recently, there has been an increased demand in radio frequency design [1–3]. One of the
most important blocks in transceiver communication systems are the voltage controlled oscillators
(VCOs) [4–9]. Voltage controlled oscillators are the circuits which are used to generate alternative
signals in many parts of the radio frequency systems. In power systems, operators need to communicate
with each other in different locations. Therefore, data exchange and communication among people
and assets require wireless transceiver communication devices. Radios are widely utilized in power
systems to make connections among actors, especially system operators such as a phasor measurement
unit (PMU) [10]. A block diagram of the basic PMU is demonstrated in Figure 1. PMUs are used
to estimate the magnitude and phase angle of an electrical phasor quantity, like voltage or current,
in the electricity grid. As shown in Figure 1, one of the main components of a PMU is the phase
locked oscillator which uses voltage controlled oscillators [11,12]. Therefore, in order to design a
wireless transceiver system and also make a bridge between actors including operators and assets in
the electrical industry, designing voltage controlled oscillators with high performance is needed.

The most popular structure of a VCO which is more used in CMOS technology is as follows: ring
oscillators and LC tank based oscillators [13]. The most important characteristics of each VCO are
phase noise, consumption power, and wide frequency tuning range [14–16]. In VCOs, there is a special
trade-off between them. It has been proven that the phase noise of LC VCOs is much better than phase
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noise of the loop VCO. But LC VCOs are worse than loop VCOs in terms of area and sometimes power
consumption [17]. LC VCOs are usually great choices for RF applications because of desirable and
rough start-up conditions and appropriate phase noise [18].Electronics 2019, 8, x FOR PEER REVIEW 2 of 12 
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Figure 1. Block diagram of the basic phasor measurement unit (PMU) [10].

Among different LC tank VCOs, Colpitts and cross-coupled structures are utilized more [19].
The cross-coupled VCO has a simple start-up condition and good phase noise, and the type of Colpitts
has low consumption power [20,21]. Concurrent utilization of two types of the voltage controlled
oscillator, Colpitts and cross-coupled in circuit structure, improves start-up conditions and the phase
noise of the circuit with low power consumption.

In recent years, there have been a lot of investigations to achieve low phase noise along with low
consumption power in RF applications [22–26]. For example, in [22], in order to obtain low phase noise
with low consumption power, two LC oscillators are coupled together.

In this paper, we present a VCO designed using triple frequency, a detector, and a comparator for
increasing the frequency and obtaining low consumption power with low phase noise and a robust
start-up condition. In this VCO, the trade-off between frequency and phase noise in the low-frequency
range is better than in the high-frequency range. Therefore, in this paper, firstly, the trade-off between
phase noise and oscillator frequency is performed in low frequency, and then the operation frequency
is increased using a triple frequency. This results in achieving low phase noise and low consumption
power in the desired frequency.

In the design of a VCO, a combination of cross-coupled oscillators and Colpitts is considered to
gain the benefits of both structures. Simultaneous utilization of these two types of voltage controlled
oscillators in the structure of the circuit improve the start-up condition and phase noise of the circuit
with low consumption power. The proposed VCO is started in class AB, and it will be in class C that
the VCO has a better start-up condition with low power consumption.

The structure of this paper is formed as follows: First, the general block diagram of the proposed
circuit is introduced in Section 2, then different elements of the circuit are briefly described. In Section 3,
simulation results are compared with other existing proposals of this circuit. The paper is concluded in
Section 4 with some remarks.

2. Circuit Design

The block diagram of the proposed voltage controlled oscillator with triple frequency is represented
in Figure 2. The second harmonic of the oscillator is a result of the common node of a differential
pair. The mix of frequency f0 and second harmonic (2f0) creates a frequency equal to 2f0 + f0 at the
mixer output, which makes frequency 3f0 if the mixer output frequency is filtered. The VCO is initially
oscillating in class AB, and then it keeps the oscillation in class C. The output magnitude of the oscillator
is passed to a comparator by a detector circuit, and it generates a gate voltage for the oscillator.
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Figure 2. Block diagram of the proposed voltage controlled oscillator (VCO) with triple frequency.

2.1. Voltage Controlled Oscillator

The proposed voltage controlled oscillator is illustrated in Figure 3. This VCO concurrently uses
both cross-coupled and Colpitts structures. As shown in Figure 3, Colpitts structure is used in the
upper part of the circuit, while the cross-coupled structure is designed for the lower part of the circuit.
In order to change frequency, tunable capacitors are used between the two structures of cross-coupled
and Colpitts. The voltage is fed into the bulk of M3 and M4 transistors to improve consumption power.
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Figure 3. Proposed voltage controlled oscillator with combination of the Colpitts and
cross-coupled structures.

In the proposed VCO, in order to achieve a robust start-up condition with appropriate phase
noise, the VCO first oscillates in class AB, and then it continues oscillating in class C. To have strong
initial conditions, transistor transconductance should initially be multiple times higher than oscillation
transconductance. Therefore, the gate voltage supply of cross-coupled transistors should be different
in class C and class AB. This is done by feedback including a detector and comparator.

As shown in Figure 3, the threshold voltage of the transistors M3,4 and M1,2 are not equal.
The threshold voltage of the transistors M3,4 is reduced by applying a voltage to the body for improving
start-up conditions. It should be noted that although threshold voltages of the transistors are different,
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drain currents of the transistors M3,4 and M1,2 are equal. According to Equation (1), this is because the
value of VGS −Vth must be the same in the transistors to generate an equal amount of the current [27,28].

ID =
1

2(1 + θVds)
µn Cox

W
L

(
Vgs −Vth

)2
(1)

where ID, µn, Cox, W, L, Vgs, and Vth are drain current of the transistor, electrons mobility, oxide capacitor,
transistor width, transistor length, gate-source voltage, and threshold voltage of the transistor,
respectively. Moreover, θ is 1/(Ec × L) that Ec is critical electrical field at which velocity saturation occurs.

2.1.1. Oscillation Frequency

Since the transistors used in Figure 3 are biased in the saturation zone, the amount of gate-source
and gate-drain capacitors are obtained based on Equation (2) [28,29]:

Cgn =
∂Qg

∂Vn
(2)

where n is the transistor terminal. Qg is charge associated with the gate terminal. The gate charge is as
follow [28]

Qg = −Qsub0 + Wactive LactiveCox

Vgt −
Vds
2

+
Ab V2

ds

12
(
Vgt −

Ab
2 Vds

)  (3)

where Wactive and Lactive are the effective length and width of the intrinsic device, respectively. Also, Qsub0
is the substrate charge at zero source-drain bias. Vds and Ab are the drain-source voltage and bulk
charge effect, respectively.

The cross-coupled structure in the lower part of the circuit is affecting oscillation frequency and
oscillator status due to the producing parasitic capacitors. The equivalent capacitor from cross-coupled
can be calculated using Equation (4) [29]:

Ccross = CGS + 4CGD (4)

where CGS and CGD capacitors represent gate-source and gate-drain capacitance of the cross-coupled
transistors, respectively. To calculate oscillation frequency, the equivalent half-circuit of the proposed
VCO is formed as Figure 4.
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Figure 4. Half-circuit of the proposed voltage controlled oscillator.

In Figure 4, Ccross is the equivalent capacitance from the cross-coupled; CeqL2 represents equivalent
capacitance of inductor L2, Cvar2 refers to variant capacitance, and CGS2 and CGD2 are gate-source
and gate-drain capacitance of the transistors M2, respectively. C2 is a constant capacitance of
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the Colpitts oscillator. Oscillation frequency can be calculated based on Equation (5) using total
observed capacitance:

f0 =
1

2π
√

LtotalCtotal

(5)

where Ctotal and Ltotal are the total capacitor and inductor that are obtained in Equations (6) and (7):

Ctotal = C1 +
C2

1−ω2
0L(C2 + Ca)

(6)

Ltotal =
1−ω2

0L(C2 + Ca)

C2CaL ω4
0

(7)

where Ca and C1 are defined in Equations (8) and (9):

Ca = CeqL2 + CGD4 (8)

C1 = CGS4 + Cvar2 + Ccross (9)

2.1.2. Phase Noise

To determine the phase noise around the carrier frequency, all noise sources must be identified in
the VCO circuit. The phase noise of the oscillator in the fundamental frequency at offset frequency is
defined as Equation (10) [29,30].

L(∆ω) = 10 log

 ∑
i NL,i

2∆ω2
0C2

totalAT2

 (10)

where Ctotal and NL,i are the total capacitor and the noise source. AT is the amplitude oscillation that is
defined as:

AT =
4
π2 Rpout

2Iω0
2 (11)

where Rpout and Iω0 are the output resistance and the fundamental current, respectively. The noise of
the L2 and L3 inductor is achieved in Equations (12) and (13), respectively.

NL,Rp =
4KBT
RpL1

(12)

NL,Rp =
4KBT
RpL3

(13)

where KB and T are the Boltzmann constant and temperature. RpL1
and RpL2

are the parasitic resistance
of the L1 and L2, respectively. The thermal noise of the transistor M2 and M4 is as follows:

NL,nMOS = 4KBTγngm2 (14)

NL,nMOS = 4KBTγngm4 (15)

where γn is the constant and equal amount of the temperature noise of the transistors to its
transconductance. gm is the transconductance of the M2,4. With substitute Equations (11)–(15)
into Equation (10), the phase noise is defined as follows:

L(∆ω) = 10 log

 π2KBT
2∆ω2

0C2Rpout
2Iω0

2

 1
RpL1

+
1

RpL3

+ γn(gm2 + gm4)

 (16)
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As shown in Equation (8), the phase noise depends on temperature, fundamental current,
offset frequency, and tank quality factor. For example, increasing the current would improve the phase
noise situation, but consumption power would increase at the same time. Increasing offset frequency
results in lower phase noise. According to this equation, there is a trade-off between selecting the
appropriate current to obtain low consumption power, low phase noise, and robust start-up conditions.
To satisfy these requirements, the voltage controlled oscillator first works with voltage 1 V, and then it
continues operating with voltage 0.65 V to consume lower power. Figure 5 depicts variations of the
gate voltage.
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2.2. Amplitude Detector and Comparator

Figure 6 shows the detector and comparator circuit. Initially, when a VCO is not oscillating,
the output voltage of the detector is zero, and the output voltage of the comparator is equal to 1 V.
As soon as all conditions of oscillation are met, the oscillator starts oscillating. When transistors M1

and M2 turn on, the output voltage of detector increases, which reduces the output voltage of the
comparator to the desired level of 0.64 V. In order to make a VCO work in class C, the maximum
gate voltage of each transistor should not exceed more than a threshold voltage, with respect to the
minimum drain voltage. In order to keep transistors in the operation zone, we can use Equation (17) to
obtain the required voltage to make VCO oscillate in class C [29]:

Vg ≤ Vdd −
3Vp

2
+ Vth (17)

where Vdd is the supply voltage and its value is equal to 1 V. Also, Vp represents the variation of drain
voltage and is equal to 0.59 V. Therefore, gate voltage should be 0.64 V according to Equation (17).
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The main elements of the comparator include five transistors (i.e., M7 to M12) along with one
transistor as the buffer. Initially, the output of the detectors is zero, and the comparator output is equal
to 1 V. Thus, a big voltage is applied to the gate of the transistors M1 and M2 in the proposed VCO
circuit. This big voltage produces a high current according to Equation (1). This current creates strong
initialization conditions for the oscillator.

2.3. Designing Mixer

In order to triple frequency, a nonlinear differential amplifier is used. Figure 7 shows the mixer
used in the triple frequency [28]. This mixer contains an RF switch (transistor M13), differential pair
switch intermediate frequency (IF) (M14 and M15), and an inductor (L4) which is in resonance with loss
capacitors like a band-pass filter.
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3. Results

In this paper, we designed and simulated a VCO with low phase noise, low consumption power,
and robust start-up conditions using technology 0.18 µm CMOS. The oscillation frequency versus the
voltage Vtune is demonstrated in Figure 8. The oscillation frequency of a VCO is from 13.17 GHz to 16.03
GHz, and the triple frequency covers a range frequency between 41.14 GHz and 48.11 GHz. The phase
noise of a VCO at 48.11 GHz is shown in Figure 9; where at offset frequencies of 1 MHz and 10 MHz,
the phase noise of −99.47 dBc/Hz and −128.8 dBc/Hz is achieved, respectively. The output power
spectrum for the frequency 48.11 GHz is depicted in Figure 10. Correlation of the simulated phase
noise versus the oscillation frequency at 1 MHz offset frequency is shown in Figure 11. The phase noise
changed from −91.43 dBc/Hz to −98.46 dBc/Hz with respect to the variation frequency. The oscillation
frequency and phase noise by Monte Carlo for 50 samples are illustrated in Figure 12a,b.Electronics 2019, 8, x FOR PEER REVIEW 8 of 12 
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offset frequency.
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Table 1 summarizes the phase noise results of the designed VCO in different corners process and
normal condition. In the typical-typical (TT) condition, the phase noise of −99.47 dBc/Hz is obtained
at 1 MHz offset frequency of 48.11 GHz. In corners slow-slow (SS) and fast-fast (FF), the frequencies
48.12 GHz with phase noise of −97.49 dBc/Hz and 47.66 GHz with phase noise of −94.41 dBc/Hz are
obtained in offset frequency of 1 MHz, respectively.

Table 1. Simulation of the proposed voltage controlled oscillator (VCO) in different corners.

Corners Phase Noise (1 MHz) Phase Noise (10 MHz)

Typical-typical (TT) −99.47 −121.8
Fast-fast (FF) −94.41 −119.57

Slow-slow (SS) −97.49 −120.61

Table 2 compares the performance of VCOs with other works in terms of the fundamental
frequency phase noise, consumption power, and figure of merit. The figure of merit (FOM) and total
figure of merit (FOMT) for evaluating VCO performance is defined in Equations (18) and (19) [5,15].
Based on this table, our designed VCO has lower phase noise with better consumption power and
figure of merit compared with previous works.

FOM = L(∆ω) − 20 log
( f0

∆f

)
+ 10 log

( PDC
1mw

)
(18)

FOMT = L(∆ω) − 20 log
( f0

∆f

)
+ 10 log

( PDC
1mw

)
− 20 log

(FTR
10%

)
(19)

where L(∆ω), f0, PDC, and FTR are phase noise, oscillation frequency, consumption power, and frequency
tuning range, respectively.

Table 2. Comparison of the proposed VCO with other works.

Ref. [3] 2 [9] 1 [16] 2 [25] 2 [26] 2 This Work 1

Process 56 nm
SOI 5

0.13 µm
CMOS

65 nm
CMOS

40 nm
CMOS

65 nm
CMOS

0.18 µm
CMOS

Frequency (GHz) 18.57 25.5 54 55.45 46.8 44.62
Tuning range (%) 5.38 43 9.1 25.4 5.8 15.6

Phase noise at offset frequency
(dBc/Hz)

−117.6 −96 −95.5 −100.1 −100 −99.47
at 5 MHz at 1 MHz at 1 MHz at 1 MHz at 1 MHz at 1 MHz

PDC (mW) 2.56 12 24 22 5 14 4 4.16 3

Figure of merit (FOM) (dBc/Hz) −185.1 −173.33 −179 −179.8 −186.415 −187.95 4
−193.22 3

Total figure of merit (FOMT) (dBc/Hz) −190.43 −186 −179.8 −187.9 −188.5 −191.81 4
−197.08 3

1 Simulation result; 2 Measurement result; 3 Including the power consumption of the VCO; 4 Including the power
consumption of the total structure; 5 Silicon on insulator.
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4. Conclusions

In this paper, we presented our designed VCO based on triple frequency whose output frequency
oscillates in the range of 41.14 GHz to 48.11 GHz. It uses 0.18 µm technology, and it is simulated in ADS
(2016.01, Keysight EEsof EDA, California, USA, 2016) software. Because the varactor works well in the
low-frequency range, the proposed VCO is designed in low-frequency, then the operation frequency
increased using triple frequency. This achieves low phase noise, low consumption power, and high
tuning frequency range in high operation frequency. Therefore, better phase noise can be achieved
in the desired frequency. Moreover, the combination of both cross-coupled and Colpitts structures
with novel circuit for VCOs is presented in this paper. In order to reach a robust start-up condition for
VCO, it first runs in class AB, and then, it steadies in class C to be featured with better phase noise and
suitable consumption power.
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