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Abstract 

The focus of this work is to investigate the adhesion characteristics of a permanent magnet arrangement 
over ferromagnetic surfaces for wall climbing robot applications. The changes in wall thickness affect the 
adhesion characteristics of the robot, this in turn influences the payload and alters the operating conditions. 
The effect of varying the wall thickness on the adhesion strength of a wall-climbing robot is an area barely 
investigated and this is being explored in this work. A two-dimensional model of the adhesion mechanism 
and the ferromagnetic surface is developed and simulated in this study. The adhesion characteristics are 
studied for different thicknesses of the ferromagnetic surface with different grades of the magnet. Two 
different standoff distances which comprise the gap between the magnet and the surface to be inspected 
are investigated therein. Experimental studies are also carried out to measure the performance, and the 
results show a strong correlation with the simulation results. Simulation with experimental validation of 
magnetic adhesion presented will provide better insights into magnetic wall climbing systems.  
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1. Introduction 

In the era of recent technical advancements, Wall-Climbing Robots (WCRs) have gained good traction 
of attention in the industry. The gained interest can be attributed to its profound uses in industrial 
applications such as inspection and maintenance. Wall climbing robots are capable of performing 
extremely difficult tasks in hazardous environments often involving high altitudes. The method of 
adhesion is one of the major design aspects that has to be considered in developing WCR for climbing 
vertical wall surfaces [1]. The adhesion principle used in vertical climbing is mainly subdivided into five 
categories [1-2], namely vacuum suction [3], biometric [4 – 7]], gripping [8 - 9], rail-guided [10-12] and 
magnetic [13] adhesion methods.    

Vacuum suction provides the required adhesion force based on either suction cups or negative pressure 
thrust [3][25]. The adaptability to a variety of ferrous to non-ferrous surfaces such as glass, steel, tiles, 
and concrete makes this the commonly used adhesion method amongst the WCRs. When the wall surfaces 
are in complex environments, the gripping type [8] is found appropriate as an adhesion mechanism. The 
climbing robots which use gripping mechanisms are operated along with structures such as beams, pipes, 
columns, ducts, and environments where careful monitoring of the forces may be involved [9].  

In biometric type adhesion mechanisms [4][23][24], Geckos are used to provide the necessary 
stickiness. These sticky type geckos adhere to surfaces using microscopic hair patches. The mechanism 
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works for dry adhesion through van der Waals forces.  In rail-guided type adhesion [10][11] mechanism 
for climbing robots, the rails are laid out in advance where the wheel traction is used for climbing by the 
robot. The rail acts as a guiding mechanism for the robot to slide, and it also provides holding to the 
surface preventing the robot from falling off. 

Among the above-mentioned adhesion mechanisms, the vacuum suction remains most popular due to 
its wide adaptability to surfaces and the adhesion force it generates but is limited to smooth surfaces [1]. 
Gripping type and rail-guided type mechanisms provide good payload capabilities but have very restricted 
operation region, which is their major drawback. Similarly, the payload capability is very low in the 
biometric type adhesion based on Geckos [1].     

Many structures which are to be critically inspected in the industry are made out of ferrous material. 
Permanent magnet provides adhesion with zero power consumption, high payload capability and safe 
operation in case of power failure. Magnetic adhesion is accomplished in WCRs generally by using 
magnetic wheels, magnetic tracks, or the base of the body holds the magnets [13]. This paper considers a 
four-wheeled robot for inspection purposes based on skid steer mechanism with a payload in the range of 
40-50 kg. 

A variety of investigations are offered on how adhesion varies with respect design parameters such as 
magnetic arrangements, flux concentration plate and air gap [22][13]. However, studies relating to 
adhesion performance with respect to varying surface thickness is subtle. The aim of the work reported in 
this paper is to investigate the adhesion performance of flux concentrator/yoke [12] on ferromagnetic 
surfaces with varying surface thickness both in simulations as well as through experimental tests. 

The rest of the paper is structured as follows: Section 2 explains the materials used, software used and 
the experimental setup. Section 3 presents and discusses the simulation and experimental results of the 
work done. Finally, section 4 concludes the paper and discusses the future scope of the paper. 

2. Materials and methods 

The work carried out is to study the magnetic adhesion of an arrangement of neodymium magnets against 
walls of various thicknesses. The simulation studies are carried out using FEMM and the results are 
verified experimentally. 

2.1 Materials Used 

The materials used in the simulation, as well as the experiments, comprise of ferromagnetic surface, 
permanent magnets and flux concentrator/yoke. 

2.1.1  Ferromagnetic surface 

The surface material to be climbed is made up of low carbon steel which is widely used in storage tanks 
and other industrial applications. The plate thickness of such material varies from 1mm to 15mm and is 
used in this work. In the simulations, 1020 steel is used as the material and the properties specified in the 
built-in library are presented in Table 1.  
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Table 1:  Properties1020 steel 

Saturation flux density Bsat  NaN  

Coercivity Hc, A/m 0 

Relative permeability µ 760 

Electric conductivity γ, [MS/m] 5.8 

2.1.2.  Permanent magnets 

NdFeB magnets or as they are commonly referred to as Neodymium magnets are counted among the most 
powerful permanent magnets in the world. These Magnets are made of an alloy which primarily consists 
of Neodymium, Iron and Boron and is chemically written as Nd2Fe14B. These magnets have a naming 
scheme that begins with N which is for Neodymium and is then followed by two numbers which give the 
maximum energy product in Mega-Gauss Oersteds (MGOe). The range of available ready for supply in 
the market magnets starts at N30 and goes up to N52 but the theoretical value goes to the maximum value 
of N64 (relating to the strength of magnetic field output and resistance to demagnetization). 

 

Figure 1:  Dimensions of magnet used in the study 

 Figure 1 shows the physical dimensions of the N35 magnets used in the study and Table 2 [19] 
gives the properties of the magnets N35 and N52 used in the simulations. The adjacent magnets used 
in the arrangement is placed in opposite polarity, the magnets at the end are of similar polarity.  

Table 2: Properties N35 and N52 magnets[19] 

Grade 
of 

Magnets  

Energy product 
of the magnet  

BH max, MGOe 

Remanent 
magnetization 

Br, T 

 
Coercive 

force  
 

HcB, KA/m 

 
Electric 

Conductivity  
 

γ, MS/m 

N35 34 1.2 905 0 

N52 51 1.46 956 .0 
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2.1.3. Flux concentrator/ Yoke 

The magnets provide better adhesion when placed inside of a material with high permeability. The 
improvement in adhesion for such designs is reported in previous studies [16] [22] and this material is 
named yoke as shown in Figure 2 [21] [22] [14]. Low carbon steel block is pocket milled to hold the 
magnets as shown in Figure 2. Three neodymium grade N32 magnets with dimensions 50×50×12.5 mm 
were arranged as shown in Figure 4(b) in the test apparatus. The properties used for this are the same as 
that of 1020 steel specified in Table 2.  

             

(a)                                                               (b) 

Figure.2  (a) CAD model of yoke (b) Dimensions of yoke and magnets (all measurements in 

mm) arranged in simulation  

2.2 Simulation using Finite Element Method  

The finite element simulation is carried out using the FEMM v4.2 [15] [16], software for simulating 
magnetic and electromagnetic phenomena in a two-dimensional environment. The simulation considers 
the Yoke material and surface material to be made of steel and is surrounded by air. The simulation 
problem here is a magneto-statics problem [15]. Magnetostatics problems are structured in three stages: 
pre-processing, processing and post-processing [16].  

The problem begins with specifying the type of problem as magnetostatics. The model is drawn 
using the pre-processor modes. Set the problem Type to be planar. Make sure that Length Units is set to 
millimetres and that the Frequency is set to 0 and the depth for the problem is set.  

The drawing of the model is done using the pre-processor tools that are present in the FEMM 
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toolset. The initial step involves defining the geometry of the problems at hand. Pre-processor tools consist 
of options to define nodes in the problem domain, line alongside with arc segments are used to join the 
nodes and thus build a model. The subsequent step after the model is built involves specifying the material 
and selecting the boundary.   

The next step is the identification of the block materials properties. FEMM has a built-in library 
that allows a variety of materials. This simulation uses four materials namely, N35 magnets, yoke to hold 
the magnets made out of 1020 steel, surface under investigation made of 1020 steel, air as the material for 
the enclosure. 

The boundary is set up for modelling a finite region of available space and the material is specified 
as air. Figure 3 shows the model and the material assignments made. In the next step, the continuous space 
is converted into discrete space elements for easy solving of problem space. This process is called meshing 
and is carried out by FEMM. The large problem is split into a large number of smaller triangles or 
triangular meshes and sizes of the meshes to reduce the complexity of the computation. After splitting up 
the problem domain, the finite element method is applied. The time required for the simulation depends 
on the nature of the problem. This problem deals with linear magneto-statics problems, which takes the 
least amount of time for solving. 

 

Figure 2. FEMM model for the magnet arrangement inside of a yoke against the wall plate 

2.4  Experimental setup 

To verify the results obtained in simulations a setup to measure the force generated by the arrangement of 
magnet was set up as shown in Figure.4.  

Three neodymium magnets of grade N35 with dimensions of 50×50×12.5 mm were used in this 
experiment. The magnets were placed carefully inside the flux concentrator yoke with dimensions 230×70 
mm and thickness of 22.5mm and a slot of 12.5mm depth and 210 mm wide to hold the magnets. The 
polarity of the magnets arranged as specified in the order so that the magnets, in the end, will have the 
same polarity whereas the middle one will have reverse polarity. The yoke arranged with magnets was 
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attached to an aluminium plate with screws to adjust standoff distance. Subsequently, the yoke was placed 
attached to the surface plate to be tested.  

 

Figure.3: (a) Flux concentrator (b) Magnets arranged inside of a Flux concentrator /Yoke c) magnetic 
arrangement at a distance of 10mm.d) Apparatus to measure the force produced by magnetic 

arrangement against the steel plate 

This arrangement was subsequently placed inside of a specially designed frame and the plates were 
screwed where the pull-off load tests can be conducted by adjusting the load screw as shown in Figure 4 
(d). As per the arrangement; load acting can be viewed on the weighing scale attached. Then the load 
screw is adjusted thus leading to an increase in load and the reading on scale increases. On a point, after 
it reaches maximum the adhesion starts to drop and this point has to be noted.  This operation is repeated 
with ferrous plates of various thicknesses. 

3. Results and discussion 

3.1. Simulation of magnetic adhesion force using FEMM 

Two simulation sets were carried out for two standoff distances using FEMM to study the adhesion 
characteristics. Two grades of magnets, N35 and N52 were used in the simulations as the N35 is widely 
available in the market and the N52 is the highest grade commercially available. These were used to obtain 
four sets of results, and these are shown in Table 3. The values are also plotted in Figure 5 for a better 
comparison of results. The investigation shows the effect of wall thickness in predicting the magnetic 
adhesion. 

For the first set of simulation, a distance of 5mm was set as the standoff distance between the magnet 
and the surface under investigation. The N35 magnet varied from 174.578 N to 1297.5 N for thicknesses 
of 1mm to 15 mm in simulations and when standoff distance was increased to 10 mm the force range 
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reduced from 129.044 N to 666.009 N. A similar trend was noted in N52 magnets with the force increasing 
from 211.367 N to 1762.07 N for 5 mm standoff distance and 156.664 N to 937.352 N for 10 mm standoff 
distance. 

Table 3: FEMM simulation results for magnetic adhesion for the arrangement of N35 and N52 magnets at standoff distances 

(SOD) of 5mm and 10 mm for the different wall thickness. 
      

 

VARYING 
PLATE 

THICKNESS 
(mm) 

 
|F| experienced in newtons(N) 

 SOD 5 mm 
 

 
|F| experienced in newtons(N)   

SOD 10 mm 

  GRADE N35  GRADE N52  GRADE N35  GRADE N52 

  1  174.587  211.367  129.044  156.664 

  2  365.579  442.312  262.047  320.256 

  3  557.463  673.703  377.038  470.095 

  4  750.926  911.583  461.076  598.632 

  5  911.949  1141.48  524.949  689.813 

  6  1019.03  1326.19  580.486  765.716 

  7  1103.37  1453.37  620.635  831.59 

  8  1174.79  1552.76  644.538  879.299 

  9  1225.37  1629.73  656.616  908.263 

  10  1259.56  1677.87  661.685  922.817 

11  1277.73  1722.1  665.55  931.756 

12  1286.21  1740.49  665.66  934.095 

  13  1292.94  1752.93  666.813  937.813 

  14  1296.84  1759.86  666.371  937.766 

  15  1297.5  1762.07  666.009  937.352 

It can be seen in the simulation results that adhesion varied sharply until the thickness reached 10 
mm. There was no further appreciation in adhesion for magnets N35 and N52 at both standoff distances.  
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Figure. 5: Graphical representation of Table 3 data. (SOD: standoff distance) 

3.2. Experimental studies 

Four sets of data were obtained from the simulation results for two standoff distances for N35 and N52 
magnets. As noted from the graphical representations, all the four sets followed a similar trend for the 
plates.   This was verified for magnet arranged inside of yoke at a distance of 10 mm against test plates. 
This was followed by assessing the force generated against the plate of 10mm to check the trend of 
simulation. This experiment was repeated for six different plate thicknesses and the results were compared 
with simulation results, and this is shown in Table 4. 

Table 4: Simulation vs. experimental results 

Plate 
thickness(mm) 

Simulated results 
(Kilograms) 

Experimental 
results 

(Kilograms) 
Error %      

1 15 14 7.14 

2 27 28 3.57 

5 52 52 0 

6 55 58 5.17 

8 62 59 5.08 

10 72 66 9.09 
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Figure. 6: Comparison of experimental data vs. the simulations 

Figure 6 shows graphical representation of the results in Table 4. Both the results are found to be in 
near agreement with errors of less than ±10%. 

4. Conclusion  

In this study, the effect of ferromagnetic wall thickness on magnetic adhesion of Neodymium magnet 
arrangement has been studied using simulations and the results have been verified experimentally.  
Magneto-statics simulation has been carried out using FEMM software for Neodymium magnets 
arrangement against ferrous surface climbed. Both magnetic arrangements of N35 and N52 at standoff 
distances of 5mm, 10mm showed a comparable fashion of adhesion. Also, this trend saturates around 10 
mm of wall thickness and any further increase in thickness would not contribute much to adhesion. The 
simulation results have been practically verified with N35 at a standoff distance of 10mm and the results 
have shown a strong correlation with the simulation results. 

The ferromagnetic structures constructed may include materials of different types and of varying 
thicknesses. From the simulation and experimental results, it is clear that increasing wall plate thickness 
significantly increases the magnetic adhesion.  In the event of the robot manoeuvring from a thick plate 
to thin sheet, there will be a considerable drop in magnetic adhesion and thus this study is a significant 
insight in robot design. The work done in this paper was limited to one specific material and this could 
further be extended with different material properties. Also, adaptive control systems which adapt to the 
changes in adhesion with surface thickness need to be investigated.  
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