
> RUNNING MEDIAN ALGORITHM <

1

Abstract—A novel algorithm is proposed to compute the median

of a running window of m integers in O(lg lg m) time. For a new
window, the new median value is computed as a simple decision
based on the previous median and the values removed and inserted
into the window. This facilitates implementations based on data
structures that support fast ordinal predecessor/successor
operations. The results show accelerations of up to factors of six
for integer data streaming in typical embedded processors.

Index Terms—Median, median filter, running median,
streaming algorithms, embedded processors

I. INTRODUCTION
HE most common solution for the running median problem
is to compute, per iteration, the median M of a set of m

elements using any known sorting routine such as Merge sort in
O(m lg m) time [1]. This process is repeated over n iterations
for a global computational time of O(nm lg m). This simple
solution improves to O(nm) computational time at best when
using a linear sorting routine such as counting sort or bucket
sort [1]. Clearly, the best you can do for streaming applications
is to improve finding the median fast, much faster than O(m).
This paper develops a novel solution where on each iteration
the median M is found in O(lg lg m) time. This is a small cost
to obtain the median on a window of m integers yielding a
global running time of O(n lg lg m) for the running median
problem. The solution draws from the nature of the online
median problem [2] taking advantage of the operations required
when changing from the set of m elements in one iteration to
the m elements in the next iteration. The set of m elements per
iteration are referred to as a window; they are kept in order of
arrival with each element processed as an integer. A new integer
arrives into the window per unit of time while the oldest integer
is removed. This moving of data is similar to the more familiar
concept of moving average used in statistics. This work
develops a very simple decision rule that allows computing the
median for a running window of size m as fast as
predecessor/successor operations can be processed on the
previous window median. The contribution here results in
accelerations, when the window is kept sorted by construction.

Submitted for review on December 19th 2017.
O. Cadenas is with the School of Engineering, London South Bank

University, London, UK (e-mail: cadenaso@ lsbu.ac.uk).

Practical implementations of the algorithm given here can
exploit any existing integer data structure with fast
successor/predecessor operations. Indeed data structures such
as van Emde Boas [3] or y-fast tries [4] have
successor/predecessor operations with execution time O(lg q)
when mapping distinct q-bit integers. For a window of m q-bit
integers with no repeats, successor/predecessor operations are
performed in constant time using van Emde Boas. This paper
gives a fast solution for the median of a running window with
repeats. Possibly the best known simple and generic solution to
this problem for embedded processors is the use of double
heaps [5] and skip lists [6] with O(lg m) time at best to find the
median per iteration. The implementation reported here gives
an advantage for cases where m > q; this is corroborated in the
results. We report speedups in execution time of at least a factor
of six against a skip list implementation for various q and m
sizes when programmed in embedded processors.

The classical application of the median is as a filter for the
removal of the so called salt and pepper noise in images [7]; its
usefulness far extends into the rich area of image processing
such as detecting cut-and-paste forgeries in images [8]. The
online median is used in data mining as in the k-median problem
used for optimizing placement of facilities [2], and in clinical
applications and health care through quantile regression [9].

The running median algorithm proposed here exhibits
features of great practical interest: it can be applied for any
other rank-order statistics, it has a small cost for a window size
m, it can easily be implemented in software as addressed or as
a hardware architecture solution (not addressed).

II. PRELIMINARIES
A window W is a collection of copies of m integers (unordered)
that are all not necessarily distinct; a window may have repeated
integers. If the window has not repeated integers we will refer
to it as a set window WS; , Sx y W x y∀ ∈ → ≠ . Each integer is
taken from a set of integers S where xi of S satisfies

2 1, ,q
ix i m≤ ∀ ∈  ; that is, each integer is a q-bit word. If W is

sorted, the successor/predecessor of an integer at position j is
the integer at position j+1/j-1 respectively (if it exists). For a
self-contained reading we include a few standard definitions
from textbooks.

G. M. Megson is with the Department of Computer Science, University of
Westminster, London, UK (e-mail: g.megson@westminster.ac.uk).

Oswaldo Cadenas and Graham M. Megson

Running Median Algorithm and
Implementation for Integer Streaming

Applications

T

> RUNNING MEDIAN ALGORITHM <

2

Definition 1. An integer element x W∈ has rank k if there are
no more than 1k − integers in W that are less than x and there
exist at least k integers in W that are less or equal to x .

Definition 2. The median of W is an integer of rank 1k + in
W when 2 1m k= + . We make 2 1m k= + for convenience, so
that if W is sorted in ascending order the median is the integer
at position 1k + .

Definition 3. Let []x j , 1,2, ,j n=  be a sequence or time
series. The running median is defined as the sequence

[] ({ [], [1], , [1]}), 1, , 1y j median x j x j x j m j n m= + + − = − +  .
A median is computed on the last m windowed samples of the
time series, where at each time step, a new integer arrives and
an old integer leaves the window.

Theorem 1. For a window W with 2 1k + integer elements ix

1,2, ,2 1i k= + sorted in an array A with median M, assuming
one old integer is removed from W while a new integer is
inserted into W forming a new window W’ so that W’ still holds
2 1k + integer elements, the median M’ of W’ is:
if (old ≥ M) and (new < M)
 M’ = maximum(predecessor(M), new)
else if (old ≤ M) and (new > M)
 M’ = minimum(successor(M), new)
else
 M’ = M

Proof. First consider a window set WS; notice Ws is a set of
(unordered) integers that can be arranged with a “less than
relation”, ≤. Let an array A be a sorted version of WS thus the
median always resides at position A[k+1]. For ease of reference
let the old integer removed from the window be at position
WS[2k+1] and the new inserted integer be at position WS[1].
Observe that the median M’ upon insertion and deletion into the
set window is either:

(i) unchanged
(ii) A[k] or the predecessor of M
(iii) A[k+2] or the successor of M
(iv) the new element WS[1]

Consider the insertion handling of new and old integers into A
to maintain a sorted array. If the new and old integers are on
opposite sides of the location A[k+1] then the integers in A are
shuffled left or right between the location of insertion and
deletion. That is, the old integer is replaced with the successor
(or predecessor) rippling back to create a place where to insert
the new integer. This implies that the median M’ is either case
(ii) (deletion on right) or case (iii) (deletion on left). If the new
and old integer are on the same side with respect to the location
A[k+1] then the shuffle has no effect on the median which
implies case (i). Of course, if the place for the new integer
occurs at A[k+1] then case (iv) applies. Secondly, for a window
W composed of a bag of 2k+1 integers (elements may be
repeated) the result holds since the integers in the window is a
totally ordered set with a relation “less or equal to”, ≤. ■

Corollary 1. Theorem 1 holds for any rank statistics r.

Proof. In Theorem 1, the result is shown for rank r = k+1, or
the median. Replace k+1 in the reasoning of the proof for
Theorem 1 for the rank statistics r of interest. ■

Corollary 2. Theorem 1 has running time O(1).

Proof. Theorem 1 assumes a sorted array of 2k+1 integers, so
knowing median M is of time O(1) by Definition 2. Similarly,
predecessor(M) and successor(M) are of time O(1). As
maximum and minimum operations are of time O(1), all three
cases of Theorem 1 are of running time O(1). ■

Theoretically, the new window median can be found in constant
time; this constant is essentially how fast a predecessor or
successor operation is performed when the window is kept
sorted. Implementing an algorithm based on this result alone is
challenging. The implementation here for keeping a generic
window sorted after one deletion and one insertion has a small
cost of O(lg lg m) time, as we will see shortly.

A. Running Median Algorithm
Procedure 1. Running_Median(x, k)
Input: Sequence x of length n, parameter k
Output: Sequence y of length n-(2k+1)+1 (Definition 3)

1. Process m=2k+1 integers to form window W
2. Find median M for window W; j = 1, y[1] = M
3. Make old = W[2k+1] and new = x[2k+2]
4. Make W = {new, W[1:2k]} as the new window
5. Apply Theorem 1; j = j+1, y[j] = M’
6. Repeat step 3

The algorithm is this simple; fill in the first window after
processing m integers from the input sequence x[j] (Step 1).
Find the median M for this first window (Step 2) using any
median finding method; and then slide through the window all
the remaining n-1 integers (Step 6) from sequence x[j] forming
a new window for each new integer. It places new integer into
position W[1] while shifting window positions 1,…, 2k to the
right thus evicting W[2k+1] from the window as the old integer
(Steps 3, 4). The median for the newly formed window is found
by applying Theorem 1 and added to the output sequence y[j].
The loop Step 2 through Step 6 is repeated n-1 times while Step
5 takes constant time as proved. However, as previously noted
our implementation to keep the conditions for applying
Theorem 1 in Step 5 after a new window in Step 4 has a small
cost. This paper examines implementations based on bit-
vectors.

B. Related work
In the running median algorithm of Procedure 1, trivially, the
window can be initialized with all entries to a constant M0 so
that M = M0 in Step 2 is found in O(1) time without the need to
call any known finding median method. Table 1 shows a
summary of known solutions to the running median problem as
compared to the work in this paper.
For a useful comparison of popular methods used in practice for
this problem see [10]. For the common case of integers, special
data structures lend well towards finding the median such as

> RUNNING MEDIAN ALGORITHM <

3

double heaps [5] and skip lists [6]. Although Theorem 1 is of
O(1) time, when implemented using a van Emde Boas tree [3]
Procedure 1 is of time O(n lg lg m) since predecessor/successor
operations incur a cost of (lg lg m + lg q) time per window (see
III-B). Similar results are obtained using a flat array of integers
with a stack of smaller arrays to act as summaries of the array
below (as with a van Emde Boas tree). For practical purposes,
our work finds the median for each running window as fast as
predecessor/successor operations can be performed within that
window. Theorem 1/Procedure 1 stand as a base for future
alternative faster implementations.

III. IMPLEMENTATION GUIDELINE
Note that the result of Theorem 1 requires every integer in the
window to have its own position, including repetitions. This,
although trivial in principle, has to be handled when
implementing a programmed solution. We frame and examine
implementations under the RAM mode of computation [1].

A. Principle of Operation
Let’s assume we have a window WS, that is, all integers are
distinct. Consider five 4-bit integers with the set WS = {14, 2,
11, 10, 9} (with order of arrival left to right). We arrange a 16-
bit long bit-vector V to represent them; Table 2 shows one way
to populate V from empty, one integer at a time, until all five
integers are inserted. Say integer 14 now leaves the window and

integer 6 gets into the window; removing bit 14 in V while
inserting bit 6 in V keeps five integers in V and they are sorted.
That is the key principle to maintain the conditions to apply
Theorem 1 between Step 4 and Step 5 in Procedure 1. The
sorting of integers in a window is performed by construction
with a suitable data structure rather than relying on an explicit
call to a sorting routine.

B. Generic Window
Any integer may appear at most 2k+1 times in a window. We
can associate a bin to each integer value, with each bin
composed of 2k+1 bits to account for repetitions. For instance,
a window of five integers with values {2, 3, 3, 1, 3} are mapped
with 20 bits (5 per bin) as:

Bin 0 Bin 1 Bin 2 Bin 3
 • • • • •

This is similar to a histogram where each bin count is
maintained in a base-1 number system or unary. Thus,
2 (2 1)q k + bits are required to account for repetitions of integers
within a window. In general, we can define a bin Bv as a bin
allocated to integer value v such that the number of repetitions,
Rv is given by the sum of all the unary digits of the bit count.
We keep p ≥ 2k+1 unary digits per bin so that a bin has a more
convenient bit length to match bytes or words. In the example
above, each bin is of five base-1 digits; Bin 3 count is 001111
(or 111001) to represent that the integer value 3 appears three
times in the window or R3 = 3. We can perform increment and
decrement operations on these base-1 counts in a very simple
way. Note the base-1 digits in Bv can be read as a decimal Dv;
in other words, 2 1vR

vD = − . Therefore an increment operation
on a bin count Bv is performed by 2Dv+1. A bin decrement on a
bin count Bv is performed by Bv >> 1 with “>>” understood as
the logical right shift operation on bits. Thus, each integer in a
window, including repeated ones, maps as a unique single bit
within a 2qm bit string so that for every new window of m
integers, exactly m bits are set across the bit string of size

2qU m= . We use van Emde Boas to build a tree for this bit
string. This has an implementation cost of O(lg U) or O(lg lg
m + lg q) time per window or O(lg lg m) time as q is independent
of m.

IV. EXPERIMENTS

A. Implementations
A skip list implementation is used as a base for comparisons
[6]. A skip list has a linked list at level 1 where each of the m
integers in a window reside in a node (so repetitions appear as
different nodes). Thus, at level 1 all integers are sorted. A skip
list superimposes, in a probabilistic way, another linked list at
higher levels; these upper level lists can skip ahead during a
search for an item. By adding an extra field to each node, for
tracking the distance of a node from the head node, this skipping
mechanism can be conveniently exploited for faster
computation of the running median [13]; the median is the node
at level 1 with a distance k+1 from the head and it takes O(lg
m) time. Thus, our implementation is expected to be faster than
a skip list when lg lg m + lg q < lg m, that is when m > q since
m > 0 with a speedup gain of (lg m)/(lg lg m). We have
implemented a skip list with a double-linked list at level 1 for

TABLE 1
KNOWN SOLUTIONS TO THE RUNNING MEDIAN PROBLEM

Technique Time Complexity Comments
Brute for Merge sort O(nm lg m) [1] Simple, slow
Brute force linear sort O(nm) [1] [10] Simple, still slow
Sorted linked lists O(nm1/2) [11] Requires pointers
Histogram-based O(nk) [12] Applicable to images
Double heap O(n lg m) [5] Applicable to images
Huang’s optimizations O(n) [7] Complex, for images
Skip list O(n lg m) [6] Generic, simple
This implementation O(n lg lg m) Generic, simple

TABLE 2
Walk through Set {14, 2, 11, 6, 9}

V contains {14}

•

V contains {14, 2}
 • •

 V contains {14, 2, 11}
 • • •

 V contains {14, 2, 11, 10}
 • • • •

 V contains {14, 2, 11, 10, 9}
 • • • • •

 V contains {14, 2, 11, 10, 9, 6}
 • • • • •

V is composed of 16 bins (bits from 0 to 15 as boxes at the bottom) all
initially empty (0). Upon integer with value v arrives the bin v is filled in
with a one (•). In the last snapshot integer 14 was removed, and 6 inserted; V
still contains five integers.

> RUNNING MEDIAN ALGORITHM <

4

making O(1) processing time for the predecessor and the
successor to the median; note the median is of time O(lg m).
Two Procedure 1 implementations were evaluated (following
the guidelines given in Section III): a full van Emde Boas tree
(veb) and an array tree (referred to as array). The array tree uses
arrays of packed integers as bit-vectors and follows the main
idea of clusters and summaries as used in van Emde Boas trees.
A leaf in a van Emde Boas tree has size 2; in the array tree used
in our evaluations a leaf is pruned to the native size of a machine
word, typically 32-bit or 64-bit accordingly.

B. Experimental setup
The implementations were compiled and ran in five different
machines: a Raspberry Pi 2 running a 32-bit OS (pi32), a
Raspberry Pi 3 running a 64-bit OS (pi64), a Nvidia Embedded
Development Kit (32-bit, tk1), an Amazon virtual machine EC2
instance (64-bit, aws) and a x86-64 laptop (64-bit).

C. Datasets
Three different streaming datasets were used: one of radio
frequency picked up by a Software Defined Radio (sdr) USB
dongle: these are 8-bit samples; one of accelerometer data from
mobile users with samples of 12-bit; and one of Winston
Churchill speeches (in the public domain) with voice samples
of 16-bit. Datasets were set to 10M samples each. Additionally
uniform distributed random data of 8, 12 and 16-bit samples
were generated. On each different machine, and for each
implementation, running time to process all the 10M samples
were recorded and annotated for each different dataset. Speedup
in running time is then calculated over averages of 20 runs each.

D. Results
Fig. 1 shows one instance of speedup gain as a function of
window size m while Fig. 2 shows speedup gain across five
machines for a window size m of 25. For the embedded pi32
machine, the speedup factor is consistently above 6. An
acceleration factor of at least two is seen consistently; it is well
over a factor of eight in some instances. As expected, for m >
q, our solution is always faster than the skip list. The array
implementation is faster; this was observed across the three bit
length of samples. The speedup for the streaming data is much
higher due to the empirical observation that the nature of the
data makes it more likely for the ‘else’ case of Theorem 1 to
show up in the computation. The factor of acceleration will
depend on the particular programming implementation;

implementations here have avoided using specific
optimizations native to the processor on a given machine. The
simple skip list solution is also accelerated by adding a double
linked list at level 1 and exploiting finding the median based on
successor/predecessor operations as proposed here for the
running median computation problem. On an embedded
Raspberry Pi 2 it is possible to process over 2000 windowed
medians per millisecond or streaming samples at a rate of over
10 MHz in an embedded Nvidia kit.

V. CONCLUSION

This paper gives a theoretical result for computing the running
median on the last m integers of a set of n integers as fast as
predecessor/successor operations can be performed on a data
structure containing the last m integers. With a van Emde Boas
implementation, the cost of predecessor/successor per iteration
is of O(lg lg m); a small cost in terms of m with a performance
gain of (lg m)/(lg lg m) over a skip list implementation. The
theoretical result stands for yet faster future novel
implementations. Not only the median but also any rank
statistics is supported. If the operations for creating a window
of samples as presented here are preserved the result can be
extended to higher dimensions.

REFERENCES
[1] T.H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein “Introduction to

Algorithms”, The MIT Press, 2nd Ed. 2003.
[2] R.R. Mettu, and C.G. Plaxton, "The Online Median Problem," SIAM J.

Comput., vol. 32, no. 3, pp. 816-832, 2003.
[3] P. van Emde Boas, "Preserving Order in a Forest in Less than Logarithmic

Time," Proceedings of the Annual Symposium on Foundations of
Computer Science FOCS., pp. 75-84, 1975.

[4] D.E. Willard, "Log-Logarithmic Worst-Case Range Queries are Possible
in Space ()nΘ ," Inf. Process. Lett., vol. 17, no. 2, pp. 81-84,
1983, doi:10.1016/0020-0190(83)90075-3.

[5] J.T. Astola, and T.G. Campbell, “On Computation of the Running
Median,” IEEE Trans. On Signal Processing, vol. 37, no. 4, pp. 572-574,
1989.

[6] W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees”,
Communications of the ACM, vol. 33, no. 6, pp. 668-116, 1990, doi:
10.1145/78973.78977.

[7] S. Perreault, and P. Hébert, “Median Filtering in Constant Time,” IEEE

Fig. 2. Speedup factor in execution time over five different machines. For
each machine a group of three bars correspond to 8, 12 and 16 bit samples
respectively. On each bar, the top value is the speedup achieved by the array
tree (array) while the darker grey gives the speedup for a van Emde Boas tree
implementation (veb).

Fig. 1. Factor of speedup in execution time of the array implementation
against a skip list implementation. The window size is varied from 5 to 225.
The running times are averages of streaming 12-bit data samples and 12-bit
uniform distributed random samples.

> RUNNING MEDIAN ALGORITHM <

5

Trans. on Image Processing, vol. 16, no. 9, pp. 2389-2394, 2007, doi:
10.1109/TIP.2007.902329.

[8] J. Chen., X. Kang, Y. Liu, and Z. J. Wang, “Median Filtering Forensics
Based on Convolutional Neural Networks”, IEEE Signal Processing
Letters, vol. 22, no. 11, pp. 1849-1853, 2015.

[9] LJSMI, Editor, “Application of Quantile Regression in Clinical Research:
An Overview with the Help of R and SAS Statistical Package,” Int. J. of
Statistics and Medical Informatics, vol. 2, no. 1, 2017,
doi:10.3000/ijsmi.v2i1.5

[10] M. Juhola, J. Katajainen, and T. Raita, “Comparison of Algorithms for
Standard Median Filtering,” IEEE Trans. On Signal Processing, vol. 39,
no. 1, pp. 204-208, 1991.

[11] S.D. Mohanty, “Efficient Algorithm for Computing a Running Median”
Technical Note LIGO-T-030168-00 D, August 13, 2003,
https://ddc.ligo.org/T030168/public

[12] Q. Zhang, L. Xu, and J. Jia, “100+ Times Faster Weighted Median Filter
(WMF),” IEEE Conf. on Computer Vision and Pattern Recognition, pp.
2830-2837, 2014. doi: 10.1109/CVPR.2014.362

[13] R. Hettinger, “Deep thoughts by Raymond Hettinger: Running median”,
http://rhettinger.wordpress.com/tag/running-median. Access on: August
31 2017.

https://ddc.ligo.org/T030168/public
http://rhettinger.wordpress.com/tag/running-median

	I. INTRODUCTION
	II. Preliminaries
	A. Running Median Algorithm
	B. Related work

	III. Implementation Guideline
	A. Principle of Operation
	B. Generic Window

	IV. Experiments
	A. Implementations
	B. Experimental setup
	C. Datasets
	D. Results

	V. Conclusion
	This paper gives a theoretical result for computing the running median on the last m integers of a set of n integers as fast as predecessor/successor operations can be performed on a data structure containing the last m integers. With a van Emde Boas ...

	References

