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Abstract—A novel algorithm is proposed to compute the median 

of a running window of m integers in O(lg lg m) time. For a new 
window, the new median value is computed as a simple decision 
based on the previous median and the values removed and inserted 
into the window.  This facilitates implementations based on data 
structures that support fast ordinal predecessor/successor 
operations. The results show accelerations of up to factors of six 
for integer data streaming in typical embedded processors. 
 

Index Terms—Median, median filter, running median, 
streaming algorithms, embedded processors 
 

I. INTRODUCTION 
HE most common solution for the running median problem 
is to compute, per iteration, the median M of a set of m 

elements using any known sorting routine such as Merge sort in 
O(m lg m) time [1]. This process is repeated over n iterations 
for a global computational time of O(nm lg m). This simple 
solution improves to O(nm) computational time at best when 
using a linear sorting routine such as counting sort or bucket 
sort [1].  Clearly, the best you can do for streaming applications 
is to improve finding the median fast, much faster than O(m). 
This paper develops a novel solution where on each iteration 
the median M is found in O(lg lg m) time. This is a small cost 
to obtain the median on a window of m integers yielding a 
global running time of O(n lg lg m) for the running median 
problem. The solution draws from the nature of the online 
median problem [2] taking advantage of the operations required 
when changing from the set of m elements in one iteration to 
the m elements in the next iteration. The set of m elements per 
iteration are referred to as a window; they are kept in order of 
arrival with each element processed as an integer. A new integer 
arrives into the window per unit of time while the oldest integer 
is removed. This moving of data is similar to the more familiar 
concept of moving average used in statistics. This work 
develops a very simple decision rule that allows computing the 
median for a running window of size m as fast as 
predecessor/successor operations can be processed on the 
previous window median. The contribution here results in 
accelerations, when the window is kept sorted by construction. 
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Practical implementations of the algorithm given here can 
exploit any existing integer data structure with fast 
successor/predecessor operations. Indeed data structures such 
as van Emde Boas [3] or y-fast tries [4] have 
successor/predecessor operations with execution time O(lg q) 
when mapping distinct q-bit integers. For a window of m q-bit 
integers with no repeats, successor/predecessor operations are 
performed in constant time using van Emde Boas. This paper 
gives a fast solution for the median of a running window with 
repeats. Possibly the best known simple and generic solution to 
this problem for embedded processors is the use of double 
heaps [5] and skip lists [6] with O(lg m) time at best to find the 
median per iteration. The implementation reported here gives 
an advantage for cases where m > q; this is corroborated in the 
results. We report speedups in execution time of at least a factor 
of six against a skip list implementation for various q and m 
sizes when programmed in embedded processors.  

The classical application of the median is as a filter for the 
removal of the so called salt and pepper noise in images [7]; its 
usefulness far extends into the rich area of image processing 
such as detecting cut-and-paste forgeries in images [8]. The 
online median is used in data mining as in the k-median problem 
used for optimizing placement of facilities [2], and in clinical 
applications and health care through quantile regression [9]. 

The running median algorithm proposed here exhibits 
features of great practical interest: it can be applied for any 
other rank-order statistics, it has a small cost for a window size 
m, it can easily be implemented in software as addressed or as 
a hardware architecture solution (not addressed).  

II. PRELIMINARIES 
A window W is a collection of copies of m integers (unordered) 
that are all not necessarily distinct; a window may have repeated 
integers. If the window has not repeated integers we will refer 
to it as a set window WS; , Sx y W x y∀ ∈ → ≠ . Each integer is 
taken from a set of integers S where xi of S  satisfies

2 1, ,q
ix i m≤ ∀ ∈  ; that is, each integer is a q-bit word. If W is 

sorted, the successor/predecessor of an integer at position j is 
the integer at position j+1/j-1 respectively (if it exists). For a 
self-contained reading we include a few standard definitions 
from textbooks.  
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Definition 1. An integer element x W∈  has rank k  if there are 
no more than 1k −  integers in W  that are less than x  and there 
exist at least k  integers in W  that are less or equal to x .  
 
Definition 2. The median of W is an integer of rank 1k +  in 
W when 2 1m k= + .  We make 2 1m k= +  for convenience, so 
that if W is sorted in ascending order the median is the integer 
at position 1k + .  
 
Definition 3. Let [ ]x j , 1,2, ,j n=   be a sequence or time 
series. The running median is defined as the sequence 

[ ] ({ [ ], [ 1], , [ 1]}), 1, , 1y j median x j x j x j m j n m= + + − = − +  . 
A median is computed on the last m windowed samples of the 
time series, where at each time step, a new integer arrives and 
an old integer leaves the window.  

 
Theorem 1. For a window W with 2 1k +  integer elements ix  

1,2, ,2 1i k= + sorted in an array A with median M, assuming 
one old integer is removed from W while a new integer is 
inserted into W forming a new window W’ so that W’ still holds 
2 1k +  integer elements, the median M’ of W’ is: 
if (old ≥ M) and (new < M)  
   M’ = maximum(predecessor(M), new) 
else if (old ≤ M) and (new > M)  
   M’ = minimum(successor(M), new) 
else 
   M’ = M 

 
Proof. First consider a window set WS; notice Ws is a set of 
(unordered) integers that can be arranged with a “less than 
relation”, ≤. Let an array A be a sorted version of WS thus the 
median always resides at position A[k+1]. For ease of reference 
let the old integer removed from the window be at position 
WS[2k+1] and the new inserted integer be at position WS[1]. 
Observe that the median M’ upon insertion and deletion into the 
set window is either: 

(i)  unchanged 
(ii) A[k] or the predecessor of M 
(iii) A[k+2] or the successor of M 
(iv) the new element WS[1] 

Consider the insertion handling of new and old integers into A 
to maintain a sorted array. If the new and old integers are on 
opposite sides of the location A[k+1] then the integers in A are 
shuffled left or right between the location of insertion and 
deletion. That is, the old integer is replaced with the successor 
(or predecessor) rippling back to create a place where to insert 
the new integer. This implies that the median M’ is either case 
(ii) (deletion on right) or case (iii) (deletion on left). If the new 
and old integer are on the same side with respect to the location 
A[k+1] then the shuffle has no effect on the median which 
implies case (i). Of course, if the place for the new integer 
occurs at A[k+1] then case (iv) applies. Secondly, for a window 
W composed of a bag of 2k+1 integers (elements may be 
repeated) the result holds since the integers in the window is a 
totally ordered set with a relation “less or equal to”, ≤. ■ 
 

Corollary 1. Theorem 1 holds for any rank statistics r.   
 

Proof. In Theorem 1, the result is shown for rank r = k+1, or 
the median. Replace k+1 in the reasoning of the proof for 
Theorem 1 for the rank statistics r of interest. ■ 
 
Corollary 2. Theorem 1 has running time O(1).  

 
Proof. Theorem 1 assumes a sorted array of 2k+1 integers, so 
knowing median M is of time O(1) by Definition 2. Similarly, 
predecessor(M) and successor(M) are of time O(1). As 
maximum and minimum operations are of time O(1), all three 
cases of Theorem 1 are of running time O(1). ■ 
 
Theoretically, the new window median can be found in constant 
time; this constant is essentially how fast a predecessor or 
successor operation is performed when the window is kept 
sorted. Implementing an algorithm based on this result alone is 
challenging. The implementation here for keeping a generic 
window sorted after one deletion and one insertion has a small 
cost of O(lg lg m) time, as we will see shortly. 

A. Running Median Algorithm 
Procedure 1. Running_Median(x, k) 
Input: Sequence x of length n, parameter k  
Output: Sequence y of length n-(2k+1)+1 (Definition 3) 

1. Process m=2k+1 integers to form window W 
2. Find median M for window W; j = 1, y[1] = M 
3. Make old = W[2k+1] and new = x[2k+2]  
4. Make W = {new, W[1:2k]} as the new window 
5. Apply Theorem 1; j = j+1, y[j] = M’ 
6. Repeat step 3 

The algorithm is this simple; fill in the first window after 
processing m integers from the input sequence x[j] (Step 1). 
Find the median M for this first window (Step 2) using any 
median finding method; and then slide through the window all 
the remaining n-1 integers (Step 6) from sequence x[j] forming 
a new window for each new integer. It places new integer into 
position W[1] while shifting window positions 1,…, 2k to the 
right thus evicting W[2k+1] from the window as the old integer 
(Steps 3, 4). The median for the newly formed window is found 
by applying Theorem 1 and added to the output sequence y[j]. 
The loop Step 2 through Step 6 is repeated n-1 times while Step 
5 takes constant time as proved.  However, as previously noted 
our implementation to keep the conditions for applying 
Theorem 1 in Step 5 after a new window in Step 4 has a small 
cost. This paper examines implementations based on bit-
vectors. 

B. Related work 
In the running median algorithm of Procedure 1, trivially, the 
window can be initialized with all entries to a constant M0 so 
that M = M0 in Step 2 is found in O(1) time without the need to 
call any known finding median method. Table 1 shows a 
summary of known solutions to the running median problem as 
compared to the work in this paper. 
For a useful comparison of popular methods used in practice for 
this problem see [10]. For the common case of integers, special 
data structures lend well towards finding the median such as 
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double heaps [5] and skip lists [6]. Although Theorem 1 is of 
O(1) time, when implemented using a van Emde Boas tree [3] 
Procedure 1 is of time O(n lg lg m) since predecessor/successor 
operations incur a cost of (lg lg m + lg q) time per window (see 
III-B). Similar results are obtained using a flat array of integers 
with a stack of smaller arrays to act as summaries of the array 
below (as with a van Emde Boas tree). For practical purposes, 
our work finds the median for each running window as fast as 
predecessor/successor operations can be performed within that 
window. Theorem 1/Procedure 1 stand as a base for future 
alternative faster implementations.  

 

III. IMPLEMENTATION GUIDELINE 
Note that the result of Theorem 1 requires every integer in the 
window to have its own position, including repetitions. This, 
although trivial in principle, has to be handled when 
implementing a programmed solution. We frame and examine 
implementations under the RAM mode of computation [1]. 

A. Principle of Operation 
Let’s assume we have a window WS, that is, all integers are 
distinct. Consider five 4-bit integers with the set WS = {14, 2, 
11, 10, 9} (with order of arrival left to right). We arrange a 16-
bit long bit-vector V to represent them; Table 2 shows one way 
to populate V from empty, one integer at a time, until all five 
integers are inserted. Say integer 14 now leaves the window and 

integer 6 gets into the window; removing bit 14 in V while 
inserting bit 6 in V keeps five integers in V and they are sorted. 
That is the key principle to maintain the conditions to apply 
Theorem 1 between Step 4 and Step 5 in Procedure 1. The 
sorting of integers in a window is performed by construction 
with a suitable data structure rather than relying on an explicit 
call to a sorting routine. 

B. Generic Window 
Any integer may appear at most 2k+1 times in a window. We 
can associate a bin to each integer value, with each bin 
composed of 2k+1 bits to account for repetitions. For instance, 
a window of five integers with values {2, 3, 3, 1, 3} are mapped 
with 20 bits (5 per bin) as: 

Bin 0 Bin 1 Bin 2 Bin 3 
     •     •     • • •   

This is similar to a histogram where each bin count is 
maintained in a base-1 number system or unary. Thus, 
2 (2 1)q k +  bits are required to account for repetitions of integers 
within a window. In general, we can define a bin Bv as a bin 
allocated to integer value v such that the number of repetitions, 
Rv is given by the sum of all the unary digits of the bit count. 
We keep p ≥ 2k+1 unary digits per bin so that a bin has a more 
convenient bit length to match bytes or words. In the example 
above, each bin is of five base-1 digits; Bin 3 count is 001111 
(or 111001) to represent that the integer value 3 appears three 
times in the window or R3 = 3. We can perform increment and 
decrement operations on these base-1 counts in a very simple 
way. Note the base-1 digits in Bv can be read as a decimal Dv; 
in other words, 2 1vR

vD = −  . Therefore an increment operation 
on a bin count Bv is performed by 2Dv+1. A bin decrement on a 
bin count Bv is performed by Bv >> 1 with “>>” understood as 
the logical right shift operation on bits. Thus, each integer in a 
window, including repeated ones, maps as a unique single bit 
within a 2qm  bit string so that for every new window of m 
integers, exactly m bits are set across the bit string of size 

2qU m= . We use van Emde Boas to build a tree for this bit 
string. This has an implementation cost of O(lg U ) or O(lg lg 
m + lg q) time per window or O(lg lg m) time as q is independent 
of m.  

IV. EXPERIMENTS 

A. Implementations 
A skip list implementation is used as a base for comparisons 
[6]. A skip list has a linked list at level 1 where each of the m 
integers in a window reside in a node (so repetitions appear as 
different nodes). Thus, at level 1 all integers are sorted. A skip 
list superimposes, in a probabilistic way, another linked list at 
higher levels; these upper level lists can skip ahead during a 
search for an item. By adding an extra field to each node, for 
tracking the distance of a node from the head node, this skipping 
mechanism can be conveniently exploited for faster 
computation of the running median [13]; the median is the node 
at level 1 with a distance k+1 from the head and it takes O(lg 
m) time. Thus, our implementation is expected to be faster than 
a skip list when lg lg m + lg q  < lg m, that is when m > q since 
m > 0 with a speedup gain of (lg m)/(lg lg m). We have 
implemented a skip list with a double-linked list at level 1 for 

TABLE 1 
KNOWN SOLUTIONS TO THE RUNNING MEDIAN PROBLEM 

Technique Time Complexity Comments 
Brute for Merge sort O(nm lg m) [1] Simple, slow 
Brute force linear sort O(nm) [1] [10] Simple, still slow 
Sorted linked lists  O(nm1/2) [11] Requires pointers 
Histogram-based  O(nk) [12] Applicable to images 
Double heap O(n lg m) [5] Applicable to images 
Huang’s optimizations O(n) [7] Complex, for images 
Skip list O(n lg m) [6]  Generic, simple 
This implementation O(n lg lg m)  Generic, simple 

 
 

TABLE 2 
Walk through Set {14, 2, 11, 6, 9} 

 
V contains {14} 

              
• 

 
 

V contains {14, 2} 
  •            •  

 V contains {14, 2, 11} 
  •         •   •  

 V contains {14, 2, 11, 10} 
  •        • •   •  

 V contains {14, 2, 11, 10, 9} 
  •       • • •   •  

 V contains {14, 2, 11, 10, 9, 6} 
  •    •   • • •     

 
V is composed of 16 bins (bits from 0 to 15 as boxes at the bottom) all 
initially empty (0). Upon integer with value v arrives the bin v is filled in 
with a one (•). In the last snapshot integer 14 was removed, and 6 inserted; V 
still contains five integers. 
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making O(1) processing time for the predecessor and the 
successor to the median; note the median is of time O(lg m). 
Two Procedure 1 implementations were evaluated (following 
the guidelines given in Section III): a full van Emde Boas tree 
(veb) and an array tree (referred to as array). The array tree uses 
arrays of packed integers as bit-vectors and follows the main 
idea of clusters and summaries as used in van Emde Boas trees. 
A leaf in a van Emde Boas tree has size 2; in the array tree used 
in our evaluations a leaf is pruned to the native size of a machine 
word, typically 32-bit or 64-bit accordingly.   

B. Experimental setup 
The implementations were compiled and ran in five different 
machines: a Raspberry Pi 2 running a 32-bit OS (pi32), a 
Raspberry Pi 3 running a 64-bit OS (pi64), a Nvidia Embedded 
Development Kit (32-bit, tk1), an Amazon virtual machine EC2 
instance (64-bit, aws) and a x86-64 laptop (64-bit).   

C. Datasets 
Three different streaming datasets were used: one of radio 
frequency picked up by a Software Defined Radio (sdr) USB 
dongle: these are 8-bit samples; one of accelerometer data from 
mobile users with samples of 12-bit; and one of Winston 
Churchill speeches (in the public domain) with voice samples 
of 16-bit. Datasets were set to 10M samples each. Additionally 
uniform distributed random data of 8, 12 and 16-bit samples 
were generated. On each different machine, and for each 
implementation, running time to process all the 10M samples 
were recorded and annotated for each different dataset. Speedup 
in running time is then calculated over averages of 20 runs each. 

D. Results 
Fig. 1 shows one instance of speedup gain as a function of 
window size m while Fig. 2 shows speedup gain across five 
machines for a window size m of 25. For the embedded pi32 
machine, the speedup factor is consistently above 6. An 
acceleration factor of at least two is seen consistently; it is well 
over a factor of eight in some instances. As expected, for m > 
q, our solution is always faster than the skip list. The array 
implementation is faster; this was observed across the three bit 
length of samples. The speedup for the streaming data is much 
higher due to the empirical observation that the nature of the 
data makes it more likely for the ‘else’ case of Theorem 1 to 
show up in the computation. The factor of acceleration will 
depend on the particular programming implementation; 

implementations here have avoided using specific 
optimizations native to the processor on a given machine. The 
simple skip list solution is also accelerated by adding a double 
linked list at level 1 and exploiting finding the median based on 
successor/predecessor operations as proposed here for the 
running median computation problem. On an embedded 
Raspberry Pi 2 it is possible to process over 2000 windowed 
medians per millisecond or streaming samples at a rate of over 
10 MHz in an embedded Nvidia kit. 

V. CONCLUSION 

This paper gives a theoretical result for computing the running 
median on the last m integers of a set of n integers as fast as 
predecessor/successor operations can be performed on a data 
structure containing the last m integers. With a van Emde Boas 
implementation, the cost of predecessor/successor per iteration 
is of O(lg lg m); a small cost in terms of m with a performance 
gain of (lg m)/(lg lg m) over a skip list implementation. The 
theoretical result stands for yet faster future novel 
implementations. Not only the median but also any rank 
statistics is supported. If the operations for creating a window 
of samples as presented here are preserved the result can be 
extended to higher dimensions.   
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