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Abstract

The standard theory of coherent risk measures fails to consider individual institutions as
part of a system which might itself experience instability and spread new sources of risk
to the market participants. This paper fills this gap and proposes a cooperative market
game where agents and institutions play the same role. We take into account a multiple
institutions framework where some institutions jointly experience distress, and evaluate
their individual and collective impact on the remaining institutions in the market. To
carry out the analysis, we define a new risk measure (SCoES) which is a generalization
of the Expected Shortfall of |Acerbi| (2002), and we characterize the riskiness profile as the
outcome of a cost cooperative game played by institutions in distress (a similar approach
was adopted by [Denault|[2001]). Each institution’s marginal contribution to the spread of
riskiness towards the safe institutions in then evaluated by calculating suitable solution
concepts of the game such as the Banzhaf~Coleman and the Shapley—Shubik values.

KEYWORDS: Risk measures, systemic risk, cooperative market game, Shapley Value,
Value—at—Risk, Expected Shortfall.



1 Introduction

The assessment of financial risk in a multi-institution framework when some institutions are
subject to systemic or non—systemic distress is one of the main topics of the latest years which
received large attention from scholars in Mathematical Finance, Statistics, Management, see,
e.g.,|Adrian and Brunnermeier| (2016)), Billio et al. (2012), Acharya et al.[(2012), Girardi and
Ergun| (2013), Hautsch et al.| (2014)), Engle et al.| (2014]), [Lucas et al.| (2014)), Bernardi and
Catania (2019)), Sordo et al.| (2015), just to quote a few of the most relevant approaches.
For an extensive and up to date survey on systemic risk measures, see Bisias et al. (2012)),
while the recent literature on systemic risk is reviewed by Benoit et al. (2016]). Especially
since 2008, Lehmann Brothers’ collapse and the subsequent debt crisis contagion across Eu-
rope raised crucial issues and questions to be addressed by new macroeconomic and financial
models. In particular, such events and the related consequences provoked a wide increase
in investigation of instruments possibly suitable for risk evaluation, thereby targeting the
occurrence of contagion among institutions in distress (see, among others, Drehmann and
Tarashev|[2013| on the theoretical side and [Huang et al.|2012a and [Huang et al.|2012b|on the
empirical side).

In this paper we are going to investigate circumstances where one or more market in-
stitutions undergo financial distress and may spread the contagion to the remaining safe
institutions in the market. Financial distress has a straightforward meaning: a condition of
dramatic financial instability of an institution, or lack of ability to fully repay its creditors,
or even the preliminary to bankruptcy or liquidation. Although “financial distress” and “de-
fault” are sometimes used interchangeably, there may be some differences, often depending
either on each country’s specific bankruptcy law or on the institution’s rating and so on (see
Altman and Hotchkiss |2010| for an extensive discussion).

When a financial distress takes place in the market, each distressed institution affects the
safe ones and individually contributes to the systemic risk. A crucial aspect of the contagion
frameworks is the assessment of each agent’s (i.e. each institution’s) marginal effect on sys-
temic risk. In order to evaluate such contributions, a natural and intuitive tool is the Shapley
value (see[Shapley|1988), as well as the Banzhaf value (see Banzhaf 1111965 and Owen|/1995).
It is interesting to note that, although his world famous theories did not concern financial
markets specifically, L.S. Shapley, Nobel Laureate in Economic Sciences in 2012, proposed a
relevant application to market analysis in a paper with M. Shubik in 1969 (see Shapley and
Shubik{|{1969). In that paper, Shapley and Shubik defined and investigated the direct markets
(see Shapley and Shubik (1969), pp. 15-18), i.e., markets where, since each trader possessed
one initial unit of a personal commodity, traders might be identified with commodities. As
the Authors put it literally, “A canonical market form — the direct market — is introduced, in
which the commodities are in effect the traders themselves, made infinitely divisible...” (p.
11), hence that was the first attempt to model a cooperative game where agents had a twice



nature: traders and assets at the same time.

Hence, classical solution concepts widely used in Cooperative Game Theory such as the
Shapley value and the Banzhaf value fit our evaluation purposes. In more recent times,
cooperative game theory has already been employed for risk capital allocation by [Denault
(2001) and in the latest years by |Cséka et al. (2009) and Abbasi and Hosseinifard (2013)ﬂ
However, in none of the above papers a characteristic value expressing the difference between
an expected value in a non—distressed case and an expected value in a distressed—case has
been taken into account.

The financial setup we are going to investigate involves a set of possibly distressed institu-
tions (for example a set of banks) and a set of safe institutions. Our purpose is an assessment
of the contagion risk, i.e., the extent to which the safe institutions can be affected and dam-
aged by the financial distress of the unsafe ones. For this purpose, risk measures have been
extensively theorized and analyzed, giving rise to a rich strand of literature. Some of them
might provide helpful techniques for risk allocation among a number of distinct systemic
agents. In this respect, the coherent risk measures have been and are a crucial tool for the
assignment of risk capital, both for the richness of properties due to their axiomatic structure
and for their adaptability to fit several financial frameworks. The basic studies on coherent
risk measures have been published by |Artzner et al.| (1999) in 1999, who first provided an
axiomatic characterization. Subsequently, in 2001 |Denault| (2001)) developed the analysis by
taking into account a cooperative game structure, where players are the firms involved in
risky financial activities, and the risk induced by the net worth of firms is the value of the
characteristic function of the game, and the subadditivity axiom naturally induces a cost
cooperative game.

The coherence of the Expected Shortfall (ES, hereafter) was taken into account by |Acerbi
and Tasche (2002) in 2002, whereas an axiomatic approach was adopted in 2005 by Kalkbrener
(2005), to characterize the related capital allocation procedures in portfolio management or
performance measurement. In recent years, further mathematical results were achieved by
Stoical (2006]) (equivalence between properties of some coherent measures with no arbitrage
conditions), (Csdka et al.| (2007, 2009) (refinement of measures in a general equilibrium setup,
stability of risk allocations), Kountzakis and Polyrakis| (2013) (applications to general equi-
librium models). Other relevant results in risk allocation theory were provided in |Acciaio
(2007)), Filipovic and Svindland| (2008), Drehmann and Tarashev, (2013), Ravanelli (2014)) and
Csoka and Pintér| (2016)). Furthermore, as a slightly different tool, distortion risk measures
have been applied to a financial contagion framework by (Cherubini and Mulinacci (2014).

The new approach we are going to propose builds on an alternative risk measure which
is an extension of ES and which is supposed to incorporate the effect of the distressed in-

' A mechanism for allocation of risk capital to subportfolios of pooled liabilities has been proposed by
Tsanakas and Barnett in 2003 (see | T'sanakas and Barnett(2003)) and by Tsanakas in 2009 (see |Tsanakas|2009)),
based on the Aumann—Shapley value.



stitutions on a safe one. Such a measure, denoted by SCOESZ‘%TQ, represents the expected
value of a non—distressed institution ¢ conditional upon a set D of institutions under distress,
given two different thresholds 71,72 € (0, 1), specifically related to the institutions’ returns.
Subsequently, in order to evaluate the marginal contribution of each distressed institution
to overall systemic risk, we will construct a cost function. Such a function aims to measure
the cost of risk by evaluating the mean of the differences between the standard Expected
Shortfalls and the values of SCoES of all non—distressed institutions. This formula will be
the characteristic value of a cooperative game played by distressed institutions. Adopting a
classical approach, we will examine the properties of the game and calculate the marginal
impacts of each distressed institution, pointing out the differences between the Shapley value
and the Banzhaf value of the game.

The introduced risk measurement framework is then adopted to empirically analyze the
evolution of the SCoFE S risk measure and the output of the associated cooperative game of
risk for eight Eurozone sovereign Credit Default Swaps (CDS) over the period 2008-2014.
Our example assumes the Germany as the “safe” country, and explores how the evolution of
the remaining countries’ debt conditions affect the health and financial stability of Germany
considered as a “proxy” for the overall European system. As a byproduct of the proposed risk
framework, the evolution of the total impact of the failure of the European system is moni-
tored. Our results show that the risk of failure of the European system displays a transitory
high level during period in between the Greece and Portugal bailouts (November 2010 — May
2011), but effectively remains at high levels when the ECB president Mario Draghi announces
the implementation of the Outright Monetary Transactions (OMT) and the European Sta-
bility Mechanism (ESM) in the months thereafter. It is only after the implementation of the
OMT, and the ESM, that the systemic risk of Germany settles more permanently at a level
that is roughly 60% lower than during the crisis.

The remainder of the paper is structured as follows. In Section 2] the basic concepts about
risk measures will be recalled, together with some axiomatic details of coherent measures.
Section [3] introduces the indicators that will be crucial to our analysis, whereas in Section
the cooperative game of risk and its solution concepts are exposed and discussed. Sec-
tion [] is devoted to the empirical application and Section [6] conclusions and possible future
developments are laid out.

2 Risk measures in portfolio management

Here we will outline the standard notation for risk measurement in recent literature, largely
borrowed from the seminal paper by Artzner Artzner et al|(1999) and Kalkbrener (2005).
Consider a finite set of states of nature €2, whose cardinality is [2] = m. Call X(w;) a
random variable indicating the final net worth of a position in state w; € € after a certain time
interval, i.e., the possible profit and loss realization of a portfolio in state w;. We can identify



the set of all real-valued functions (which can also be viewed as the set of all risks) on 2 as
R™, whose elements are of the kind X = (X (w1),..., X (wp)). In the rigorous construction
proposed in |Artzner et al. (1999), a measure of risk is a mapping p : R™ — R such that
p(X) corresponds to the minimum amount of extra cash an agent has to add to her risky
portfolio, in order to ensure that this investment is still acceptable to the regulatorﬂ when
using a suitable reference instrument. The basic requirement concerns the price of the asset:
1 is the initial price of the asset and r > 0 is the total return on the reference instrument at
a final date T, in all possible states of nature. In Artzner et al. (1999) the Definition of a
coherent measure is then provided based on an axiomatic structure.

Definition 2.1. A function p : RS — R is called a coherent measure of risk if it satisfies
the following axioms:

Monotonicity (M): for all X, Y € R™ such that Y > X (i.e. Y(wj) > X(wj) for all
wj € ), p(Y) < p(X).

Subadditivity (S): for all X, Y € R™, p(X +Y) < p(X) + p(Y).

Positive Homogeneity (PH): for all X € R™ and A € Ry, p(AX) = Ap(X).

Translation Invariance (TI,E|: for all X € R™ and h € R,

p(X + hr) = p(X) — h.

We have to point out that the Value-at-Risk (VaR) satisfies all of them except Subadditivity,
as is precisely exposed in |Artzner et al| (1999) as well as the standard Definition of VaR,
which is recalled here:

Definition 2.2. Given 7 € (0,1) and the return on a reference instrument r > 0, the VaR
at level T of the final net worth X with probability P {-} is the negative of the quantile at level
T of X/r, i.e.

VaR(X)=—inf{z | P{X <r-z} >71}.

Without loss of generality, in the remainder of the paper, r will be normalized to 1.

Back to coherent measures, when the outcomes are equiprobable, i.e. when the state
of nature w; occurs with probability p; and p1 = --- = p,, = 1/m, a special and relevant
case can be treated, as was investigated by |Acerbi (2002)). In particular, we take into ac-
count an ordered statistics given by the ordered values of the m-tuple X (w1), ..., X (wp), i.e.

{)~(1, ... ,)Zm}, rearranged in increasing order: )NQ <... < )~(m The definition of spectral

2This property relies on the acceptance sets, which are axiomatized in [Artzner et al(1999).
3Property TT is sometimes denoted as Risk Free Condition (RFC).



measure of risk we are going to present is due to Csoka et al.| (2007), who slightly modified
Acerbi’s original definition by employing a positive discount factor J, not necessarily equal
to 1 as in |Acerbi (2002]).

Definition 2.3. If the outcomes are equiprobable, given a vector ® € R™ and a discount
factor 6 > 0, the risk measure Mg : R™ — R defined as follows:

Mg (X) = —6f ®,X;, (1)
j=1

is called a spectral measure of risk if ® satisfies the following axioms:
- Nonnegativity (N1): ®; >0 for all j =1,...,m.
- Normalization (N2): &1+ -+ &, = 1.

- Monotonicity (M): ®; is non-increasing, i.e. for all u,v € {1,...,m}, u < v implies
D, > O,

A well-known spectral measure of risk is the one indicating the discounted average of the
worst T outcomes, i.e. the T-Expected Shortfall of X. For all 7 € {1,...,m}, it is given
by

ps.(x) -2 Y%, 2
j=1

When X is a continuous random variable, its formula reads as follows:

o i
ES . (X)=—- /~ _ 2f(z)dz, (3)
T JX<-VaR.(X)
where f(-) is the law of X and 7 is the related confidence level. The proof of the coherence of
ES;_() in the continuous random variable setup can be found in |Acerbi and Tasche| (2002)).

3 The SCoFES as a risk measure

Here we propose a generalisation of the Adrian and Brunnermeier| (2016))’s CoVaR and CoFES,
namely System—CoVaR (SCoVaR) and System—CoES (SCoES). The proposed risk mea-
sures aim to capture interconnections among multiple connecting market participants which
is particularly relevant during periods of financial market crisis, when several institutions
may contemporaneously experience distress instances.

Let P = {1,...,p} be a set of p institutions, and assume that the conditioning event is
the distress of a subset of P. Call D = {ji,...,jq} C P the set of d institutions potentially



under distress, whose cardinality is such that 0 < d < p, hence meaning that at least one
institution is not under distress and that at least one is under distress. If we consider a set
S C D of distressed institutions, such set represents a group of institutions picked among the
ones that may be under distress. As is usual in typical Cooperative Game Theory literature,
we will denominate any group S as a coalition. In Figure [I] we show the set structure of
the model: P is the set of all institutions, which contains D, subset including the distressed
institutions, whereas S is a generic subset (coalition) of institutions in distress. Thus, S is a
subset of D.

FI1GURE 1: The subset D C P contains all possible coalitions S of institutions in distress.

Given the confidence levels 7, 79, we are going to define the SCoVaRiTS‘TQ of institution
i € P for all institutions not belonging to D as follows. We are going to assume that at least
one distressed institution has a negative return, i.e., that there exists at least one X; < 0, to
ensure possible positivity of the Expected Shortfall as has been defined by (2)), when §,7 > 0.

Let X = (X1,...,Xp) be a vector of p institution returns with probability P{-}. Given
any group S C D of distressed institutions, and a related confidence level 1o, we implicitly
define VaRZ:

P> X, <-VaRZE ()X, | p =72 (4)
JKES JKES

Hence, the conditioning event is the one described in and whose probability equals the
confidence level 5.



Definition 3.1. Given a set S C D of institutions in distress and 11,72 € (0, 1), for all

i € P\ D, the SOOVCLR;.TS'TQ 1s implicitly defined as follows:

P{X; < —SCoVaR[S® | > Xj < —VaRZ | Y X, | p =71 (5)
JKES JKES

An alternative Definition of S C’oVaRiT‘l‘S'T2 is the following one.

Definition 3.2. Let X = (X;,..., X)) be a vector of p institution returns with probability
P{-}. Given a set S C D of institutions in distress and 11,72 € (0, 1), for alli € P\ D, the

SCOVG,R;?;? is the mazimum value X taken by X; such that

P{{X: < XN es X < —VaRn (Zjes X0 ) }}
P {ijes Xj, < —VaRs, <ij65 Xjk) }

> 7. (6)

Basically, SC’OV@R?S‘T2 is the Value-at-Risk of an institution subject to the condition that
the sum of the realizations of the institutions under distress do not exceed the Value-at-Risk
of their sum, when two different confidence levels are in general taken into account. The two
following Remarks aim to point out two circumstances where SCoVaR coincides with the
marginal VaR.

Remark 3.3. In this context it is quite natural to consider the sum as aggregated measure of
risk since we are considering profits and losses. Of course alternative definitions are possible,
as for example, the maximum loss of the distressed institutions, see, e.g., |Bernardi et al.
(2018) and discussion therein.

Remark 3.4. If all the returns of the institutions in W are independent of all the returns of
institutions in D, then we have:

SCoVaR[{* = —inf {l € R | P{X; <1} > mi} = VaRy, (X,).

Remark 3.5. When no institution is under distress, S =0, i.e. X;, =0 for all j, € S. In
this case, (@ s well-defined too and in particular it collapses to the standard VaR. Namely,

P Z X, < —VaR, Z Xy =1 = SCOV&RZ—II(AT2 = VaR: (X;).
JrES JRES

The SCoVaR is particularly useful to formulate the risk measure we are going to investigate.



Definition 3.6. Given 11,79 € (0, 1) and a set S of institutions in distress, the SC’OESTSh2

is the expected value of institution i € P\ D, provided that it does not exceed SCOVCLRT'TQ

and conditional upon the set of institutions S being at the level of their joint ES;,-level:

SCoES]Y™ = —E | X; | X; < =SCoVaR}\™, Y X;, <—ES, | Y. X, || (D)
Jk€S JLES

As in Remark equation can be evaluated when no distress occurs too, collapsing to
the standard Expected Shortfall:

SCo EST@W = —E[X; |X; < —VaR., (X;)] = ES,, (X).

A short explanation may be helpful to clarify the formulation of equation : the condition
S jues X € ~BSp, (3,65 X ) is always verified when all X, < 0. On the other hand,
just one negative institution return is enough to determine an open interval for § such that
the condition holds. More precisely, if X, .. X j, are negative, where j, € Sfork =1,...,1,

]kES
Zk 1

all institution returns in a coalition S are negatlv
Getting to analyze possible relations between SCoVaR and SCoES, we can prove some
results.

the condition boils down to: § > —7 . Such an estimate is trivially true whenever

Proposition 3.7. For any pair of confidence levels 71, 12 € (0,1), for any set S C D, and
for any i € P\ D, we have that:

SCoES]{™ > SCoVaR]\™. 8)

Proof. Given any random position X, we first recollect the Definition of ES(X) in our frame-
work:
ES;(X)=-E[X | X < -VaR,(X)],

where 7 € (0,1). It is already well-known that, since for every ¢ € R we have that:
X <c¢ = E[X]|<g¢

then
X < —VaR;(X) = E[X]| < -VaR,(X),

4Also note that the estimates on & are as many as the possible coalitions S except the empty set, i.e.
2Pl _ 1, hence there are at most 22! — 1 levels of § that must be exceeded. Because the choice of ¢ in the
definition of (2)) is arbitrary, taking the maximum level among such values implies that such condition in

is always satisfied, consequently SC’OEST”T2 = [X | X; < SCoVaRTl‘TQ] for all i € P\ D.

9



which implies
ES.(X)=-E[X | X < —VaR(X)] > VaR;(X).

Given any S C D, we know that

Z Xjk < —VCLRTQ Z Xjk < _ESTQ Z Xjk

JKES JLES JkES

for all 75 € (0,1), hence the condition for the Definition of SCoVaR is satisfied, i.e.

P X; < —SCoVaR[™ | 3 X, <—BS,, [ Y X, | ¢ =7
JKES JKES

Consequently, the same argument which is applied to ES and VaR can be employed to
establish an inequality involving S C’oESiTs‘YT2 and S CoVaRZ.T‘IS‘TZ:

—E [X; | X; < ~SCoVaR[}{*| > —~SCoVaR[}{* <= SCoES™ > SCoVaR]{™.
Previous result is obtained by applying the property of the expectation operation to the
conditional distribution X; | X; < —SCOV@RZTSW. O

Proposition 3.8. Given two coalitions S, S’ € 2P, if the following hypotheses are verified:

1. SCoVaR[{? > SCoVaR]y™;

2. ijeS’ Xjk < —ESs, (ijeS’ Xjk-);

3. ijeS Xjk < —ESs, (ijes Xjk)’

then SCoES]4* < SCoES]I™.

Proof. If S, S’ € 2P, the first hypothesis ensures that

X; < SCoVaR™™|

~E [X; o

X; < —SCoVaR[?| > -E X,

whereas the second and the third hypotheses guarantee that SCoFE SZ'Q,TZ’ and S CoESZ.Tng are
well-defined, consequently

SCoES]4* < SCoES]Y™.

O]

In the remainder of the paper, whenever there is no misunderstanding, we are going to simply
denote the above quantities with ES, SCoES, VaR and SCoVaR, to lighten the notation.

10



4 A cooperative game for risk allocation induced by SCoES

The risk allocation problems were introduced by Denault| (2001), where the problem of al-
locating the risk of a given firm, as measured by a coherent measure of risk, among its
N constituents, was taken into account, closely resembling the typical Cooperative Game
Theory approach. In [Denault| (2001 cooperative games of cost were employed to model
risk allocation problems, and the chosen solution concepts were the Shapley value and the
Aumann—Shapley value. Such approach was subsequently adopted and improved in [Csoka
et al.[(2009), where risk allocation games and totally balanced games are compared to ensure
the existence of a stable allocation of risk. In particular, they define a risk environment
characterized by a set of portfolios, a set of states of nature, a discrete probability density
of realization of states, a matrix of realization vectors and a coherent measure of risk, from
which they construct and analyze a risk allocation game. In both approaches, the portfolios
of a firm are looked upon as the players of a subadditive cooperative game.

In our setting, we are ready to apply the measures defined in Section 3| to institutional
circumstances where distress occurs, and in particular we are going to rely on some typical
tools borrowed from Cooperative Game Theory. In more details, we will look upon any
possible set of distressed institutions as a coalition of a cooperative game (or TU-game, see
Owen||1995). The effect of distress on the remaining institutions, corresponding to risk of
contagion, will be evaluated by means of a cost function.

Call W the set of institutions not belonging to D, i.e. W =P \ D. We can evaluate the
cost of risk induced by any coalition S C D by taking a weighted arithmetic mean over all
differences between the unconditioned ES;, and the SCoES for all institutions in W, i.e.

Siew 0i | BSr(Xi) - SCoEST™|

W ’

cw (S) = 9)

“i/l' a; = |W]|, for all S C D.

where oy > 0 forall i =1,...,|W|, >,

In the frame of risk allocation, we introduce a cooperative game I' = (¢, D), where D
represents the the set of involved portfolios and ¢ : 2P — R is as in @), and assigns a cost
to each coalition S C D.

The cooperative game approach appears very suitable, in that in an uncertain financial
framework it allows to take into account all possible combinations of institutions undergoing
distress.

Moreover, the couple (¢, D) actually defines a cooperative game. In fact, when no insti-
tution in D is under distress, then ¢y () = 0 because all the differences in the numerator of
equation @ vanish. Essentially, this hypothesis, which is necessary to define a cooperative
game on D, may have a clear-cut financial interpretation: all the safe institutions are col-
lected in W, meaning that all of them are secured beyond a reasonable doubt. They can be

11



viewed as states or companies issuing either government bonds or securities guaranteed by
top-quality collateral, namely all the kinds of agents which do not involve any risk factors.
Also note the positive sign in equation @D: in standard payoff cooperative games such sign is
reversed. But because we are assuming that below the confidence level 7 some realizations
X, are negative, positivity of £S:, (-) is ensured, hence the level of risk induced by distress
can be positive. However, it may occur that for some coalition S, cy (S) is non-positive,
but this would mean that the contagion is even less likely to spread from such a group of
institutions to the non-distressed ones.

Formula @ needs some further explanation, in terms of what the differences between E.S
and SCoES actually measure. Each difference provides the spread between the standard risk
and the risk which is correlated to the distress of a coalition S, composed of one institution
at least. In order to completely assess the risk effect caused by any coalition S, the sum of
those differences is taken over the whole set of safe institutions W. Perhaps some structural
differences may occur among the safe institutions, including insurance contracts, implemen-
tation of hedging strategies, and so on. Such heterogeneity can be captured by weights «; in
equation @D, which can also be interpreted as directly dependent of each single institution,
in compliance with its size or its systemic relevance. In order to lighten the notation, we are
going to hypothesize a simplified scenario where all institutions’ weights are equal, then we
are going to posit a3 = -+ = a| = 1.

The issue concerning the properties of the game @D is somewhat complex, due to the
fact that the SCoFES of an institution subject to an external distress is a kind of measure
of correlation, or also a measure of how distress spreads its contagion towards non-distressed
institutions. Consequently, the standard axioms associated to coherent risk measures can
hardly be demonstrated. Instead of an axiomatization, we are going to outline some charac-
teristics of ¢y (+), which are listed in the next Propositions. Some of these properties resemble
the axioms stated by Denault, (2001]).

Proposition 4.1. Given two coalitions S, S’ € 2P, if the following hypotheses are verified:

1. S’C’OVCLRZES[/T2 > SC’OV@RiTﬁS‘T2 ;

2. ijeS’ X < —ES;, (ijeS’ Xjk);
3. ijeS Xjk < —ESs, (ijes lec)’
then cw (S) > ew (97).
Proof. Tt follows directly from the inequality in Proposition O

In the following Proposition, the expression AS means that all the institution returns in
S are multiplied by A, i.e. AXj,, for all j € S C D.

12



Proposition 4.2. For each A € Ry, ey (AS) = ew (5).

Proof. Applying Deﬁnitionto AS, for all A > 0, implies that S C’oVaRin/\';2 is the maximum
X7 such that

P{{X: < X PN { e M € —VaRn (5,c60%5,) }}
P{5,e5 A Kj, < ~VaRy, (567X, ) |

By the positive homogeneity of VaR (see either |Artzner et al.|1999 or McNeil et al.[2015, p.

74), that expression coincides with equation @, hence S CoVaRiTlg\‘g2 =S5 CoVaRZ.T‘IS‘TQ.

For all S € 2P, linearity of ES can be employed in the expression of SC’OESZ.Tll/\‘g:

> T1.

SCoESG = —E | X; | X; < —SCoVaR[\Z, 3" AX;, < —BES,, [ X,

Jrk€S JLES

= —E |X; | X; < —SCoVaR[J*, " X, < —ES., | Y X,

Jk€ES JLES

= SCoES]1™.

Finally, ey (AS) can be written as follows:

Siew [Esn (X;) — SCoES I'ﬂ

i|AS
cew (AS) = i
Siew |BSn(Xi) = SCoES}™ |
= |W| =Cw(S). (10)

O

Proposition 4.3. For all S C D such that all the returns X;, where i € W, are independent
of all returns X, , where ji € S, cw(S) = cw (0) = 0.

Proof. For all institution returns X; which are independent of all X, (see Remark , where
i € W and ji € S C D, we have that SCOESiTllSIT2 = SCOESZ'E)'TZ = ES;, [X;]. If this holds
for all © € W, the proof is complete. O

Subadditivity is a key feature of cost allocation games. Recall that I" is subadditive when
its cost function is subadditive, i.e. for all S,T € 2P such that SNT = 0, ey (SUT) <

13



ew(S) + ew(T) (e.g. |Anily and Haviv) 2014). As is shown in the next Proposition, the
game(cyy, D) is not always subadditive. In particular, some assumptions on the related ES
and SCoFES are supposed to hold.

Proposition 4.4. IfV i€ W, ES; (X;) > 0 and SCoES is superadditive, i.e.

SCoESTA™, > SCoES[{™ + SCoES™,

then (cw, D) is subadditive.
Proof. By definition of subadditivity, we can note that for all S,T € 2P, where SNT = 0
ew(SUT) —ew(S) —ew(T) =
Siew |SCoESTI™ 4 SCoESTI™ — SCoESTI™. — ES,, (X))

S i T ilsuT
W] ’

then, if Vi e W, ES; (X;) > 0 and SCoES is superadditive, i.e.

SCoES]4. > SCoES[{™ + SCoES]y™,

then ¢y (+) is subadditive. O

However, it is difficult and restrictive to impose this condition, because the very definition of
ES., allows both its possible positivity and negativity, depending on the level at which the
worst outcomes are taken.

4.1 Risk allocation

A typical and well-known application of cooperative games is the determination of suitable
allocations among players who get a share of a total amount, which is a benefit when they
play a payoff game (generally superadditive) and a cost when they play a cost game (gen-
erally subadditive). In this case, by Proposition subadditivity is not ensured, but the
characteristic function of the game represents a contagion risk induced by distress of some
institutions, hence its interpretation as a cost game sounds intuitive and natural.

A complete presentation of the several solution concepts and allocation rules in coopera-
tive games can be found in Owen (1995). The two main values we are going to apply to our
setup are the Shapley-Shubik (first introduced in 1953, see [Shapley| 1988)) and the Banzhaf-
Coleman (which was formulated in 1965, see Banzhaf 111 |1965|) values. What follow are the
expressions of such allocation principles when employing the characteristic function cyy(+).

14



The Shapley value of the game (cy, D) is given by the d-dimensional vector ®(cy ) =
(p1(ew), .-, dq(cw)) such that:

7'1|T2 T1‘7’2
d—1SN(IS| — 1) EieW SCOESZ‘S\{ o) SCOES”S
bilew)= > (d—| |)d(!| |- 1) [ | J| ] oy

Jk€S, SCD

for all j € D.
On the other hand, the Banzhaf value of (cy, D) is the d-dimensional vector B(cy) =
(Bi(ew), - - -, Balew)) such that:

1|72 1|72
Siew [SCOESTIE, | — SCoBSTL™|

(W] ’

Bj(ew) = 2% > (12)

Jk€S, SCD

for all ji € D.

Their respective ax1ornat1zat10nsE| point out a crucial difference between and .
the Shapley value satisfies the efficiency ax1onﬁ, ie. Zk 1 P (ew) = CW(D), Whereas the
Banzahf value does not, except when d = 2. On one hand, such axiom conveys the idea that
there is an aggregate amount of risk capital to be apportioned among institutions in distress.
On the other hand, perhaps it is helpful to avoid thinking of risk as a unique object to be
divided, given its specific characteristics. Loosely speaking, we stress that both values can
be employed based on good motivations.

Clearly, we can say that ji is a dummy institution if and only if Vi € W, VS C D,
SCo ESTlslt{j = SC’oESiTgTQ. The economic meaning of a dummy institution is simple: its
marglna{ contribution to overall contagion is always zero.

A special discussion should be devoted to the so-called no undercut property (see De-
nault| (2001), Def. 3), which can be reformulated as follows: given an allocation (Kj,,. .., Kj,)
for the game (cy, D), for all S C D, the inequality

Z r < ew(9), (13)

JkES

must hold. The condition has a twofold meaning. The first one is technical: any alloca-
tion (Kj,, ..., Kj,) satisfying it for all S is in the core of the cooperative game, consequently
if at least one allocation of this kind exists, the core is non-empty. The second meaning is

SThere exists a large number of contributions on axiomatizations of values in literature, see for example
Feltkamp)| (1995) and [van den Brink and van der Laan| (1998).

“Nonetheless, some recent contributions have been published on the Shapley value without the efficiency
axiom, see |[Einy and Haimanko| (2011]) for simple voting games and |Casajus| (2014) for different classes of
games.
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strictly connected to a financial aspect (see Denault, 2001): an undercut happens when a
portfolio allocation exceeds the risk capital that the whole group of institutions would face.

Relying on previous results, we can establish some sufficient conditions for positivity of
®(cy) and B(cw), i.e. to ensure that all their coordinates are non-negative, meaning that
each distressed institution brings a positive marginal contribution to systemic risk.

Proposition 4.5. If for all S € 2P\ () and for all ji, € S the following hypotheses are verified:

71|72 T1|T2 |
1. SCOV&RﬂS\{jk} < SCOV@R”S ;

2 2jes\ny X < —ESn, (ijesw} Xjk);

3. ijes Xjk < —ESs, (ijes Xjk)’
then ¢j, (cw) > 0 and Bj, (cw) > 0 for all j, € S.

Proof. Given a coalition of distressed institutions S # () and any element ji € S, we can
apply Proposition to two coalitions S and S\ {jx} by reformulating its three hypotheses.

Since by Proposition we have that SC’oESﬂ(Q{jk} > SCOESZ‘QTQ, then all terms in the

sums in equation ((11)) and equation ([12)) are positive. O

5 Application

To illustrate how the SCoES risk measure behaves in practice we examine the evolution of
European Sovereign Credit Spreads (CDS) over a period that includes the Eurozone sovereign
debt crisis of 2012. Specifically, we investigate the evolution over time of the Shapley—Value
SCoES induced by the cooperative Game where the Germany acts as the only “safe” coun-
try, as described in the previous sections. The potentially distressed countries are: Belgium,
France, Greece, Italy, Netherlands, Portugal and Spain. We consider a panel of daily CDS
spreads over the period from July 21st, 2008 to December 30th, 2014 except for the Greece
for which the data are available only until March 8, 2012. We use US—denominated sovereign
CDS for each country using data obtained from Datastream. Our aim is to assess how the
events related to the European sovereign debt crisis impact the safety of the most important
economy in the Euro area, using the provided risk measure and the associated risk measure-
ment framework based on the cooperative game. A similar empirical investigation has been
conducted by Bernardi and Catanial (2019)) using stock market data of the major European
financial indexes, |Lucas et al. (2014) using dynamic Generalised Autoregressive Score (GAS)
models on CDS, and Engle et al.| (2014)) again using stock market data of European individ-
ual institutions, and Blasques et al.| (2014)) using spatial GAS models on European sovereign
debt CDS. Major financial events affecting the Euro area during the considered period are
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Name Min Max Mean Std. Dev. Skewness Kurtosis 1% Str. Lev. JB

Belgium -21.912  13.854 -0.049 2.726 -0.422 12.144 -7.999 5477.445
France -23.002 18.643 0.023 3.155 -0.213 10.068 -9.525 3257.265
Germany -33.747  30.839 -0.017 3.367 -0.368 21.499 -9.535 22264.754
Greece -48.983 23.611  0.401 5.183 -1.029 17.169 -13.700 6081.685
Italy -42.675 34.358  0.011 4.237 -0.579 17.933 -12.229 14571.710
Netherlands -25.672 18.572 -0.047 3.028 -0.466 13.130 -9.669 6721.984
Portugal -61.177  26.909  0.064 4.320 -1.616 33.500 -10.911 61104.578
Spain -35.180 27.174  0.020 4.137 -0.078 11.616 -11.781 4824.268

TABLE 1: Summary statistics of the panel of country specific CDS spreads for the period beginning
on July 21, 2008 and ending on December 20, 2014. For the Greece the period goes from July 21,
2008 to March 8, 2012. The seventh column, denoted by “1% Str. Lev.” is the 1% empirical quantile
of the returns distribution, while the eight column, denoted by “JB” is the value of the Jarque-Berda
test-statistics.

Date Event
Mar. 9, 2009  the peak of the onset of the recent GFC.
Oct. 18,2009 Greece announces doubling of budget deficit.
Mar. 3, 2010  EU offers financial help to Greece.
Apr. 23,2010 Greek Prime Minister calls for Eurozone-IMF rescue package.
Apr. 23,2010 Greece achievement of 18bn USD bailout from EFSF, IMF and bilateral loans.
Nov. 29, 2010 Ireland achievement of 113bn USD bailout from EU, IMF and EFSF.
May 05, 2011  the ECB bails out Portugal.
July 21, 2011 Greece is bailed out.
Dec. 22,2011 ECB launches the first Long-Term Refinancing Operation (LTRO).
Feb. 12, 2012  Greece passes its most severe austerity package yet.
Mar. 1, 2012  ECB launches the second LTRO.
July 26, 2012 unexpectedly, the ECB president Mario Draghi, announces that
’ “The ECB is ready to do whatever it takes to preserve the euro”.

Oct. 8, 2012 European Stability Mechanism (ESM) is inaugurated.

. the conference of the Portuguese Prime Minister regarding
April 07, 2013 the high court’s block of austerity plans.
Aug. 23,2013 the Eurozone crisis leads to more bankruptcies in Italy.
Sep. 12, 2013  European Parliament approves new unified bank supervision system.

TABLE 2: Financial crisis timeline.

collected in Table [2 Since EU countries have been affected by the crisis to different degree,
sovereign credit spreads in Europe are strongly correlated. Figure [2] shows the evolution of
the credit default spreads in log basis points for the period covered by our analysis. Visual
inspection of the series reveals clear common patterns particularly between Netherlands and
Germany on the one hand and Italy and Spain on the other hand. As expected, the evolution
of the Greek CDS strongly differs from those of the other countries in the sample. Summary
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FIGURE 2: Daily evolution of Credit default swap spreads of eight European sovereigns, from July
21, 2008 to December 20, 2014 in log basis points. Vertical dashed lines represent major financial
downturns: for a detailed description see Table

statistics of log CDS returns multiplied by 100 are reported in Table

In order to calculate the SCoES risk measure a parametric assumption about the joint
distribution of the involved CDS log-returns should be made. Several alternative methods
have been proposed to estimate the CoVaR. In the seminal paper |Adrian and Brunnermeier
(2016) approach the estimation issue in a semiparametric framework using conditional quan-
tile regression methods (see, e.g., koenkerbasset, 1978} koenker, |2005). Indeed, they do not
make any specific distributional assumption on the response variable. Unfortunately, the
semiparametric approach in not suitable for our purposes since it does not allow to evaluate
the SCoVaRs of the two groups of institutions (distress and not in distress) as required by the
cooperative game here developed. Previous motivations support our decision to empirically
investigate the performances of the proposed risk measure and risk measurement framework
by opting for a joint Gaussian distribution for the profits&losses of the considered institutions
(in the case of our empirical example, sovereign bonds). Of course, the Gaussian assumption
is quite restrictive when the assessment of the relevance of distress situations is the major aim,
because it implies independence of extreme events (see, for example, McNeil et al., 2015).
Nevertheless, the Gaussian assumption remains a valid illustrative example. For the sake
of completeness, it should be stressed that the SCoVaR risk measure and the systemic risk
measurement based on the solution of a cooperative game remain valid under any assumption
for the joint distribution of the random variable involved. For example, one can assume a
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multivariate Elliptical distribution (Fang et al., [1990), or can opt for the copula approach
(Demarta and McNeil, 2005), or for a skew distribution (Azzalini, [2014)). The only restriction
of the proposed methodology is the availability of the conditional quantile/expectile in closed
form.

The Gaussian assumption is not only convenient but it represents also a common choice
for practical applications, and it favours the interpretation of the estimation results as the
output of a graphical model, see |[Koller and Friedman! (2009)). Nevertheless the Gaussian
distribution can be easily replaced by either another parametric distribution or by more in-
volved dynamic models that describe the evolution over time of the CDS, see, for example,
Bernardi and Catanial (2019). Proposition[1]in Appendix [6] provides the analytical formulas
to calculate VaR, ES, SCoVaR and SCoES under the Gaussian assumption. As far as pa-
rameter estimation is concerned we apply the Graphical-Lasso algorithm of [Friedman et al.
(2008)), which allows for sparse covariance estimation. The tuning parameter that regulates

the amount of sparsity in the covariance structure has been fixed at Ay = 24/ loj%,p , Wwhere N
denotes the sample size, as suggested by the theory |Ravikumar et al.| (2011)), see also Hastie
et al. (2015) and references therein.

To analyse more deeply the impact of the recent European Sovereign debt crisis, we esti-
mate recursively the SCoES over the sample period using a rolling window. Moreover, to ob-
tain results more robust to temporary short—term shocks affecting the considered economies,
we consider weekly log-CDS returns. Specifically, at each point in time we estimate the
SCoFES risk measure using a window of N = 26 more recent weekly observations, and then
we run the cooperative game to get the Shapley Value with 7 = 79 = 5%. It is worth men-
tioning that, with p = 8 institutions, we are going to estimate d = 44 > 26 = N parameters.
The Graphical-Lasso method of Friedman et al.| (2008) delivers consistent estimates of the
parameters even when the number of parameters is greater than the dimension of the sample,
see Hastie et al.[ (2015)) and Tibshirani| (1996, 2011) for further details.

Results are reported in Figure |3| for the period before the onset of the Greek crisis ,
as well as for the subsequent period . For both periods, the bottom panel reports the
overall impact of the distress of the remaining countries over the German economy as mea-
sured by the SCoFES. Throughout the sample period, the overall risk of Germany due to the
potential distress of one or more of the remaining European countries is high, until mid 2011.
At that time, the level suddenly decreases to the lower level of about 0.09, as a consequence
of the bailouts of Portugal and Greece, in May and July 2011, respectively. The overall risk
still remain at the level of 0.09 till the April 2013 a few months later the announcement of
the implementation of the of the Outright Monetary Transactions (OMT) and the European
Stability Mechanism (ESM) in October 2012. If is worth noting that the launch of the first
Long—Term Refinancing Operation (LTRO) by ECB in December 2011 and the second LTRO
in March 2012 only had a moderate impact on the overall risk that decreased till mid 2012
and the unexpected strongest defence of the Euro of the ECB President Mario Draghi (July
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26, 2012), did not contribute to reduce the risk of the Germany.

Concerning the evolution of the Shapley values reported in the top panel of Figure [3| and
the Banzhaf Value in Figure[d] they can be interpreted as the normalised country risk factors.
As expected, the two approaches provide different contributions to risk, in particular during
the onset of the European crisis, reflecting their different properties. More precisely, the
Shapley solution, suggests that, during the period in between the bailout of Ireland (Novem-
ber 29, 2010) and the bailout of Portugal (May 5, 2011), the most severe source of risk for the
Germany’s economy is represented by the Greece, while Spain, Italy and France contribute
less, see Figure [3] The picture by Banzhaf is a little bit different since, during the same pe-
riod, the most important source of risk for Germany is Belgium, followed by Greece, a result
which is a little bit surprisingly. Afterwards, the overall contributions of European countries
converge, for both methods. The failure of the Greek austerity package in February 2012
suddenly increases the riskiness of Greece which is comparable only with that of Portugal
at the beginning of 2011. Interestingly, the proposed approach is able to capture the most
important events that happened during European sovereign debt crisis of 2012, as reported
in Table 2

6 Conclusions and further developments

This paper presents a cooperative game among distressed institutions to assess the potential
damage done by all possible coalitions in distress. At this aim, a new risk measure which
features some properties of the standard Expected Shortfall in a financial framework where
some institutions are distressed and contagion threatens the remaining safe institutions is
developed. Standard solution concepts like Shapley value and Banzhaf value can be helpful
to measure the marginal contributions to systemic risk.

Our study of the European sovereign debt crisis of 2012 provides empirical support for
the ability of the proposed cooperative Game approach to systemic risk measurement to ef-
fectively capture the dynamic evolution of the overall riskiness of the European countries.
Furthermore, the proposed risk measurement framework is able to identify the major sources
of risk and the risk contributions.

Further extensions of such a theoretical setup can be conceived, in terms of more complex
and precise cost functions to be employed in the cooperative game. Moreover, a detailed anal-
ysis of correlations among distressed institutions might give rise to different game structures,
such as a priori unions or bounded forms of cooperation which can be described with the help
of graphs. In such cases, a model with some constraints might be necessary to determine
the characteristics of risk transmission and the related consequences on the systemic risk.
It is possible that a given structure with certain links among institutions can minimize the
contagion risk.
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Appendix

In this Appendix we provide analytical formulas for the computation of the VaR, ES,
SCoVaR and SCoES, as formally defined in the previous sections, under the assumption of

the joint Gaussian distribution of the involved variables.

Proposition .1. Let X ~ N, (u,X) where p € RP is a vector of location parameters and
Y is a (p X p)— symmelric variance-covariance matriz. Consider the transformation Z =

/
[Xi,Zﬁ:Lk#Xk fori=1,2,....p, then Z ~ Ny (jz, %), with

r /

P
Hz = | M, Z K
k=1,k#i
o?(X;) ZZ:Lk;&i Tik
EZ — ’

2
Zi:m;&i Oik O (Zizl,k;«éi Xk)

where Zi:l,k;ﬁi oik denotes the covariance between X; and Zizl,k# Xy, and o%(-) denotes

the variance of X;. Under the previous assumptions the VaR, ES, of X;, fori=1,2,...

are calculated as follows:

P
v? =VaR,, Z Xk

k=1 ki
p p
= Z i+ | o2 Z X o1 (12)
k=1 ki k=1 ki
. p
Y;? = ES, Z 27
k=1 k#i
p p P
¢ (;*)
_ _ 2 2
- Z 'Mk g Z 'Xk cI)(,’)B)’
k=1,k#i k=1,k#i t
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see, |Nadarajah et al.| (2014)) and|Bernardi (2013), while the SCoVaR and SCoES becomes

~T1|T2

_ 71|72
il Dk Xk SCOV&R“ 2kt Xk
Fx, s, .. x (%Zi:m X < 372)
—yeR> ki Tk M g (18)
T2
AT1|T2 — T1|T2
D pm1, ki Xk SCOES“ 2kt
P v?— p’y.ﬁ‘T2
_ 2 ~T1|T2 ¢ > gz X
=Y -V (X) |0 (5 )e
kz#; ( Z) Z|Zk7ﬁiXk /1 —P2
AT1|T2 T
Y; x, — PY;
I L 3 R | T
1— p?

fori=1,2,...,p, where Fxy (-) denotes the joint cdf of the random variables (X,Y).

Equation implicitly defines the SCoVaR as the value of y that solves the conditional

cdf of the involved variables equal to 71. The solution always exists and is unique because
the involved random variables are absolutely continuous.
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