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Abstract
In this research, aluminum (Al) thin films were deposited on SiO2/Si substrates using RF magnetron sputtering technique 
for analyzing the influence of RF sputtering power on microstructural surface morphologies. Different sputtering RF powers 
(100–400 W) were employed to form Al thin films. The characteristics of deposited Al thin films are investigated using X-ray 
diffraction pattern (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier-transforms 
infrared (FTIR) spectroscopy. The X-ray diffraction (XRD) results demonstrate that the deposited films in low sputtering 
power have amorphous nature. By increasing the sputtering power, crystallization is observed. AFM analysis results show 
that the RF power of 300 W is the optimum sputtering power to grow the smoothest Al thin films. FTIR results show that 
the varying RF power affect the chemical structure of the deposited films. The SEM results show that by increasing the sput-
tering power leads to the formation of isolated texture on the surface of substrate. In conclusion, RF power has a significant 
impact on the properties of deposited films, particularly crystallization and shape.

Keywords  Aluminum thin films · Grain size · Magnetron sputtering · RF power · FTIR

1  Introduction

Aluminum (Al) thin films are widely used in optical and 
microelectronic applications. These thin films have attracted 
a considerable attention in both academic and industrial 

communities due to their remarkable properties and char-
acteristics such as high reflectance, low resistivity, high 
conductance, better adhesion, resistance to oxidation and 
corrosion [1, 2] and novel optical properties [3, 4]. A signifi-
cant scope of the Al thin films and tungsten oxide thin films 
[5, 6], specifically in the formation of composite for indus-
trial aircraft applications. Recently, the optimum dielectric 
performance of polymer nanocomposites and improvement 
of the mixed conductivities have been explored by [7, 8]. 
Due to these outstanding properties, Al thin films find wide 
applications can also be in microelectronics systems, semi-
conductors and optics components [2]. Furthermore, the 
interest in Al thin films has been exponentially increased 
due to depositions have been achieved utilizing a broad spec-
trum of substrates including mild steels, titanium, stainless 
steel, silver, silicon (100), polyethylene terephthalate (PET), 
polycarbonates and glass [2, 9]. Al films deposited on sub-
strates are the most commonly utilizes surface coatings for 
aspheric mirrors, because Al is a good light reflector in the 
visible region and an extraordinary reflector in the mid and 
far infrared (IR) regions [10, 11]. In addition, other applica-
tions of Al thin films in different industrial fields include thin 
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film transistors [12], near-field fiber-optic probes [13], solar 
cells [14] and flat-panel displays [15].

Al thin films can be synthesized by various methods such 
as evaporation and sputtering, which can employ either ther-
mal or electron beam sources [16, 17]. In general, sputter 
deposition is more suitable for materials with higher melting 
points, which are difficult to evaporate.

Among these methods, sputtering has attracted a great 
deal of interest due to its many concurrent advantages like; 
low substrate temperature, ability to produce reasonable 
quality thin films at a high deposition rate, good surface 
roughness and low cost [18, 19]. This technique has several 
advantages, including excellent control of film thickness, the 
fabrication of high-density film and high-quality aluminum 
oxide films. This technique allows precise control of purity, 
composition and stoichiometry of the films.

It is well known that the deposition conditions such as 
substrate temperature, deposition rates, sputtering power, 
substrate type and bias voltage have effects on the proper-
ties of thin films [2, 20]. In the past few years, many exper-
imental studies were focused on the effects of sputtering 
RF power on the characteristics of the deposited films. For 
example; Dhar et al. have analyzed the effect of sputter-
ing power, operating pressure and deposition temperature 
on the properties of Mo thin films grown on Mo sheet and 
soda–lime glass (SLG) [21]. Mahdhi et al. have investigated 
the influence of sputtering power on the properties of thin 
layers of GZO for photovoltaic applications [22]. Murugan 
et al. have performed studies about the effect of RF power on 
the properties of magnetron sputtered CeO2 thin films [23, 
24]. Zhao et al. have studied on effects of power on proper-
ties of ZnO thin films grown by radio frequency magnetron 
sputtering [25].

Even though extensive research has been carried out on 
the effects of RF power on the characteristics of various 
deposited films, there are very scarce works focused on the 
effect of sputtering power on the characteristic of the sput-
tered Al thin films. The novelty of this research is the experi-
mental investigation the microstructure characteristics, 
roughness and optical properties of Al thin films deposited 
by RF sputtering at varying powers of 100 W, 200 W, 300 W 
and 400 W at a substrate temperature of 150 °C.

2 � Experimental methodology

Al thin films were deposited using RF magnetron sputter-
ing setup on SiO2/Si substrates with an Al target (purity of 
99.9999%). All the substrates were cleaned ultrasonically in 
acetone, isopropanol and deionized (DI) water for 15 min, 
respectively, to remove any residual contaminants prior to 
deposition.

The samples introduced into the RF sputtering cham-
ber and then it was pumped to high vacuum pressure of 
8.6 Torr×10−6 (1.14 Pa×10−3 ) achieved with rotary pump 
and turbomolecular pump. Argon gas (inert gas) was purged 
into the chamber with a flow of 3 sccm for sputtering pro-
cess. The distance between the target and the substrate in 
our experimental condition was ≈ 7 cm. The Al target was 
pre-sputtered for 10 min to decontaminate and remove impu-
rities before performing the depositions. Al thin films were 
deposited on the SiO2/Si substrates at different sputtering 
powers from 100 to 400 W by maintaining other deposition 
conditions. The details of the sputtering conditions during 
the deposited of Al films are given in Table 1.

The generated samples were characterized using a range 
of analytical methods. The crystal structures of the deposited 
films were analyzed using a Cu-Ka radiation (k = 1.54060A˚) 
of STOE SIADI MP diffractometer. The surface morphology 
of the samples was investigated by Hitachi, S-3400 emission 
scanning electron microscopy (SEM). Fourier-transforms 
infrared (FTIR) spectroscopy with a PerkinElmer spectrom-
eter at a resolution of 8 cm−1 in the range of 500–3800 cm−1 
was employed to investigate the bonding structures of the 
deposited samples. The topography of the surface and rough-
ness of the deposited films were investigated by atomic force 
microscopy (AFM) (Dual Scope TM DS) analysis.

3 � Result and discussion

3.1 � X‑Ray diffraction analysis (XRD)

The X-ray diffraction patterns of the films deposited on 
SiO2/Si substrates, at different RF powers are shown in 
Fig. 1. In Fig. 1(a) and (b) labels show low sputtering pow-
ers of 100 W and 200 W, respectively, there was no peak 
in their XRD pattern and the deposited films indicate non-
crystalline feature. As the sputtering power increases to 
300 leading to 400 W, new diffraction peaks at 2θ = 30.9° 
and 2θ = 61.6° corresponding to (001) and (430) reflection 
planes of orthorhombic aluminum silicone oxide structure 
(JCPDS card No. 002–0428 and 002–0469) observed in the 

Table 1   List of the deposition parameters utilized to deposit the Al 
thin films on SiO2/Si substrate

Process parameters Value

Target to substrate distance (cm) 7
RF power (W) 100–400
Substrate temperature (°C) 150
Base pressure (Torr) 8.6 ×10−6

Deposition time 15(minute)
Working pressure (Torr) 9 ×10−4
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XRD pattern of the deposited films, as shown in Fig. 1, label 
(a) and (b). Furthermore, in Fig. 1 label (c) shows the peak 
at 2θ = 80.01° also attributed to X-ray photons diffracted 
from aluminum silicone oxide structure (JCPDS card No. 
002–0413). The appearance of these diffraction peaks at 
higher sputtering powers may be attributed to surface dif-
fusion of Al sputtered atoms on the substrate. It seems that 

higher RF power enhanced mobility energy of Al sput-
tered atoms on the surface of the substrate to diffuse in the 
substrate during growth stage and formed a new phase of 
aluminum silicone oxide. In other word, higher sputtering 
power induced high incident ion energy, resulting in high 
surface mobility and mean diffusion path of sputtered atoms 
[26]. In addition, X-ray diffraction pattern, Fig. 1 label (d) 
exhibits a weak diffraction peak around 38.3° belongs to 
the (111) reflection planes of aluminum structure (JCPDS 
card No. 004–0787). Moreover, a peak of X-ray photons 
diffracted (111) planes of Si substrate lattice structure can 
be seen a 2θ = 69.6°. Increasing the intensity of diffraction 
peaks by increasing the RF power confirms a better crystal-
linity of the samples at higher RF powers. By increasing the 
sputtering power, the sputtering yield becomes high and the 
sputtered particles are ejected with higher energy and the 
growth of a more crystallized phase [26]. It seems that the 
peak at 2θ = 61.6° is the preferred crystalline orientation in 
higher RF power and is so strong in 300 W.

3.2 � Surface morphological analysis

3.2.1 � Surface roughness

The surface roughness was analyzed using atomic force 
microscopy (AFM) in contact mode for all samples. Figure 2 
illustrates the three-dimensional-AFM micrographs of the Al 

Fig.1   X-ray diffraction pattern of the Al thin films deposited on SiO2/
Si substrate at different RF powers of shown in label (a) 100 W, (b) 
200 W, (c) 300 W and (d) 400

Fig. 2   3D AFM images of Al 
films deposited on SiO2/Si 
substrate at various sputtering 
powers: a 100 W, b 200 W, c 
300 W and d 400 W
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films deposited at different sputtering powers. The root mean 
squared (RMS) roughness of surface is the main parameters 
for the characterization of the surface structure [27, 28].

where Z is the average height and N is the number of data 
points. The roughness of the films deposited at different RF 
powers is plotted in Fig. 3. The RMS roughness of the as-
deposited film initially rose to 16.95 nm when the sputtering 
power was raised to 200 W, as shown in Fig. 3. Thereafter, 
it decreased to 12.16 nm when the deposition increased to 
300 W. This behavior may be explained in the following 
way: (i) At a low RF power of 200 W, the atoms or ions have 
low energy and tended to ‘stay’ at the site of its arrival, thus 
creating a much rougher surface [26, 29]; (ii) At a high RF 
power of 300 W, the kinetic energy of the incoming atoms, 
particles or ions, increases that enhances the lateral diffu-
sion of the ions or particles, and then the surface roughness 
decreases. Moreover, it was discovered that as the RF power 
was increased to 400 W, the roughness increased. This may 
be attributed to the fact that the higher power improved the 
energy of the incoming ionized species and decreased the 
rearrangement time of the atoms on the substrate before 
arrival of next atoms [29, 30], which thereby resulted in 
higher surface roughness [26].

At high RF power, the argon gas and the deposition par-
ticles inside the sputtering chamber acquire very kinetic 
high energy, which may lead to: (i) high deposition rate, 
growth and recrystallization leading to large grain sizes, (ii) 
excess collisions between target atoms and ions reducing 
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the mean-free-path of the target atoms and therefore lower-
ing sputtering yield and hence less crystallization and film 
growth [31, 32]. The results presented in sample 2 and 4 can 
well be attributed to the first reason.

Although the RMS values are highly influenced by the RF 
power, our result shows that there exists no direct correlation 
between the increase in RF power and RMS values. The fin-
est and well-defined grained microstructure was observed at 
the power of 300 W and the highest RMS roughness values 
are obtained on the surface of films sputtered at a power of 
400 W. According to our study, the RF power of 300 W is 
the optimum condition for deposition of Al thin film.

3.2.2 � Scanning electron microscopy analysis (SEM)

Figure 4 illustrates the SEM micrographs of the deposited 
films showing, at lower RF powers, the deposited films are 
composed of small, homogenous and well-defined grains. 
In addition, interconnected porous structures between the 
grains were observed. The presence of these porous struc-
tures is attributed to the high roughness values. The SEM 
images indicate that with an increase of RF power led to the 
growth of larger grains. In fact, with increasing sputtering 
RF power, the deposition particles did not have enough time 
to latterly diffuse on the substrate, and accumulated together 
to form larger grains [26]. This result is in good agreement 
with the results of AFM analysis.

3.2.3 � FT‑IR characterization

The Fourier-transformed infrared spectroscopy (FT-IR) is 
an analytical technique which is used to investigate the 
chemical structure and molecular bonding of the materials. 
The infrared spectra of the produced samples in the range 
of 500–3800 cm−1 are depicted in Fig. 5. In the lower fre-
quency region, the minor absorption peak (low intensity) 
appearing at around 619 cm–1 can be assigned to a coupled 
Al-O and Si-O (out-of-plane) bond [33, 34]. Furthermore, 
the absorption peak which is located at around 655 cm−1 is 
arising from in-plane Al-O vibration rather than Al–O–Si 
vibration [35]. According to the literatures [34, 36], the 
presence of weak absorption peaks at about 669 cm−1 and 
684 cm−1 is related to the vibrations modes of Si–O band. 
Moreover, the absorption band at 694 cm−1 is correspond-
ing to symmetrical bending vibrations of Si–O whereas 
vibration band at 792 cm−1 can be attributed to symmetri-
cal stretching vibrations of Si–O [37]. Furthermore, the 
characteristic vibration at 937 cm−1 can be assigned to 
O-Si-O bond [38]. Besides, the absorption band at about 
943 cm−1 can be associated with stretching mode of Si-OH 
[39]. The infrared absorption band at 1118 cm−1 is attrib-
uted to the tetrahedral stretching vibration of silicon-api-
cal oxygen (Si-O) [40]. Moreover, the absorption bands 

Fig. 3   The RMS roughness of Al thin films deposited on SiO2/Si sub-
strate as a function of sputtered RF power
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at about 1164 cm−1 and 1649 cm−1 can be related to the 
antisymmetric stretching vibrations mode of Si-O-Si of sil-
ica and O-H deformation, respectively [41]. Furthermore, 
the bands in the range of 1300–1516 cm−1 are assigned to 
the Si-O-Si stretching bands of low “crystallinity” phases, 
mainly amorphous silica [38]. In addition, in the higher 
frequency region, the absorption bands at approximately 
3554 cm−1, 3616 cm−1 and 3741 cm−1 are attributed to 
the OH stretching modes of Al (OH) Si [42] and (Al Al) 
O-OH [43] Si-OH groups, respectively. The observation 
of OH stretching modes in all the samples may be due to 

the presence of silicate in the substrate. Furthermore, the 
FTIR results show that the varying RF power affect the 
chemical structure of the deposited films [44]. 

The intensity of an absorption band in FTIR spectra 
depends on the number of the specific bonds present [45].

4 � Conclusions

In this study, Al thin films were deposited on the SiO2/
Si substrates by RF magnetron sputtering system, and the 
influence of the RF power on the structure and surface 
morphology of the deposited films was investigated experi-
mentally. The study of structural properties implicate that 
the sample deposited at 300 W has lower RMS roughness 
and smooth surface, this is because the kinetic energy of 
the incoming atoms, particles or ions, increases and led to 
enhances the lateral diffusion of the ions or particles. The 
results reveal that when the sputtering power was increased 
to 400 W, the deposition particles did not have enough time 
to disperse over the substrate and clumped together to form 
larger grains, increasing surface roughness. It is concluded 
that increasing the sputtering power enhanced the crystal-
linity of the deposited films, while altering the sputtering 
power affected the chemical structure of the deposited films. 
This paper findings show that the RF power influences the 
characteristics of deposited films, and that by changing the 
sputtering power, the desired morphological structure and 
properties may be tuned.

Fig. 4   SEM images of the Al 
thin films deposited on SiO2/
Si substrate at different RF Pow-
ers: a 100 W, b 200 W, c 300 W 
and d 400 W

Fig. 5   FTIR spectra of the Al thin films deposited on SiO2/Si sub-
strate at different RF powers: (a) 100 W, (b) 200 W, (c) 300 W and 
(d) 400 W
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