
1

A Cognitive Routing Framework for Reliable
Communication in IoT for Industry 5.0

Saptarshi Ghosh, Student Member, IEEE, Tasos Dagiuklas, Senior Member, IEEE, Muddesar Iqbal, Member, IEEE
Xinheng Wang, Senior Member, IEEE

{ghoshs4, tdagiuklas, m.iqbal}@lsbu.ac.uk , xinheng.wang@xjtlu.edu.cn

Abstract—Industry 5.0 requires intelligent self-organized, self-
managed and self-monitoring applications with ability to analyze
and predict both the human as well as machine behaviors across
interconnected devices. Tackling dynamic network behavior is a
unique challenge for IoT applications in industry 5.0. Knowledge-
Defined Networks (KDN) bridges this gap by extending SDN
architecture with Knowledge Plane (KP) which learns the net-
work dynamics to avoid sub-optimal decisions. Cognitive Routing
leverages the Sixth-Generation (6G) Self-Organised-Networks
with self-learning feature.

This paper presents a self-organized cognitive routing frame-
work for a KDN which uses link-reliability as a routing metric.
It reduces end-to-end latency by choosing the most-reliable
path with minimal probability of route-flapping. The proposed
framework pre-calculates all possible paths between every pair of
nodes and ensures self-healing with a constant-time convergence.
An experimental test-bed has been developed to benchmark
the proposed framework against the industry stranded Link-
state and distance-vector routing algorithms SPF and DUAL
respectively.

Index Terms—Industry-5.0, Cognitive Routing, Rapid Conver-
gence

I. INTRODUCTION

IN 2013, the German Academy of Engineering Sciences pre-
sented a recommendation and research agenda for Industry

4.0. Its primary motivation was to achieve seamless integration
between physical and virtual technologies to facilitate smart
manufacturing, which results in significant inflation of the
IoT technology in industrial automation. Between 2009 and
2019, the Industrial sector has contributed 20% to the EU’s
GDP. Industry 5.0, as a natural successor, aims to build on
top of the existing architectural frameworks of Industrial and
Heterogenus IoT (I-IoT, H-IoT) and interoperability between
cyber-physical systems. The Directorate-General of Research
and Innovation (EU) has identified a new set of concepts that
Industry 5.0 addresses. These are Human-centric solutions,
Bio-inspired Technologies, Real-time digital-twins technol-
ogy, Network analytics, Machine-learning based automation,
and Trustworthy autonomy. A large-scale industry needs to
have a scalable network fabric to interconnect all its de-
vices. Software-Defined Networking (SDN) provides such a
programmable, vendor-agnostic communication platform. 5G
leverages SDN at its core to virtualize network services (NFV),

S. Ghosh, T. Dagiuklas and M. Iqbal with the School of Engineering, Di-
vision of Computer Science and Informatics, London South Bank University,
London, UK

X. Wang is with the department of Mechatronics and Robotics, School of
Advanced Technology, Xi’an Jiaotong-Liverpool University

and ISPs use it in WAN deployment (SD-WAN). SDN pro-
vides a bird’s eye view of the network where the control plane
accumulates global knowledge about the underlying topology
and flows. Additionally, the data plane generates enough which
the controller can mine for analytics. In SDN-based routing,
the routing protocol uses the global view to calculate optimal
paths without letting the routers exchanging control packets.
An efficient routing protocol aims to avoid sub-optimal paths
and converge rapidly in a dynamic environment. However,
highly time-critical industrial communication systems, such
as IoT infrastructure for manufacturing plants, can not tolerate
delays due to routing protocol convergence. Therefore, routing
optimization using analyzing the network’s behavior provides
a better heuristic which eventually reduces the convergence
probability.

In SDN [1] Routing, the Shortest-Path calculation is the
subjected Optimization problem where a controller calcu-
lates the optimal values of the free parameters subject to a
set of communication constraints defined as a policy (Self-
Optimization). The controller then Configures the parameters
into the underlying network devices (Self-Configuration) and
serves alternate Routes On-Demand, if the primary one fails
(Self-Healing); thus supporting the SON [2]. However, the
application of Machine Learning (ML) in Route-Optimization
is a relatively new domain; at the time of writing this paper,
there are a handful of works done in developing an Intelligent
Routing Algorithm for SDN. The base model of fitting ML in
SDN is referred to as Knowledge-Defined Networks (KDN)
[3], where the primary objective is to accumulate holistic
information from a supervising Control Plane (CP) of an
underlying IP-network, analyze them to extract knowledge that
generalizes the network behavior. This knowledge eventually
helps to bypass the need for using costly heuristic Routing
algorithms, having preserved the equal adaptation capabilities
to network dynamics [4].

Self Organized Networking (SON) [5] in the fifth-generation
cellular communication systems (5G) enhances the require-
ments of its predecessor. Some of the new requirements in-
volve increasing traffic capacity, improving QoS/QoE, support
of heterogeneous Radio Access Networks (RAN), 10Gbps
peack data rate, sub-millisecond latency, support of ultra-
high reliability, improved security, privacy and flexibility, and
reduction of CAPEX and OPEX [6] [7] [8]. SON constitutes
the following three entities.
• Self-Optimization provides several control-plane (CP)

optimization strategies such as Caching, Routing, load-

2

balancing, etc. which are invoked autonomously. Relevant
algorithms calculates the optimal values of several deci-
sion variables w.r.t. the a set of constrains, called policies.

• Self-Configuration automates the injection of the deci-
sion parameters (e.g. operational and radio config) to the
underlying data-plane devices.

• Self-Healing provides high-availability to the overall
network. A typical model uses detection, diagnostic and
compensation sequence to automate the recovery process.

Recent development in SON shows a significant use of ML to
accelerate the performance of its constituents [9].

In this paper, we propose Most-Reliable-Route-First
(MRRF), an Intelligent Routing algorithm for Self-Organised
Knowledge-Defined Networks (SO-KDN). The proposed
model initially calculates all possible paths for all pairs of
nodes from the Networks’ topology using the proposed algo-
rithm (MRoute) and aims to learn the reliability of individual
links by their statistical measures of volatility over time. The
algorithm maintains the rank of the routes based on their
cumulative reliability and serves them on-demand in constant
time, hence assuring the most reliable Routes. We further
propose a full-fledged implementation of the KDN model as a
test-bed to conduct experiments, which benchmarks MRoutes
with Diffusion Update Algorithm (DUAL) [10] and Shortest
Path First (SPF) [11] that powers EIGRP as OSPF respectively.
The rest of the paper is organised as follows.

Section II introduces elementary concepts of 6G, Section
III presents the state of the art of intelligent SDN-Routing,
The system model including problem formulation, the design
& analysis of the proposed algorithm is discussed in Section
IV, Section V addresses the ML extension and the learning
process, The experimental setup, Hyper-parameter tuning,
benchmarking and the analysis of results have been provided
in section VI and finally, we conclude the article in section
VII.

II. STATE OF THE ART IN KDN

The inception of the KDN comes from the work of Clark et.
al. [3], where he proposes a unified Knowledge Plane (KP) that
takes decisions based on partial and conflicting information,
accumulated from a distributed cognitive framework. The
paper considers the use of KP in solving the Optimal Route-
Preference problem by learning network behavior over time.
However, the paper lacks information to real-world network
types such as ISP, Enterprise, Cellular, etc., and does not
include working principles in a heterogeneous networks. These
issues are addressed by Strassner et. al. [12] by their extension
of KDN with an Interface-Plane, that offers a much clear view
of the implementation and necessary building blocks. Several
surveys show the growing application of ML and Deep Learn-
ing (DL) on SDN architectures in recent times, that aims to
achieve the KDN. Fadlullah et. al. presents a classification of
various ML/DL algorithms and their application to intelligent
network traffic control systems [13]. Chen et. al. focuses on the
application of DL into several Cognitive Wireless communica-
tion systems such as the Internet of Things (IoT), Mobile Edge
Computing (MEC), Unmanned Areal Vehicle (UAV) networks,

etc [14]. Zhao et. al. [15] reviews the specific applications
of ML into SDN problems such as defense mechanism from
Distributed Denial of Service (DDoS) attacks [16], Anomaly
Detection, Traffic Classification, Routing Optimization, etc. To
restrict our scope of the discussion, we now put the relevant
state of the art focusing on Routing Optimization only.

Shortest Path Algorithm (SPA) and Heuristic Algorithms
(HA) are the two widely used approaches that solve Routing-
Optimization problems [17]. Among several alternatives, Arti-
ficial Neural Networks (ANN), Reinforcement Learning (RL),
Deep RL (DRL), and Lazy Learning (LL) are the four learn-
ing models primarily used to address Routing Optimization.
Yanjun et. al. [18] proposes an ML-Meta later based approach
where an ML model is trained by the calculated traffic param-
eters of a heuristic algorithm and its corresponding network
state as input. The proposed framework maps the input and
output of the HA that reduces its exponential run-time in a
constant one. NeoRoute [19] models traffic characteristics by
forecasting future link consumption using the Recurrent Neu-
ral Network (RNN) with Long Short-Term Memory (LSTM).
A similar problem is addressed by Álvaro López-Raventós, et.
al. for high-density WANs [20]. The aforementioned works
use Supervised-ML models for training, which assumes the
network characteristics are likely to stay identical over time.
Therefore, they are not suitable for dynamic networks, which
in contrast needs an Online-Training model such as RL or
DRL. Sandra et.al. [21] propose a DRL framework, trains an
agent that weight the delay, loss, and bandwidth for every
possible link of a target network. The network feeds either
reward or penalty back to the agent based on the change in
end-to-end throughput. The agent uses the feedback to tune
its decision-making model. Francois [22] et.al. applies DRL
with a Random Neural Network in cognitive-routing in SDN.
The proposed architecture shows consistent performance even
in a highly chaotic environment. Applications of DRL in SDN
specific problems include QoS Aware Adaptive Routing [23].

In this research we use a Time-Series analysis model that
extracts link volatility trends using RNN+LSTM to ensure
reliability in constant time.

III. SYSTEM MODEL

Programmable networks consist of a topology of config-
urable routers. Routers connect the a Local Area networks
(LAN) to interface with the switching networks and Wide
Area Networks (WAN) to interconnect with neighbouring
routers. In a heterogeneous routing environment, the routers’
computational capacity varies significantly. The load on a route
processor delays the control-packets processing (service delay
or node-cost) as most of the data-plane traffic are switched
at the router Application Specific Integrated Circuits (ASIC).
However, existing enterprise routing protocols (e.g., EIGRP,
OSPF) don’t include service delay as a metric parameter. That
said, the link-cost i.e., the propagation and transmission delay
is influenced by several link parameters such as throughput,
latency, load and reliability. QoS aware routing protocols
uses admission control mechanism to allow only the traffics
that meets certain constraints specified in the policies. In the

3

proposed system model, routers have a node-cost and the link-
costs are calculated by optimizing the respective objective
function subject to a set of link-specific constraints. The
proposed routing model uses both node and link costs as metric
parameter. This offers a novel routing model which includes
service delays in route calculation also complying with the
QoS routing principle. The routing algorithm (MRoute) proac-
tively enumerates all-possible paths between all-pairs of nodes.
Further, it the varying costs is used to calculate link-specific
reliability. The model uses the reliability as a metric for routing
and provides routes on demand. As the paths are proactively
calculated, thus, the convergence does not need re-computation
of the topology, hence results in constant time convergence.

Fig. 1. Reference topology with route-policies

We choose to model the topology of a Software-Defined
Network as a Simple, Finite, Connected graph. The network
consists of programmable Routers and Switches, which are
connected to the Controller via a secure and reliable South-
Bound Interface (SBI). The controller treats both the Router
and Switch as a generic Edge-Node (EN) having a well-
defined set of Communication (L1) and MAC (L2) protocols
configured. Additionally, the Routing (L3) and Transport (L4)
protocols must ensure the following properties. Edge-Nodes
don’t exchange Control-Plane traffic among each-other but
only with the controller over the SBI. There exists no Neigh-
bour Discovery mechanism, Edge-Nodes share their local
information and keep-alive packets with the controller only.
Controller accumulates various telemetry information of the
Edge-Nodes such as Memory, CPU, Network interface, etc.
The network topology does not change frequently.

Each edge node �#8 maintains a local routing table (')8)
that comprises of three disjoint sets of entries, The Connected
Routes (�'8)which are networks, connected directly to the
device interfaces, The Static Routes (('8) are configured
statically on the device and Remote Routes (''8) are not
learnt from the controller. By definition, these sets partition the

routing table, i.e. �'8 ∩('8 ∩''8 = q and �'8 ∪('8 ∪''8 =
')8 . The controller uniquely identifies each edge-node by
theirNodeID similar to Router ID in OSPF and EIGRP and
maps it with their corresponding �' set. When an edge-
node receives a packet with unknown destination address, it
forwards it to the controller. The controller then resolves the
destination node’s ID from from map, finds a route between
the source and destination router and replies it back to the
source node [24].

Figure 1 depicts a reference topology of 6 routers with Node
ID '1 - '6, the corresponding �'8s are further segregated into
the LAN (!8) and WAN (,8) links (!8 ∩,8 = q) following
RFC-1918[]. The controller uses Link-State Routing (LSR)
approach to build a topology from these information, i.e. nodes
having common WAN network are adjacent. However, for the
sake of simplicity, we did not include topology with Broadcast
segments as it requires additional Designated node’s placement
[25]. Hence, we assume all the links are Point-to-Point in
nature.

The network has a set of node-specific parameters (-#)
such as, CPU and memory utilization, and a set of Edge-
specific parameters (-�) such as, bandwidth, delay, load, reli-
ability etc. The WAN links are constrained and heterogeneous
i.e. its attributes are bounded above by some pre-defined values
specific to that link. These values are generally dependent on
the network policy or the media type, hence we leave it to
be as user-defined. We propose the formulation of link-cost
as a set linear pogramming Problems, for individual edges,
with a linear cost-function 5 �

8, 9
: -� → R+, between '8 and

' 9 , such that its linear constrains 68, 9 (-�) ≤ 8, 9 are met.
This is to overcome the limitation of OSPF’s sub-optimal
routing issue due to its simplistic metric, and EIGRP’s route-
flapping problem caused by its dynamic metric parameters.
The proposed method uses link attributes defined by RFC-
7868 [26]. However, as the metrics are calculated locally to
the controller, it diminishes any need of exchanging update-
packets between edge-nodes, thus eliminates the cause of
route-flapping. Similar to the edge-cost, the node-cost also
contributes to the calculation of the final metric. The node-
cost function 5 #

8
: -# → R+ computes a cost based on the

node attributes(-#). In our previous work [27] we have shown
the benefits of routing optimization by fusing Node and Edge
costs in metric calculation.

The controller generates a Graph structure isomorphic to the
network topology, and weighs its edges by relaxing the 5 #

8

and 5 #
9

into 5 �
8, 9

for all adjacent '8 , ' 9 Stochastic Temporal
Edge Normalization (STEN) [27]. As the -� and -# varies
over time but the topology remains same, hence the subjected
Graph be a dynamic isomorphic Graph, which we refer to as
Meta-Graph.

The proposed algorithm performs the following steps in
order to meet the rapid-convergence criteria. First, it efficiently
computes all possible paths between all-pairs of nodes from
the meta-graph using an algorithm called MRoute. This step is
invoked whenever the topology changes. Seconds, it Computes
the reliability of the links by profiling their cost variation over
the time using an RNN using LSTM; This is a periodic step.

4

Third, it Ranks the computed paths obtained from step 1 based
on their cumulative reliability obtained from step 2. This step
is invoked every time an update happens. First, Returns the
most reliable routes on demand as primary route keeping the
rest in backup. In case the primary route fails, next best route
is served instantly. Hence the rapid-convergence is achieved.

The following sub-sections explain the problem formulation
in details.

A. Problem Formulation

The Simple, Undirected and Connected Graph � (+, �)
represents the topology of the underlying network, where
+ = {E8} and � = {48, 9 |039 (E8 , E 9)} are the Vertex and
Edge set respectively. + and � are finite and non-empty,
039 (E8 , E 9) = 1 if E1, E 9 are adjacent, and 0 otherwise. The
graph is simple (No self-loop, no parallel edge) as to fit in
the Shortest-Path Algorithm (SPA) criteria. It is undirected
as we assume that the links are full-duplex in nature and the
connected property ensures that a path between any pair of
vertices. The following measures are computed from �:

1) Adjacency Matrix: : ��� (�) =
[
039 (8, 9) ∈ {0, 1}

]=×=
is a symmetric binary matrix represents the adjacency of the
� (+, �), where |+ | = =.

2) Policy Set: : Is a finite, non-empty set of policy tuples
that includes 5 �

8, 9
and {68, 9 ≤ 8, 9 } (Equation 1)

%!� =

{〈
5 �8, 9 (-�), {68, 9 (-�) ≤ 8, 9 }

〉
∀(8, 9) ∈ �

}
(1)

3) Variable Cost Matrix: +�$() (C) =
[
28, 9 (C) ∈ R+

]=×=
represents the cost matrix at time instance C (Eq. 2),

{28, 9 (C)} =
{
<8= 5 �

8, 9
(-� , C) if 8 ≠ 9 , (8, 9) ∈ �

5 #
8
(-# , C) otherwise

}
(2)

All the = diagonal values 28,8 represents corresponding
node-costs 5 #

8
and the non-diagonal ones represent the

edge-costs 5 �
8, 9

for all valid edges i.e. (8, 9) ∈ � .

4) Normalized Cost Matrix: As the diagonal elements
of +�$() (C) represents weighted self-loops, it violates the
"simple-graph" criteria. Therefore, a normalization is needed
that relaxes the self loops but preserves their effects onto the
resultant "Simple-Graph". We use Stochastic Temporal Edge
Normalization (STEN) [27] technique to do so, which results

#�$() (C) =
[
{2′
8, 9
(C) ∈ [0, 1]

]=×=
5) Route Tree: The RouteTree)B,3 is an m-way search tree

that represents all possible paths between EB , E3 ∈ + , it holds
the following properties. The destination vertex E3 is placed at
root, all the leaves are identical i.e. the source vertex EB , every
unit-branch (E8 , E 9) is weighed by its corresponding values in

Fig. 2. RouteTree of)1,2, rooted at '2 all the reachable paths terminates
with '1 and unreachable node '5

#�$() [8, 9] and varies over time, and for any intermediate
vertex E: , if �#(� (+:) and ��(� (+:) denotes its ancestors
and descendants, then �#(� (+:) ∩ ��(� (+:) = q, this
prevents any loop.

The MRoute algorithm generates the tree and is discussed
in the section III.C. Figure 2 depicts the RouteTree)1,2 w.r.t.
the reference topology Figure 1, it shows the hop-counts and
cumulative costs for each valid route (terminating at source
vertex E1) . At hop-count=5, '3 has two children, '1 and
'5, as '1 is source, it terminates the search successfully.
however, '5 has no adjacency left that has not appeared in
its ancestor set, therefore 039 ('5) − �#(� ('5) = q and
the search registers an unsuccessful termination. The MRoute
algorithm has two phases: Phase-1 (Grow Phase) where the
tree grows recursively, where it registers several unsuccessful
terminations, the Phase-2 (Shrink Phase) eliminates all such
branches.

6) Route Forest: : For an =-node graph, there exists
(=
2
)

possible pairs of nodes. Each node produces a RouteTree. A
collection of such trees form a RouteForest. It is generated by
invoking MRoute parallelly

(=
2
)

times for each pair of nodes.
The concurrency in execution is possible as the procedures
are computationally independent and only the shared data-
structures are read.

B. Metric Formulation

We propose a composite metric for MRoute that constitutes
of the node cost �#

8
(C) and edge costs ��

8, 9
(C). The node and

edge parameters are listed in Table-I. The following paragraph
are the formulation of Node and Edge costs.

1) Node Cost: The node cost uses CPU and memory
utilization as parameters. However, CPU & memory utilization
can’t solely determine performance (i.e. a 20% utilized 8-core
CPU processes more operations than that of a 80% single-core
CPU and the same applies to the context of DDR4 vs DDR2

5

Node Parameters (-#)
CPU Parameter Core Count (=2) Frequency (5 2) Utilization (D2)

Unit Integer MHz [0,1]

Memory Parameter Volume (E<) Frequency (5 <) Utilization (D<)
Unit MB MHz [0,1]

Link Parameters (-�) Parameter Bandwidth Delay Load Reliability MTU
Units Mbps ms [0,1] [0,1] [0,1500]

TABLE I
LINK AND NODE PARAMETERS, MONITORED BY CP

memory). Moreover, with recent adaptation to network virtu-
alization (eg. Cisco IoU, CSRv), CPU and memory allocation
is more flexible, it yields more heterogeneity in the network.
Therefore, we propose a more robust metric formulation. The
weight parameters U2 and U< are left to the user to regulate
(e.g. EIGRP K-Valeus), the default value is set to 0.5.

�#8 (C) = 5 #8

(
-#8 , C

)
=

[
U2 (5 28 (C)=28 (C)D28 (C))+

U< (5 <8 (C)E<8 (C)D< (8))
] (3)

2) Link Cost: The link cost function uses parameters same
as of EIGRP’s. All the control traffic is targeted to the
controller. This not only reduces the diameter of control flow
from $ (=) (linear) to $ (1) constant, but also results in fast
convergence. It is due to the fact that the topology is built
inside the controller’s memory and no control-packets are
flooded to build neighbourship. The SDN paradigm unifies
the benefits of both OSPF and EIGRP as it builds a complete
topology view like OSPF and uses all parameters of a more
robust composite metric and supporting unequal-cost load
balancing like EIGRP (Discussed in subsection E).

��8, 9 (C) = 5 �8, 9

(
-�8, 9 , C

)
=

[
(V!"!�8, 9 (C))×

(V��,8, 9 (C)V��!.8, 9 (C)) × VA (1 − '!.8, 9 (C))
] (4)

The formulation in Equation 4 is realised by its three com-
ponents (BDP, Load and Reliability). The Bandwidth Delay
Product ��% = �, (C) ×�!. (C), measures the instantaneous
end-to-end link capacity. The BDP is scaled by the mean load
(>22D?0=2H = ��%(C) × "!� (C)) and measures the amount
of the occupancy in the link.The occupied capacity is scaled
with additive inverse of reliability (>22D?4=2H × (1 − '!.))
measuring the unreliability of the occupied capacity.

3) Normalized Metric: With reference to equation 3 and 4,
the cumulative metric for a link 2′

8, 9
(C), is obtained by relaxing

the node costs of both endpoints (�#
8
(C), �#

9
(C)) and scalling

them by their corresponding load-share (%8, 9 (C), % 9 ,8 (C)) into
the link cost ��

8, 9
(C) (Equation 5). The parameter W# , W�

are weighing factors, set by the user. The load-share of an
interface is a proportion of the number of packets passes
through that interface over the total packet exchanged, The
value is expressed in [0, 1].

2′8, 9 (C) =
[
W#

(
%8, 9�

#
8 (C) + % 9 ,8�#9 (C)

)
+ W�

(
��8, 9 (C)

)]
(5)

Figure 3 depicts the relaxation process to calculate cumulative
metric 2′

8, 9
(C) at time C.

Fig. 3. Relaxation of Node costs into Edge using STEN [27])1,2

C. Algorithm Design

The proposed algorithm 1 is called MRoute,it takes source
and destination vertex (EB , E3) as input, looks up to global
structures ���, #�$() during its recursive run-time and
returns a RouteTree)B,3 . The n-ary tree is stored into a hashed-
dynamic array structure. It finds all possible paths between a
pair of vertices using Backtracking strategy. The problem is
inherently brute-force in nature and the state-space complexity
is NP-hard, therefore we introduce optimisation and relaxation
which is further explained in the later section of this paper.

1) Optimising Data-structures: MRoute adds nodes recur-
sively into the RouteTree, the algorithm assumes �#((+:)
is of $ (1). Generally, an n-ary tree can be stored using
either linked (non-contiguous) or array (contagious) structure.
Since the data structure is unordered, each node must maintain
(|+ | − 1) pointers it consumes in $ (=2) space. However, not
every time the network is mesh. Additionally, the recurrence
decreases monotonically as more neighbours are visited, they
would not appear as children. Therefore, the number of
children decreases as the tree gets deeper, and choosing a n-ary
tree structure is not space-optimal.

In this article, we propose an optimal data structure to
accommodate such a sparse array. Furthermore, when a graph
is converted into tree, there will be multiple instances where
the same node appears in various spaces. To eliminate any
confusion during insertion, pointing and displaying a node, an

6

Algorithm 1: MRoute
Purpose: Finds all possible paths between
(EB , E3) ∈ +2

Local Input: E: , EB , E3 ∈ +
Global Input: ���, #�$()
Output:)B,3
Data Structure: n-ary tree
Implementation: Dynamic array, Implicit Stack
Strategy: Recursive, Backtracking
begin

if root = q then
root ← E:
if E: = E8 then

//Successful termination
Return ST

else
// Unvisited children
�: ← {��� (E:) − �#((E:)}
if �: = q then

//Unsuccessful Termination
Return UT

else
for E8 ∈ �: do

Update_Ancestors()
// Recur
"'>DC4(E8 , EB , E3)

end
end

end
end

end

efficient and light index generation method is needed. For an n-
ary tree the following (Equation 6) generalised heap-indexing
rule is adapted for this purpose.

if 8=34G(E:) = 8 then %0A0=C (E:) =
⌊
8

=

⌋
, and

�ℎ8;3 (�:, 9) = =8 + 98=34G(A>>C) = 0, = = |+ |
(6)

To avoid any segmentation error while using large
topologies, a non-contiguous data structure is used to store
the nodes for better scalability. nodes are ketp in random
memory location !>2: . The ID is calculated using rules in
Eq.6 and are kept along with the nodes data. A hash table
maps index to location, thus the search time is reduced to
$ (1). Figure 4 depicts the process.

2) Optimising Route-Forest formation: Mroute is a very
expensive algorithm in terms of space consumption, while
generating a Route-Forest. The algorithm is invoked $ (=2)
times. The calculation of Route-tree for any arbitrary pair of
nodes is computationally independent, since they share com-
mon data-structure ���, #�$() . This satisfies the criteria
to execute them in parallel without any Race-condition (as no
write operation on global structures takes place). Therefore,
each)8, 9∀(8, 9) ∈ +2 is computed parallelly in their individual
threads. Also,)8, 9 can also be realized by reversing)9 ,8 with
$ (=2) time.

Fig. 4. Dynamic Array-list with hash-table organization for fast searching.
!>28 is the virtual memory location, that holds the router object ' 9 with ID
:. Hash table maps an ID to its location

D. Complexity Analysis

Lemma 1. MRoute is deterministic and loop-free

Proof. The proof is two part, we will first show that the
algorithm is loop-free, which will lead us to prove that it is
deterministic. Also, properties mentioned in Section III(A.5)
is referred in this proof.
MRoute selects Children �: of an non-leaf vertex E: by
filtering them with ��� (E:) − �#(� (E:). Therefore, any
internal vertex E8 if visited by a branch, can’t be a part of
its descendant. Hence, it satisfies property 4, �#(� (E:) ∩
��(� (+:) = q.
Since, the algorithm is loop free, thus maximum depth the tree
can recur is the diameter (3) of � (+, �). Since 1 ≤ 3 ≤ |+ |,
the recursive process has a deterministic termination. �

Lemma 2. MRoute is NP-hard and Traceable

Proof. We first prove the recurrence relation corresponding to
the algorithm falls under the exponential class, then reduce
it into the Satisfiability problem to prove it is NP-hard and
Traceable.

Let us assume the average branching factor for)B,3 be
1̄ which equals to the mean degree of � (+, �). The algo-
rithm takes $ (1) time to fetch ��� (E:) and $ (;>61 |+ |) for
�#((+:). With Memoization, these calls can be made fixed
through the run-time. Recursion is then invoked as many as 1
therefore,

) (=) =

0 if = = 1,
1 if = = 2
1.) (= − 1) + ;>61 |+ | otherwise

 (7)

Using Master theorem [28], it can be shown) (=) =

$ (1=;>61 |+ |).

7

Fig. 5. Implementation of Route-Tag and generating FSM form route tree.
The process depicts the transformation of data-structures from the Route-Tree
to Route State Graph

To prove the reduction, we’ll use an intuitive approach.
Since |� | is finite, and � is connected, there exists a path
%0Cℎ(8, 9) between all pair of vertices E8 , E 9 . Therefore a path
%0Cℎ(8, 9) = {4 ∈ �} ⊆ 2� .Every path can be encoded by a
binary string of length |� |, setting 1s to all inclusive edges
and 0s to exclusive ones. Hence, it is reduces to an = − (�)
problem where = = |� |. Thus MRoute is NP-Hard.
Lemma 1 also proves the algorithm is deterministic, hence it
is traceable.

�

1) FSM model and Route-tag: Let M(Q,T , X, @0, F) be
a deterministic finite state machine such that. Q is a Finite,
non-empty set of states (Q = V), T is a Finite, non-empty
set of Route-Tags Q ∩ T = q, X is the Transition function
X : Q × T → Q, @0 is the Initial State, @0 = EB ∈ Q and F is
a Finite, non-empty set of Final state(s), F = {E3} ⊆ &

Any RouteTree tree has unique paths between root and
leaves. An identifier called Route-Tag tags each path. This
compresses the exponentially large Route-Tree into state ma-
chine of size $ (|+ |), We term this transformation F :)8, 9 →
M8, 9 Route State Transformation Function (RSTF) and M8, 9

as Route State Graph (RSG). Figure 5 depicts the transforma-
tion with changes in the data-structures.

E. Path Matrix

A path-matrix P = +2 is defined as, {?8, 9 ∈ P} = M8, 9 .
Every valid traversal in MB,3 corresponds to a feasible route
between 'B , '3 . We propose two methods to encode the RSG.

1) Encode as Grammar: In this approach, the state machine
is encoded into a set of production rules called Grammar

G(V,T ,P, B). This mode of encoding is useful when the
routes are generated either as patterns or Regular Expressions.
A grammar G is expressed as a quadruple where, V Set of
Non-terminals = Q ⊆ + , T set of terminals (Route-tags), P
set of Regular production rules,B start symbol.Encoding RSG
into its grammar, summarizes the routes and parsing-ability is
enforced using regular expressions.

2) Encode as Tag-Cost Table: The Tag-Cost-table)�) =

T × � is a binary matrix, each row identifies one route-tag
(C: ∈ T) and it’s corresponding edge set. The column-sum
tells how many routes-tags are sharing a given edge (typically
used for load-balancing). The Tag-Cost function is formulated
in Equation 8 and the Tag-Cost table in Table II. A Min-heap
implementation of storing the tag-costs takes $ (1) time to
return the best route and $ (;>61̄ |+ |) time to reorder them.

2
(C: ∈T)
B,3

(C) =
∑
(8, 9) ∈�

(
28, 9 (C) ×)�) [C:]

)
(8)

Encoding RSG into TCT does leverage the reactive route-
response mechanism, due to its constant time search for best
route. Also, the tabular structure makes it easy to program and
alter with varying edge costs.

Tags 41,2 41,3 41,6 42,6 43,4 43,5 44,5 44,6 Cost
1 1 0 0 0 0 0 0 0 2

(1)
1,2 (C)

2 0 0 1 1 0 0 0 0 2
(2)
1,2 (C)

3 0 1 0 1 1 0 0 1 2
(3)
1,2 (C)

4 0 1 0 1 1 1 1 0 2
(3)
1,2 (C)

Share 1 2 1 3 2 1 1 1

TABLE II
TAG-COST-TABLE FOR M1,2

IV. ESTIMATION OF RELIABILITY USING RNN

As the normalised costs matrix (#�$()) varies over time
(due to the variation of node or link cost), it creates a time
series matrix. However, the matrix comprises individual nor-
malised links which vary independently and does not provide
performance analytics directly. Therefore, first we segregate
each link and treat them as individual time series. Then,
unlike predicting the traffic pattern or load, we focus more on
predicting the trend. One of the challenges regards the online
training in dynamic environment, A trained neural network
often rejects to adapt sudden changes as outlier. Therefore, we
aim to model the network dynamics by the degree of volatility
of individual links.

A. Sharpe-Ratio based approximation

In fanance, the Sharpe-Ratio [29] is a widely used metrics
in portfolio management that measures the volatility of a stock
and estimates the risk associated with it. It is defined as the
ratio of the Sample-Mean and the Sample-Standard-deviation
of a set and is proportional to the volatility. The approximation
steps are as follows,

8

Fig. 6. Deployment diagram of the Test-bed. Infrastructure plane holds
routers, overlay server receives monitoring information and spawns VNFs
per Router. Control plane discover topology and application plane operates
on it. Knowledge plane is for self-learning however beyond the scope of the
context.

1) Calculate Volatility V8, 9 (C) of each �8, 9 (C) with a user
defined window size , rolling over time C.

V8, 9 (C) =
� ′
8, 9
([C − F : C])

(� (�8, 9 ([C − F : C])) ∀(8, 9) ∈ � (9)

2) Estimate the edge-wise hypothesis functions hi,j ∈ H as
a auto-regressive function using an RNN with a period
of , .

V8, 9 (C + 1) = hi,j (V8, 9 [C − F : C]) (10)

3) Use V8, 9 (C + 1) as a metric to choose the best path. The
proposed model uses offline training to build the initial
model and thereafter uses online training to update it.
We define a cutoff value n > 30%.

V. IMPLEMENTATION

Figure 6 depicts the deployment-diagram of our test-bed. A
multi-tier approach is conceived for operational and functional
segregation. The SDN philosophy of decoupling control and
data plane has been the core design principal for the pro-
posed architecture. However, the Knowledge plane has been
integrated on top to support SON capabilities.

A. A 5-Tier KDN Test-Bed

The architecture supports network-automation and SON.
It finds optimal route using MRoute (Self-Optimization),
then installs them to the underlying nodes by pushing
device-specific configuration into the edge-devices (Self-
Configuration) and guarantees a most-reliable route by keep
updating them over the time (Self-Healing). Thus it meets
all the three criteria of SON. The following explains the
working of the layers. Please refer to the implementation
details including connection API and algorithm’s code for
more details [30].

1) Infrastructure Plane: This layer hosts physical and/or
emulated network nodes (e.g. routers, L2/L3 switches etc.).
Routers are connected to Overlay-plane securely using
IPSec-DMVPN tunnels to exchanges any control-traffic.

2) Overlay Plane: This layer interfaces between the
infrastructure and control plane. For each downstream router,
a VNF process (agent) maintains a secure link (using SSH) to
monitor the resource utilization. Additionally, it also injects
configuration commands. We use Napalm, library to automate
the routes.

3) Control Plane: Resource and topology information
are fused to generate the meta-graph in the control plane.
RESTConf is used to interface with overlay plane below and
application plane above.

4) Application Plane: Application plane brings modularity
in the architecture, such as Monitoring, Routing, etc. MRoute
is one of such application. However, there are other functions
such as migration and monitoring which are beyond the scope
of the context of this paper.

5) Knowledge Plane: The knowledge plane leverages the
KDN paradigm. This component takes care of all data pre-
processing, offline and online training. It returns a trained
model initially as an outcome of offline training. However,
the model gets updates during online training whenever the
trend changes. KDN functionalists can be divided into four
main unit.
• Pre-processing: It performs data acquisition, data quality

checks and validations, imputing and standardization.
Typically 70% of the overall process time is spent on
this phase.

• Offline Training: The offline training starts by dividing the
data into training, validation and testing for the machine
learning model. It utilizes the historical data from the
repository to train the model, predicts the networking
characteristics to produce a decision.

• Online Training: It is used when the data is generated
in a form of a sequence (such as time series). Network
resource utilization is a from of a time series (NCOST)
of a = × = × C tensor. where = be the number of nodes
nodes and C be the time.

• Modelling: The learning algorithm learns from the fed
data-set, and generates a model for prediction. Since the
problem can be classified as a time series prediction type,
RNN is chosen as the base architecture.

B. Performance analysis of MRoute

The comparative analysis between MRoute, DUAL and SPF
(Figure 7) benchmarks algorithms using six parameters as
discussed in Section 6.2., In this section we present a com-
prehensive explanation to the results. Subplot 7(A) compares
the time complexity with respect to the size of the network,
outcomes are plotted in log-scale therefore MRoute shows an
exponential growth, as shown in Lemma 2; in comparison,

9

Fig. 7. Experimental Results and Comparison MRoute against SPF and DUAL
using the following parameters (A)Time Consumption to computing paths, (B)
Time consumption to converge, (C) Control traffic for topology synchroniza-
tion, (D) Space consumption for topology maintenance (E) Control traffic for
convergence, (F) Route-Tree size .

DUAL and SPF which are bounded above by $ (=2). Due to
the diffusion-computation model and the presence of feasible-
successor, DUAL goes less deep into the convergence state
than of SPF. We tuned the SPF to run on each down-stream
topology in parallel, simulating a multi-area OSPF network. It
seems initially that DUAL is the optimum than its competitors.
MRoute calculates all possible paths in advanced. Therefore,
in the long run if the topology remains unaltered, it would
never enter a re-convergence process, which is not the case
of the rest two. This situation is shown in the subplot 7(B),
where the random link failure scenario (Section 6.1) causes
SPF to re-converge every time, DUAL shows a better result
as in some of the cases feasible-successor exists or a neighbour
replies with route much before the query reaches the network
boundary. However, MRoute shows a constant reading here as
it is an $ (1) task that require a fixed number of operation
involving querying and getting reply for the next best route.
The process can be thought as a generalised case of DUAL
where all backup routes are ranked and listed.

The communication complexity measures the number of
packets exchanged between the nodes while discovering or
converging into the network. In case of SPF and DUAL,
the algorithms are inherently distributed, therefore the lo-
cal routes are advertised, queried during re-convergence and
polled for their liveliness using reliable updates and Hello
protocols respectively. Since OSPF uses link-state model, the
total number of packets exchanged is higher than that of
Distance-vector based on EIGRP. MRoute is designed as a
centralised routing algorithm. Therefore it does not exchange
any discovery or update messages with other nodes. It updates
only the controller which is logically one hop away, This
justifies the subplot 7(C,E).

The state-model representation of the route-forest reduces
the space consumption of MRoute drastically by tagging routes
as a fixed length binary vector of edges with RouteID. How-
ever, while generating the Route-Tree, it consumes memory
in an exponential rate. After the complete forest is generated,
the state model gets built which compresses them into tables
and relinquishes the memory (subplot 7(F)). Space complexity
of MRoute sits between SPF and DUAL as OSPF maintains

Fig. 8. (A) Comparison of accuracy (by mean squared error) with four
network setups (128, 256,512 & 1024), the Global optima is reached with
128 Neuron at a batch size of 512. (B) compares three optimizer algorithms
(SGD, Adam & RMSPROP), over a varying window size of [20 − 200], on
which Adam gives best result on average

identical link-state database for all nodes and EIGRP topology
tables lists the successor and feasible-successors for each
destination prefix depicted in subplot 7(F).

C. RNN Architecture

In this section, the design of the machine learning ar-
chitecture is presented. We also introduce a few techniques
used like hyper-parameters fine-tuning and choosing the best
optimization algorithm.

1) Hyper-Parameter Tuning: In this phase, the Hyper-
parameters such as Batch-size and number of neuron are tuned
from experimental data. Figure 8(A) depicts testing Mean
Squared Error (MSE) cross-validation for 3 layers on a Deep
RNN using 200 epochs. The reason for this was to choose
the appropriate number of neurons and the batch size for
the training and validation data-sets, error rate is measured
using Mean Squared Error (MSE). As highlighted in bold, the
optimum hyper-parameters have been 128 neurons and 512
batch size at 0.08 MSE.

2) Optimization Algorithm: Figure 8(B) shows a compari-
son of the various optimizers proposed by [31] . For the LSTM
model, different sets of window sizes are tested. Three main
variants Gradient Descent (SGD, ADAM & RMSPROP) are
compared. As a proof of concept, results shoe that predicting
with a 200ms window size using Adam can achieve a mean
error rate of 10%.

3) Scoring: The proposed technique performs traffic pre-
diction on the normalized reliability of the links. The result
shows that, with the appropriate hyper-parameters, reliability
can be estimated with a mean 90% accuracy.

D. Online Learning

The online learning phase receives constant feedback from
the network. If the predicted reliability deviates from the
actual one, within a given threshold, the RNN needs to re-
learn to adjust its weights. The re-learning process takes
place for multiple edges simultaneously. Hence, the tuning
needs to be optimised. We use TensorFlow’s Early-Stopping

10

Fig. 9. Evaluation of the Online-Learning, (a) Learning time with 200 epochs,
(b) Accelerated learning with Early-Stopping enabled (c) Comparing time-
series prediction of reliability in Best, Average and Worst case scenario (d)
compares the deviation in log-scale, also shows the comparison is distinctive
when there is less fluctuation

feature to accelerate the learning process, by monitoring the
loss function’s value and breaking the iteration whenever the
loss converges to a value. Therefore, the learning process
doesn’t need to run for all the epochs. Figure 9(a) shows the
loss function’s characteristics spanning for 200 epochs which
took 27.6 Seconds to complete learning. However it can be
noticed that the function actually settles around 55’th epoch
and stays constant since then. The acceleration is depicted in
Figure9(b) where using early stopping the same network could
be retrained in just 0.53 seconds. Thus it reduces exponentially
the time consumption of re-training the RNN, making it
feasible for online training.

A more comprehensive comparison between the actual and
predicted reliability are shown in Figure 9(c,d). The first
compares the best, worst and average cases, sampling them
down to a set of 20 instances, collected over period of 20
minutes of online learning. The results show discrimination is
prominent when there is less fluctuation in the data sets, it’s
more comprehensive when the deviation is plotted in log-scale
(Figure 9(d))

E. Rapid Convergence and Co-relation to Sharpe Ratio

Figure 10 depicts the varying reliability of five edge nodes
over a time period of 350 stamps each of 10 seconds. The
log scale is used to magnify the variation. Over the time,
there are three nodes that have come up as the most reliable
in the order of #>=42, #>344, #>345 and again #>342.
During the experiment, we have emulated this dynamics by
randomly altering various node and edge attributes. This
causes the network to be extremely chaotic and the routing
protocols to re-converge frequently. An effect that appears
clearly in Figure7(A,E). MRoute has shown an $ (1) time

Fig. 10. Demonstration of Self-Healing through rapid-convergence: At times-
tamp [0-100] #>342 is most reliable as the corresponding rolling Sharpe-
Ratio has maximum descending gradient calculated on 100 timestamps.
Similar pattern can be noticed for #>344 during [100-240], #>345 during
[240-270] and #>342 during [270-350]. The correlation is analytical however
the RNN learns it.

convergence as routes are not only chosen in constant time.
Additionally, the most-reliable node is switched instantly. A
clear correlation between the learnt reliability and the sharpe-
ratio is also drawn using the relative dotted-boxes. As the
sharpe-ratio measures the degree of volatility, every time it
meets a rapid depression. The corresponding router is chooses
as most reliable. During the training, the RNN captures this
trend and predicts accordingly. We set the window size of 100
time-stamps thus a offset of 100 can be seen in the time-axis
of the two plots.

VI. CONCLUSION

In this paper we propose a cognitive routing framework
for KDN to support IoT applications for Industry 5.0. The
framework uses an Shortest Path Algorithm names MRoute,
that proactively computes all-possible paths between all pairs
of nodes. Further, it uses Sharpe-Ratio to measure volatility
of each link and RNN with LSTM to learn trend. The
framework uses online learning to tackle any dynamic network
behaviour. Result shows that the MRoute gives a constant-time
convergence.

VII. ACKNOWLEDGMENT

The work is undertaken in the context of the “Self-
Organization Toward Reduced Cost and Energy Per Bit for
Future Emerging Radio Technologies” with contract number
734545.The project has received research funding from the
H2020-MSCA-RISE-2016 European Framework Program.

11

REFERENCES

[1] K. Nisar, E. R. Jimson, M. H. A. Hijazi, I. Welch, R. Hassan,
A. H. M. Aman, A. H. Sodhro, S. Pirbhulal, and S. Khan,
“A survey on the architecture, application, and security of
software defined networking: Challenges and open issues,” Internet
of Things, vol. 12, p. 100289, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660520301219

[2] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of ma-
chine learning techniques applied to self-organizing cellular networks,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2392–2431,
2017.

[3] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski,
“A knowledge plane for the internet,” in Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’03. New York, NY,
USA: Association for Computing Machinery, 2003, p. 3–10. [Online].
Available: https://doi.org/10.1145/863955.863957

[4] R. Hajlaoui, H. Guyennet, and T. Moulahi, “A survey on heuristic-based
routing methods in vehicular ad-hoc network: Technical challenges and
future trends,” IEEE Sensors Journal, vol. 16, no. 17, pp. 6782–6792,
2016.

[5] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self
organisation in future cellular networks,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 1, pp. 336–361, 2012.

[6] G. P. Fettweis, “A 5g wireless communications vision,” Microwave
Journal, vol. 55, no. 12, pp. 24–36, 2012.

[7] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5g be?” IEEE Journal on selected areas
in communications, vol. 32, no. 6, pp. 1065–1082, 2014.

[8] P. Wainio and K. Seppänen, “Self-optimizing last-mile backhaul net-
work for 5g small cells,” in 2016 IEEE International Conference on
Communications Workshops (ICC). IEEE, 2016, pp. 232–239.

[9] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey
of machine learning techniques applied to self-organizing cellular net-
works,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp.
2392–2431, 2017.

[10] W. T. Zaumen and J. J. Garcia-Luna-Aceves, “Loop-free multipath
routing using generalized diffusing computations,” in Proceedings. IEEE
INFOCOM ’98, the Conference on Computer Communications. Seven-
teenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Gateway to the 21st Century (Cat. No.98, vol. 3, 1998,
pp. 1408–1417 vol.3.

[11] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec 1959.
[Online]. Available: https://doi.org/10.1007/BF01386390

[12] J. Strassner, M. O’Foghlu, W. Donnelly, and N. Agoulmine, “Beyond
the knowledge plane: An inference plane to support the next generation
internet,” in 2007 First International Global Information Infrastructure
Symposium, 2007, pp. 112–119.

[13] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(sdn): Research issues and challenges,” IEEE Communications Surveys
Tutorials, vol. 21, no. 1, pp. 393–430, 2019.

[14] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrow’s intelligent network traffic control systems,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432–2455,
2017.

[15] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: A tutorial,”
IEEE Communications Surveys Tutorials, vol. 21, no. 4, pp. 3039–3071,
2019.

[16] M. R. Haque, S. C. Tan, Z. Yusoff, C. K. Lee, and R. Kaspin, “Ddos
attack monitoring using smart controller placement in software defined
networking architecture,” in Computational Science and Technology,
R. Alfred, Y. Lim, A. A. A. Ibrahim, and P. Anthony, Eds. Singapore:
Springer Singapore, 2019, pp. 195–203.

[17] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A survey
of networking applications applying the software defined networking
concept based on machine learning,” IEEE Access, vol. 7, pp. 95 397–
95 417, 2019.

[18] L. Yanjun, L. Xiaobo, and Y. Osamu, “Traffic engineering framework
with machine learning based meta-layer in software-defined networks,”
in 2014 4th IEEE International Conference on Network Infrastructure
and Digital Content, 2014, pp. 121–125.

[19] A. Azzouni, R. Boutaba, and G. Pujolle, “Neuroute: Predictive dynamic
routing for software-defined networks,” in 2017 13th International
Conference on Network and Service Management (CNSM), 2017, pp.
1–6.

[20] Á. López-Raventós, F. Wilhelmi, S. Barrachina-Muñoz, and B. Bellalta,
“Machine learning and software defined networks for high-density
wlans,” 2018.

[21] S. Sendra, A. Rego, J. Lloret, J. M. Jimenez, and O. Romero, “Includ-
ing artificial intelligence in a routing protocol using software defined
networks,” in 2017 IEEE International Conference on Communications
Workshops (ICC Workshops), 2017, pp. 670–674.

[22] F. Francois and E. Gelenbe, “Optimizing secure sdn-enabled inter-
data centre overlay networks through cognitive routing,” in 2016 IEEE
24th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2016, pp.
283–288.

[23] S. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive routing
in multi-layer hierarchical software defined networks: A reinforcement
learning approach,” in 2016 IEEE International Conference on Services
Computing (SCC), 2016, pp. 25–33.

[24] ONF, “OpenFlow Switch Specification,” pp. 11–200, mar
2015. [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[25] “ONLP APIs for Applications |
OpenNetworkLinux.” [Online]. Available:
http://opencomputeproject.github.io/OpenNetworkLinux/onlp/applications/

[26] R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot,
“Address Allocation for Private Internets,” RFC 1918, Feb. 1996.
[Online]. Available: https://rfc-editor.org/rfc/rfc1918.txt

[27] S. Ghosh, T. Dagiuklas, and M. Iqbal, “Energy-aware ip routing over
sdn,” in 2018 IEEE Global Communications Conference (GLOBECOM),
2018, pp. 1–7.

[28] C. Yap, “A real elementary approach to the master recurrence and
generalizations,” in TAMC, 2011.

[29] W. F. Sharpe, “The Sharpe Ratio,” The Journal of Portfolio
Management, vol. 21, no. 1, pp. 49–58, 1994. [Online]. Available:
https://web.stanford.edu/ wfsharpe/art/sr/sr.htm

[30] S. Ghosh, “GitHub - rishiCSE17/SO-KDN: Self Organ-
ised Knowledge Defined Netwrok.” [Online]. Available:
https://github.com/rishiCSE17/SO-KDN

[31] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Network,
vol. 32, no. 2, pp. 92–99, mar 2018.

12

Mr. Saptarshi Ghosh received his B.Sc.(Hons.) in
Computer Science and M.E. in Software Engineering
from University of Calcutta and Jadavpur Univer-
sity, India, respectively followed by an M.Sc. in
Smart Networks from the University of the West
of Scotland, U.K. He is currently pursuing the
Ph.D. degree in computer science and informatics
at London South Bank University and working as a
module leader several core CS modules at the same
department. He has been a recipient of GATE and
Erasmus-Mundus Scholarship. His Ph.D. research is

under the EU-Horizon 2020 project, supported by Marie-Curie Fund with
the research area focused in machine learning’s application to self-organized
SDN for 5G and Beyond. Saptarshi is a JNCIA (DevOps) certified and has
worked as a Software Developer and Network Engineer. He has contributed
into several research and software engineering project funded by Erasmus+,
Innovate UK and Defence Science & Technology Laboratory. His research in-
terests include SD-WAN, network programmability and automation, cognitive-
routing and deep reinforcement learning.

Prof. Tasos Dagiuklas is a leading researcher and
expert in the fields of smart Internet technologies.
He is the leader of the Smart Internet Technologies
(SuITE) research group at the London South Bank
University where he also acts as the Head of Cog-
nitive Systems Reseach Centre. Tasos received the
Engineering Degree from the University of Patras-
Greece in 1989, the M.Sc. from the University of
Manchester- UK in 1991 and the Ph.D. from the
University of Essex-UK in 1995, all in Electrical
Engineering. He has been a principal investigator,

co-investigator, project and technical manager, coordinator and focal person
of more than 20 internationally R&D and Capacity training projects in the
areas of Fixed- Mobile Convergence, 4G/5G networking technologies, VoIP
and multimedia networking. His research interests lie in the field of Systems
Beyond 5G/6G networking technologies, programmable networks, UAVs,
V2X communications and cyber security for smart Internet systems.

Dr. Muddesar Iqbal completed his PhD Funded
by EPSRC Doctoral Training Award for 4G-based
Reconfigurable Mobile Healthcare System from
Kingston University, the UK in 2010. He has
worked with several universities in UK, EU and
South East Asia and currently working as a Senior
Lecturer with London South Bank University. He
has been a principal investigator, co-investigator,
project manager, coordinator and focal person of
more than 15 internationally teamed research and
development, capacity building and training projects,

resulting in several patented inventions and commercial products. His ar-
eas of research are Internet of Sense for Industry 5.0, Intelligent Au-
tonomous Machines/Robotics, Conversational AI and Chabot’s, Personal-
ization/Recommendation, 6G Context-Aware Systems, and Collaborative
Cognitive-Communication Systems.

Prof. Xinheng Wang is currently the founding Head
of Department of Mechatronics and Robotics. He
is an IET Fellow and a senior member of IEEE.
He is also a team leader of Jiangsu Innovation and
Entrepreneur Programme. He has broad academic
working experience in China, England, Wales, and
Scotland for more than 20 years. He has extensive
research experience in Internet of Things (IoT),
wireless mesh networks, indoor positioning, big data
analytics, and applications for smart cities. Along
with nearly 30 research projects sponsored from EU,

UK EPSRC, Innovate UK, China NSFC, and industry, his research in each
area has led to an impactful industrial product. His collaborative research
in acoustic localisation with Zhejiang University has won the first place
in Microsoft Indoor Localisation Competition in sound group. His current
research interests include 6G networks and Industrial Internet of Things,
indoor positioning and data services, acoustic localisation, communications
and sensing, and smart services for group travellers.

