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Abstract

This paper deals with the theme of contagion in financial markets. At
this aim, we develop a model based on Mixed Poisson Processes to describe
the abnormal returns of financial markets of two considered countries. In so
doing, the article defines the theoretical conditions to be satisfied in order
to state that one of them – the so-called leader – exercises contagion on the
others – the followers. Specifically, we employ an invariant probabilistic result
stating that a suitable transformation of a Mixed Poisson Process is still a
Mixed Poisson Process. The theoretical claim is validated by implementing
an extensive simulation analysis grounded on empirical data. The countries
considered are the U.S. (as the leader) and Italy (as the follower) and the
period under scrutiny is very large, ranging from 1970 to 2014.
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1 Introduction

Connections among international financial markets represent one of the most relevant
theme in the macroeconomic and macrofinance context (Dornbusch et al, 2000; Van
Rijckeghem and Weder, 2001; Forbes, 2012; Bellenzier et al., 2016 and the literature
herein cited). Some countries seem to play a leading role – they are leaders – and
their abnormal performances are likely to affect those of peripheral markets – the
followers. When the shocks of a market affect some others, we are in presence of the
so called contagion effect.
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This paper deals with contagion among financial markets, exploring how the shocks
of a leader market transpose themselves in shocks of a follower market. The topic is
relevant because the availability of ad hoc statistical methods for the extraction and
description of the mechanisms of contagious can be very important. In fact, studies
aimed at knowing with reasonable precision if and when contagion might occur, or at
building possible scenarios through simulations, are vital steps not only for a better
comprehension of the investigated system, but also in that they can be functional for
the stability of financial markets.

We proceed in two different and complementary directions. First, we conceptual-
ize a model of econophysics nature based on stochastic processes, and argue that this
model can accommodate for contagion cases. In our experiments, we consider the
U.S. as the leader and Italy as the follower. In so doing, we agree with the stylized
financial facts that the behavior of U.S. market is able to drive – after a delay – the
paths of the European ones (see e.g. Samarakoon, 2011).
In more details, our theoretical model captures the connotations and features of
shocks. In particular, a shock in a financial market can be defined according to
the presence of an abnormal return. Furthermore, the time at which the shocks occur
do not follow regular and periodic paths, but rather they are random. A shock –
or, equivalently a jump – is then viewed as a couple of stochastic terms, one for the
(abnormal) size of the return and the other for the random times of occurrence. Ran-
dom times are modeled through a Mixed Poisson Process (MPP). Such a typology of
processes represents an extension of the usual Poisson Processes with parameter λ,
in that λ is assumed to be random. MPP’s seem to be particularly appropriate for
our purpose, because they describe random arrivals whose time distance is captured
by a random variable.
Several theoretical applications have been proposed in the literature on MPPs (see
e.g. Cinlar, 1995, Grandell, 1997) but, to the best of our knowledge, this is the first
attempt to investigate such a topic from an empirical point of view by examining
financial contagion.
In the framework of MPP’s, we adapt to our specific context an invariance result
for which a suitable transformation of a MPP is still a MPP (see e.g. Foschi and
Spizzichino, 2008). In particular, contagion can be described by introducing a ran-
dom ”small enough” delay – the meaning of the terms ”small enough” will be clear
soon – between the jumps of the leader market and those of the follower one. In so
doing, it is theoretically shown that the assumption of MPP for modeling the shocks
of the leader and of the follower fits with the presence of a contagion of the former
country over the latter one.

The empirical experiments are based on the standardized, comparable time series
of equity markets provided by the Morgan Stanley country Index (MSCI). The inves-
tigated period ranges from 1st January 1970 to 27th May 2014, on a daily basis. First
of all, we validate the theoretical assumption that the data obey to a MPP law, by
applying a Kolmogorov-Smirnov test to compare the empirical distributions of the
data with the theoretical MPP one. Second, we empirically work out the random
delay between the shocks occurring in the U.S. and in Italy and study these series.
Afterwards, the analysis of the series of the delays provides also interesting informa-

2



tion on the time in which contagion propagates. The series of the delays is also shown
to exhibit some regularity properties in terms of the rank-size rule (for rank-size rules
and applications, see e.g. Ausloos, 2014; Ausloos and Cerqueti, 2016; Axtell, 2001;
Blasius and Tönjes, 2009; Cerqueti and Ausloos, 2015; Dimitrova and Ausloos, 2015;
Fairthorne, 2005; Fujiwara, 2004; Herteliu et al., 2015; Ioannides and Overman, 2003;
Ioannides and Skouras, 2013; Zanette, 2006; Zipf, 1935, 1949). In particular, delays
have been ranked in decreasing order, from the largest to the smallest one, and the
resulting rank-size plot is shown to be well-fitted by an exponential law. This evi-
dence adds more on the conceptualization of the time propagation of the shocks, by
giving information on how the delays distribute in terms of their size.
The novelties of the paper can be broken down as follows. First, we propose a concep-
tualization of the dynamics of the equity markets data through MPP’s. In so doing,
we offer a new vision of the financial markets in terms of the distribution of the dates
of the abnormal returns. Second, we theoretically support the presence of contagion
among countries by applying an invariance result on the MPP’s. Third, we provide a
validation of the theoretical results for the U.S. and Italy data over a very wide period
– 44 years: from 1970 to 2014 –, hence obtaining evidence of the presence of contagion
among such countries. Fourth, in the context of the empirical analysis, we discuss
how contagion propagates by exploring the distribution of the delays between the
leader market and the corresponding one of the follower country. Fifth, we provide a
rank-size analysis of the series of the delays and obtain an excellent exponential fit.
It is worth noting that the assessment of such a rank-size regularity has been rather
neglected in the literature for the case of contagion and shock propagation.
The rest of the paper is organized as follows. After revising the literature on con-
tagion in Section 2, Section 3 presents the theoretical model and the key invariance
result. Section 4 is devoted to the empirical experiments: it contains the description
of the data, the adopted methodologies, the obtained findings and related comments.
The last section concludes and traces lines for future research.

2 Review of the literature

There are many definitions of the term contagion available in literature, according to
the different perspectives it is considered from, Forbes (2012). Consequently, from a
technical point of view, contagion can be studied under a variety of assumptions and
quantitatively assessed through a wide range of mathematical tools. One of the oldest
and perhaps most intuitive approach relies on probability theory. Shortly, probabil-
ity models are employed to assess the likelihood for a given country to suffer from a
crisis conditional on the occurrence of the same event elsewhere in the economy. On
the one hand, probabilistic methods enjoy the properties of the tools of statistical
decision theory. On the other hand, statistical tests suffer from limited power when
endogenous relationships between variables involved in the analysis arise and limited
robustness in case of omitted variables. As a result, the related outcomes can be
severely biased and of little practical use.

During the nineties many procedures focused on the analysis of comovements, have
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been implemented. They focus on measuring comovements connections by means of
the coefficient of correlation (e.g. Bordo and Murshid, 2001; Baig and Goldfajan,
1998; Calvo and Reinhart, 1996, Forbes and Rigobon, 2002). The rationale behind
such methods is of empirical nature and rests on the evidence that market comove-
ments become more apparent during periods of crisis. For instance, many studies show
how various contagious effects, triggered by the 1994 Mexican crisis, can be associ-
ated with comovements induced as a result (Calvo et al, 1996; Frankel and Schmukler,
1996; Agénor et al 2004). Unfortunately, this approach is not without drawbacks, in-
deed the correlation coefficient during period of crisis is strongly upwardly biased due
to heteroskedasticity in asset price movements (Rigobon, 1998; Fernández-Arias and
Rigobon 1998, Rigobon, 2002). Furthermore, additional amounts of bias can be intro-
duced by effects this approach is unable to account for – e.g. risk perception, change
in the preference structures or of economic fundamentals. Thus, a step ahead in the
analysis has been moved by the application of multivariate autoregressive schemes
to study cross–country correlation structures, Boschi (2005) and the literature herein
cited. In essence, the dynamic impact of random disturbances and of a set of en-
dogenous variables are measured by an impulse-response function. Although this
method is more robust to the problem of omitted factors, it may still suffers from
heteroskedasticity problems in the returns.

As a response to these problems dynamic correlation–based approaches have been
developed in the two-thousands. Among them, it is worth mentioning the one pro-
posed by Zhao et al (2010), based on time varying coherence functions. It consists in
a sequential computation of the squared correlation coefficient between pairs of values
of the spectral densities computed at same frequencies. This technique has also been
refined to capture comovements at different frequencies and their changes in synchro-
nization (Imen and Rim, 2012; Celik, 2012). However, a maintained assumption of
this models is normality, which is quite often violated.

Lastly, approaches exploiting either extreme values – i.e. based on statistical tests
performed on the correlations of returns’ tail values – or jumps in prices, are currently
widely employed. These methods are essentially based on shock analysis, as they fo-
cus on the effects generated by one or more impacts on a specific markets generated
by a different country. Their rationale is rather simple: only shock–related impacts,
above a certain threshold, are analysed. Being robust against different distributional
assumptions and independent from the functional form of the shock propagation
mechanisms, they are widely adopted (Poon et al 2004, Aı̈t-Sahalia et al, 2010).

The method proposed in the present paper is consistent with such a framework,
and it is posited within this last strand of the literature, as it is designed to detect
contagion assuming the occurrence of a jump in a main (leading) market which prop-
agates across the system and hits one or more peripheral markets. The phenomenon
of contagion is statistically conceived as a stochastic disturbance – with magnitude
greater than a predefined threshold – and whose form is of an impulsive outlier.
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3 Theoretical model

Consider a filtered probability space (Ω,F ,F = {Ft}t≥0P), which contains all the
stochastic processes that will be defined in this paper.
Denote as {xt}t≥0 and {yt}t≥0 the stochastic processes of the daily returns of the
financial markets associated to two countries. We are interested in the definition and
in the modeling of the jumps – or, shocks – in the markets.
A jump occurs when the financial market experiences an abnormal return. Formally,
the return in {xt}t≥0 (in {yt}t≥0) is abnormal when its absolute value is above a pre-
fixed and large threshold βx > 0 (βy > 0). This procedure is consistent with Mishkin
and White (2003) who, in order to identify crashes, define them as stock index de-
clines in excess of 20 percent over a 12 month moving window. Of course, as the
wideness of β increases, the number of returns to be defined ”abnormal” decreases.
Moreover, the selection of a too small value of β does not lead to a proper definition
of abnormal returns. For example, the value βx = inf

t≥0
E[xt] might include in the set

labeled abnormal also some returns which are evidently in line with the standard
behavior of the index.
By construction, the series of abnormal returns is a subseries of the whole series
{xt}t≥0 and {yt}t≥0. Moreover, the time in which an abnormal return is observed
cannot be determined a-priori.
Thus, the series of abnormal returns can be described through two point processes.
The process of the abnormal returns contained in {xt}t≥0 is formalized as J =
{(Ti, Ci)}i∈N, while for {yt}t≥0 we have K = {(Si, Di)}i∈N, where T ’s and S’s rep-
resent the stochastic times at which the shocks occur and the C’s and D’s are the
corresponding abnormal returns, respectively. Specifically, for each i ∈ N, the i-th
jump of the process J (K) occurs at time Ti (Si) and with size Ci (Di).
In the context of contagion, the identification of a leader market and of a follower
one is crucial. The spirit of such roles lies in the fact that the shocks occurring in the
former generate shocks in the latter with a delay. Therefore, our theoretical model
might be useful in describing a situation of contagion when considering J and K as
the processes of the abnormal returns of the leader country and of the follower one,
respectively.
To fix ideas, as we will see in the next section, the leader market is assumed to be
the U.S. one while the role of follower is played by Italy.
In the present paper, we are interested only in the time component of the processes J
and K, and the size of the jumps are introduced for the sake of completeness. Indeed,
the presence of a cause-effect relation between leader and follower can be measured
only by searching for the presence of a small time-delay between the jumps in J and
the ones in K. Hence, it is not needed a deep exploration of the sizes of the jumps for
evaluating the presence of contagion. However, the size of the jumps will drive the
definition itself of the contagion, with the assessment of the abnormal returns (see
the next section on this point).
The statement of specific assumptions on the temporal components of the point pro-
cesses J and K leads to an interesting invariance result, already known in the litera-
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ture. We recall it here for the reader convenience:

Proposition 1. Assume that:

(i) the arrival times T ’s are described by a one-dimensional MPP;

(ii) there exists a sequence of i.i.d. random variables W = {Wi}i∈N independent of
the process {Ti}i∈N and such that Si = Ti + Wi, for each i ∈ N.

Then the process {Ti}i∈N is an MPP.

For the proof, see e.g. Mirasol (1963) and Eick et al. (1993).
Proposition 1 has a meaning of paramount importance. Indeed, it states that a MPP
can be obtained by transforming an original MPP through the application of suitably
chosen random delays. Therefore, we can identify two processes: a leader process –
which is the independent one and is represented by the process J in our framework
– and a follower – which is obtained by applying a random delay to the leader and is
represented here by K.

4 Empirical experiments

4.1 The data

We have taken the standardized, comparable time series on equity markets provided
by the Morgan Stanley Country Index (MSCI) with daily frequency since the 1st

January 1970 up to the 27th May 2014 for the U.S. and Italy. They represent the
daily series of returns introduced in Section 3, namely – with a reasonable abuse of
notation – the processes called {xt}t≥0 and {yt}t≥0, respectively.
The choice of these indices is motivated by the fact that they provide exhaustive eq-
uity market coverage as each country index is comprehensive of every listed security in
that market. Besides, the indices are obtained by applying a consistent construction
and maintenance methodology, which allows for meaningful global views and cross
regional comparisons across all market capitalization size, sector and style segments
and combinations.1

This “continuous” data have been treated to identify the abnormal returns. Specif-
ically, we have considered a threshold β > 0 and denoted as abnormal returns the
values of the daily return whose absolute values are greater than β. The value of the
threshold has been set at β = 3%. This setting allows us to include in the set of the
abnormal returns a sufficiently high number of elements and maintain, at the same
time, a meaningful value for identifying the abnormal returns.
After the treatment of the data, we have found two sets of couples “size of returns
- time of returns” which is properly included into the original ones. In particular,
we have found NUS + 1 abnormal returns for the U.S. and NI + 1 for Italy, over the
considered period. For ease of reference, we still adopt the notation used Section
3 the and collect such abnormal returns into the sets J = {(Ti, Ci)}i=1,...,NUS+1 for

1For further details on the MSCI see http://www.msci.com/products/indexes
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{xt}t≥0 and K = {(Si, Di)}i=1,...,NI+1 for {yt}t≥0.
Notice that the elements of J and K are not equally spaced in time, because abnor-
mal returns occur with no periodicity. Moreover, the absolute values of the sizes of
the abnormal returns are above the threshold β but the exact value cannot be de-
terministically a-priori identified. Therefore, J and K can be theoretically modeled
through point processes, whose time components behave as in Proposition 1.

4.2 The methodology

First, we empirically prove that the time components of the couples in J and K,
namely {Ti}i=1,...,NUS+1 and {Si}i=1,...,NI+1, respectively, can be suitably modeled
through two MPP’s. At this aim, a Kolmogorov-Smirnov test is applied. Once the
first stage is reached, we search for the random delay between the processes J and
K, whose existence is guaranteed by Proposition 1.

4.3 Elaborations and discussion

In the spirit of the Kolmogorov-Smirnov test, a possible way to check for the concor-
dance of the data in {Ti}i=1,...,NUS+1 and {Si}i=1,...,NI+1 with the MPP distribution
consists in comparing their empirical distribution function with the MPP theoretical
one.
To proceed, we recall the density function of a MPP and take J as reference process.
Consider t > 0 and define the variable XJ

t counting the number of jumps of the
process J occurred up to time t. Of course, XJ

t is strongly connected to the process
of the times of J . We say that the T ’s follow a MPP if there exists a distribution
function U such that

P (Xt+η −Xt = k) =

∫ +∞

0

e−λη(λη)k

k!
dU(λ), ∀η ≥ 0, k = 0, 1, 2, . . . . (1)

Let us define the distribution function of the density in (1) as

Fη(k) = P (Xt+η −Xt ≤ k) ∀η ≥ 0, k = 0, 1, 2, . . . . (2)

Now, consider the empirical distribution of the random times T ’s in the time interval
(t, t + η) as given by the available data, and denote its k-th element as F̃η(k), for
η ≥ 0 and k = 0, 1, 2, . . . .
The null-hypothesis H0 of the Kolmogorov-Smirnov test is that F ≡ F̃ , and it is not
possible to reject it when there exists a distribution function U such that

sup
k∈N

|Fη(k)− F̃η(k)| ≤ Hn,ñ(α) =

√
n + ñ

nñ
h(α), (3)

In plain English, it is not possible to reject H0 whenever the distance between the
theoretical and the empirical distribution function is less than a given quantity, H.
Such a quantity is a function of the rejection level α and of the number of the elements
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α 0.001 0.005 0.01 0.025 0.05 0.1

h(α) 1.95 1.73 1.63 1.48 1.36 1.22
US: Hn,ñ(α) 0.248528 0.220489 0.207744 0.188626 0.173332 0.155489
IT: Hn,ñ(α) 0.204164 0.18113 0.17066 0.154955 0.142391 0.127733

Table 1: Critical Kolmogorov-Smirnov values for different levels of h(α) for both
countries. The variation of the values depends also on the different levels of n for the
considered countries.

of the “theoretical” and the empirical sample, n and ñ, respectively. To compute the
theoretical distribution, we conveniently truncate N – the variation set of k – at the
maximum number of jumps that could be empirically observed, k̄. That is, given
that the time elapsed between two jumps is measured in days, if the sum of all the
intervals is n, and only one jump per day is allowed, then k̄ = n days. For the U.S.
case, we have k̄ = n = 8734, which can be labeled as the time span of jumps, while
ñ = 62 can be labeled as the number of different delays empirically observed. For
Italy, we have k̄ = n = 10822 and ñ = 92.
See Table 1 for the quantities of interest. To proceed, we have considered η = 0.001
and normalized the entire period of analysis, so that one day corresponds to 1/n. The
distribution U has been selected discrete and such that P (λ = l) = C(l + 1)3, being
C the normalizing constant, for each l.
With this choice, the Kolmogorov-Smironov test is equal to:





sup
k∈N

|Fη(k)− F̃η(k)| = 0.12323, for the case of U.S.;

sup
k∈N

|Fη(k)− F̃η(k)| = 0.116875, for the case of Italy,

pointing out that one cannot reject H0 at each level of α for both countries, being
the tabulated values always less than the critical threshold in Table 1. This evidence
entitles us, with a certain level of confidence, to treat the series as MPP, and to
present the results arising from the empirical application of the theoretical results.
After checking that both {Ti}i∈N and {Si}i∈N are MPP, we are authorized to use
Proposition 1 and guess the existence of the delays {Wi}i∈N.

A time interval is a delay if and only if it represents the difference between two
consecutive jumps, the first one in the U.S. and the last in Italy. Moreover, we
have derived the series of the delays from the empirical data under three alternative
constraints: (i) a time interval is a delay if it is no longer than 10 days; (i) a time
interval is a delay if it is no longer than 30 days; (iii) no constraints.

Table 2 contains the descriptive statistics of the series of the delays under the
three constraints.

Some facts emerge: the variability in the data tends to increase with the magnitude
of the delay considered. However, the recorded variations are more than proportional
in the case of infinite delay. Such a behavior might reflect the additional amount of
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Statistical indicator Case (i) Case (ii) Case (iii)

MEAN 4.61 6.67 34.68
VARIANCE 8.81 23.85 2562.26
STD DEV 2.97 4.88 50.62

COEFF VAR 0.64 0.73 1.46
MEDIAN 4.5 6 8

SKEWNESS 0.28 0.66 0.71
KURTOSIS -1.25 -0.54 1.87

Table 2: Descriptive statistics of the delays in the three cases of constraints. Notice
the high variability of the considered statistics with respect to the magnitude of the
delay.

uncertainty associated with longer delays. While the coefficient of variation recorded
for the first two cases of delay seems to be comparable (respectively amounting to 64%
and 73%), in the case of unbounded delay its value is about 146%. In addition, the
differences between mode and mean value are much more distant for the infinite delay
than for the other two cases. Here, such differences suggest – without making any
distributional assumptions – that the data are fairly symmetric in the first two cases.
On the other hand, for the case infinite delay, the much larger value recorded for the
mean, in comparison with the median, is an indication of right skewed distribution.
The skewness coefficient supports this idea, in that in the case of infinite delay, shows
a value 5 times bigger than the one recorded for the 10 days delay. Finally, the
analysis of the values for the kurtosis, shows that the case somewhat closer to a
data distribution matching a Gaussian curve is the 30 days delay (kurtosis = -0.54).
The remaining cases go in opposite directions: a flatter distribution for the 10 days
(kurtosis = -1.25) and a leptokurtic one for the infinite delay (kurtosis= 1.87).

The set of observed delays between the shocks propagated from the U.S. to Italy
exhibits also some regularity properties, from a rank-size perspective.

Consider a ranking of the unbounded delays according to their size as follows:
rank=1 stands for the highest value of delay (188, in our case) and then the ranking
procedure goes on in decreasing order, so that rank=47 is associated to delay=1.

If one calibrates the parameters of an exponential function

f(x) = a · exp(bx), a, b ∈ R (4)

then one obtains a visually appealing fit with R2 = 0.9862 for a = 223.6 and b =
−0.127 (see Figure 1). This suggests the presence of a clear rank-size relationship.
Such a relation, applied in this specific context, is rather new in the literature, and
will push us to further explorations in future research. In fact, rank-size laws have
been found for many sets of data, but never for the delays in the context of contagion
and shocks propagation.

PLEASE, INSERT FIGURE 1 HERE
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Caption: Delays ranked by decreasing order according to their magnitude with the
corresponding exponential fit (see formula (4)).

5 Concluding remarks

This paper deals with the relevant theme of financial contagion under a theoretical
and an empirical perspective. Specifically, we discuss the probabilistic conditions on
the times of occurrence of the abnormal returns for the U.S. and Italy, and derive the
presence of a idiosyncratic delay among them. We empirically explore such delays over
a very rich dataset, whence providing information on their regularity. At this aim, a
rank-size analysis is carried out and an exponential law seems to fit in an excellent
manner the considered observations. Some future directions could be explored: first,
it could be interesting to see whenever the contagion effect takes place in a more
general context and over different datasets; second, the rank-size analysis suggests
to go further in the investigation of the regularity of the data. To this purpose, the
digits rules like the Benford law could be properly assessed, to add also to this type
of empirical literature.
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