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Abstract This paper extends Markov chain bootstrapping to the case of multivariate continuous-
valued stochastic processes. To this purpose we follow the approach of searching an optimal partition
of the state space of an observed (multivariate) time series. The optimization problem is based on
a distance indicator calculated on the transition probabilities of the Markov chain. Such criterion
searches to group those states showing similar transition probabilities. A second methodological
contribution is represented by the addition of a contiguity constraint, which is introduced to force
the states to group only if they have “near” values (in the state space). This requirement meets
two important aspects: firstly, it allows a more intuitive interpretation of the results; secondly, it
contributes to control the complexity of the problem, which explodes with the cardinality of the
states. The computational complexity of the optimization problem is also addressed through the
introduction of a novel Tabu Search algorithm, which improves both the quality of the solution found
and the computational times, with respect to a similar heuristic previously advanced in the literature.
The bootstrap method is applied to two empirical cases: the bivariate process of prices and volumes
of electricity in the Spanish market; the trivariate process composed by prices and volumes of a US
company stock (McDonald’s) and prices of the Dow Jones Industrial Average index. Additionally,
the method is compared with two other well established bootstrap methods. The results show the
good distributional properties of the present proposal, as well as a clear superiority in reproducing
the dependence among the data.
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1 Introduction and bibliography review

The correct understanding of economic and financial phenomena is crucial to several purposes, from
model calibration to forecasting. Besides theoretical analysis, many statistical approaches have been
developed. Among these a powerful method is the bootstrap, originally introduced by Efron (1979).
To apply the original method to an observed time series, it is preliminarily required that the series
is fitted with an accurate model, so that the residuals are strictly stationary and independent. If
these conditions are met, the bootstrap can be successfully applied resampling the residuals (with
repetition) to reproduce a large number of bootstrapped series. Needless to say, the more appropriate
is the choice for the model of the observed time series, the more accurate and informative the
bootstrap. Financial applications of this methodology are the focus of a wide strand of literature,
here we mention only the prominent studies on financial markets due to Brock et al. (1992) and
Sullivan et al. (1999).

However, the strict stationarity and independence conditions imposed in the original method by
Efron happen to be too restrictive in many practical applications, especially where data tend to
show nonlinear dependence. To overcome such drawback, bootstrap theory has addressed to more
data driven approaches. Block, sieve, and local bootstraps are examples of these approaches (see
Bithlmann, 2002, for a comparison), which require weaker stationarity conditions and, even more
important, are less demanding with respect to the independence of data. Indeed, these methods aim at
capturing such dependence directly from the data, therefore they reduce the risk of misspecifying the
model applied to prepare the data. In the case of Markov chain bootstrapping a simple removal from
the observed time series of the deterministic components (such as trend and seasonality) suffices to
proceed safely with the bootstrap. This class of bootstrap methods do not require specific assumptions
on the probability distributions of the random variables, that is why they are also referred to as
nonparametric and in a certain sense model-free. Therefore they can be fruitfully applied in situations
where analytical (reduced form) models and econometric models show serious drawbacks. In many
economic areas where time series analysis has flourished, such as in finance, there are many examples
(e.g., stock returns, exchange rates, interest rates) where analytic (reduced form) models successfully
fit observed time series. A discussion on the parametric case with financial applications has been
carried out in Guastaroba et al. (2009). However, turning to less liquid markets, such as commodities
or energy, the shocks on prices arise much more irregularly, therefore several analytic models show
serious difficulties. Econometric models are in general much more flexible than analytic ones. They
include a large variety of ways to link a dependent variable to its past values, its past residuals, as
well as other variables and their residuals. A natural limit of these models is of course represented by
the calibration of their parameters, which often becomes unmanageable in the presence of nonlinear
dependence among the data. In general, this is the case where data driven approaches, such as the
Markov chain bootstrapping proposed here, are successfully adopted.

In this paper we focus on the family of bootstrap methods based on Markov chain theory. More
specifically, we apply Markov chain theory to bootstrap observed multivariate time series taking
continuous values.

Markov chain bootstrapping is based on the assumption that an observed time series may be viewed
as a realization of a Markov chain.

The case of univariate Markov chains with finite states is undoubtedly one of the most explored.
Some classical references are Kulperger and Prakasa Rao (1989), Athreya and Fuh (1992), and Datta
and McCormick (1992). The quoted papers face explicitly the problem of estimating the transition
probability matrix of a stationary Markov chain with the objective of saving most information on
data dependence.

Some papers refer to Markovian processes, and provide an estimation of their transition density
function by adopting a kernel-based procedure (see, e.g., Rajarshi, 1990; Horowitz, 2003; Paparoditis
and Politis, 2001b). These works assume that similar trajectories (with respect to a distance measured
on the state space) will tend to show similar transition probabilities. Moreover, no particular attention



is paid to the order of the chain (i.e. the memory of the Markov chain).

In general, modeling an observed time series as a discrete Markov chain moves from the assumption
that the observed values are its states. Of course, this assumption does not hold when dealing with
continuous-valued time series. To apply Markov chain theory to the continuous case, a discretization
(i.e. a partition) of the range is required, where each interval is assumed as a state. An early analysis
of the advantages of adopting Markov chain bootstrapping to continuous-valued stochastic processes
has been faced by Anatolyev and Vasnev (2002). They construct a bootstrap method on the basis
of a partition of the state space, such that each state comprises approximately a constant number
of observations, and conclude that such bootstrap method shows interesting estimation properties.
Of course, such simple approach does not really tell us much about the data generating process. In
particular, the number of states used to partition the range can be either larger or smaller than it
is required for description purposes, and the cutting points do not necessarily reflect any effective
change of regime.

Indeed, optimally partitioning the range of a continuous-valued time series, for the purpose of
applying Markov chain bootstrapping, is a major problem for different reasons.

The natural objective of describing satisfactorily the dependence structure of the observed time
series would push in the direction of searching for partitions rich of states, implying the estimation of
larger and larger transition probability matrices. Such tendency contrasts however with the number
of available observations (i.e. the length of the original sample), which become rapidly “short” as
soon as the dimension of the transition probability matrix increases. Moreover, the mathematical
tractability of a Markov chain also reduces as the dimension of its transition probability matrix
increases.

There is another subtle difficulty linked to increasing the number of states. With continuous ranges, it
is often possible to identify a partition such that every state occurred only once in the observed time
series. In such a case, the transition probability matrix would degenerate to a “0-1” matrix?, and the
series which would result by bootstrapping it would just be exact replications of the observed time
series. This is of course an unwanted result, showing that the number of states required to bootstrap
a continuous-valued stochastic process through Markov chain must be balanced between a search for
description quality and a need of diversification.

Finally, a relevant difficulty in determining the states of a Markov chain for a continuous-valued
stochastic process is that of identifying the correct “cutting values” of its range, which is at least as
important as deciding on the optimal number of states.

A general approach introduced to solve this class of problems has been advanced in Cerqueti

et al. (2010). They start from a given partition of the range, which includes a number of states larger
than those needed for a Markov chain to describe successfully the data process. They then look for
an information efficient assessment of the transition probability matrix by implementing a suitable
clustering of the states. In this way they reduce their number, approximate the discriminant cutting
points of the range and assess the relevance of the time lags within the order of the chain.
Some contributions are relevant, in our opinion, to analyze the order of a Markov chain. Biihlmann
and Wyner (1999) propose a sophisticated procedure -the so-called variable length Markov chain-.
Basically, starting from the initial data of a path, a recursive routine is established to differentiate
states only when they contribute to differentiate future evolution. At the last step of the recursion,
the identification of a Markov process whose memory depends on the realized paths is obtained.
The authors achieve a satisfactory computational efficiency. Some other contributions are worth
mentioning. Merhav et al. (1989), Kieffer (1993), Csiszdr and Shields (2000), and Morvai and Weiss
(2005) deal with the estimation of the order of a Markov chain in a framework of equal relevance of
the states at each time lag.

Following Cerqueti et al. (2010), we move from a discretized version of a continuous-valued
stochastic process, and so our work can be inserted among the research arca of the reduction of

2 A “0-1” matrix is a stochastic matrix whose rows contain zeros in all positions but one, where there is a 1.



a discrete Markov chain by clustering its state space. In general, the reduction of the state space of
a Markov chain by means of some clustering procedures returns more tractable processes, but at the
cost of some information loss, as it is well known in clustering (or lumpability) theory. Among the
drawbacks, there is the risk that part of the mathematical properties of the original Markov chain
get lost.

The reference literature in this area is in general concerned with the problem of information loss and
lumpability theory. Some classical references on lumpability are Burke and Rosenblatt (1958) and
Kemeny and Snell (1976). An encyclopedic survey is provided by Thomas (2010). Relevant appli-
cations of this theory include the compression of data represented through a finite alphabet. Some
important examples of data compression criteria are the AIC (Akaike Information Criterion, Akaike,
1970), the BIC (Bayesian Information Criterion, Schwarz, 1978) and the MDL principle (Minimum
Description Length principle, Rissanen, 1978). In each criterion, the compression is implemented to
obtain the maximum level of simplification (i.e. minimization of an entropy-based functional) also by
pursuing the scope of minimizing the information loss (i.e. minimization of a penalty term).

In the present approach we extend the theory of lumpability and model jointly the clustering of the
state space and the assessment of the order of a Markov chain. At this aim, we construct a unique
optimization problem to identify both relevant states and time lags. Such optimization problem is
linked to information theory: specifically, two definitions of distance measure are introduced, in order
to pursue simultaneously the maximum level of simplification and the minimum level of information
loss.

Another relevant comparison is that between our approach and Markov switching models (on
these models see, for example, the recent review in Franke, 2012). Despite their name, these models
are analytic: a mathematical expression defines the dynamics of the process. The difference in these
models is represented by the particular link that one or more parameters establish with the current
value of the process, or with one of its attributes (e.g., its local volatility). In particular, this link
is modeled classifying the value of the process (or of its attribute) according to few “regimes”. Its
parameters take different values conditioning on the current state of the process and on a transition
probability matrix. In this way the process changes “regimes” through time, respecting Markov chain
probabilities. The difference with our Markov chain bootstrapping is deep. The lack of any analytic
expression to define the dynamics of the process and the hidden number of states (as well as of the
cutting values on the range used to define them) are key distinguishing features.

Our extension to the multivariate case increases the computational complexity of the problem. To
deal with multivariate Markov chains of order k£ > 1, it is required to pass from defining a state as the
combination of values observed for a single variable over an interval of k times, to the combination
of values of a vector (over the same period). Some attempts have been proposed in the literature to
manage the complexity of the clustering problem. In Cerqueti et al. (2012), the optimization problem
has been conveniently rewritten as a mixed integer linear programming problem and its exact solu-
tion has been found. The authors obtain satisfactory results in terms of computing times to find the
optimal solution, even though their approach has to be adopted to solve problems of small to medium
size (i.e. 12-15 states observed over 2-3 time lags). Cerqueti et al. (2013) overcome the complexity
problem and solve real life instances of several observed time series and a large number of relevant
time lags by implementing a heuristic procedure. Specifically, the authors adopt a Tabu Search algo-
rithm and find heuristic solutions of the optimization problem in a reasonable computational time.
Moreover, extensive numerical experiments are provided to show that the resulting bootstrapped
series respect in full the statistical properties of the observed time series.

Given the relevancy of the computational complexity, in this paper we also rely on a Tabu Search
approach. Besides, we introduce a contiguity constraint for the clusters of the partitions, with the
purposes of reducing the complexity of the problem and of improving the interpretation of the rel-
evant states. It is worth observing that, in our approach, the distance between any two states is
calculated considering only the values of their transition probabilities. Such approach is therefore
free to group states which can be arbitrarily distant on the range of the process. The contiguity con-



straint introduced here mitigates that extreme freedom. It also meets the evidence that, in several
cases, the rationale of a group of states (such as a regime) can be better described combining the
closeness of the transition probabilities with the closeness of their values. In this respect, the specific
context of the regimes of the electricity prices is paradigmatic. Indeed, electricity prices exhibit a
rather stationary behavior with some sudden peaks, and the identification of the regimes is based
on grouping together states belonging to the same space-intervals (see, Huisman and Mahieu, 2003;
Bunn, 2004; Weron et al., 2004; Weron, 2006).

To the best of our knowledge, this paper is the first to explore multivariate Markov chain boot-
strapping. The theoretical advantages of univariate Markov chain bootstrapping are even stronger
under the multivariate setting. Transition probability matrices are suitable to model arbitrary types
of dependence among the components of a multivariate stochastic process as well as those among
their values at different time lags. This aspect is quite relevant in real life applications, mainly for
what concerns the analysis of contagion effects and causality relations. Our paper also contributes to
the operational research literature. We design a novel Tabu Search heuristic to solve the optimization
problem. The flexibility of the heuristic enables to solve problems under univariate or multivariate
settings, as well as with or without a contiguity constraint. The only solution strategy available in the
literature is the heuristic algorithm introduced in the aforementioned work of Cerqueti et al. (2013),
and developed to solve the optimization problem under a univariate setting and without a contiguity
constraint. We show that the new Tabu Search algorithm outperforms the latter heuristic, in terms
of both solution quality and computing times.

The paper is organized as follows. Section 2 introduces the model of the optimal clustering of
multivariate states of a Markov chain of order k > 1. Section 3 describes the Tabu Search algorithm
advanced to solve the computational complexity of the solution search. Section 4 focuses on the
application of the bootstrap method to two empirical cases. The first is concerned with prices and
volumes of electricity in the Spanish market. The second considers a trivariate stochastic process:
prices and volumes of a US company stock (McDonald’s) and prices of the Dow Jones Industrial
Average (DJIA) index. Section 5 comments on the results and Section 6 concludes. Finally, Online
Resource 1 details Tabu Search pseudo-codes, removal of trend and seasonality, initial states, Tabu
Search settings and computational results, and information loss and distance measures.

2 Problem Setting
2.1 Preliminaries and notation

Let us consider an N-dimensional discrete time continuous-valued stochastic process Y = { Y}, ot

CRY.Foreachn =1, ..., N, we will refer to the n-th component of Y as {Y,%n)}meNJr. The realization
of Y, (i.e. the value assumed by Y at time m and under the occurrence of a given state of the world)
will be named as y,, and that of its n-th component as yﬁ,? )
Consider the vector O collecting the values of a trajectory of length M of our continuous-valued
stochastic process Y:

O = (Y1, s Ymy s YM)- (1)

We will call a vector of k£ consecutive realizations of the process as a k-trajectory. The k-trajectory
starting at time s is the vector ysx = (¥s,...;¥s+k—1), with M > 2, k = 1,..,M —1 and s €
{1,.... M —k+1}.

Define the set Oy collecting all the k-trajectories that can be extracted from O as:

Or ={¥1,k) s YM—k+1,k}- (2)

Let’s now define the discretized version of Y. Fix n = 1,..., N and assume that the support
of the n-th component of Y is given by an interval I, C R. Consider a partition of I, into Ly,



(non-overlapping) intervals, or states, a§"), aé”), . al(n), . a(gfl) C 1, such that:

aMnaM =2, for ! £, 11" =1,..., Ln,
(3)

Ur agn) = In,

and let A,, = {ai”), agn), ey agn), . a(ﬁf}. We will refer to A,, as to the initial partition of I,,.

Remark 1 Without loss of generality, we assume that the intervals of A,, are indexed in an increasing
order, that is:

sup(agn)) < inf(al(?l), for each I = 1,..., Ly. (4)

The Cartesian product of the A, is

A=A x..xA, x ... xApn. (5)

The z-th element of A is the vector of N components a, = (a(l), e al™, ...,a(N)) , where a(™) is a

generic interval, or state, of Ay, and z = 1,...,4(A). The number $§(A) = Hf:’:l Ly, is the cardinality
of A. We can also define A by listing its elements:

A= {al,...,az,...,au(A)}. (6)

The elements of A are called N-intervals, or N-states. The set A can be viewed as the support of a
discretized version of Y.

Since the elements of A, are non-overlapping intervals for each n = 1, ..., N, there exists a unique
a., with z = 1,...,#(A), such that y,, € a., for all m € NT. Therefore, letting:

Xm =a; il ym € az,
vector O in Eq. (1) can be rewritten as a vector of the same length, whose elements are N-states

extracted from A as:

A= (X1, ey Xy ey X0 ) -

Tn a similar way, let us consider the vector ap = (ap,,...,an,) € A¥, where hy = 1, o B(A),
w = 1,...,k. The row vector ay, j is the ordered set of k N-states ap, € A, listed, in a natural
way, from the furthest to the closest realization of the chain. The row vector aj ; will be called
kN -interval, or kN -state. Now, the k-trajectories collected in set Oy of Eq. (2) can be rewritten by
means of the corresponding kN-states of A* giving:

Ak = {X1 ks 0 XMkt 1k}

where

Xm,k = ank if Ym k € an k.



2.2 Problem overview

It is now worth recalling the basic idea of our problem. Given a realization of a multivariate discrete
time continuous-valued stochastic process, i.e. an observed multivariate time series, we aim at finding
a suitable approximation of the process by means of a Markov chain of order £ > 1 with a finite
number of multivariate states. We start with O, i.e. a realization of the process. O consists of N
observed time series of length M, linked through an unknown dependence structure. Given O, we
want to bootstrap the process which generated it. The approach that we adopt in this work is to resort
to the theory of Markov chains of order £ > 1. To this purpose, instead of focusing on the observed
values collected in O, we will focus on their discretized representation collected in A. Specifically, A
may be viewed as a vector collecting M realizations of a Markov chain X = {X}en+ of order
k > 1 and with discrete support A. Hence, we will refer to A as a discretized version of O, and X
may be intuitively thought as a discretized version of Y.
The critical point for the Markov chain X to represent the best approximation of the stochastic
process Y is to obtain the best estimation of its transition probability matrix. The probabilities
of this matrix describe the dynamics of X. However, as pointed out in Cerqueti et al. (2010), two
contrasting objectives emerge here. On the one hand, we would like to estimate the matrix keeping
all the N-states of A distinguished, so to keep all the available information contained in the original
sample A. On the other hand, aggregating some N-states can be a desirable result, since merging
them could result in several benefits, such as a simpler representation of X, a better understanding of
the relevant regimes of the unknown stochastic process Y, a clearer view of its significant thresholds,
and a better diversification of the bootstrapped series.
At the same time, for cardinalities of A larger than some hundreds, finding the optimal aggregation of
the N-states of A to balance these two competing requirements is a computationally complex problem.
To handle such complexity, the approach we take is to combine two devices: a Tabu Search heuristic
to scan efficiently the space of admissible aggregations of N-states and a contiguity constraint to
remove from the analysis aggregations of N-states where the N-states grouped in the same class are
distant (in a sense which will be made clear in the following).

Subsection 2.6 provides an outline of the method we propose to tackle the problem.

2.3 Estimation of the transition probability matrices

Fix M >2 k=1,..,M—1,z=1,...4(A), and h = 1, ..., #(A¥). Consider a, € A and aj, ; € A*. The
transition probability of the Markov chain X from the kN-state ay, j, to the N-state a, is defined as:

P(az|ah7k) = P(Xm = az|Xm_1 = ahl,...,Xm_k = ap,, ) (7)

These probabilities are estimated on the basis of the original sample O. More precisely, the transition
probability P(a;|ap k) in Eq. (7) is estimated through the empirical frequency f(a.|ap i) of kN-state
ay, i evolving to N-state a,. This frequency can be formalized as follows:

fazlank) =4 ({xs,h4+1 € Akt1 : Xs k1 = (Bhy, Bhy_ys oy BRy,82) ) (8)

Based on Ching et al. (2008) and on Eq. (8), we can provide an estimate of P(a;|ap i) as:

f(az|an k) ; #(A) )
ST fqagangy § 2=t S (@glank) >0, o

P(az|ah’k) =

0, otherwise.



2.4 Contiguous partitions

We focus our attention only on contiguous partitions of AF (see the application of our model in
Section 4). Let us define them.
Definition 1 Fix n =1,..., N and consider the following partition of A:

A =05 05,05, 0l Y,

where Uy, = 1, ..., Ln and the subscript v is placed for notation convenience, as we will see below in
Eqs. (10) and (11). AY" is said to be a contiguous partition of A, when:

ag? col™, ai) o, with U <1,
implies that v’ < u”.
For a contiguous partition, G(n) _; and Q(n)_H are said to be the adjacent classes of GU .u, for each

u=2,..,U,— 1, while 9( (9(”> _4) is the only adjacent class of 6 ( Un)
The contiguous partitions of An are collected in set Ap.

(n) (n)

1" < 1", it never puts states al," and a;,

In loose words, a partition of A, is contiguous if, given I’ <

in the same class without also grouping state a?,’}) in that class. We will refer to the characterization

of contiguous partitions in Definition 1 as contiguity constraint.

(n)

Remark 2 We assume, without loss of generality, that the intervals a;’ of A, belonging to a class

6 u of contiguous partition )\5]‘) are indexed in an increasing order, that is they satisfy Eq. (4).

Definition 1 can be easily extended to the multivariate case by introducing the set A of contiguous
multivariate partitions of A, which we will call N-partitions.

Definition 2 A (contiguous multivariate) N-partition of A is denoted as A\, and is defined as:

Ao = {05, e x 05 5 e X OSN) Jun = 1,y Unyn = 1, .., N, (10)
where HL 4. 1s a generic class of contiguous partition /\,S”) of A,. To simplify notation, we put:

Buw = B5y X oo X 070, X o X B3

Remark 8 An N-partition of A can also be (more easily) represented by the n-tuple of contiguous
partitions Ai"), n =1,..., N, which the classes Gv .u,, belong to. So N-partition A, can also be written
- Ao = (A AZ A Ay,
Analogously to what we did for A in Eq. (6) and to simplify the notation, it is convenient to list the

elements of A and write:
A= {)\1,)\2,...,)\v,...,/\u(/])}. (11)

Definition 2 can be easily extended to the multidimensional case by introducing the set A* of
contiguous multivariate and multidimensional partitions of A¥, which we will call kN-partitions.

Definition 3 A (contiguous multivariate and multidimensional) kN-partition of A* is denoted as
Av and is defined as:

Av = {Ovpun X Qv qoup 1 X or X Ou iy X oo X Oy g Jw € {1, ., k}}

where the double subscript v., u. identifies the generic class 6., 4, of N-partition Ay, for time lag
w. To simplify notation, we put:

Ov,u = Oupup X Ovp gup s X eoo X Oy X oo X Ouy g -



Remark / A kN-partition of A® can also be (more easily) represented by the k-tuple of N-partitions
Avy; W =1,...,k, which the classes 0,,, «, belong to. So kN-partition Ay can also be written as:

Av = (Avgs Mg 1y ooy Ao s ooy Avg )
The set A* of kN-partitions of A¥ can be represented by listing its elements as follows:
AF = A1, A2y oo Avy e Aggam )

Remark 5 Consider a kN-partition of A®. If we choose n € {1,...,N} and select w € {1,...,k}, the

kN-partition of AF reduces to a contiguous partition )\Sﬁ.) of A, which will also be referred to as
Univariate and Unidimensional Partition (UUP).

It is now convenient to define the transition probability between class Oy u of kN-partition Ay
and N-state a, of A. By referring to the probability law P introduced in Eq. (7), we have:

P(a;|0v,u) = P(Xm = a5 Xm—1 € Ovyurs s Xk € Ovgur)s (12)

where the inclusions in the right-hand side have to be understood componentwise. Analogously to
Eq. (9), we can estimate probability P(a,|Oy u) in Eq. (12) through the empirical frequencies:

>h. aj k€ Ov,u f(a:lan,k)

H(A )
Sy € v on) [ (aglan )

. A
if Zh:ah_ke Oy u Zg(:l) f(aj|ah,k) > 0)

P(a,|0y.u) = (13)

0, otherwise.

Probabilities P(az|@v’u) generate a new transition matrix, where the kNN-states are replaced by the
classes of the kN-partitions. To simplify the notation, we use hereafter the symbol P to refer both
to the transition probabilities P and to their estimates P.

The introduction of the partitions of A*¥ and of an optimal selection procedure among them are
the tools used in the present paper to the aim of reducing the cardinality of the state space A of X
to best approximate Y with a Markov chain of order k£ > 1.

2.5 Optimization problem

The optimization problem takes into account two competing objectives: on the one side, we want
bootstrapped series as “similar” as possible to the original sample O; on the other side, we want to
avoid that they are “too similar” to (eventually coinciding with) O.

The optimization problem is constructed on the basis of the distance indicator d, and the multiplicity
measure my, (see Egs. (14) and (15), respectively, below). For a theoretical foundation of distance
measures, like the distance indicator and the multiplicity measure, on information theory, refer to
Online resource 1 - Appendix I. Here, a link between information loss (see Kolmogorov, 1965) and
distance measures is presented and convincingly supports the choice of dy, and my_. The distance
indicator proposed here penalizes the classes grouping one (or more) pairs of kNN-states, say aps  and
ap 1, whose transition probabilities to the same N-state are very different. To keep this indicator
low, a partition should group in any class kN-states having similar transition probabilities.

First of all, we need to introduce the distance dp/ p~ between two kN-states ap/ p and ap» g:

#(A)
dp e =y |Plaz|an k) — Plaz|ans i) -

z=1
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Next, the distance within the classes of kN-partition Ay can be defined as:

de, , = max dn' nr.
M h'\R! a8 € Oy u ’

Finally, the distance dy, of the kN-partition Ay is given by the average of the distances of its classes:

B(Av)
1
dy, = 5 X uZ: d@vvu X ﬁ(ewu)» (14)

=1
where C' := Zi(ﬁ{) 4 (@v,u). The multiplicity measure my, of the k/N-partition Ay is:

my e YB=VC (15)

Av * O _ \/5 )
where B := 51(2‘1') [ (@Vﬁu)]z. Notice that a high multiplicity measure is typically associated to
partitions consisting of few classes and where one or few of them have a larger number of kN-states
than the others. Given the information loss theory of Kolmogorov, large classes tend to increase the
information loss. The information loss of a class is maximized when its row (in the transition proba-
bility matrix) contains all equal values. Indeed this amounts to voiding that class of any conditioning
power. So a high multiplicity measure allows partitions with large classes to be chosen. This, in
turn, implies that the bootstrap method will frequently sample the next value using low informative
classes, reducing the risk of the mechanical replication of part of (if not even all) the observed time
series.

It can be shown that dy_ € [0,2] and my, € [0, 1]. Furthermore, the singleton partition -the one
with cardinality ﬁ(Ak)— is associated to dy, = my, = 0, while the all-comprehensive partition -the
one with cardinality 1- exhibits the maximum value of dy, (not necessarily 2) and my, .

Given the previous properties of the distance indicator and of the multiplicity measure, the choice
of partitions with a low distance indicator results in bootstrapped series “similar” to the original sam-
ple O, while the choice of partitions with a high multiplicity measure avoids bootstrapped series “too
similar” to O. The trade-off between the distance indicator and the multiplicity measure motivates
the choice of partitions through the optimization problem that we introduce in the following.

Definition 4 Let us consider v € [0,1], k* =1,..,M — 1, and \* € AR
We say that the couple (k*, \*) is y-optimal when it solves the following minimization problem:

min (16)
(B, N)€E{L,...,M—1}x A

s.t. my > . (17

Remark 6 When needed and to put in evidence the dependence from ~, the y-optimal couple (k*, \*)
will be indicated as (k*(y), A" (7))-

Given the multiplicity constraint threshold « € [0, 1] and the solution (k*(vy), A*(v)) of the mini-
mization problem in Definition 4, we will replicate the original sample O through a Markov chain of
order k¥ () described by a transition probability matrix of order k*(v) estimated by means of Eq.
(13). The matrix is based on k*(v) N-partition A* ().

As it will turn out to be useful for the interpretation of the results of the optimization problem, we
introduce the efficient frontier associated to the optimal kN-partitions A* () as « is let vary in [0, 1]
and k is fixed to a given value.
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Definition 5 Set k = 1,..., M — 1 to a chosen value. The efficient frontier Fj related to the mini-
mization problem (16)-(17) is:

Fri= |J {(mry),drey) €0,1] x 0,2]},

v€[0,1]

where A\*(7) is the solution of the problem:

in d 18
min d (18)
st my > . (19)

2.6 Outline of the method

In the following, we provide an intuitive and short description of the method we propose, which is
outlined in Algorithm 1.

Starting from a realization of a multivariate discrete time continuous-valued stochastic process,
i.e. an observed multivariate time series, a regression analysis is used to remove possible deterministic
elements, such as trend and seasonality (Step 1 in Algorithm 1). The removal of these determinis-
tic elements makes the series weakly stationary. Other unknown deterministic components possibly
remaining in the residuals will be captured, along with other dependencies among the data, by the
transition probability matrix. The support of each component of the stochastic process is initially
partitioned into intervals, where each interval corresponds to a state (Step 2). Multivariate states
are obtained by a Cartesian product of the latter states (Step 3). Consider multivariate and multidi-
mensional states, i.e. sequences of k£ > 1 multivariate states. Based on the frequencies of transitions
from multivariate and multidimensional states to multivariate states, the transition probabilities of
the multivariate Markov chain of order k are estimated (Step 4). The approximation of the stochastic
process is found by aggregating the multivariate and multidimensional states based on the distance
between their transition probabilities. Specifically, we formulate the problem of finding the approxi-
mation as an optimization problem, where a distance indicator is minimized subject to a constraint on
a multiplicity measure. Each feasible solution of the optimization problem is required to fulfill a conti-
guity constraint. Varying the right-hand side of the multiplicity constraint, the corresponding optimal
solutions define an efficient frontier. We build an approximation of the efficient frontier embedding a
Tabu Search heuristic into a classical e-constraint method (Step 5). A point on the approximation of
the efficient frontier is chosen (Step 6). Based on the aggregation of the multivariate and multidimen-
sional states corresponding to the selected point, the corresponding transition probability matrix is
estimated® (Step 7). This matrix defines a Markov chain of order k, which approximates the stochas-
tic process. The performance of this approximation is validated via bootstrapping multivariate series
(Step 8). To generate a bootstrapped multivariate series, an initial sequence of k multivariate states
is selected from any of those defining the rows of the transition probability matrix. The probability
distribution in the corresponding row is then used to extract randomly the next multivariate state
of the Markov chain. After updating the sequence of k multivariate states (discarding the oldest and
including the new one), the generation can be iterated. Finally, some statistics are calculated on the
bootstrapped multivariate series and are compared with the corresponding statistics computed on
the observed time series.

3 To the sake of brevity, we do not report here an example of such transition probability matrix. The interested
reader is referred to the illustrative example in Subsection 2.3 of Cerqueti et al. (2013) for a univariate case. Despite
the extension to the present multivariate setting would be straightforward, its representation would require involved
notation without adding any new insights.
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Algorithm 1 GENERAL SCHEME OF THE METHOD.

Input: an observed (multivariate) time series.
Output: a given number of bootstrapped (multivariate) series.

: A regression analysis is used to remove possible deterministic components, such as trend and seasonality.

: Segment the support of each component of the stochastic process into initial intervals, or states.

: Build the multidimensional discrete support, A, of the observed time series using the previous states.

: Use Eq. (9) to estimate the transition probability matrix of the multivariate Markov chain of order k > 1 with
support A.

Build an approximation of the efficient frontier by means of Algorithm 2.

Choose a point on the approximation of the efficient frontier.

: Bstimate the transition probability matrix corresponding to the chosen point according to q. (13).

: Use the bootstrap method in Subsection 3.2 of Cerqueti et al. (2013).

=W N =

3 Solution Strategy

Due to the computational difficulties of determining the optimal solution of problem (18)-(19), we
develop a heuristic algorithm to tackle the problem. The heuristic algorithm is based on the Tabu
Search framework. We assume that the reader is familiar with the Tabu Search framework and we
refer to Glover and Laguna (1997) for a detailed description of the metaheuristic.

The Tabu Search algorithm is composed of two main phases, and then it is referred to as the Two-
Phase Tabu Search. Phase 1 (TSP1, hereafter) is designed to explore the set AF of kN-partitions,
i.e. the set collecting all the contiguous multivariate and multidimensional partitions, to the goal of
(heuristically) solving problem (18)-(19).

Nevertheless, as the problem proposed in this paper is new in the literature and due to the
difficulties of solving it to optimality, we design a second phase where the partitions of AF that
violate the contiguity constraint are evaluated, as well. Particularly, Phase 2 (1'SP2, hereafter) is
designed to be performed after TSP1 and considers both kN-partitions in A* and partitions of Ak
that violate the contiguity constraint (hereafter the procedure is referred to as TSP1+TSP2). This
design of the algorithm allows the researcher interested in exploring only the kN-partitions in A*, that
is the scope of this paper, to perform only TSP1. Nevertheless, it allows us to assess the effectiveness
of the Two-Phase Tabu Search by comparing its performance with the results reported in Cerqueti
et al. (2013), where the contiguity constraint is not considered. Besides, this design allows us to
evaluate the impact of the contiguity constraint on the distance indicator d and the multiplicity
measure my by comparing the output of procedure TSP1 (partitions with contiguity constraint) with
the output of procedure TSP1+TSP2 (partitions where the contiguity constraint is relaxed).

3.1 Building an approximation of the efficient frontier

In Definition 5, the efficient frontier Fy, is defined as a set of solutions of optimization problem (18)-
(19) as « is let vary in [0, 1] and k is fixed to a given value. As we solve problem (18)-(19) by means
of a heuristic algorithm, the outcome is an approximation of the efficient frontier Fj. Therefore, we
introduce the following definition that holds for v € [0, 1] and for a given value of k.

Definition 6 Set Kk =1,..., M — 1. An approximation of the efficient frontier Fj, is the set:

AFy = U {(mAH<,Y),d)\H(,y)) €[0,1] x [0,2]},
v€1[0,1]

where A\ (7) is a heuristic solution of problem (18)-(19), for a generic heuristic algorithm. Further-
more, set AFy is composed of mutually non-dominated points, i.e. there does not exist any pair of
.heuristi'c S(?lutiqns M () and M (v) such that MAH (4) 2 M ()5 Aati(y) < dyti(y) and at least one
inequality is strict.
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To build the approximated efficient frontier AJF, we embed the Two-Phase Tabu Search into an
e-constraint method. The e-constraint method is one of the most known approaches for the solution of
multi-objective optimization problems (see, e.g., Chankong and Haimes, 1983; Miettinen, 1999). The
method generates a sequence of single-objective optimization problems, referred to as e-constraint
problems, by transforming all the objective functions but one into constraints.

Let us fix 4 € N and consider the following e-constraint formulation of problem (18)-(19):

in d 20
min, da (20)
st oma > i, (21)

where ; € [0,1]. The idea is to construct a sequence of e-constraint problems (20)-(21) where the
right-hand side of constraint (21) is iteratively updated as follows: once problem (20)-(21) is solved
for a given value of ~;, we set ; equal to myn, and then we set v;+1 := v; + A, where A is a given
parameter. Each e-constraint problem (20)-(21) is then solved by means of the Two-Phase Tabu
Search described below. We denote as A the best-known solution found by our heuristic algorithm
for the i-th e-constraint problem (20)-(21).

The general scheme of the algorithm proposed to construct the approximated efficient frontier
AF}, is sketched in Algorithm 2.

Algorithm 2 Procedure: GENERAL SCHEME TO BUILD AF.

Input: an instance of problem (18)-(19) and parameter A.

Output: an approximated efficient frontier AFy = {(my1,dyu), ..., (myn Ay
1 1 H(AF L) H(AF L)

)}
: Set (m)\iq,d)\{z) := (0,0) and insert it in AF.
Set 1 := 2, v; := A.
while 7; <1 do
solve problem (20)-(21) by means of Algorithm 2;
let )\ff be the returned solution;
insert (mklﬂ,dkfl) in AF} after (mkfifd)‘fiq);
set v; 1= MyH;
set Vi1 =y + A and i:= (i + 1).
: end while
: Remove dominated points from AFj (if any).

Q VX N DU W

—

Handling the dominated points. Tt is worth highlighting that some dominated points might be
generated solving the sequence of e-constraint problems (20)-(21) with any heuristic algorithm. In-
deed, let us assume that the best-known solution found by a given heuristic for the i-th e-constraint
problem is A . Tt might happen that the best-known solution Afil to the (i+ 1)-th e-constraint prob-
lem is such that d>\iH+1 < dyn (with mym 2> myn + A by construction). Hence, point (m)\il-ﬂrl,dAﬁl)
dominates point (m A d AH ). Therefore, we include in our algorithm a post-processing procedure that
scans all the points included in set AFj, and removes the dominated ones (Step 10 in Algorithm 2).

3.2 TSP1: Exploring contiguous partitions

The description of TSP1 is organized as follows. Firstly, we define the neighborhood structure as it
represents the core of the algorithm. Subsequently, each component of TSP1 is detailed.

Neighborhood structure. The introduction of the multivariate assumption for the stochastic process
and of the contiguity constraint for the states impose the following redefinition of the neighborhood
structure introduced in Cerqueti et al. (2013).
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Consider an incumbent solution A € A* of problem (20)-(21). At each iteration of procedure TSP1,
one time lag w € {1, ..., k} is first selected, as detailed below, and then the analysis moves from the
incumbent solution A to a neighboring solution \’. Given the incumbent solution A € Ak, consider its
N-partition Ag = ()\EDU, )\g), - )\gb), - /\,(I,N)) € A at time lag w. We define two types of neighbor-
hood. The first type, denoted as N'p1 (1), is a set containing all the UUPs (see Remark (5)) /\g‘)’ that
can be obtained performing local changes only on UUP )\51—7). The second type, denoted as Np1 (”{Dﬁ),
is a set containing all pairs of UUPs (Ag’> ’ /\gl )') that can be obtained performing combined local
changes on UUPs A" and AV,

Specifically, given UUP A", the neighborhood Ap: (2) is defined by the following moves:

— (g, n)-relocation: q contiguous states {al(n), ...,a%il_l} are removed from their origin class and

assigned to an existing and not empty adjacent class;
— (g, n)-creation: ¢ contiguous states {al("),...,al(i)q_l} are removed from their origin class and
assigned to a new adjacent class containing them as the only elements.

In order to guarantee that the contiguity constraint is fulfilled after performing the aforementioned
moves, the g contiguous states {al("), ""“1(12;—1} are jointly taken from the origin class and then
jointly assigned to an adjacent class. Additionally, if the number of states belonging to a class is
smaller than ¢, a (g, n)-relocation is performed by moving all the available states in the class. Finally,
if the number of states belonging to a class is equal to ¢, no (g, n)-creation is performed as it would

not change the current UUP.

Ezample 1 As an illustrative example, consider UUP )\,(@m = {{1,2},{3}}. For ¢ = 1, the available
(1, n)-relocations lead to UUPs AU’ = {{1},{2,3}} (state 2 is moved from its class to the adjacent
one) and >\§;})” = {{1,2,3}} (state 3 is assigned to the adjacent class). For ¢ = 2, one (2, n)-relocation
is available leading again to UUP /\5_;’ W = {{1,2,3}} (states 2 and 3 are assigned to the adjacent class
or, similarly, state 3 is assigned to the adjacent class). Furthermore, one (1,n)-creation is available
leading to UUP AUV = {{1},{2},{3}} (state 1, or, alternatively, state 2 is assigned to a new
adjacent class). Note that the (2, n)-creation consisting in removing states 1 and 2 from their origin
class and assigning them to a new adjacent class is not considered, as it does not alter UUP )\1(17 ).
Besides the previous moves which modify only the single component )\gl ) of N -partition Ag at time
lag @ in the incumbent solution A, algorithm TSP1 also considers the following moves that change
simultaneously two components of Ag, say )\gl) and f\gl >, withn,7n = 1, ..., N and n # f1. In particular,
the following moves defining neighborhood Np; (".") are considered:

— move 1: performs a (g, n)-relocation and a (g, 72)-relocation;
— move 2: performs a (g, n)-relocation and a (g, ii)-creation;
— move 8: performs a (g, n)-creation and a (g, 71)-relocation;
— move 4: performs a (g, n)-creation and a (g, 7i)-creation.

The rationale of introducing moves 1-4 is related to the fact that restricting to the (g, n)-relocations
and (g, n)-creations has proved to be inefficient in some cases. On the one hand, a small neighborhood
is easier to explore thoroughly but, on the other hand, it might worsen the quality of the solution found
when N-partitions consist of many components. In this case, the interaction between changes in the
N-partitions of two or more components is neglected. Note that further moves involving more than
two components could be introduced. Nevertheless, this would expand excessively the neighborhood
making its exploration particularly slow.

Inatial feasible solution. Note that the best-known solution found for e-constraint problem ¢ is not
feasible for e-constraint problem i + 1. Indeed, let myn be the value of the multiplicity measure for
e-constraint problem i. The multiplicity constraint for problem ¢ + 1 is my > m A+ A (see Steps 7

and 8 in Algorithm 2), making the best-known solution A unfeasible for e-constraint problem i+ 1.



15

The initial solution procedure takes as input the best-known solution of the previous e-constraint
problem found by TSP1* and performs a sequence of (1, n)-relocations until the feasibility of the
current solution is restored. Indeed, performing a (1, n)-relocation tends to increase the value of my
(and of dy as well). At each iteration, the (1,n)-relocation determining the largest increase of my is
selected. Once the first feasible solution is found, the procedure to compute the initial solution stops.

Random selection of time lags. As mentioned above, at each iteration of TSP1 one time lag is
randomly selected. To this aim, we use the heuristic procedure proposed in Cerqueti et al. (2013).
In few words, the time lag is selected according to a discrete probability distribution function giving
higher priority to those time lags that bring a key information to drive the evolution of the process.
The interested reader is referred to the quoted paper for further details.

Tabu lists. We use k x N tabu lists TL;,M, w=1,...,.kand n = 1,..., N, i.e. one tabu list for
each time lag and component. When UUP /\§£ ) is selected to form the new incumbent solution, the
selection of UUP /\Q(En) at time lag w becomes forbidden (tabu) for 7 iterations (see Online Resource 1
- Appendix D for further details). Note that when one of moves 1-4 is performed, two UUPs become
temporarily tabu.

Aspiration criterion. In order to avoid that feasible solutions of excellent quality are not considered
because of the tabu status for some of their UUPs, we introduce the following standard aspiration
criterion. A UUP belonging to a tabu list can be selected (i.e. its tabu status is revoked) if its selection
leads to a feasible solution better than the best-known solution A¥ encountered so far.

Diversification strategy. Using tabu lists prevents short-term cycling, i.e. visiting the same feasible
solution in two successive or very close iterations, but it is not adequate to avoid long-term cycling, i.e.
being trapped in local optima. Hence, a wider exploration of the solution space has to be encouraged.
To this aim, we design a diversification strategy in order to move the search to a different portion of
the solution space.

Firstly, it is worth noticing that, given UUP )\gl ), the UUPs obtained by performing (g, n)-relocations
and (g, n)-creations tend to be “more different” with respect to )\,(; ) when q increases. Consider the
following example.

Ezample 2 Let A1) = {{1,2,3},{4,5}} be a UUP of N-partition Ag at time lag w in the incumbent
solution A. For ¢ = 1, the (1,n)-relocations available lead to: A" = {{1,2},{3.4,5}} and A{"" =
{{1,2,3,4},{5}}. Conversely, the (2,n)-relocations available yield: /\EI’})“’ = {{1},{2.3,4,5}} and
/\gl)”" ={{1,2,3,4,5}}. Trivial examples can be found for the (g, n)-creation and for moves 1-4.

Therefore, in a first attempt, the value of ¢ is increased by 1 every time that a maximum number of
iterations without improvement (parameter iterNoImprP1maqz) have been consecutively performed.
Secondly, in order to move significantly the search to different regions of the solution space, a jump
is performed once that a maximum value of ¢ is exceeded (parameter ¢maqz). The procedure designed
to perform jumps in T'SP1 is referred to as JumpingP1 and is sketched in Algorithm 4. Procedure
JumpingP1 is an adaptation of the corresponding procedure introduced in Cerqueti et al. (2013) to
the multivariate assumption for the stochastic process and to the contiguity constraint for the states.

Stopping criterion. Algorithm TSP1 stops when iterPlmqz iterations have been performed.

Tabu Search algorithm. In Online Resource 1 - Appendix A, a pseudo-code for procedure TSP1
is provided in Algorithm 2 along with a description. We highlight that the best-known solution A¥
found at the end of one execution of TSP1 is provided as input of procedure TSP1 called to solve
the next e-constraint problem in the sequence.

4 The singleton partition is provided as input of TSP1 for the first e-constraint problem.



16

3.3 TSP2: Extending the search also to non-contiguous partitions

This subsection is devoted to the description of TSP2. To the sake of brevity, we here highlight only
the differences with respect to algorithm TSP1 described above.

Algorithm TSP2 takes as input the best-known solution A € AF found performing TSP1. The
neighborhood structure is different from that described above for TSP1 as, in TSP2, non-contiguous
partitions of A* are explored too. At each iteration of TSP2, given an incumbent solution A of
A*, which does not necessarily belong to the set of contiguous multivariate and multidimensional
partitions Ak, select partition Ag, i.e. the time lag @ component of A, with @ € {1, ..., k}, and then
partition AU, i.e. the n-th component of Ag, with n = 1, ..., N. The neighborhood Np2(2) of Al
is defined by the following moves:

— (gq,n) p2-relocation: q states (not necessarily contiguous) are removed from their origin class and
assigned to a not empty (and not necessarily adjacent) class;

— (g,m) p2-creation: ¢ states (not necessarily contiguous) are removed from their origin class and
assigned to a new (not necessarily adjacent) class containing them as the only elements;

— (gq,n)-swap: q states (not necessarily contiguous) are swapped with ¢ states (not necessarily con-
tiguous) belonging to another class.
Algorithm TSP2 stops when iterP2y,qz iterations have been performed. In Online Resource 1 -

Appendix A a pseudo-code of TSP2 is sketched in Algorithm 3.

4 Application to Empirical Data
4.1 Data description

Our bootstrap method is applied to two observed multidimensional time series. In particular, we
consider here a trivariate series composed by the prices and volumes of McDonald’s and the prices
of Dow Jones Industrial Average and a bivariate series composed by the “Mibel Spanish Electric
System Arithmetic Average Price” and the corresponding total volume. The trivariate series covers
the trading days on the New York Stock Exchange from January 27, 2004 to December 31°¢, 2012,
and the prices of McDonald’s are expressed in US dollars. The bivariate series spans the trading
days from January 1°*, 2001 to May 6th, 2010, and the prices are expressed in euros per MWh. The
stock-index case consists of T' = 2265 observations, while for the electricity series we have T" = 2439.

Figures 1 and 2 show the two observed multidimensional time series. We can make some comments.

Panel (a) daily Spanish electricity prices Panel (b) daily Spanish electricity volumes
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Fig. 1: Electricity case - observed time series of prices and volumes.
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The original sample of electricity prices and volumes is characterized by the following features:

a weekly and annual seasonality (the annual seasonality is more evident for volumes);

a slightly positive trend of prices, a significant positive trend of volumes;

stochastic volatility;

nonlinear dependence of data;
— two clear regimes of prices: normal trading and occasional spiking periods.

Spikes are occasional, since they usually correspond to unexpected shortages on the supply side of the

electricity system, or unexpected and temporary increases of the demand (e.g., sudden meteorological

events driving to high consumption). Because of the joint presence of such features and nonlinear

dependence between prices and volumes, the literature on time series of electricity prices and volumes

usually considers them as “hard to model” cases. For a review of the difficulties in modeling electricity

prices and volumes and the methods developed to solve them, see, for example, Bunn (2004), Huisman

and Mahieu (2003), Weron et al. (2004), and Weron (2006).
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Fig. 2: Stock-index case - observed time series of prices and volumes.

About stock prices and volumes and index prices, the following features are commonly observed:

— stock volumes show mean reversion, volatility clustering, and spikes;

— stock and index prices appear more in line with the theory of market efficiency and seem to
represent realizations of a geometric Brownian motion, even though the normality of stock and
index return distributions has been regularly rejected in the empirical literature;

— the joint series of volumes and prices shows unclear causal relationships, so its bootstrapping can
be considered as a “hard test” for bootstrapping purposes.



18

In the electricity case, an (exponential) weekly seasonal component as well as an (exponential) trend
have been removed from the raw prices and volumes. Removing the weekly seasonality lets us reduce
the order of the Markov chain below 7, which corresponds to a great reduction in the complexity
of our problem. The removal of the trend component makes the series (quite) stationary. Of course
both components have been added back to the bootstrapped series.
In the stock-index case, no seasonality has been removed, because such feature is less evident than
in the electricity case, therefore only a trend has been estimated to the goal of making the series
stationary. To gain further stationarity, an additional logarithmic transformation of the detrended
series has been performed in the case of stock and index prices. Also in this case the trend component
has been added back (for the stock and index prices after exponentiation of the bootstrapped series).
The estimation of exponential (rather than linear) components prevents the removal/reintroduc-
tion process from generating occasional negative prices (see Online Resource 1 - Appendix B for
further details).

4.2 Preliminary segmentation of the support

As explained in the previous subsection, the data treatment applied to the bivariate and trivariate
series to gain stationarity can be synthesized as follows:
— series of electricity prices: detrended and weekly deseasonalized;
series of electricity volumes: detrended and weekly deseasonalized;
series of stock volumes: detrended,;
series of stock prices: detrended and then transformed into series of logarithmic returns;
series of index prices: detrended and then transformed into series of logarithmic returns.
After the data treatment, a preliminary segmentation of the supports of the continuous-valued
stochastic processes generating the bivariate and trivariate series is performed (see Subsection 2.1).
We make the following choice: 8 initial intervals for the stock volumes (sv), 6 for the stock returns
(sr), and 6 for the index relurns (ir) in the trivariate case, and 13 initial intervals for both the
electricity prices (ep) and electricity volumes (ev) in the bivariate case. Thus, according to Eq. (5),
the cardinality of A is 8 x 6 x 6 = 288 3-states in the trivariate case and 13 x 13 = 169 2-states in
the electricity case.
Such numbers of initial intervals correspond to an order of magnitude larger than the number of
states commonly considered in the literature for the regimes of the stock-index and electricity cases
(usually 2 or 3 for both the cases. See, e.g., Bithlmann, 1998 for the stock-index case and Huisman
and Mabhieu, 2003 for the electricity case).

The preliminary segmentation is performed through the minimum variance clustering procedure
provided in Ward Jr. (1963). For details on this preliminary segmentation, see Online Resource 1 -
Appendix C.

4.3 Transition probability matrices

The solution of optimization problem (16)-(17) for a given 7 € [0, 1] consists of the y-optimal pair
(K™ (7), A" (7)), i.e. the optimal order k*(y) € {1, ..., M —1} and the optimal k* () N-partition A*(v) €
AR However, to the sake of reducing the complexity of the problem, we restrict the search of the
solution to the space AP and fix k. Notice that the solutions found under such restriction still tell us
much about the “relevance” of the different time lags up to k.

Observe that we can fix different values of k for each component of our multivariate Markov chain,
although the (overall) order of the Markov chain will be the highest value of k. In particular, the
order of the Markov chain is 2 for the components represented by electricity prices, stock returns,
and index returns, while it is set equal to 1 for the electricity and stock volumes. As a consequence,



19

the order of the multivariate Markov chain will be 2 for both the bivariate and the trivariate cases.
In the present application, next to a reduction of the complexity of the problem, a reason to fix k is
that the data treatment applied to the observed multivariate time series (trend and weekly seasonality
removal and logarithmic return calculation) should reduce the need to look back far in time.

Eq. (9) has been used to estimate My and Mp, i.e. the transition probability matrices of order
2 for the trivariate (1') case and for the bivariate (B) case, respectively. The matrices are available
from the authors upon request.
The sets of 2-trajectories Oz (see Eq. (2)) comprise 2437 elements for the electricity instance and 2262
elements for the stock-index one®. Each set Oz has been rewritten by means of the corresponding
2N-states of A? giving A2 (N = 2 in the electricity case, while N = 3 in the stock-index case). About
7.5% of the 2N-states of A2 in the electricity case has been observed to evolve to the same 2-state. We
call these 2 N-states deterministic. In the stock-index case, the percentage of deterministic 2 N-states
is about 20%. The remaining observed 2N-states are called probabilistic (2255 for the bivariate case
and 1834 for the trivariate case).
M consists of 725 rows, 304 referred to probabilistic 2N-states and 421 to deterministic ones, while
M p consists of 472 rows, 305 referred to probabilistic 2N-states and 167 deterministic ones.
The 2N-states of A% not observed in A» are neglected, as their estimated transition probabilities are
null. For bootstrapping purposes, deterministic 2/N-states need not be aggregated to other 2 N-states,
therefore the optimization problem (16)-(17) is applied only to the set of probabilistic 2/N-states. As a
result of these settings, all the admissible k/N-partitions A\ are characterized by three kinds of classes:

— the unique class collecting the unobserved 2N-states,
— as many classes as the different observed deterministic 2/N-states,
— the classes aggregating the observed probabilistic 2/V-states.

5 Results and Discussion
5.1 Analysis of the distributional properties

We evaluate the performance of our bootstrap method by choosing two heuristic solutions, A& and
M respectively for the bivariate and the trivariate case. Each solution has been chosen as follows:
select the pair of adjacent points of the approximations of the efficient frontier with the largest slope.
Select the point of that pair with the smallest d) and m). Such point shows that an additional
improvement with respect to the multiplicity measure corresponds to a large loss in terms of distance
indicator. For a visual understanding of how a solution is selected, consider, as an example, the red
circles on the efficient frontiers in Figure 3. The partitions so selected have multiplicity measure and
distance indicator equal to 0.366 and 1.507, for the electricity case, and to 0.298 and 1.763, for the
stock-index case (see Table 14 in Online Resource 1 - Appendix E). These partitions are expected
to generate diversified bootstrapped series, which could represent a varied enough set of scenarios to
test the effectiveness of the procedure.

In particular, we generate 2 sets of 5000 bootstrapped series, one set for each case. Each bootstrapped
series includes ¢ = 2439 trading days for the bivariate case and ¢ = 2265 trading days for the trivariate
one. The bootstrap method used to generate the 5000 bivariate and trivariate series is described in
Subsection 3.2 of Cerqueti et al. (2013), which the interested reader is referred to. The lengths of
the bootstrapped series are equal to the lengths of the corresponding observed time series (net of
the values required to initialize the procedure) to allow for a fairer comparison (see Subsection 3.2 of
Cerqueti et al., 2013, for the initialization steps of the bootstrap method).

5 These two numbers exclude the last 2-trajectories, because they do not evolve to any realization of the process.
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To assess the quality of the method, we analyze the statistical properties of the bootstrapped
series and compare them with the ones of the observed time series. To this goal, we calculate the
following statistics on each bootstrapped series:

1. average, standard deviation, skewness, kurtosis, minimum, maximum,
2. autocorrelation at lag k, k = 1,2, 3,

3. linear regression slope, b, with &; = a + bt + g¢, t = 1,..., £, where Z; stands for the t-th value
of a bootstrapped series of prices or volumes.

Moreover, to analyse the power of the method to capture the cross-dependencies among the
components of the multivariate bootstrapped series, we consider the following two simple vector
autoregression models of order 1, for the stock-index case:

Sve = a1 + az28p, + azip, + assve—1 + gsoot
Sp; = b1 + baip, + b3svy + basp,_1 + gspt t=1,...,4 (22)
1D, = c1 + 25D, + c35V¢ + caip,_| + Gip,t

where sv¢, sp,, and z'Apt represent the t-th value of a bootstrapped series of stock volumes, stock prices,
and index prices, respectively, and the following model for the electricity case:

{ ey = di +dadvet dadp s+ geps (23)

vy = f1 + f2€p, + f3€vi—1 + Geu,t

where €p, and ev; represent the ¢-th value of a bootstrapped series of electricity prices and electricity
volumes, respectively. We therefore also calculate:

4. autoregression coefficients for the two previous models.

The statistics in 1. are concerned with the distribution of prices and volumes, while the statistics
from 2. to 4. are more concerned with the dynamic structure of the series. The autocorrelation at lag
3 is observed to check if the similarity between the observed time series and the bootstrapped series
is kept beyond the order k = 2.

Tables 1-3 and 4-5 report (for the trivariate and the bivariate case, respectively) the 5" and
95th percentiles of the distributions of the mentioned statistics, together with the actual value of the
observed time series. We also report the percentile rank, i.e. the percentage of cases for which the
statistic value is smaller than or equal to the value of the observed time series.

5.1.1 Stock-index case

Tables 1, 2, and 3 report the statistics for the stock-index case. In particular, we show the 5" and
the 95" percentiles of the bootstrap distributions of some statistics calculated on the 5000 series
generated from heuristic solution M?. We also show the percentile ranks of the observed time series.
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Table 1: Percentiles and percentile ranks of the observed daily McDonald’s volumes with respect to the bootstrap
distributions of some statistics calculated on 5000 scenarios.

5th 95" Value Percentile rank
Statistics percentile percentile of original sample of original sample value
Average 6,730,960.772 7,564, 220.589 7,193,208.791 66
Standard dev. 3,157,406.854 5,948,913.693 4,105, 352.715 66
Skewness 1.872 8.639 5.734 65
Kurtosis 6.456 130.564 79.457 68
Minimum 1,344, 005.926 1,973, 540.942 1, 337,000.000 4
Maximum 33,284, 396.275 101, 221, 682.830 86,981, 300.000 71
Autocorr. at lag 1 0.542 0.660 0.611 56
Autocorr. at lag 2 0.378 0.544 0.466 61
Autocorr. at lag 3 0.279 0.482 0.380 57
Lin. regr. slope 138.332 997.487 369.670 23
Autoregr. coeff. ay 1,725,362.023 4,753,715.870 4,684,954.817 94
Autoregr. coeff. az —6,226.651 27,858.678 5,555.865 41
Autoregr. coeff. ag —205.723 60.702 —187.065 6
Autoregr. coeff. as 0.531 0.653 0.602 57

Table 2: Percentiles and percentile ranks of the observed daily McDonald’s prices with respect to the bootstrap
distributions of some statistics calculated on 5000 scenarios.

5 95" Value Percentile rank
Statistics percentile percentile of original sample of original sample value
Average 25.854 85.976 50.531 57
Standard dev. 5.932 57.117 22.951 54
Skewness —0.243 1.351 0.435 37
Kurtosis —1.450 1.239 —0.970 34
Minimum 14.494 19.660 19.130 64
Maximum 42.667 226.801 97.790 49
Autocorr. at lag 1 0.996 0.999 0.999 83
Autocorr. at lag 2 0.992 0.998 0.997 83
Autocorr. at lag 3 0.989 0.997 0.996 82
Lin. regr. slope 0.004 0.057 0.024 57
Autoregr. coeff. by —0.627 0.151 —0.070 49
Autoregr. coeff. by 0.995 0.997 1.001 41

Table 3: Percentiles and percentile ranks of the observed daily DJIA prices with respect to the bootstrap distributions

of some statistics calculated on 5000 scenarios.

57 95" Value Percentile rank
Statistics percentile percentile of original sample of original sample value
Average 5,797.459 16,172.161 11,239.488 67
Standard dev. 974.561 4,035.718 1,455.575 28
Skewness —0.609 1.331 —0.356 10
Kurtosis —1.435 1.591 —0.160 73
Minimum 2,687.604 10, 131.350 6,547.050 50
Maximum 10, 774.554 24, 367.306 14,164.530 56
Autocorr. at lag 1 0.992 0.999 0.996 31
Autocorr. at lag 2 0.984 0.998 0.992 33
Autocorr. at lag 3 0.978 0.997 0.989 32
Lin. regr. slope —2.623 3.301 0.413 70
Autoregr. coeff. ¢1 —0.781 128.955 46.353 60
Autoregr. coeff. ca —0.281 1.255 0.190 66
Autoregr. coeff. cq4 0.986 0.999 0.995 40

From Tables 1, 2, and 3, we can make the following remarks:
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- all the statistics computed for the observed time series take values between the 5" and the
95" percentiles, except for the minimum of McDonald’s volumes ranked in the qth percentile of the
corresponding distribution,

- the previous observation applies in particular to the autocorrelation coefficients at lag 3, which
capture an auto-dependence beyond the order 2 of the Markov chain,

- one could expect the statistics computed for the observed time series to fall close to the 50"
percentile of the corresponding bootstrap distribution. However, such intuitive stance has to be
restrained if the observed time series is characterized by rare events, such as jumps or spikes. To be
more precise, consider the maximum of the observed volumes of McDonald’s: its percentile rank is
71. This score could be acceptable, as the observed volumes show a strong spike at the beginning of
2007 (see Panel (b) of Figure 2). Indeed, the 5000 bootstrapped series need not reproduce regularly
such a high maximum (such regularity would contrast with the definition of rare event). So the linear
regression slope of McDonald’s volumes is low (belonging to the 2374 percentile), since the majority
of bootstrapped series, without such a spike, take a definitely more positive slope,

- the autocorrelation coefficients at lag 1, 2, and 3 of stock and index prices opposite behaviors,
being the ones of the observed McDonald’s prices ranked very high (82-83) with respect to their
bootstrap distributions and the ones of the observed DJIA prices ranked very low (31-33). This fact
could be explained observing that the original sample of stock prices seems to show less jumps that
the corresponding observed time series of index prices, therefore we could expect scenarios where the
bootstrapped stock prices would include more jumps than the observed ones and the index prices
less jumps than their observed counterpart,

- the coefficients of the vector autoregression model of order 1 in Eq. (22) indicate that each
component of the trivariate bootstrapped series is significantly explained by its value at time lag 1
(coefficients a4, ba, and c4). Other significant explanatory power is given by coefficients as and ¢z,
indicating some explanatory power of stock prices on stock volumes and index prices, respectively.
Note that autoregression coefficients b2, b3, and c¢3 are not reported since they are not significantly
different from 0. Although not meant as the true model for the cross-dependencies among the three
components of the trivariate series, the simple VAR(1) model shows a distribution of the coefficients
such that the original sample can not be distinguished from the others.

5.1.2 FElectricity case
Tables 4 and 5 report the statistics for the electricity case. In particular, we show the 5** and the 95"

percentiles of the bootstrap distributions of some statistics calculated on the 5000 series generated
from heuristic solution A. We also show the percentile ranks of the original sample.

Table 4: Percentiles and percentile ranks of the observed daily Spanish electricity prices with respect to the bootstrap
distributions of some statistics calculated on 5000 scenarios.

5 95" Value Percentile rank
Statistics percentile percentile of original sample of original sample value
Average 36.451 45.882 42.162 66
Standard dev. 12.926 18.859 15.656 48
Skewness 0.285 1.206 0.645 42
Kurtosis —0.417 2.375 0.060 29
Minimum 2.144 4.848 3.127 84
Maximum 86.104 143.489 103.757 44
Autocorr. at lag 1 0.916 0.957 0.951 83
Autocorr. at lag 2 0.885 0.939 0.925 67
Autocorr. at lag 3 0.855 0.922 0.909 76
Lin. regr. slope 0.001 0.010 0.005 41
Autoregr. coeff. d; —5.829 2.808 0.882 76

Autoregr. coeff. d3 0.903 0.948 0.948 94
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Table 5: Percentiles and percentile ranks of the observed daily Spanish electricity volumes with respect to the
bootstrap distributions of some statistics calculated on 5000 scenarios.

5th 95" Value Percentile rank
Statistics percentile percentile of original sample of original sample value
Average 499,724.466 583, 968.549 544,522.651 22
Standard dev. 55,015.327 141, 208.856 110, 929.655 80
Skewness —1.460 0.468 —-1.171 21
Kurtosis —0.768 3.626 1.413 72
Minimum 170,699.541 376, 542.745 170, 199.000 4
Maximum 748,242.305 802, 544.245 804, 089.000 96
Autocorr. at lag 1 0.887 0.979 0.971 85
Autocorr. at lag 2 0.799 0.963 0.946 84
Autocorr. at lag 3 0.735 0.951 0.932 85
Lin. regr. slope —37.172 39.750 14.233 66
Autoregr. coeff. fi 8,529.110 69,177.578 12,599.858 14
Autoregr. coeff. fa 34.233 354.585 112.301 24
Autoregr. coeff. f3 0.857 0.979 0.968 83

From Tables 4 and 5, we can make the following remarks:
- all the statistics computed for the observed time series take values between the 5" and the 95"
percentiles, except for the minimum and maximum of the electricity volumes ranked in the 4t and

96" percentiles of the corresponding distributions,

- as in the stock-index case, the previous observation applies in particular to the autocorrelation
coefficients at lag 3, which capture an auto-dependence beyond the order 2 of the Markov chain,

- as in the stock-index case, the coeflicients of the vector autoregression model of order 1 in
Eq. (23) indicate that each component of the bivariate bootstrapped series is significantly explained
by its value at time lag 1 (coefficients d3 and f3). Other significant explanatory power is given by
coefficient f2, indicating some explanatory power of electricity prices on electricity volumes. Note that
autoregression coefficient dz is not reported since it is not significantly different from 0. Although
not meant as the true model for the cross-dependencies among the two components of the bivariate
series, the simple VAR(1) model shows a distribution of the coefficients such that the observed time
series can not be distinguished from the others.

5.1.8 Rare events

To show that the presence of rare events is correctly handled by our Markov chain bootstrapping,
we want to show how the percentile rank of the original sample changes and become more centered
when calculated on a specific subset of the 5000 bootstrapped series. In particular, given the fact
that the observed electricity prices show a significant positive spike at the beginning of 2002 (see
Panel (a) of Figure 1), we would like to separate the scenarios between those which reproduce such
spike and those not showing it. The filter is represented by the maximum electricity price of the
bootstrapped series. To this end, we choose to set a threshold of 70 euros per MWh: the scenarios
where the electricity price has crossed such value are considered “spiked”®. This set contains 4751
elements, while the remaining 249 “non-spiked” scenarios fall into the other subset.

From Table 6, we can see that the overall effect of this separation is that the observed time
series now “falls” much better in the middle of the 5-95 percentile range. The absence of a spike in a
subsample of the entire bootstrap set is however welcome. Indeed, since spikes are a rare event, we
should not expect that they appear “regularly” in all the bootstrapped series.

6 The maximum value of the bootstrapped series to be matched with the threshold of 70 euros per MWh is
calculated on the prices before adding trend and seasonality.
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Table 6: Percentile ranks of the observed daily Spanish electricity prices with respect to the bootstrap distributions
of some statistics calculated on 4751 spiked scenarios and 249 non-spiked scenarios.

Percentile rank Percentile rank
of original sample value of original sample value

Value with respect to with respect to
Statistics of original sample spiked scenarios non-spiked scenarios
Average 42.162 65 95
Standard dev. 15.656 46 94
Skewness 0.645 41 63
Kurtosis 0.060 28 45
Minimum 3.127 84 87
Maximum 103.757 41 99
Autocorr. at lag 1 0.951 82 96
Autocorr. at lag 2 0.925 67 87
Autocorr. at lag 3 0.909 75 92
Lin. regr. slope 0.005 40 45
Autoregr. coeff. dy 0.882 77 56
Autoregr. coeff. ds 0.948 94 98

The statistical soundness of the previous results, in terms of the percentile ranks of the statistics,
is an important validation of the proposed bootstrap method. In particular, it is significant in the
case of the autocorrelations and the autoregression coefficients, which capture the auto- and the
cross-dependence among the data. Given these results, it can be said that the observed time series
(both the trivariate series and the bivariate ones) can be considered as trajectories sampled from the
same processes generating the bootstrapped series.

5.2 A comparison with other bootstrap methods

Given that the proposed method is in the class of nonparametric approaches, to highlight its perfor-
mance we develop here a comparison with other two well established bootstrap methods of the same
kind, namely the Variable Length Markov Chain (VLMC) bootstrap (see Biithlmann and Wyner,
1999 and Méchler and Bithlmann, 2004) and the Multivariate Block (MB) bootstrap (see Kiinsch,
1989). The observed time series of prices and volumes of the Spanish electricity market have been
used again in this comparison, thanks to their challenging features. Each method has been applied
to generate 5000 bootstrapped series.

The VLMC bootstrap belongs to the class of Markov chain methods. However, to the best of our
knowledge, this method addresses only the case of univariate processes. For this reason we bounded
our method to the univariate case of the electricity prices. We also bounded our method up to order
k =7, wherecas the VLMC bootstrap self-calibrates the order of the Markov chain.

The MB bootstrap is not a Markov chain method, but it is multivariate, so we have been able to
fully compare it with our method. We therefore observed the bivariate series of electricity prices and
volumes. To facilitate the comparison between the two methods, we set the length of blocks equal to
2, i.e. the order of our Markov chain in the bivariate case.

We analysed the same statistics considered in the previous subsections (without distinguishing
for rare events). Tables 7, 8, and 9 compare the 5" and the 95" percentiles as well as the percentile
ranks that the original sample takes with respect to the bootstrap distributions generated by the
methods compared. The packages written in R named “VLMC” and “boot” (available at the web
page http://cran.r-project.org/) were used to generate the bootstrapped series for the VLMC and
the MB methods, respectively. In particular, the MB bootstrap was carried out using the function
“tsboot” available in the package “boot” (other details in Davison and Hinkley, 1997).

Overall, our method outperforms the MB bootstrap (see Tables 7 and 8). The MB bootstrap
actually shows better performances with respect to the Average and Standard deviation of both
prices and volumes. However, it clearly performs poorly with respect to almost all the other statistics,
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in particular with respect to those focusing on the auto- and the cross-dependence among the data.
The autocorrelations at all lags are severely underestimated compared to the corresponding value of
the original sample, with percentile ranks of 99%. The autoregression coefficients are also extremely
underestimated, with percentile ranks either of 0% or of 99%.

Table 7: Percentiles and percentile ranks of the bootstrap distributions of some statistics calculated on 5000 scenarios
generated with the Multivariate Block bootstrap (MB boot.) and the bootstrap method proposed in this paper
(Spanish electricity prices).

MB boot. Our bootstrap

5[,/:, 95“1, P(‘tl 51,/1, 95“:, P(‘tl
Statistics Value® pctl® pctl® rank® pctl® pctl® rank®
Average 42.162 41.453 42.862 51 36.451 45.882 66
Standard dev. 15.656 15.142 16.372 41 12.926 18.859 48
Skewness 0.645 0.615 0.950 9 0.285 1.206 42
Kurtosis 0.060 0.244 1.833 0 -0.417 2.375 29
Minimum 3.127 2.183 4.770 81 2.144 4.848 84
Maximum 103.757 103.169 146.083 6 86.104 143.489 44
Aut. at lag 1 0.951 0.493 0.546 99 0.916 0.957 83
Aut. at lag 2 0.925 0.042 0.143 99 0.885 0.939 67
Aut. at lag 3 0.909 0.052 0.132 99 0.855 0.922 76
Lin. regr. slope 0.005 0.004 0.006 27 0.001 0.010 41
Autoregr. coeff. dy 0.882 7.367 13.067 0 -5.829 2.808 76
Autoregr. coeff. d3 0.948 0.479 0.533 99 0.903 0.948 94

“: value is the actual value of the statistic observed in the original sample
b, pctl stands for percentile
“: pctl rank stands for the percentile rank of the original sample value

Table 8: Percentiles and percentile ranks of the bootstrap distributions of some statistics calculated on 5000 scenarios
generated with the Multivariate Block bootstrap (MB boot.) and the bootstrap method proposed in this paper
(Spanish electricity volumes).

MB boot. Our bootstrap

57 95" Pctl 507 95" Pctl
Statistics Value® pctl® petl® rank® petl® petl? rank®
Average 544,522.651 539,226.587 549,531.631 51 499,721.466 583,968.549 22
Standard dev. 110,929.655 104,926.277 114,694.541 64 55,015.327 141,208.856 80
Skewness -1.171 -1.350 -1.177 96 -1.460 0.468 21
Kurtosis 1.413 1.172 2.018 25 -0.768 3.626 72
Minimum 170,199.000 166,888.158 195,722.908 20 170,699.541 376,542.745 4
Maximum 804,089.000 767,548.231 806,977.318 90 748,242.305 802,544.245 96
Aut. at lag 1 0.971 0.464 0.513 99 0.887 0.979 85
Aut. at lag 2 0.946 -0.041 0.053 99 0.799 0.963 84
Aut. at lag 3 0.932 -0.029 0.040 99 0.735 0.951 85
Lin. regr. slope 14.233 4.197 14.760 92 -37.172 39.750 66
Autoregr. coeff. f1 12,599.858 231,501.028 259,480.648 0 8,529.110 69,177.578 14
Autoregr. coeff. fa 112.301 741.012 1,183.616 0 34.233 354.585 24
Autoregr. coefl. f3 0.968 0.450 0.499 99 0.857 0.979 83

“: value is the actual value of the statistic observed in the original sample
b: pctl stands for percentile
¢: pctl rank stands for the percentile rank of the original sample value

Our method also outperforms overall the VLMC bootstrap (see Table 9). What the VLMC does
nicely is that it generates narrower ranges between the 5 and the 95" percentiles than our method.
Unfortunately, they are only seldom consistent. In particular, the autocorrelations at all lags are
severely underestimated in the VLMC bootstrapped series. This outcome is similar to the case of the
MB bootstrap, but, given the Markov chain nature of the VLMC bootstrap, it is more surprising.
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Table 9: Percentiles and percentile ranks of the bootstrap distributions of some statistics calculated on 5000 scenarios
generated with the VLMC bootstrap and the bootstrap method proposed in this paper (Spanish electricity prices).

VLMC bootstrap Our bootstrap

5" 95" Pctl 57" 957" Pctl
Statistics Value® petl® petl® rank® petl® petl® rank®
Average 29.692 28.707 30.704 53 26.574 32.074 57
Standard dev. 9.570 8.157 10.581 72 7.113 10.979 68
Skewness 1.381 0.414 1.953 68 0.114 2.033 66
Kurtosis 5.081 0.293 9.352 59 -0.571 9.327 63
Minimum 5.469 5.726 9.311 0 4.546 11.754 58
Maximum 103.757 66.604 110.968 73 50.971 111.382 71
Aut. at lag 1 0.818 0.737 0.817 95 0.737 0.859 62
Aut. at lag 2 0.706 0.579 0.702 95 0.579 0.772 61
Aut. at lag 3 0.706 0.463 0.615 99 0.547 0.745 63
Aut. at lag 4 0.667 0.371 0.540 99 0.529 0.733 63
Aut. at lag 5 0.661 0.297 0.476 99 0.52 0.73 62
Aut. at lag 6 0.721 0.236 0.423 99 0.614 0.764 65
Aut. at lag 7 0.802 0.187 0.378 99 0.728 0.829 68
Aut. at lag 8 0.683 0.148 0.338 99 0.581 0.727 64
Lin. regr. slope 0.004 0.002 0.005 78 -0.001 0.007 63

“: value is the actual value of the statistic observed in the original sample
b, pctl stands for percentile
“: pctl rank stands for the percentile rank of the original sample value

The general conclusion of the present comparison is that the superior performance of the method
proposed here depends crucially, from a mathematical point of view, on a transition probability
matrix keeping much of the information contained in the observed time series. This indeed explains
why each value of the bootstrapped series keeps, much more precisely than the methods compared
here, the original dependence from its previous values, as well as from those of the other components
(bivariate case).

5.3 Performance evaluation of the Two-Phase Tabu Search

The goal of this subsection is twofold. Firstly, we provide some evidence on the effectiveness of the
Two-Phase Tabu Search described in Section 3 comparing its performance with that of the Tabu
Search algorithm introduced in Cerqueti et al. (2013) for univariate instances without the contiguity
constraint. Secondly, we give some insights on the computational results for the multivariate instances.

The Two-Phase Tabu Search has been coded in Java. The computational experiments have been
conducted on a PC Intel Xeon with a 3.33 GHz processor, and 12.00 GB of RAM. After extensive
preliminary experiments, the parameters of the heuristic have been set to the values detailed in
Online Resource 1 - Appendix D.

It is worth to highlight that in Cerqueti et al. (2013) the approximation of the efficient frontier
is constructed with a slightly different approach with respect to the one described in Subsection
3.1 (see Subsection 3.1 of Cerqueti et al., 2013, for further details). Hence, in order to make a fair
comparison, we adapt the Two-Phase Tabu Search and compare the approximated efficient frontiers.
The comparison is based on the Spanish and German electricity prices analyzed in Cerqueti et al.
(2013). The experiments are performed on the hardware used in Cerqueti et al. (2013) to allow a direct
comparison of computing times. As far as the quality of the approximations of the efficient frontier
is considered, we show in Figure 3 three approximations of the efficient frontiers for the Spanish and
German instances, respectively. The three approximations correspond to the heuristic designed in
Cerqueti et al. (2013) (denoted as Tabu Search), algorithm T'SP1, and procedure TSP1+TSP2 with
the parameter settings described in Online Resource 1 - Appendix D. The coordinates (mym, dym)
of the points composing the approximations of the efficient frontiers for the Spanish and German
instances are reported in Tables 12 and 13 in Online Resource 1 - Appendix E, respectively. In those
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tables, for algorithms TSP1 and TSP14+TSP2 we also report the computing time (in seconds) needed
to solve each problem, while for the Tabu Search we report only the total and average computing
times retrieved from Cerqueti et al. (2013).

) Panel (a) Spanish instance ) Panel (b) German instance
T
d, Lt © d, L *
N .
1.8 " 18 -
. * Ly
16 7 16 T
. .
® s &
14 o 14 PR
s * o
1 # 12
8 (O]
. o . C Lt
4 ¥
0%
o ¥ S
0.8 — - 0.8 —
oo ¥ 9
L0 On, * o #*
0.6 . 4 06 +
o L% oTabuSearch & TSP1  +TSPI+TSP2 o2 TabuSearch  ~TSP1  + TSPI+TSP2
04 ot 04 -
.
02— 02 *
* iy * my
0 0

0 0.1 02 03 04 0.5 0.6 0.7 08 09 1 0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Fig. 3: Comparison of three approximations of the efficient frontiers for the Spanish and the German instances.
The points in the red circles show possible preferred choices, according to the rule described at the beginning of
Subsection 5.1.

As it can be noticed from Figure 3, the approximations provided by both TSP1 and TSP1+TSP2
outperform the approximation found with the Tabu Search. This is evident for most of the points
lying in the left half of the chart. Indeed, for most of these points, given a value of multiplicity measure
my, both TSP1 and TSP1+TSP2 provide a solution with a smaller value of distance indicator d.
Regarding the right half of the chart, it seems that the three heuristics found roughly the same set
of points. As far as computing times are taken into consideration, both TSP1 and TSP1+TSP2 are
faster than Tabu Search as it can be seen in Table 10.

Table 10: The Spanish and German instances introduced in Cerqueti et al. (2013): A summary of computing times
(in seconds) for different approximations of the efficient frontiers.

Tabu Search TSP1 TSP1+TSP2
Instance Total Average Total Average Total Average
Spanish 211.550 5.424 84.365 2.163 156.359 4.009
German 619.669 15.889 110.915 2.844 202.114 5.182

Regarding the impact of the introduction of the contiguity constraint, we can draw some conclu-
sions. On the one hand, it seems that imposing the contiguity constraint has negligible effects on the
solution quality. Indeed, in only few cases algorithm TSP1+TSP2 has improved upon the solution
found by algorithm TSP1 (note that, as we are dealing with heuristic algorithms, this outcome might
also be related to a not effective performance of procedure TSP2). On the other hand, the introduc-
tion of the contiguity constraint restricts significantly the solution space making its exploration much
quicker and more effective.

As far as computing the approximations of the efficient frontiers for the electricity and the stock-
index cases is considered, algorithm TSP1 took approximately 5066 seconds to compute the approxi-
mation for the former case, whereas it required less than 4160 seconds for the latter case. We remark
that no dominated point was found for the two instances. The details of the heuristic solutions A\
and M, i.e. the kN-partitions used as inputs for the bootstrap method in the electricity and the
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stock-index cases, are reported in Tables 11 and 12, respectively. Finally, Table 14 in Online Resource
1 - Appendix E details the coordinates of all the points found by algorithm TSP1 (the two points
corresponding to A and M are highlighted in bold).

(n) .

Table 11: Heuristic solution /\g of the electricity case. To simplify readability, we refer to initial state a; S 4.

/\B _ (>‘ )‘B‘l)

Time lag 2 partition: /\g 5 = ()\g ;1)7 )\H (2))
prices (ep): ApSY = {{1,2,3.4.5,6,7}, {8}, {9}. {10}, {11}, {12,13}}
volumes (ev): /\H ("‘) ={{1,2,3.4,5,6,7,8,9,10,11,12,13}}
Time lag 1 partition: /\B L= (Ag (11), )\“ (1))
prices (ep): H(” = {{1,2,3.4,5,6}, {7}, {8}, {9}, {10}, {11}, {12,13}}
volumes (ev): H <2> = {{1},{2}, {3}, {4}, {5,6,7,8,9,10}, {11}, {12}, {13}}

(n)

Table 12: Heuristic solution )\¥ of the stock-index case. To simplify readability, we refer to initial state a; ~ as 1.

)‘¥ _ (’\TZ )‘Tl)

Time lag 2 partition: /\T 5 = (/\H B )\H S )\H (d))
stock volumes (sv): )\H ) ={{1,2,3, 4 5,6, 7 8}}
stock returns (sr): H (2> = {{1},{2,3,4},{5},{6}}
index returns (ir): H (3) = {{1},{2,3}, {4}, {5}, {6}}
Time lag 1 partition: )\¥1 = ()\H D AH (2) )\H (d))
stock volumes (sv): A = 141, 2,3), {4} {5}.{6}. {7}, {8}}
stock returns (sr): )\H (2) = {{1},{2},{3,4,5},{6}}
index returns (ir): ” “> = {{1},{2},{3,4,5}, {6}}

6 Conclusions

This paper contains a new methodological procedure for the application of Markov chain bootstrap-
ping to treat the case of N-dimensional discrete time continuous-valued stochastic processes, which
are of remarkable importance in many economic and financial applications. Indeed, the world of eco-
nomics and finance is populated by strongly interconnected phenomena. Besides, in many cases the
dependence among variables is often difficult to know or to model satisfactorily. In all such cases boot-
strapping can show severe drawbacks if based on analytic or econometric models. On the contrary,
the multivariate Markov chain bootstrapping proposed here can capture conditional dependencies of
arbitrary complexity among variables.

We proceed by formalizing a constrained optimization problem grounded on the basic require-
ments of the bootstrap theory: the synthetic series should maintain the statistical features of the
original sample and, at the same time, have very low probability to replicate it.

The optimization problem has also been characterized by the introduction of a contiguity con-
straint. This constraint has proved useful in two ways: it reduces the cardinality of the solution space
of the optimization problem and it offers a more intuitive interpretation of the resulting partitions
of the state space of the Markov chain. The method has been applied to two empirical cases: the
bivariate process of prices and volumes of electricity in the Spanish market; the trivariate process
composed by prices and volumes of the US company stock McDonald’s and prices of the Dow Jones
Industrial Average index. Both cases present major difficulties for bootstrap methods based on ana-
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lytic or econometric models. In the case of the electricity markets, even the univariate bootstrapping
of prices is still today an open challenge.

The method has proved to guarantee good statistical properties of the bootstrapped series. More-
over, the method has also been compared with two other well established bootstrap approaches,
namely the Multivariate Block bootstrap and the (univariate) Variable Length Markov Chain boot-
strap. Our method outperforms both the approaches, especially in terms of auto- and cross-dependence
among the data. Finally, the computational results show that the proposed solution strategy improves
the performance of an alternative heuristic available in the literature (designed for the univariate
case), in terms of both solution quality and computing times.
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Appendix A - Two-Phase Tabu Search: Pseudo-Codes

Algorithm TSP1 begins computing in Steps 1 to 9 an initial feasible solution given the input repre-
sented by the infeasible solution A € A*. A sequence of (1, n)-relocations is performed until the first
feasible solution is found. This solution becomes the incumbent one.

The core of algorithm TSP1 is represented by the instructions from Step 10 to Step 33. After per-
forming some initialization tasks, the successive instructions are performed iterP 1y, times. Firstly,
in Step 12 a time lag @ is randomly selected from the discrete distribution function computed as
mentioned in Subsection 3.2. Then, in the subsequent for loop (Steps 13-18) each component n is
firstly considered individually to construct the neighborhood Np; (g) consisting in all the UUPs
)\Eﬂn)/ at time lag @ that can be obtained performing (g, n)-relocations and (g, n)-creations (Step 14).
Any other UUP )\EU"/), with w # @w and n’ # n, remains unchanged. Furthermore, among all the
possible UUPs only those providing a feasible solution X € A¥ are considered. Similarly, each pair of
components is considered in Step 16 to construct the neighborhood Np; (",l;_}ﬁ) consisting in all pairs
of UUPs ()\E,—T ’)/, /\gl)/), with n # 7, at time lag @ that can be obtained performing moves 1-4. After
evaluating all the possible moves, the one leading to a feasible solution X € A¥ with minimum dy
is implemented in Step 19, provided that UUP Aﬁ{”’ (and also UUP )\ﬁ,_f”’ if one move among 1-4
is performed) is not tabu or that the cost of the feasible solution after implementing the move is
better than the cost of the best-known feasible solution A € A* (the aspiration criterion). Feasible
solution A" becomes the new incumbent solution for the next iteration (Step 20), whereas the UUP
)\g’) is made tabu in Step 21 (as well as UUP )\gu—ﬁ)/ if one move among 1-4 is performed). Other
update operations are performed from Step 22 to Step 25. If iterNolmprP 1,4, iterations have been
consecutively performed without any improvement, the value of q is firstly increased by 1 (Step 27).
Then, if q takes a value larger than g¢mq., procedure JumpingP1 is called in Step 29.

Algorithm 3 Procedure: TSP1.

Input: an infeasible solution A € A¥ and parameter ;.
Output: the best-known feasible solution M € A* given ~;.

/* Initial feasible solution computation */

1: repeat

2: Select randomly time lag @ € {1, ..., k}.

3 Let A= (At Aa 1 Aa Ao 1, A1) € AR and Ag = (A, a0 AWy € g,

4: forn=1— N do

5: Evaluate all the (1,7)-relocations defining Np (7).

6: end for

7 Choose UUP )\,E‘:L)l that maximizes my,, where X’ is obtained from X replacing UUP )\7(‘-71 ) with )\7(‘_71 Y and

letting all the other UUPs unchanged.
8: Set A=\
9: until X is feasible (i.e. my > ;)
/* Explore contiguous partitions only */
10: Set A = ); TLgl) =@, where w =1,...,k and n = 1, ..., N; q := 1; iter := 0; and iterNolmpr := 0.
11: while iter < iterPlyqs do
12: Select randomly time lag w € {1,...,k}.
13: forn=1— N do

14: Evaluate all the (¢, n)-relocations and (q,n)-creations defining Npy (7).
15: forn=(n+1) — N do ~

16: Evaluate all moves 1-4 defining Np (nwn)

17: end for

18: end for B B B

19: Choose UUP )\;—7,1)' (and, possibly, UUP )\7(‘-7,”/) such that )\;—7,1)' ¢ TL;I,L) ()\;—7,1)/ ¢ TL;I,L)) or dy; < dyn and
dy/ is minimized, where )\’ is a feasible solution obtained from X replacing UUP )\g») with )\L—TW ()\L—Tl) with )\gf),)
and letting all the other UUPs unchanged.




Algorithm 3 Procedure: TSP1 (continued).
20:  Set A:= X )

21:  Update TLI (TLEY).

22: if dy < d,n then

23: Set A := )\, ¢ := 1, and iterNoImpr := 0.
24: else

25: Set iterNolmpr := iterNolmpr + 1.

26: if iterNoImpr > iterNoImprP 1,4, then
27: Set q := g+ 1 and iterNolmpr := 0.
28: if ¢ > gmaz then

29: Call procedure JumpingP1.

30: end if

31: end if

32: end if

33: end while
/* The best-known feasible solution AN at the end of TSP1 is provided as input of procedure TSP1 performed to
solve the next c-constraint problem. */

As far as algorithm TSP2 is considered, we here highlight only the differences with respect to
algorithm TSP1 described above. The neighborhood Npa (g) is explored in Step 5 and procedure
JumpingP2 is called in Step 17. Procedure JumpingP2 performs the steps sketched in Algorithm
5 with the only exception of Step 4, where the neighborhood Np2 (g) is explored instead of the
neighborhood Np; (g) Note that one can trivially set iterP2,,4, := 0 if the interest is in exploring

the solution space whose elements fulfill the contiguity constraint.

Algorithm 4 Procedure: TSP2.

Input: the best-known feasible solution A € A¥, provided by procedure TSP1, and parameter ~;.
Output: the best-known feasible solution A, representing a (possibly not contiguous) partition of A*, given ~;.

/* Explore all partitions of A, contiguous and not contiguous */
1: Set A:= M T'Ly, := @, w=1,...,k; iter := 0 and iterNoImpr := 0.
2: while iter < iterP2p,02 do
3: Select randomly time lag @ € {1, ..., k}.
4 forn=1— N do
5: Evaluate all the (q, n) pa-relocations, (q,n) pa-creations, and (q, n)-swaps defining N po (;)
6: end for
7: Choose a partition )\g")/ of Ay, such that )\gl)/ ¢ TLgl) or dy/ < dyir and dy/ is minimized, where A’ is a

feasible solution representing a partition of A* obtained from X replacing partition )\1(‘-7,1) of A, with )\E‘-T,")/ and
letting all the other partitions unchanged.

8: Set A=\

9: Update TLEI-?,").

10: if dy < d)\H then

11: Set AT := A, ¢ := 1, and iterNoImpr := 0.
12: else

13: Set iterNolmpr := iterNoImpr + 1.

14: if iterNolmpr > iterNolmprP2,,,, then
15: Set g := q + 1 and iterNolmpr := 0.
16: if ¢ > Gmax then

17: Call procedure JumpingP2.

18: end if

19: end if

20: end if

21: end while




Algorithm 5 Procedure: JUMPINGP1 (JUMPINGP2).

Input: the incumbent feasible solution A € A¥ and parameter ¢.
Output: the new incumbent feasible solution A € Ak,

1: Set TLq(f,l) =g, w=1,.,k,n=1,...,N.

2: forw=1—k do

3: forn=1— N do

4: Evaluate all the (1, n)-relocations and (1, n)-creations defining Np; (:)

5: Choose UUP ,\ﬁf,”' c Np 1(") leading to the best feasible solution A’ obtained from X replacing UUP

w

)\7(‘7) with )\7(‘7)/ and letting all the other UUPs unchanged.

6 end for

7: end for

8: Sort the selected feasible solutions in nondecreasing order of the corresponding objective function values and
create list L with the respective moves.

9: Perform sequentially the first 6 moves in list L. Each move is performed provided that it leads to a feasible
solution. Let A’ be the resulting feasible solution.

10: if dy < d)\H then

11: Set M = .

12: end if
/* Procedure JumpingP2 performs the same steps with the exception of Step 4 that is replaced by: Evaluate all the
(1,n) pa-relocations, (1,n)pa-creations, and (1,n)-swaps defining Np2 (ZZ) Besides, the contiguity constraint
need not be fulfilled in any step of the procedure. */

Appendix B - Trend and Weekly Seasonality Removal

The estimation of the exponential trend and weekly seasonality is based on the following model:

et = Cexp(rt +muly(t) + n2la(t) + mala(t) + mala(t) + nsls(t) +e0), (24)
(c)

where e, are the raw original prices (of stock, index, and electricity) and volumes (of stock and
electricity), I;(t) is the dummy variable associated to the j-th trading day of the week, with j =
1,...,5, r is the growth rate, n; is the coefficient of dummy variable I;(¢), with j = 1,...,5, C > 0,

and g, are the errors. Taking the natural logarithm of both sides of Eq. (24), we obtain:
ze = u+rt +mli(t) + n2la(t) + n3ls(t) + nala(t) + nsls(¢) + e,

where z; = In eﬁ“) and v = InC.

For estimation purposes, we assume that the usual hypotheses of linear regression on the errors
€¢ hold. We obtain the OLS estimates of r and n;, j = 1,...,5, and they are significant at a level of
5% (see Table 10).

Table 10: Coefficients estimates of an exponential regression model of trend and weekly seasonality applied to the
series of prices and volumes of the electricity case (Spain) and of the stock-index case (McDonald’s and DJIA).

Coeflicient Spain McDonald’s DJIA
estimate Prices Volumes Prices Volumes Prices

U 3.160815931 13.14958271 2.996413393 15.556310966 9.2614679294
r 0.000161813 0.0000244772 0.0007206918 0.000111199 0.000050167
i 0.014422005 —0.019727962 0 0 0

N2 0.008914955 0.005566374 0 0 0

N3 0.01222327 0.008742296 0 0 0

i 0.019907922 0.010064997 0 0 0

N5 0 0 0 0 0

The coeflicient estimate 75 of the Spanish prices and volumes is set to 0 by the estimation procedure

and its value is taken by the coefficient estimate @ of the intercept. This result is due to the fact that

the indicator functions Iy (¢), ..., I5(t), which are worth, collectively, 1 for every ¢,

can be viewed as a constant, therefore their contribution to explain the dependent variable could be
separated into a base component, the intercept, and specific values for each of the 5 explanatory variables.
The linear regression model for the stock and the index is implemented without seasonal components.



To the purpose of removing the exponential trend and the exponential weekly seasonality from
our original series, we define the series of prices and volumes e(T) = (ei, ..., €, ..., er), where:

e = explar — (Pt + inTy (£) + fola(t) + fisls(t) + Aala(t) + isls (1)), ¢ = 1, ..., T.

The original time series e(7T') is an input of the bootstrap method, while the output is the boot-
strapped series, which we indicate by x(¢) = (z1, ..., Zx, ..., 2¢). To re-introduce the exponential trend
and the exponential weekly seasonality in x(¢), we multiply each point z, by

exp(7k + Ml (k) + N2la(k) + N313 (k) + Nalla(k) + 7515(K)), & = 1, ..., L.

Appendix C - Initial States, or Intervals

Table 11 reports the intervals composing the initial partition of the support I,, C R of the series
of returns/prices/volumes for the bivariate and trivariate cases after removal of trend and weekly
seasonality. Refer to Eqgs. (3) and (4) for a definition of these intervals.

Table 11: Elements of the initial partition of the support of the series of electricity prices and volumes and of the
series of stock returns, stock volumes, and index returns. In our experiment we take inf(a(ln)) = 0 for prices and

volumes and inf(a(ln)) = —1 for returns, while sup(a(Lz)) is set to B8 = 1,000, 000, 000 in both the cases.
Electricity case
Interval Interval
label Prices label Volumes
al [0, 17.30) al? [0, 237649)
alV [17.30, 21.30) al? (237649, 286556)
alV [21.30, 24.55) al? (286556, 336793)
alV [24.55,27.97) al? (336793, 396337)
alV [27.97, 30.45) al? (396337, 446248)
all [30.45, 34.51) al? (446248, 187608)
alV [34.51,39.29) al? [487608, 520439)
al? [39.29, 43.19) al? [520439, 541664)
alV [43.19,47.97) al? (541664, 572738)
all [47.97, 52.25) al? (572738, 599878)
alV [52.25, 60.60) al? (599878, 636553)
all [60.60, 79.46) al? (636553, 674317)
aly [79.46, 5] al? [674317, 5]
Stock-index case
Interval Stock Interval Stock Interval Index
label volumes label returns label returns
o'V [0,4669188) o'V [—1,-0.033) otV [—1,-0.035)
al? [1669188, 6721984) a? [—0.033, —0.017) as? [—0.035, —0.007)
alV [6721984, 7936812) al? [~0.017, —0.002) al? [~0.007, 0.003)
alV (7936812, 10333398) al? [—0.002,0.012) al® [0.003, 0.009)
at? [10333398, 12972818) al? [0.012,0.029) al? [0.009, 0.023)
alV [12972818, 26578726) al? [0.029, 5] al? [0.023, 5]
ath [26578726, 64794206)
al [64794206, 5]

Appendix D - Two-Phase Tabu Search settings

Algorithm TSP1 stops once 2000 iterations have been performed (parameter iterPly, . ). Parameter
q is increased by 1 after 250 consecutive iterations have been performed without any improvement
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(parameter iterNolmprP 1,44 ). The maximum value that parameter g can take is 2 (parameter gmaq )-
This implies that procedure JumpingP1 is called after performing 500 consecutive iterations without
any improvement. We set 7, i.e. the number of iterations a partition of A, remains tabu, equal
to a random integer number [4 x UJ0, 1] x k x N7, where UJ0, 1] is a uniformly distributed random
number between 0 and 1. Parameter ¢, i.e. the number of moves to perform in procedure JumpingP1,
is set equal to a random integer number [U[2, min(6, k x N)||. Finally, parameter A, i.e. the constant
value used to construct the sequence of e-constraint problems (20)-(21), is set equal to 0.025. Given
that myu = 0 and YDV < 1 by construction, setting A = 0.025 implies that the sequence built
is composed of at most 39 e-constraint problems (20)-(21).

As the main scope of this paper is to solve problem (18)-(19), where the contiguity constraint
holds, we set iterP2,,42 := 0 for Phase 2 in all the computational experiments, except for the
computational results presented in Subsection 5.3, where a comparison of the performance of the
Two-Phase Tabu Search with that of the heuristic introduced in Cerqueti et al. (2013) is provided.
For those experiments we set iterP2p,q4, := 1000 and iterNolmprP2,,4, := 100.

Appendix E - Two-Phase Tabu Search: Detailed Computational Results

Table 12: Detailed comparison of different approximations of the efficient frontier for the Spanish instance introduced
in Cerqueti et al. (2013). For each value of v, we report the coordinates (my 1, dyur) of the heuristic solutions found
by the Tabu Search algorithm presented in Cerqueti et al. (2013), in columns 2 and 3, the coordinates of the heuristic
solutions found by procedure TSP1 along with the corresponding computing times (in seconds), in columns 4-6, and
the same statistics for procedure TSP1+TSP2, in columns 7-9.

Tabu Search TSP1 TSP1+TSP2

CPU CPU
Y myrr d Vs my d Vs (SCCS.) mrr d)\“ (SCCS.)
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.025 0.026 0.196 0.027 0.144 2.761 0.027 0.144 5.351
0.05 0.051 0.411 0.052 0.306 2.496 0.052 0.306 5.101
0.075 0.075 0.481 0.075 0.378 2.293 0.075 0.378 4.914
0.1 0.122 0.521 0.104 0.456 2.434 0.100 0.444 4.977
0.125 0.132 0.544 0.133 0.544 2.512 0.126 0.500 5.211
0.15 0.157 0.650 0.153 0.581 2.527 0.153 0.581 5.210
0.175 0.178 0.673 0.179 0.593 2.512 0.179 0.593 5.273
0.2 0.209 0.695 0.202 0.630 2.496 0.202 0.630 5.070
0.225 0.231 0.739 0.225 0.674 2.527 0.235 0.652 5.070
0.25 0.250 0.748 0.258 0.696 2.496 0.258 0.689 5.101
0.275 0.282 0.763 0.281 0.733 2.434 0.281 0.733 4.992
0.3 0.306 0.796 0.305 0.778 2.543 0.305 0.778 4.977
0.325 0.329 0.878 0.328 0.815 2.465 0.328 0.815 4.867
0.35 0.353 0.922 0.352 0.874 2.433 0.352 0.874 4.898
0.375 0.376 0.948 0.376 0.922 2.308 0.377 0.922 4.633
0.4 0.401 0.981 0.400 0.959 2.231 0.400 0.959 4.446
0.425 0.426 1.126 0.425 1.022 2.012 0.426 1.019 3.962
0.45 0.450 1.137 0.450 1.111 1.966 0.450 1.111 3.900
0.475 0.510 1.193 0.485 1.170 1.965 0.485 1.170 3.806
0.5 0.510 1.193 0.510 1.204 2.075 0.510 1.204 3.962
0.525 0.546 1.226 0.534 1.215 2.106 0.534 1.215 3.978
0.55 0.558 1.248 0.559 1.259 2.044 0.559 1.259 3.729
0.575 0.582 1.304 0.583 1.296 1.919 0.583 1.296 3.557
0.6 0.607 1.307 0.607 1.348 2.340 0.607 1.348 4.118
0.625 0.644 1.363 0.644 1.367 2.168 0.644 1.367 3.915
0.65 0.655 1.385 0.656 1.389 2.153 0.656 1.389 3.822
0.675 0.680 1.430 0.680 1.422 2.028 0.680 1.422 3.651
0.7 0.704 1.474 0.704 1.467 1.966 0.704 1.467 3.432
0.725 0.729 1.511 0.729 1.511 1.950 0.729 1.511 3.338
0.75 0.754 1.578 0.753 1.556 1.903 0.753 1.556 3.245
0.775 0.778 1.630 0.778 1.600 1.888 0.778 1.600 3.120
0.8 0.803 1.667 0.803 1.667 1.841 0.803 1.667 2.917
0.825 0.827 1.711 0.827 1.711 1.841 0.827 1.711 2.808
0.85 0.852 1.756 0.852 1.756 1.825 0.852 1.756 2.746
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Table 12 — continued from previous page

Tabu Search TSP1 TSP1+TSP2
CPU CPU

Y myrr d 7 my 1 d 7 (SCCS.) morr dAu (SCCS.)
0.875 0.877 1.785 0.877 1.800 1.856 0.877 1.800 2.668
0.9 0.901 1.822 0.901 1.822 1.685 0.901 1.822 2.387
0.925 0.926 1.867 0.926 1.867 1.809 0.926 1.867 2.605
0.95 0.951 1.911 0.951 1.911 1.825 0.951 1.911 2.433
0.975 0.975 1.956 0.988 1.978 1.732 0.988 1.978 2.169
1 1.000 2.000 1.000 2.000 0.000 1.000 2.000 0.000
Total

CPU (secs.) 211.550 84.365 156.359
Average

CPU (secs.) 5.424 2.163 4.009

Table 13: Detailed comparison of different approximations of the efficient frontier for the German instance introduced
in Cerqueti et al. (2013). For each value of v, we report the coordinates (myr, dyr) of the heuristic solutions found
by the Tabu Search algorithm presented in Cerqueti et al. (2013), in columns 2 and 3, the coordinates of the heuristic
solutions found by procedure TSP1 along with the corresponding computing times (in seconds), in columns 4-6, and
the same statistics for procedure TSP1+TSP2, in columns 7-9.

Tabu Search TSP1 TSP1+TSP2
CPU CPU
Y mnI7 d}” My 11 d}” (secs.) mn 17 d}” (secs.)
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.025 0.025 0.172 0.030 0.156 2.808 0.027 0.125 6.068
0.05 0.050 0.294 0.051 0.243 3.198 0.050 0.238 6.224
0.075 0.075 0.517 0.080 0.373 3.105 0.080 0.373 5.991
0.1 0.100 0.554 0.103 0.512 3.058 0.101 0.459 6.147
0.125 0.134 0.627 0.130 0.593 2.886 0.130 0.593 5.725
0.15 0.151 0.681 0.152 0.629 2.886 0.152 0.629 5.741
0.175 0.176 0.733 0.182 0.700 2.839 0.182 0.700 5.694
0.2 0.201 0.841 0.201 0.782 2.714 0.201 0.782 5.507
0.225 0.231 0.969 0.229 0.830 2.465 0.229 0.830 5.382
0.25 0.252 1.023 0.251 0.852 2.590 0.251 0.852 5.413
0.275 0.282 1.072 0.290 0.973 2.590 0.290 0.973 5.273
0.3 0.325 1.197 0.312 0.995 2.605 0.312 0.995 5.195
0.325 0.326 1.202 0.328 1.017 2.480 0.328 1.017 5.101
0.35 0.364 1.237 0.351 1.050 2.543 0.351 1.050 5.179
0.375 0.386 1.259 0.382 1.121 2.496 0.382 1.121 5.133
0.4 0.417 1.318 0.438 1.345 2.543 0.438 1.345 5.117
0.425 0.438 1.345 0.438 1.345 2.558 0.438 1.345 5.038
0.45 0.460 1.367 0.465 1.400 2.527 0.465 1.400 4.945
0.475 0.484 1.396 0.488 1.411 2.496 0.488 1.411 4.961
0.5 0.504 1.411 0.504 1.425 2.636 0.504 1.411 4.820
0.525 0.527 1.433 0.527 1.447 2.574 0.527 1.447 4.836
0.55 0.551 1.484 0.551 1.499 2.715 0.551 1.484 4.930
0.575 0.576 1.510 0.576 1.510 2.715 0.576 1.510 4.961
0.6 0.601 1.545 0.601 1.545 2.714 0.601 1.545 4.976
0.625 0.635 1.550 0.635 1.550 2.745 0.635 1.550 5.195
0.65 0.658 1.562 0.658 1.562 2.730 0.658 1.562 5.241
0.675 0.682 1.584 0.682 1.584 2.870 0.682 1.584 5.242
0.7 0.706 1.599 0.706 1.599 2.871 0.706 1.599 5.211
0.725 0.729 1.621 0.730 1.656 2.870 0.730 1.656 5.070
0.75 0.753 1.654 0.754 1.674 2.917 0.754 1.674 4.570
0.775 0.777 1.696 0.785 1.689 2.902 0.785 1.689 5.195
0.8 0.801 1.702 0.801 1.702 3.011 0.801 1.702 4.899
0.825 0.833 1.739 0.825 1.732 3.229 0.825 1.732 5.023
0.85 0.857 1.783 0.857 1.783 3.385 0.857 1.772 4.961
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Table 13 — continued from previous page

Tabu Search TSP1 TSP1+TSP2
CPU CPU

Y My I7 dy 11 My 11 dy 11 (secs.) My I7 d}” (secs.)
0.875 0.880 1.805 0.880 1.805 3.447 0.881 1.801 4.976
0.9 0.905 1.835 0.904 1.835 3.432 0.904 1.835 4.852
0.925 0.928 1.868 0.928 1.868 3.307 0.928 1.868 4.649
0.95 0.952 1.912 0.952 1.912 3.401 0.952 1.912 4.602
0.975 0.976 1.956 0.976 1.956 3.057 0.976 1.956 4.071
1 1.000 2.000 1.000 2.000 0.000 1.000 2.000 0.000
Total

CPU (secs.) 619.669 110.915 202.114
Average

CPU (secs.) 15.889 2.844 5.182

Table 14: Points composing the approximations of the efficient frontiers for the electricity and the stock-index
cases. We report the coordinates (myr, dyir) of the heuristic solutions found by procedure TSP1 along with the
corresponding computing times (in seconds). The points highlighted in bold represent the heuristic solutions )\g s
for the electricity case, and )\¥ , for the stock-index case, chosen as inputs of the bootstrap method.

Electricity case Stock-index case
CPU CPU

Point m,y s dyir (secs.) Point m,y s dyir (secs.)
T 0.000 0.000 0.000 T 0.000 0.000 0.000
2 0.025 0.312 185.940 2 0.025 0.802 100.593
3 0.051 0.508 125.502 3 0.054 1.164 76.752
4 0.080 0.633 158.482 4 0.080 1.362 86.830
5 0.117 0.834 231.910 5 0.107 1.485 75.052
6 0.142 0.963 216.044 6 0.134 1.605 97.485
7 0.178 1.104 184.978 7 0.165 1.645 116.298
8 0.227 1.295 226.900 8 0.192 1.680 124.036
9 0.275 1.447 256.201 9 0.228 1.732 145.657
10 0.366 1.507 311.611 10 0.256 1.752 165.110
11 0.407 1.552 315.963 11 0.298 1.763 153.349
12 0.435 1.598 292.017 12 0.330 1.783 163.348
13 0.461 1.621 287.852 13 0.382 1.822 180.258
14 0.494 1.636 267.774 14 0.409 1.822 231.898
15 0.523 1.688 272.033 15 0.448 1.842 240.615
16 0.573 1.726 263.157 16 0.475 1.849 213.923
17 0.613 1.757 244.156 17 0.508 1.868 223.673
18 0.661 1.788 217.792 18 0.568 1.868 224.656
19 0.698 1.845 194.548 19 0.644 1.882 252.533
20 0.728 1.869 188.261 20 0.686 1.888 225.702
21 0.770 1.883 178.963 21 0.774 1.908 247.713
22 0.807 1.910 154.238 22 0.809 1.914 210.616
23 0.860 1.948 142.272 23 0.876 1.921 193.347
24 0.914 1.974 105.051 24 0.917 1.928 176.796
25 0.997 1.993 43.914 25 0.948 1.934 143.364
26 1.000 2.000 0.000 26 0.976 1.967 90.215

27 1.000 2.000 0.000
Total
CPU (secs.) 5065.847 4159.819
Average
CPU (secs.) 211.077 166.401

Appendix F - Information Loss and Distance Measures

The purpose of this section is to highlight how the optimization model presented in this paper
fits with the scopes of a bootstrap procedure: to maintain the statistical properties of the original
sample (similarity), while allowing for a sufficient level of diversification between the original and
the bootstrapped series (multiplicity). At this aim, we propose a discussion on the distance indicator



and multiplicity measure adopted here on the basis of information theory. The same notation used
throughout the paper is adopted.

Define a functional space G whose elements g € G act on the multivariate Markov chain X by
defining a new Markov chain X obtained by considering as single states the elements of a partition
of A¥. There is a clear bijection between the g of G and the partitions A of A¥. Hereafter, we will
denote the partition generated by g as Ay. Moreover, we denote as Z; the o-algebra associated to g,
which collects the information generated by Ag4. Ilence, we can write X = X|Zy4 to formalize that the
new Markov chain is the original Markov chain X conditioned to the information provided by Z,.

It is worth noting that a clustering procedure of the kN-states of A* implies information loss.
In fact, the exact identification of the transition probabilities from a given kN-state of A* to the
N-states of A gets lost when the kN-state is joined with others in a partition class. On this ground
and following the seminal work of Kolmogorov (1965), we are able to explore the meaning of Zg
-and so of g and of the corresponding Ag- in terms of information loss. At this aim, we define a
nonnegative functional nx € [0,7], which measures the information loss related to Z, when passing
from the original Markov chain X to the new one X. Specifically, nx(X) may be viewed as a distance
measure between X and 5(, which increases as the loss of information does. When nx(f() = 0, no
information is lost, while nx(X) — 7 means that X provides the maximum level of information loss
(no information left in passing from X to X).

The consistency requirements in the boundary situations of 0 and 7 lead to specific situations in our
setting. We list them below, along with a brief explanation.

(A.1) nx(X) = 0. This is the corner situation of full information and occurs when X = X. In this case
the partition Ay of the state space -generated by Zy- is the finest one: Ay is the partition keeping
separate all the states of the Markov chain (singleton partition).

(A.2) It Z, = {0, 2} -where (2 represents the sample space of the probability space where the Markov
chain is defined-, then T]X(X) attains its maximum. Also in this case we have a corner situation,
where the maximum level of information is lost. In fact, the corresponding partition A, is the
smallest one, and collects all the elements of the state space in a unique set (all-comprehensive
partition). The transition probability matrix of the new Markov chain X is trivially of dimension
1x#(A), and no information can be derived from the knowledge of the specific kN-state associated
to the past realizations of the chain.

Therefore, in terms of information loss, the two bootstrap requirements can be translated as trying to
minimize the loss of information (similarity) without achieving the complete absence of information
loss (multiplicity). Hence, a constrained minimization problem should be developed. This is precisely
the argument of Subsection 2.5. In this respect, it is important to point out that the distance indicator
dy, and the multiplicity measure my, -introduced and used in the paper- are two specific information
loss distance measures 7, which indeed satisfy conditions (A.1) and (A.2) (for a discussion on this,
refer to Subsection 2.5).



