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1
2
3	Abstract
4
 (
6
)5	Hybrid nanofluids are gaining popularity due to the synergistic effects of nanoparticles,
7
8	which offer them improved heat transfer capacities than base fluids and regular nanofluids. The
9
10	thermophysical properties of hybrid nanofluids play a crucial role in shaping heat transfer
11
12	properties. Hence an in-depth analysis of thermophysical properties is important before its use
13
14
15	in industrial applications. In the present work, a metamodel framework is developed to forecast
16
17	the influence of nanofluid temperature and concentration on several thermophysical properties
18
19	of Fe3O4 coated MWCNT hybrid nanofluids. Evolutionary gene expression programming
20
 (
22
)21	(GEP) and an adaptive neural fuzzy inference system (ANFIS) were employed to develop the
23
24	prediction models. The model was trained using 70% of the datasets, with the remaining 15%
25
26	used for testing and validation. A variety of statistical measurements and Taylor's diagrams
27
 (
29
)28	were used to assess the proposed models. The Pearson’s correlation coefficient (R), coefficient
30
31	of determination (R2) was used for regression index, the error in the model was evaluated with
32
33	root mean squared error (RMSE). The model's comprehensive assessment additionally includes
34
35	modern model efficiency indices such as Kling-Gupta efficiency (KGE) and Nash-Sutcliffe
36
37
38	efficiency (NSCE). The proposed models demonstrated impressive prediction capabilities.
39
40	However, the GEP model (R> 0.9825, R2 >0.9654, RMSE = 0.7929, KGE > 0.9188, and NSCE
41
42	> 0.9566) outperformed the ANFIS model (R> 0.9601, R2 >0.9218, RMSE=1.495, KGE >
43
 (
45
)44	0.8015, and NSCE > 0.8745) for the majority of the findings. The generated metamodel was
46
47	robust enough to replace the repetitive expensive lab procedures required to measure
48
49	thermophysical properties.
50
51
52
53
54	Keywords: Thermophysical properties; Nanofluid; Artificial intelligence; Gene expression
55
56	programming; ANFIS models

1
2
3	Highlights
4
 (
6
)5		Predictions of thermophysical properties of Fe3O4 coated MWCNT hybrid nanofluid
7
8		AI-based ANFIS and GEP models performed well on statistical indices.
9
10		ANFIS and GEP based prognostic models validated and compared with Taylor
11
 (
13
)12	diagrams
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 (
Page
 
10
 
of
 
39
)
 (
Page
 
11
 
of
 
39
)



1
2
3	Abbreviations
4
 (
6
)5	AI	Artificial intelligence	KGE	Kling-Gupta efficiency

7 ANFIS	Adaptive  neuro-fuzzy  inference
8 system
 (
ANN
Artificial
 
neural
 
network
Multi-walled
 
carbon
 
nanotubes
Al
2
O
3
Alumina
NSCE
Nash
 
Sutcliffe
 
efficiency
CuO
Cupric 
oxide
SiC
Silicon
 
carbide
EA
Evolutionary
 
algorithm
R
Pearson’s
 
correlation
 
coefficient
ET
Expression 
tree
R
2
Coefficient
 
of 
determination
Fe
3
O
4
Magnetite
RMSE
Root
 
mean
 
squared
 
error
GEP
Gene
 
expression
 
programming
RSM
Response
 
surface
 
methodology
)9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ML	Machine learning
MWCNT

1
2
3	1. Introduction
4
 (
6
)5	The usage of nanofluids, which are nano-sized materials suspended in a variety of
7
8	working fluids, increases thermophysical characteristics. It led to significant breakthroughs in
9
10	heat transfer applications [1]. Hybrid nanofluids are formed by the dispersion of two or more
11
12	distinct nanomaterial combinations in a base fluid or base fluids. They are frequently used in
13
14
15	heat transfer applications due to their higher thermal conductivity than regular nanofluids [2].
16
17	Another motivation for combining nanoparticles to form a hybrid nanofluid is to allow the
18
19	physio-chemical properties of the individual nanomaterials to synergize. Consequently, a
20
 (
22
)21	nanofluid with higher thermal conductivity and rheological properties than their thermal
23
24	conductivity is created [3]. The improved thermal transfer performance has resulted in a smaller
25
26	heat exchanger, needing fewer materials and energy. A modest number of nanoparticles floating
27
 (
29
)28	in the base fluid in energy storage systems or automotive radiator technology may cool and
30
31	disperse heat faster than a huge volume of traditional fluid without nanoparticles. This has a
32
33	huge impact on renewable energy systems and vehicle design since heat exchangers/radiators
34
35	of smaller sizes may be constructed with less weight, saving space and money while boosting
36
37
38	system efficiency [4][5][6].
39
40	The thermophysical characteristics of the test nanofluids play an important role in
41
42	determining heat transfer efficiency. To evaluate heat transfer capabilities, researchers are
43
 (
45
)44	interested in exact measurements of thermal conductivity, density, viscosity, and specific heat.
46
47	Thermal conductivity and viscosity were the two thermo-physical parameters of nanofluids that
48
49	scientists were most interested in. A couple of them looked at other factors like as density and
50
 (
52
)51	specific heat. Thermal conductivity and viscosity alone are insufficient to theoretically estimate
53
54	heat transfer coefficients. Heat transport information also requires density and specific heat.
55
56	These qualities must be calculated precisely since they have a significant impact on nanofluid
57
58	flow and heat transfer characteristics. Many restrictions exist in the experimental assessment of
59
60

1
2
3	nanofluid characteristics, such  as challenges in  producing monodisperse suspensions,
4
 (
6
)5	concentration, systematic issues in measuring particle size, and solution inhomogeneity. As a
7
8	result, the range of variables studied is constrained.
9
10	Various heat transfer augmentation tactics and flow conditions, on the other hand, have a
11
12	non-linear influence on the thermophysical properties of nanofluids. Many influencing
13
14
15	elements, nonlinearity, and rationales make nanofluid research challenging and limit its
16
17	potentially significant applications. In this context, machine learning (ML) approaches based
18
19	on artificial intelligence (AI) are proving to be particularly effective in nanofluid research for
20
 (
22
)21	predicting thermophysical characteristics and their performance in energy systems [7][8]. The
23
24	continual growth in computational power, along with the introduction of powerful AI & ML
25
26	approaches for regression and model prediction [9][10], has enabled reliable prediction of the
27
 (
29
)28	highly non-linear behavior of hybrid nanofluids characteristics [11]. AI-based approaches are
30
31	proven to be increasingly valuable as alternatives to established procedures or as elements of
32
33	integrated systems. They have been utilized to tackle complex practical problems in a range of
34
35	sectors and are growing increasingly popular at the time. AI approaches can train from patterns;
36
37
38	they are highly reliable in the notion that they can accommodate noisy data; they can handle
39
40	non-linear problems; and, once learned, they can do generalization and estimate at high speeds
41
42	[12]. Several studies have reported the efficient use of ML approaches for the model prediction
43
 (
45
)44	of hybrid nanofluid properties. For example, the ANN [13][14][15][16][17], random forest
46
47	regression [18][19], Bayesian regularization network [20], Multivariate adaptive regression
48
49	splines [21], genetic algorithm [22][23], and particle swarm optimization [24][25] was used for
50
 (
52
)51	mapping and predicting the thermophysical properties of hybrid nanofluids. The literature
53
54	survey reveals extensive use of ANNs for model prediction in the domain of nanofluid
55
56	characterization. Malika and Sonawane [26] estimated the thermal conductivity ratio of Fe2O3
57
58	doped SiC in water base fluid employing a combination of response surface methodology
59
60

1
2
3	(RSM) and artificial neural network. It was concluded that as the ultrasonication time,
4
 (
6
)5	temperature, and nanoparticle concentration were increased, the thermal conductivity ratio
7
8	improved. Even though the RSM-ANN hybrid strategy yielded second-order correlation
9
10	equations, the ANN outperformed the RSM in model prediction. Kumar et al. [27] investigated
11
12	the thermophysical properties of hybrid nanofluids as a function of temperature. An ANN-based
13
14
15	model was developed using the experimental data. The thermophysical properties of hybrid
16
17	nanofluids were predicted using the ANN technique with high efficiency.
18
19	ANFIS is a hybrid intelligence technique that combines a sharp decision-making ability
20
 (
22
)21	of fuzzy methods with the good training ability of neural networks. In essence, ANFIS
23
24	combines the advantages of these two models (ANN and FIS) into a cohesive solution for
25
26	addressing scientific and technical difficulties [28]. ANFIS has been widely used for complex
27
 (
29
)28	system modeling [29]. To solve some of the shortcomings of ANN, like poor speed and poor
30
31	adaptiveness, the ANFIS employs a hybrid approach with input clustering [30]. To model
32
33	predict the thermophysical properties of reduced graphene oxide/cobalt tetraoxide (rGO/Co3O4)
34
35	hybrid nanofluids, Said et al. [31] used an adaptive neuro-fuzzy inference system (ANFIS).
36
37
38	Subsequently, the ANFIS model’s output was optimized utilizing a marine predator algorithm.
39
40	The hybridization strategy produced more accurate modeling and optimization. In another study
41
42	by Said et al. [32], ANFIS was employed to predict the thermophysical characteristics of nano
43
 (
45
)44	diamond-water nanofluids. The experiential data was collected for modeling at various
46
47	temperatures and concentrations. The optimizer confirmed that the ideal values of the
48
49	thermophysical properties could be achieved even when no nanomaterial was utilized in the
50
 (
52
)51	multi-objective method and that the optimal temperature was determined to be 59.48 °C. The
53
54	literature survey shows that ANFIS can provide superior prediction performance with less
55
56	computing time. The literature in the realm of nanofluid characterization is overloaded with the
57
58	usage of ANNs. There is numerous published research that employs ANNs for model
59
60

1
2
3	prediction. Despite their advantages, ANN-based computational intelligence models are black
4
 (
6
)5	boxes. Black boxes are weight matrices with some difficult to interpret biases [33]. The issues
7
8	mentioned above can be resolved by generating explicit mathematical relations that may be
9
10	understood and employed in practical works. Evolution-based Gene expression Programming
11
12	(GEP) is one such machine learning method that improves upon the shortcomings of neural
13
14
15	networks. The GEP model may be shown as expression trees, which can be readily translated
16
17	to metathetical expressions. The key advantage of the GEP model is that it transmits its result
18
19	as an expression tree and an easy link between the design variables and the intended outcome.
20
 (
22
)21	Unlike many optimization strategies, which need prior knowledge of the relationship between
23
24	the model parameters and the output parameter. As a result, many optimization approaches'
25
26	rigors in establishing the model parameter combination that will produce the best outcomes
27
 (
29
)28	have been overcome [34][35]. GEP had been used effectively in the model prediction of
30
31	complex engineering problems such as combustion-emission modeling of biodiesel-powered
32
33	engines [36][37], modeming of green concrete properties [38], and model prediction of
34
35	meteorological data [39]. Despite being a very effective prognostic tool, GEP's prediction
36
37
38	potential has yet to be completely realized in the realm of hybrid nanofluid characterization. As
39
40	a result, the current initiative aims to fill a critical research gap in the rapidly developing study
41
42	domain of hybrid nanofluids. The primary goals of this research are as follows:
43
 (
45
)44	• Creating a prediction model using GEP and comparing it with benchmark ANFIS
46
47	• Modern statistical performance criteria like as Nash-Sutcliffe efficiency (NSE) and
48
49	Kling-Gupta efficiency (KGE), among others, were used to compare ANFIS with GEP
50
 (
52
)51	models.
53
54	• Graphically using Taylor diagrams to compare prediction models.
55
56
57
58
59
60

1
2
3	2. Methodology
4
 (
6
)5	The primary objective of employing soft computing techniques was to develop a
7
8	regression model between input and output. In this work, the volume percent nanoparticle
9
10	concentration in hybrid nanofluids and the nanofluid temperature were employed as input
11
12	variables. The output variables were thermal conductivity, density, specific heat, and viscosity.
13
14
15	The prediction model was developed using the evolutionary GEP approach and the Neuro-
16
17	Fuzzy based ANFIS. Four distinct prediction models were created, one for each output and a
18
19	wide range of temperature and mixture concentrations.
20
21
22
23
24	2.1 Data for modeling
25
26	The data for the modeling came from lab-based observations of the thermophysical
27
 (
29
)28	properties of nanofluids. Thermal conductivity, viscosity, density, and specific heat were
30
31	measured in 5 oC increments throughout a nanofluid temperature range of 20 oC to 60 oC. Data
32
33	was collected in a similar manner for different nanofluid concentrations, namely 0% (only base
34
35	fluid), 0.05% (0.05% hybrid nanoparticles + 99.95% base fluid), 0.10% (0.10% hybrid
36
37
38	nanoparticles + 99.90% base fluid), 0.20% (0.20% hybrid nanoparticles + 99.8% base fluid),
39
40	and 0.30% (0.30% hybrid nanoparticles + 99.7% base fluid). There was a total of 45 data points.
41
42	Thirty-one (70%) of the 45 datasets were used to train the model, with the remaining used for
43
 (
45
)44	testing and validation.
46
47
48
49	2.2 Gene expression programming
50
 (
52
)51	Ferreira [40] proposed the GEP method as an advancement over genetic programming
53
54	(GP). GEP is an evolutionary algorithm (EA) that is based on the notion of biological evolution.
55
56	Evolutionary algorithm-based computing is an approach for engineering optimization in which
57
58	solutions are developed through processes modeled after Darwinian evolution rather than being
59
60

1
2
3	built from fundamental principles. Heuristic search, often known as trial and error, is an
4
 (
6
)5	example of evolutionary computation. In EA, "trials" are alternative solutions, and "error" is
7
8	the measurement of how far a trial is from the anticipated conclusion. The error is used to
9
10	determine which trials will be used to generate new trials. GEP is recognized as superior to
11
12	other approaches. Since simple mathematical equations define GEP's output, it is more adaptive
13
14
15	and accurate [41]. GEP has a one-of-a-kind, multi-genic nature that allows for creating more
16
17	complicated programs. The GEP consists of two main components: chromosomes and
18
19	expression trees (ET). Each chromosome is composed of a set of mathematically represented
20
 (
22
)21	genes. A gene contains two parts: a head and a tail. The head is made up of mathematical
23
24	functions, variables, or constants. The tail of a gene consists of terminal symbols such as a fixed
25
26	value or variables that determine the terminal. A head connects the several gene terminals and
27
 (
29
)28	generates an encoding formula using arithmetic operators or mathematical functions [42][43].
30
31	The selection, crossover, and mutation are the main functions. The mutation improves the
32
33	chromosomes during the GEP optimization procedure. For greater fitness functions, crossover
34
35	operators are used. The GEP flowchart is shown in Fig .1.
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44	Fig. 1. Flow chart for gene expression programming
45
46
47
 (
49
)48	Fig. 2 illustrates the model developed with GEP in the form of an expression tree (ET).
50
51	It shows a total number of three trees for each model, and their addition forms the model. This
52
53	model is used to predict output using the entire range of input conditions. A higher degree of
54
55  (
56
)correlation observed between input and output indicates a robust prediction model.
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56 Fig. 2. Illustration of GEP model in the form of expression trees (ET) for (a) thermal
57  (
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)conductivity, (b) density, (c) viscosity, and (d) specific heat
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1
2
3	2.3 Adaptive neuro-fuzzy inference system
4
 (
6
)5	The adaptive neuro-fuzzy inference system (ANFIS) is an intelligent computation
7
8	modeling technique. It combines the learning and logical reasoning abilities of ANNs and fuzzy
9
10	logic. ANFIS provides higher prognostic capabilities and is a preferable alternative to
11
12	conventional neural networks for complicated non-linear issues [25]. A typical fuzzy inference
13
14
15	system (FIS) has five steps, starting with the introduction of inputs to aid in the fuzzification of
16
17	fuzzy sets based on linguistic rule activation. Specialists design certain rules, which are
18
19	subsequently generated from test results. The next phase is inference, which involves mapping
20
 (
22
)21	fuzzy sets based on established criteria. The fuzzy sets are then defuzzied, yielding the final
23
24	output values. Consequently, the ANFIS strategy involves data preparation, ANFIS creation,
25
26	variable selection, training, validation, and output generation [28].
27
 (
29
)28	The ANFIS design is comprised of five separate levels, as seen in Fig. 3. The first layer
30
31	is the input layer, which accepts the input value and generates fuzzy values using membership
32
33	functions (MF). This layer contains adaptive type nodes, each with its node function. The
34
35	product layer is the second layer, and it multiplies the input signal. It is made up of fixed nodes
36
37
38	that assess the weight or firing strength. It often employs the fuzzy operator 'AND.' The nodes
39
40	in the third tier are all fixed nodes. The firing strength is computed in this layer. The normalized
41
42	firing strength represents the output. The fourth layer, which contains adaptive nodes, is utilized
43
 (
45
)44	to define the output membership function. The last layer is known as the output layer. It has a
46
47	single fixed node that summits all incoming signals from preceding layers [44][45]. To alter the
48
49	parameters of the membership functions throughout the ANFIS training process, a hybrid
50
 (
52
)51	learning strategy combining the least-squares estimate and the gradient descent approach is
53
54	used. The node outputs are processed in the forward pass until the least-squares estimate
55
56	determines the output membership function layer and the associated parameters. After the error
57
58	signals have been carried backward, the backward pass uses the gradient descent approach to
59
60

1
2
3	update the premise parameters. A fuzzy set's membership function is a mathematical extension
4
 (
6
)5	of the indicator function. It is an extension of valuation in fuzzy logic that indicates the degree
7
8	of validity. Because the ANFIS structure requires a better selection of acceptable form and
9
10	number of membership functions, every ANFIS application requires a firm grasp of fuzzy logic.
11
12	This has an impact on the ANFIS-based model's effectiveness and computation cost. The
13
14
15	number of rules in the ANFIS rule-base is determined by the number of input space partitioning
16
17	membership functions. In addition, the number of parameters in each membership function has
18
19	an effect on training costs. Because of its smooth representation of the input space, the Gaussian
20
 (
22
)21	form of the membership function has only two parameters and is the most commonly used in
23
24	the literature [46][32]. Fig. 4 shows the ANFIS flow chart. Fig. 5 illustrates the fuzzy logic and
25
26	membership function for each output model. As illustrated in Fig.6, the model's output may be
27
 (
29
)28	seen using a fuzzy inference system (FIS) designed for each output model.
30
 (
Review
)31
32
33
34
35
36
37
38
39
40
41
42
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44
45
46
47
48
49
50
51
52
53
54
55
56
57
58	Fig. 3. ANFIS architecture
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1
2
3
4	The ANFIS helped in mapping the effects of input parameters on the physio-thermal
5
 (
7
)6	properties of hybrid nanofluids. The 3D surface diagrams depicting the effects of input
8
9	parameters are shown in Fig. 6.
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1
2
3	2.4. Statistical evaluation of prediction models
4
 (
6
)5	The current study investigates model reliability in depth by subjecting the created model
7
8	to different error metrics invariant to scale transformation, as well as uncertainty estimation
9
10	measures, to assess the robustness of the ANFIS and GEP-based models. Though commonly
11
12	used model evaluation metrics were used to compare model performance to similar studies,
13
14
15	each result was supported by values obtained from a correspondingly scaled variation of the
16
17	original metric to address the metric's inherent limitations while retaining the attribute of the
18
19	conventional measure.
20
21
22
23
24	2.4.1. Pearson’s coefficient of correlation (R)
25
26	To assess the relationship between measured and predicted output values, the Pearson
27
 (
29
)28	correlation coefficient (R) and coefficient of determination were employed [47]. R is just a
30
31	normalized measurement of covariance, with the result always lying between 0 and 1. It is the
32
33	product of the covariances of two variables and their standard deviations. Like covariance, the
34
35	measure may only represent a linear correlation of variables and ignores several other kinds of
36
37
38	linkage or relationship. R has limitations in reporting the correlation if one or more data points
39
40	are missing. The maximum likelihood estimator is utilized in such a case. The expression used
41
42	for the estimation of R is given in Eq. (1).
43

44
 (
46
)45	𝑅 =
47
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(1)

51	2.4.2. Coefficient of determination (R2)
52
 (
54
)53	Correlation is a comprehensive measure of the strength of a link between variables. The
55
56	most common application of the term correlation in the sense of a linear link between two
57
58	continuous variables is Pearson product-moment correlation. A Spearman rank correlation can
59
60	be employed to measure monotonic association for nonnormally distributed continuous data,

1
2
3	ordinal data, or data with noteworthy outliers. Both correlation coefficients are scaled from –1
4
 (
6
)5	to +1, with 0 indicating no linear or monotonic association and 1 indicating a greater
7
8	relationship that eventually approaches a straight line [34][48].
 (
(
) (
)
)9

10
11	𝑅2 = 1 ―

∑𝑛
𝑖 = 1
∑𝑛

(𝑥𝑖 ― 𝑦𝑖)2
( 𝑦𝑖)2

(2)

12	𝑖 = 1
13
14
15
16
17	2.4.3. Mean absolute percentage error
18
19	MAPE is a measure for predicting accuracy. It is also known as a loss function and is
20
21	used to interpret relative error evaluation. A MAPE value can be any positive number between
22
 (
24
)23	0 and 1. The mean absolute percentage error (MAPE) is one of the most often used metrics of
25
26	forecast accuracy due to its scale independence and interpretability. On the other hand, MAPE
27
28	has a certain limitation of giving infinite or undefined answers for zero or close-to-zero real
29
 (
31
)30	numbers [49]. However, the combined usage of R2 and MAPE overcomes this difficulty by
32
33	presenting an overall quality of prediction. The following formula was used to compute MAPE:
34

35	𝑀𝐴𝑃𝐸 = 1∑𝑛

|𝑥𝑎𝑖 ― 𝑥𝑝𝑖| × 100


(3)

36	𝑛
37
38
39
40

𝑖 = 1

𝑥𝑎𝑖

41	2.4.4. Root mean squared error
42
43	The RMSE is a predictive ability statistic that considers the magnitudes of prediction
44
45	errors for several data points. The RMSE is a scale-dependent accuracy statistic used to
46
47
48	compare the prediction errors of many models on a single dataset rather than across datasets.
49
50	The RMSE number is never negative, and a value of 0 (which is seldom reached in practice)
51
52	implies that the data is perfectly matched. A lower RMSE is better than a higher RMSE in
53
 (
55
)54	general. Comparing different data types would be erroneous since the metric is susceptible to
56
57	outliers and relies on the quantity of the numbers used. The following expression was used for
58
59	the calculation of RMSE:
60

1
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𝑛
)7




(4)

8	2.4.5. Nash-Sutcliffe efficiency (NSCE) and Kling-Gupta efficiency (KGE)
9
10	The Nash–Sutcliffe efficiency is a popular statistical index since it normalizes model
11
12	performance onto an understandable scale. The NSE metric measures how well-simulated data
13
 (
15
)14	predict output data in a model. It is a normalized statistical number between 0 and 1 that
16
17	indicates the ratio of residual variance ("noise") to real data variance ("information"). The
18
19	closest NSE value denotes a perfect match between experimental and model data. The Nash–
20
 (
22
)21	Sutcliffe  Coefficient  obscures  fundamental  behaviors  that,  if  recast,  might  assist  in
23
24	understanding model behavior in terms of bias, unpredictability, and other aspects. The
25
26	alternative "Kling-Gupta" efficiency bounds differ from those of the NSE [50][51]. The
27
 (
}
) (
29
)28	following expressions were used for the estimation of NSCE and KGE.
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 (
38
)37	Where, (for Eq. (1) to Eq. (6)), ‘i’ represents term under consideration, ‘n’ represents total
39
40	elements, ‘xai’ denotes the actual value, ‘xpi’ represents predicted value, ′𝑥𝑎′ is mean actual values, 𝑥𝑝 is
41
42	mean predicted values, ‘δ’ denotes bias error, ‘α’ denotes error in flow variability, and correlation is
43
44	shown with ‘R’.
45
46
47
48	2.5 Taylor diagrams for model comparison
49
50	Taylor  diagrams  effectively  demonstrate  better  models  that  use  several  model
51
 (
53
)52	performance metrics as a single visual comparison portrayal [52]. They are an excellent tool
54
55	for displaying improved models since they utilize several model performance criteria as a single
56
57	visual comparison depiction. Taylor diagrams are utilized in this research to compare
58
59	the statistical correlation between observed and ML-based model performance in simulating
60

1
2
3	the thermophysical characteristics of hybrid nanofluids. Correlation, standard deviation, and
4
 (
6
)5	root-mean-square error were determined for the graphical representation of the relationship
7
8	between observed and simulated data. The Taylor diagram facilitates model comparison by
9
10	showing them in a single figure. The radial distance from the origin represents the standard
11
12	deviation between observed and simulated data, whereas the distance from the observed point
13
14
15	on the x-axis represents the centered root-mean-square error (CRMSE) [53].
16
17
18
19	3. Results and discussion
20
21
22	The research study aims to characterize the different thermophysical characteristics of
23
24	Fe3O4 coated MWCNT hybrid nanofluids utilizing two clever AI-based approaches, GEP and
25
26	ANFIS. Thermal conductivity, viscosity, density, and specific heat of hybrid nanofluids were
27
 (
29
)28	investigated in a laboratory-scale experiment. The measurements were taken at various
30
31	temperatures and nanoparticle concentration ratios in the base fluid. The experiment data was
32
33	then utilized to build prediction models [54][55]. GEP was used for model generation and
34
 (
36
)35	prediction in the first phase, whereas in the second phase, ANFIS was used for model prediction
37
38	under comparable conditions. Each attribute was given its model using GEP and ANFIS. Their
39
40	prediction abilities are then compared using statistical markers and a Taylor diagram.
41
42
43
44
45	3.1 Model prediction of thermal conductivity
46
47	The developed models for thermal conductivity using ANFIS and GEP were evaluated
48
49	and found to be in good agreement with observed data, as shown in Fig. 7. The experimentally
50
 (
52
)51	determined thermal conductivity and predicted thermal conductivity are compared with trend
53
54	lines in Fig.7a. In Fig.7b, the performance of ANFIS and GEP projected values is shown for
55
56	the complete dataset. The ANFIS and GEP models both performed excellently and were found
57
58
59
60

1
2
3	to be in good agreement with experimental data of thermal conductivity over a wide range of
4
 (
6
)5	temperatures and concentration ratios.
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59
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1
2
3	Fig .7. Shows comparison with ANFIS and GEP for (a) the measured versus predicted
4
5	thermal conductivities and (b) all the datapoints
6
7
8
9	Statistical indicators were used to evaluate the thermal conductivity model's prediction
10
11	effectiveness. In the case of ANFIS, the correlation value R was 0.9914; however, with the GEP
12
 (
14
)13	model, it was reduced to 0.9872. R2 values for ANFIS and GEP were 0.983 and 0.9748,
15
16	respectively. The RMSE values for ANFIS and GEP were 0.0098 and 0.0095, respectively,
17
18	while the MAPEs were 0.74 and 1.08%, respectively. The predictive effectiveness of the
19
20	models tested using KGE for ANFIS and GEP was 0.9182 and 0.9188, respectively; similarly,
21
22
23	the NSCE for ANFIS and GEP was 0.9735 and 0.9755, respectively. Table 1 shows the
24
25	statistical indicators of model evaluation employed in this study. The Taylor diagram, shown
26
27	in Fig. 8, is utilized to further compare the thermal conductivity models. The Taylor diagram
28
 (
30
)29	further proves the superiority of the ANFIS-based thermal conductivity model over the GEP
31
32	model since the ANFIS model is closer to the observed values.
33
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1
2
3	Fig. 8. Taylor diagram for thermal conductivity model
4
5
6
7
8	3.2. Model prediction of density
9
10	The relative prediction performance of ANFIS and GEP for the density model is depicted
11
 (
13
)12	in Fig. 9. Trendlines were used to compare the model projected density with observed density,
14
15	as shown in Fig. 9a. In Fig. 9b, the performance of ANFIS and GEP projected values is shown
16
17	for the entire density dataset. It was observed that the ANFIS and GEP models could forecast
18
 (
20
)19	density over a wide variety of test conditions. GEP, on the other hand, outperforms ANFIS in
21
22	the density model.
23
24	The predictive efficacy of ANFIS and GEP-based density models is assessed using
25
26	statistical indicators. In the instance of ANFIS, the correlation value R was 0.9816, but it
27
28
29	improved to 0.9974 for the GEP-based density model. While the R2 for ANFIS and GEP were
30
31	0.9636 and 0.9948, respectively. RMSE and MAPE were used to calculate model errors in the
32
33	present study. The RMSE for ANFIS and GEP was as low as 1.462 and 0.475, respectively
34
 (
36
)35	while MAPEs for ANFIS and GEP were exceedingly low, at 0.09% and 0.03%, respectively.
37
38	The predicted efficiencies of the density model were evaluated with KGE and NSCE. KGE was
39
40	0.8985 and 0.9965 for ANFIS and GEP based models, respectively; similarly, the NSCEs for
41
 (
43
)42	ANFIS and GEP were 0.98455 and 0.9985, respectively. Table 1 shows the statistical indices
44
45	obtained in this investigation. As demonstrated in Fig.10, all statistical indicators are depicted
46
47	in a single graph using a spider plot.
48
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51
52
 (
54
)53	Fig. 9. Shows comparison with ANFIS and GEP of (a) the measured versus predicted densities
55	and (b) the density versus experiment number.
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)28	Fig. 10. Taylor diagram for density model
30
31
32
33	3.3 Model prediction of viscosity
34
35	The viscosity data of Fe3O4 Coated MWCNT hybrid nanofluids were employed to
36
 (
38
)37	develop predictive models with ANFIS and GEP. Fig. 11 compares and displays the predicted
39
40	outcomes of both models. A comparison graph comparing the observed and expected viscosity
41
42	is provided in Fig. 11a. The performance of ANFIS and GEP projected values for the entire
43
44	viscosity dataset is shown in Fig. 11b. The ANFIS and GEP models were validated using
45
 (
47
)46	measured viscosities and demonstrated excellent prediction performance over the whole range
48
49	of test conditions. In contrast, the GEP-based viscosity model outperformed the ANFIS-based
50
51	viscosity model.
52
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48
 (
50
)49	Fig. 11. Shows comparison with ANFIS and GEP of (a) the measured versus predicted
51	viscosity model (b) the viscosity versus experiment number.
52
53
 (
55
)54	The prediction performance of ANFIS and GEP-based viscosity models were evaluated
56
57	using statistical markers. R2 values for ANFIS and GEP were 0.9702 and 0.9891, respectively.
58
59	The correlation coefficient R for ANFIS was 0.9850, whereas it was 0.9945 for GEP. The errors
60

1
2
3	in the models were calculated using RMSE and MAPE. The RMSE values for ANFIS and GEP
4
 (
6
)5	were as low as 0.0396 and 0.0221, respectively. ANFIS and GEP MAPEs were 2.93 and 2.16%,
7
8	respectively. The prediction efficiencies for ANFIS and GEP KGE were 0.9402 and 0.9835,
9
10	respectively, while the NSCEs for ANFIS and GEP were 0.9645 and 0.9895. The statistical
11
12	indices acquired in the current study are shown in Table 1. The viscosity models created with
13
14
15	ANFIS and GEP were compared using Taylor diagrams (Fig .12). In terms of prediction, both
16
17	models were very efficient and accurate. In terms of statistical indices and the Taylor diagram,
18
19	the GEP model outperformed the ANFIS model.
20
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)46	Fig. 12. Taylor diagram for viscosity model
48
49
50
51	3.4. Model prediction of specific heat
52
53	The observed specific heat data of Fe3O4 coated MWCNT hybrid nanofluids were used
54
 (
56
)55	to build prediction models utilizing ANFIS and GEP. In Fig. 13, the expected results of both
57
58	models are contrasted and shown by comparing graphs. Fig. 13a depicts a graph comparing
59
60	observed and predicted specific heat data. Fig. 13b depicts the performance of ANFIS and GEP

1
2
3	projected values throughout the whole dataset. The ANFIS and GEP models performed
4
 (
6
)5	admirably over the whole range of test conditions. On the other hand, the GEP-based particular
7
8	heat model outperformed the ANFIS-based specific heat model.
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 (
58
)57	Fig .13. Shows comparison with ANFIS and GEP of (a) the measured versus predicted
59	specific heat model and (b) the specific heat versus experiment number.
60

1
2
3	The predictive capability of a specific heat model built using two AI-based intelligence
4
 (
6
)5	algorithms, ANFIS and GEP, was evaluated using statistical criteria. The correlation coefficient
7
8	R for ANFIS was 0.9601, while the GEP-based model increased to 0.9825. ANFIS and GEP
9
10	had R2 values of 0.9218 and 0.9654, respectively. The RMSE values for ANFIS and GEP were
11
12	1.495 and 0.7929, respectively, with MAPEs of 0.02% and 0.01%. KGE for ANFIS and GEP
13
14
15	were 0.8015 and 0.9695, respectively. The NSCE values for ANFIS and GEP were 0.8748 and
16
17	0.9566, respectively. The statistical indices acquired in this study are shown in Table 1. The
18
19	Taylor diagram was also used to compare the individual heat models (Fig .14). The GEP-based
20
 (
22
)21	specific heat model outperforms the ANFIS model, as evidenced by the Taylor diagram, which
23
24	demonstrates that the GEP model is closer to the baseline value. In Fig.15, all statistical
25
26	indicators are shown in a single graph using a spider plot.
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55	Fig. 14. Taylor diagram for specific heat model
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31
32
33
34	Table 1. Statistical indices for ANFIS and GEP models
35
 (
Thermal 
conductivity
ANFIS
0.9914
0.983
0.0098
0.74%
0.9182
0.9735
GEP
0.9872
0.9748
0.0095
1.08%
0.9188
0.9755
Density
ANFIS
0.9816
0.9636
1.462
0.09%
0.8985
0.9845
GEP
0.9974
0.9948
0.4753
0.03%
0.9965
0.9958
Viscosity
ANFIS
0.985
0.9702
0.0396
2.93%
0.9402
0.9645
GEP
0.9945
0.9891
0.0221
2.16%
0.9832
0.9895
Specific
 
heat
ANFIS
0.9601
0.9218
1.495
0.02%
0.8015
0.8748
GEP
0.9825
0.9654
0.7929
0.01%
0.9695
0.9566
)36	Parameter	R	R2	RMSE	MAPE	KGE	NSCE
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51	4. Conclusions and future perspective
52
53	The feasibility of AI-based GEP and Neuro-fuzzy techniques in modeling thermophysical
54
 (
56
)55	characteristics of Fe3O4 coated MWCNT hybrid nanofluid was explored in this work.
57
58	Laboratory analyses of the thermophysical characteristics of hybrid nanofluids provided the
59
60	data for the prognostic model. Thermal conductivity, viscosity, density, and specific heat were

1
2
3	determined in 5 ℃ increments throughout a 20 oC to 60 oC nanofluid temperature range and at
4
 (
6
)5	various nanofluid concentrations (0%, 0.05%, 0.10%, 0.20%, and 0.30%). The model was
7
8	trained using 70% of the datasets, with the remaining 15% utilized for testing and validation.
9
10	Thermal conductivity, density, viscosity, and specific heat of Fe3O4 coated MWCNT hybrid
11
 (
13
)12	nanofluid were effectively predicted using both GEP, and ANFIS approaches. The following
14
15	are the main outcomes of the study:
16
17		The prediction of thermophysical properties by GEP outperformed those of ANFIS. The
18
 (
20
)19	GEP technique provides for an easier model development formulation and a higher
21
22	degree of consistency between simulated and experimental data.
23
24		The ANFIS and GEP models both fared well on statistical regression indices. The R for
25
26	ANFIS was more than 0.9601 and greater than 0.9825 for GEP. In all situations, the R2
27
28
29	value for ANFIS was greater than 0.9218, whereas it was greater than 0.9654 for GEP.
30
31		The mean absolute percentage error (MAPE) for the ANFIS and GEP models was less
32
33	than 2.93% and 2.16%, respectively. The root mean squared error (RMSE) for the
34
35
36	ANFIS and GEP models was less than 1.495 and 0.9729, respectively.
37
38		Taylor diagrams were used to compare the ANFIS and GEP-based prognostic models.
39
40	These graphics demonstrate the GEP's superiority over ANFIS. For comparison, all
41
 (
43
)42	statistical markers were displayed using a spider diagram.
44
45	The proposed GEP and ANFIS-based prognostic models are efficient for forecasting the
46
47	thermophysical properties of hybrid nanofluids based on temperature and nanoparticle
48
 (
50
)49	concentrations, resulting in a cost-effective, time-saving, and dependable approach. Finally,
51
52	based on the results of this study, it is crucial to emphasize that AI techniques are incredibly
53
54	robust and effective tools for dealing with complicated processes, especially when mapping the
55
 (
57
)56	properties of hybrid nanofluids. An intelligent generalization of mathematical equations to
58
59	previously unknown data is possible. The author proposes that the current study be expanded
60

1
2
3	to cover various additional types of AI approaches. This may assist in the development of a
4
 (
6
)5	database that will aid in the selection of an appropriate AI technique.
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