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Abstract—This letter investigates the jamming attack in the
physical broadcast channel (PBCH) of the fifth generation (5G)
new radio (NR) that conveys critical information of the cell called
master information block (MIB). Since smart attack on PBCH is
simply possible using the information of synchronization signal
block (SSB) that is unencrypted during the initial access, this
channel is one of the most effective choices from a jammer’s
point of view. In this study, we propose a hypothesis test to
detect the presence of a jamming attack in the PBCH block
and, furthermore, we estimate the principal direction of the
attacked PBCH demodulation reference signal (PBCH DMRS)
that significantly deviates under that attack. These achievements
are also presented in the form of semi-definite programming
(SDP) relaxation. PBCH DMRS is located at 25% of the PBCH
block and is vital for PBCH extraction to initiate a radio
connection between user and an appropriate cell. Simulation
results evaluate the proposed method in various aspects and prove
its superiority over the recent competing methods.

Index Terms—SPCA, smart jamming, 5G NR, PBCH DMRS,
physical layer.

I. INTRODUCTION

5TH generation (5G) new radio (NR) is the current
technology released by third generation partnership project

(3GPP), which has accelerated in recent years. Physical
channels and signals in the physical layer of 5G NR are
vulnerable to external attacks with different levels of feasibility
[1], [2], [3]. In this technology, primary synchronization signal
(PSS), secondary synchronization signal (SSS) and physical
broadcast channel (PBCH) are wrapped altogether as an
synchronization signal block (SSB), and transmitted in various
patterns depending on the network settings such as channel
bandwidth and subcarrier spacing. SSB is always 4 OFDM
symbol wide and 240 subcarriers (i.e., 20 resource blocks
(RBs)) long [1].

User equipment (UE) performs the cell search process to
provide time and frequency synchronization with a cell and
to detect the cell ID (CID) using N cell

ID = 3N
(1)
ID + N

(2)
ID ,

where N
(1)
ID and N

(2)
ID are carried by the strongest detected

SSS and PSS sequences, respectively. UE finds out the CID,
and then acquires the index of PBCH DMRS sequence, which
describes the assigned resource elements (REs) in the PBCH
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block. PBCH DMRS specifies parameters such as half-frame
bit and SSB index, depending on the maximum number of
SSBs within a SSB set, and determines the least significant
bits of system frame number (SFN). UE estimates the PBCH
block, and then decodes the master information block (MIB)
using SFN, to receive the other system information transmitted
on physical downlink shared channel (PDSCH). Since SSB is
unencrypted during the initial access and will be transmitted
periodically within the broadcast channel transmission time
interval (BCH TTI), it is easy for a malicious jammer to detect
the PBCH DMRS REs, which follow N cell

ID , by sniffing, and
then attack the PBCH DMRS sequence with the aim of causing
a failure in PBCH extraction and MIB information decoding.

By the development of 5G NR and beyond, researchers
are now attracted to study on the physical layer security.
However, thus far, a limited number of works has been
accomplished in the particular area of 5G NR physical
channels. Some energy efficiency (EE) based works such as
[4] and [5] rely on the prior knowledge of the channels
and even the jammers. Thus, they are not feasible in a real-
time network. The methods in [6], [7], and [8] are basically
designed using machine learning algorithms. In the absence
of sufficient training samples, these methods fail to deal with
unknown jamming patterns (JPs). However, zero-shot learning
(ZSL) based method in [7] achieves some acceptable results.
Moreover, [7] and [8] are ineffective when multiple jammers
attack with distinct policies. The methods such as [9] add a
designed and manufactured hardware to the network and, thus,
require a high startup cost. Finally, the authors in [10] use
sparse principal component analysis (SPCA) conceptual idea
for jamming detection, which deserves more research efforts
in the field of physical layer security.

Jamming attack on the PBCH DMRS REs forces the
principal direction of its dominant subspace and, thus, that of
PBCH dominant space to deviate from the normal state. The
vulnerability of SSB and the importance of PBCH DMRS in
delivering data from gNB to UE, in addition to considering
the aforementioned issues, motivate us to study the sparsity in
the structure of PBCH DMRS sequence, which is occurred
by a jamming attack, at the user side. In this letter, we
detect the targeted attack similar to the detection of a sparse
direction with a significantly higher variance than any other
direction, which is the main concept of SPCA. Furthermore,
the principal component of the attacked signal is estimated.
Thanks to investigating the sparsity on the structure of the
attacked signal at the user side, this method does not rely
on the number of attackers. Besides, the proposed adaptive
detection procedure makes our method independent of any
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jammer’s information. The main contributions of this work
that make this letter different from [10] are as follows: 1) we
study the testing problem for jamming detection and compute
the high probability deviation bounds using a semi-definite
programming (SDP) relaxation, 2) the minimum jamming
power for a successful detection is determined, and 3) the
principal direction of the attacked PBCH DMRS is estimated,
and then presented using a polynomial-time semi-definite
relaxation technique. This is a fundamental requirement for
jamming cancellation.

Notations: Throughout the letter, λmax(Σ̂) indicates the
leading eigenvalue of matrix Σ̂, and Rp×p is the set of p× p
matrices with real numbers. We use 1{·}, ∥vn∥q , and V ⪰ 0
to denote the indicator function, lq norm of vn, and semi-
definite positive V, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The subcarriers that include the DMRS and the jamming
signal are indexed by the set S with the cardinality |S| = Ns.
Let an = [a(n,m)]

T and dn = [d(n,m)]
T , with m ∈ S, denote

the jamming signal and the DMRS on the nth OFDM symbol
time and mth subcarrier frequency, respectively. We formulate
the received OFDM signal generated by the clustered delay
line (CDL) channel model under the attacks of multiple
jammers as follows

yn = diag(dn)F(:, 1 : L)hn

+

Nj∑
i=1

√
θi diag(ain)F(:, 1 : L)gi

n +An, (1)

where F denotes the Ns × Ns square discrete Fourier
transformation (DFT) matrix, and, hn and gi

n indicate the
channel impulse response vectors with L channel taps, from
the base station and the ith jammer to UE, respectively.
Furthermore, Nj is the number of jammers, θi ≥ 0 is the ith
jamming-to-signal ratio (JSR), and, finally, An ∼ N (0, σ2)
denotes the additive white Gaussian noise (AWGN) with mean
zero and variance of σ2 that is introduced to the channel.

III. PROPOSED METHOD

In the CDL channel model with different facing scatterers,
each element of the channel impulse response vectors shows
the gain distribution in a specific direction. Therefore, we
can detect the presence of a jamming attack similar to
sparse principal component detection in the SPCA approach.
Referring to (1), the received signal y ∼ Np(0,Σ) has the
covariance of Σ = E[yyT ], where y = {y1, ...,yNt

}, p
denotes the number of dimensions and Nt is the total number
of symbols. However, in accordance with the requirement
of real-time systems, we consider only N symbols as the
sample observations, which carry PBCH DMRS sequence, and
reformulate y to ŷ ∼ Np(0, Σ̂), where ŷ = {ŷ1, ..., ŷN},
N > p, and Σ̂ = 1

N

∑N
n=1 ŷnŷ

T
n ∈ Rp×p denotes the

empirical covariance matrix of the received signal. In the
following, a hypothesis testing problem is proposed to detect
a jamming attack on the PBCH dominant space, and then the
principal direction of y is estimated in the form of an efficient
polynomial-time semi-definite relaxation.

A. Hypothesis Testing Problem

Phase 1: The largest k-sparse eigenvalue of Σ̂ is given by

λkmax(Σ̂) ≜ max
vn∈Mv

vT
n Σ̂vn, (2)

where vn denotes the unit norm sparse principal component
of Σ, which represents the deviation of PBCH DMRS under
the jamming level θ =

∑Nj

i=1 θ
i with Mv ≜

{
vn =

(vn1 , ..., vnp)
T ∈ Rp :

∑p
j=1 1{vnj ̸= 0} ≤ k, ∥vn∥2 =

1
}

as the set of k-sparse unit vectors. Equation (2) finds

out the maximum eigenvalue of Σ̂ among different values
corresponded to 2p possible vectors for vn, considering the k
sparsity level. The main objective in this phase is to compute
the deviation bounds τ0 and τ1 for λkmax(Σ̂) to be utilized
in the test ψ(Σ̂) ≜ 1{λkmax(Σ̂) > τ}, τ ∈ [τ0, τ1], with the
probability of 1 − δ, to discriminate between the normal and
attacked states respectively denoted by H0 and H1, as follows
[11] {

H0 : ŷ ∼ Np(0, Σ̂0),

H1 : ŷ ∼ Np(0, Σ̂0 + θvnv
T
n ),

(3)

where Σ̂0 is the covariance matrix of ŷ under H0. Let
ρ = log(1/δ) and x = k log(9ep/k) + ρ. The upper and
lower bounds of λkmax(Σ̂), which are respectively denoted by
quantiles τ0 and τ1, are computed by (see Appendix for the
proof) {

τ0 = 1 + 4
√

x
N + 4 x

N ,

τ1 = 1 + θ − 2(1 + θ)
√

ρ
N .

(4)

The condition τ1 > τ0 holds for any θ > θ̌, where the
minimum detection level θ̌ is defined as follows

θ̌ ≜ 4

√
x

N
+ 4

x

N
+ 4

√
ρ

N
. (5)

Thus, for any θ > θ̌, we propose the test ψ(Σ̂) to detect the
jamming attack with probability 1 − δ using an investigation
on the behavior of λkmax(Σ̂) such that

PH0
(λkmax(Σ̂) > τ0) ≤ δ,PH1

(λkmax(Σ̂) < τ1) ≤ δ. (6)

Phase 2: Since computing λkmax(Σ̂) is in general a hard
computational problem, in this phase, the deviation bounds
and the minimum detection level are computed using SDP
relaxation technique. Thus, the largest k-sparse eigenvalue of
Σ̂ can be written as

λkmax(Σ̂) ≜ max
V∈MV

Tr(Σ̂V), (7)

where V ≜ vnvn
T and MV ≜

{
Tr(V) = 1, ∥V∥0 ≤

k2,V ⪰ 0,Rank(V) = 1
}

. Equation (7) contains l0 norm
and the rank one as the two sources of non-convexity. We
use Cauchy–Schwarz inequality for matrix V to substitute
∥V∥1 ≤ k for ∥V∥0 ≤ k2, and then simply drop the rank-one
constraint, in order to get a convex set. The SDP relaxation
of λkmax(Σ̂) is defined by

λ̃kmax(Σ̂) ≜ max
V∈M̃V

Tr(Σ̂V), (8)
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where M̃V ≜
{

Tr(V) = 1, ∥V∥1 ≤ k,V ⪰ 0
}

. Next, the

behavior of λ̃kmax(Σ̂) under hypotheses H0 and H1 will be
studied.

We define the following inequality for any Σ̂ ⪰ 0 as a
relaxation of the original problem

λkmax(Σ̂) ≤ λ̃kmax(Σ̂). (9)

Referring to (6) and (9), λ̃kmax(Σ̂) takes the larger values under
H1. Therefore, we can write (see (28) in Appendix)

λ̃kmax(Σ̂) ≥ 1 + θ − 2(1 + θ)

√
ρ

N
. (10)

To study λ̃kmax(Σ̂) under H0 state
(
i.e., the upper bound

of λ̃kmax(Σ̂)
)
, we first use the duality of SDP defined by

λ̃kmax(Σ̂) ≜ min
Φ∈S̃p

{λmax(Σ̂+Φ)+k∥Φ∥∞}, where matrix Φ

belongs to the space of p×p symmetric real matrices indicated
by S̃p. Using (9), for any µ ≥ 0 such that ∥Φ∥∞ ≤ µ, we
have

λkmax(Σ̂) ≤ λ̃kmax(Σ̂) ≤ λmax(Σ̂+Φ) + kµ. (11)

Since Σ̂ ⪰ 0 is a k-sparse matrix, for any matrix M equation
(11) yields

λkmax(Σ̂+M) ≤ λmax((Σ̂+M)−M) + k∥M∥∞
= λkmax(Σ̂) + k∥M∥∞.

(12)

Next, we decompose Σ̂ to A = diag(Σ̂i,i) and B = Σ̂ −
A matrices, with i ∈ {1, ..., p}, and then control the largest
element of each one separately, in the following two steps:

Step 1: To control the largest element of B, we use Lemma
1 in [12] to bound ∥B∥∞ with high probability. Therefore, for
any x1 > 0 we have

P
(
|Bij | ≥ 2

√
x1
N

+ 2
x1
N

)
≤ 4e−x1 , (13)

where |.| denotes the absolute value of its element, and Bi,j =

0.5
[

1
N

∑N
n=1[0.5(ŷn,i + ŷn,j)

2 − 1] − 1
N

∑N
n=1[0.5(ŷn,i −

ŷn,j)
2−1]

]
, with i, j ∈ {1, ..., p}. Applying Boole’s inequality

on the off-diagonal terms, (13) yields

P
(
max
i<j

|Bij | ≥ 2

√
x1
N

+ 2
x1
N

)
≤ 2p2e−x1 . (14)

Using disjoint support decomposition (DSD) of Σ̂, we write
Sµ(Σ̂) = Sµ(A) + Sµ(B), where Sµ is the soft-threshold
function of its input with threshold µ. Referring to (14), and
taking x1 ≜ log(4p2/δ) and µ ≜ 2

√
x1

N + 2x1

N , we have
∥B∥∞ ≤ µ and, thus, Sµ(B) = 0 with probability 1 − δ/2.
Therefore, here we get

λmax(Sµ(Σ̂)) = λmax(Sµ(A)) ≤ λmax(A) = max
i

Aii,

(15)
where Aii =

1
N

∑N
n=1 ŷ

2
n,i.

Step 2: In this step, we control ∥A∥∞ using the same
procedure of step 1. Applying Lemma 1 in [12] and Boole’s
inequality on the diagonal terms, for any x2 > 0 we have

P
(
max

i
Aii ≥ 1 + 2

√
x2
N

+ 2
x2
N

)
≤ pe−x2 . (16)

Algorithm 1 The proposed anti-jamming scheme for PBCH
Input: y = {y1, ...,yNt

}, N , p, and k,
1: Compute λ̃kmax(Σ̂) ≜ max

V∈M̃V

Tr(Σ̂V), τ̃0 and τ̃1,

2: if λ̃kmax(Σ̂) ≤ τ̃0 then
3: Return: No jamming,
4: else
5: if λ̃kmax(Σ̂) ≥ τ̃1 then
6: Compute ṽk

max,
7: else
8: Return: Not successful. Update input values,
9: end if

10: end if
Output: ṽk

max.

Let x2 ≜ log(2p/δ). Then, the largest element of Aii is
bounded with probability 1− δ/2 such that

max
i

Aii ≤ 1 + η, (17)

where η ≜ 2
√

x2

N + 2x2

N . Referring to (11), λ̃kmax(Σ̂) ≤
λmax(Sµ(Σ̂)) + kµ. Using DSD of Σ̂, for µ ≥ 0, we write

λ̃kmax(Σ̂) ≤ λmax(Sµ(A) + Sµ(B)) + kµ

≤ λmax(Sµ(A)) + λmax(Sµ(B)) + kµ. (18)

Finally, referring to equations (15) and (17) and with Sµ(B) =
0, we reformulate equations (4) and (6) using SDP relaxation
as follows {

τ̃0 = 1 + kµ+ η,

τ̃1 = 1 + θ − 2(1 + θ)
√

ρ
N ,

(19)

PH0(λ̃
k
max(Σ̂) > τ̃0) ≤ δ,PH1(λ̃

k
max(Σ̂) < τ̃1) ≤ δ. (20)

Same as phase 1, we compute the minimum detection level
θ̃ ≜ kµ + η + 4

√
ρ
N , which for any θ > θ̃ the condition

τ̃1 > τ̃0 holds. As a summary, in this phase, we proposed
the computationally efficient test φ̃(Σ̂) ≜ 1{λ̃kmax(Σ̂) > τ̃}
with τ̃ ∈ [τ̃0, τ̃1] and τ̃1 > τ̃0, to discriminate between the
normal and the attacked state of PBCH dominant space with
probability 1− δ.

B. Direction Estimation

In the preceding subsection, we detected the presence of
a distinguished direction under H1 using the estimation of
the largest eigenvalue of matrix Σ̂. Based on random matrix
theory, the eigenvector vn is associated to λkmax(Σ) for any
θ > 0. Furthermore, if Σ ≈ Σ̂ in spectral norm, then the
largest eigenvector of Σ̂ can be an acceptable approximation
for vn, which will hereafter be denoted by v̂n. Thus, in this
subsection, our target is to find out the largest eigenvector of
Σ̂ that is approximately equal to the attacked PBCH DMRS
direction. The leading k-sparse eigenvector of Σ̂ is defined by

v̂k
max ∈ argmax

un∈Mu

uT
n Σ̂un, (21)

where v̂ is the set of all estimators, Mu ≜
{
un ∈
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Fig. 1. The performance of our proposed method.

Rp : ∥un∥0 ≤ k, ∥un∥2 = 1
}

, and v̂n = v̂k
max.

Since computing the estimator in (21) is a non-deterministic
polynomial-time (NP)-hard problem, in the following, we
compute v̂n using the polynomial-time SDP estimator
ṽk
max. Let U ≜ unu

T
n , U ∈ Rp×p be the class of

positive semi-definite real symmetric matrices, and M̃U ≜{
U ∈ U ,Tr(U) = 1, Rank(U) = 1, ∥U∥0 = K2

}
, then we

have
max

un∈Mu

uT
n Σ̂un = max

un∈Mu

Tr
(
Σ̂unu

T
n

)
= max

U∈M̃U

Tr(Σ̂U).

(22)
To convert the non-convex optimization problem in (22) to a
convex problem, we drop the rank 1 constraint and replace l0
norm with l1 penalty, as max

U∈U, Tr(U)=1

{
Tr
(
Σ̂U

)
− λ∥U∥1

}
,

for any λ > 0. Let f(U) ≜ Tr
(
Σ̂U

)
− λ∥U∥1. If there is an

Ûϵ such that f(Ûϵ) ≥ max
U∈U, Tr(U)=1

f(U)−ϵ, with ϵ > 0, the

semi-definite relaxation for the estimator in (21) is computed
by

ṽk
max ≜ ṽλ,ϵ ∈ argmax

∥un∥2=1

uT
n Û

ϵun. (23)

In order to find Ûϵ, we reformulate the aforementioned
optimization problem as follows

max
U∈U, Tr(U)=1

f(U) = max
U∈U,Tr(U)=1

min
Q∈Q

Tr
(
(Σ̂+Q)U

)
,

(24)

where Q ≜ {Q ∈ Rp×p : QT = Q, ∥Q∥∞ ≤ λ}. Since the
last term in (24) is linear in both Q and U, the problem can
be solved using the proximal methods (see Theorem 3.2 in
[13]).

We summarize the design steps of our proposed method as
the pseudo-code in Algorithm 1. Finally, in order to neutralize
the jamming attack, the estimated ṽk

max is simply projected
onto the channel dominant subspace of the UE and, thus, the
true information of the transmitted PBCH DMRS sequence
can be extracted. The PCA conceptual idea has the potential
for more research efforts on the jamming problem in any 5G
NR physical channel. For example, finding the minimum of θ
for different probabilities of detection, adopting the proposed
method to the other classes of distributions, exploring the rate
of convergence for different N values, and solving the problem
for N < p, are left for the future.

IV. SIMULATION RESULTS

In this letter, we consider non-line of sight (NLOS) CDL-
B multiple-input multiple-output (MIMO) link-level fading
channel with the parameters specified in 3GPP TR 38.901
Table 7.7.1-2 in [14], subcarrier spacing of 30 kHz, channel
sampling rate = 10 kHz, 14 channel taps, and the maximum
Doppler shift = 100 Hz. Our transmitter generates the
sequence of PBCH DMRS symbols for CID = 910. Thus,
using 2 ≡ 910 mod 4, DMRS symbols are allocated to the
(2 + 1)rd RE of each 4 PBCH REs. Furthermore, P = 100,
and signal-to-noise ratio (SNR) is set to 5dB, unless otherwise
stated. The initial value for the sparsity level to start the
iterative detection procedure is k = floor(

√
p), and, finally,

the total jamming power of two employed jammers is set to
θ = 0dB.

We compare the detection performance of our method
with the proposed algorithms in [5] and [7] due to their
contributions to the adaptive detection problem. [5] formulates
a regret minimization problem for each type of wireless
environment, and then updates the transmit power towards
the best values, using an online stochastic gradient descent
approach. The algorithm in [7] consists of the following three
steps: 1) to learn the latent feature representation of known JPs
by a supervised learning procedure, 2) to recognize different
JPs using an unsupervised classification approach, and 3) to
classify both known and unknown JPs in latent space. Fig.
1(a) depicts the detection probability of different methods
versus the probability of false alarm using receiver operating
characteristic (ROC) curves, in the circumstances where all
PBCH DMRS symbols are under jamming attack. This figure
proves the superiority of our proposed method over the two
competing algorithms.

We have defined a minimum value for the total jamming
power in (5) for the probability of detection 1−δ. The behavior
of our method, using different SNR values but the same noise
and jamming power, is depicted in Fig. 1(b). It shows that,
in the proposed method, the detection performance can be
enhanced by decreasing the SNR value for a given Pf (e.g.,
almost 0.02 detection enhancement in 1db SNR reduction for
Pf = 0.1). The possibility of reducing the transmitted signal
power in order to improve the detection efficiency is the strong
point of this method.
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Let L
(
ṽk
max,vn

)
≜ sin

(
ϕ
(
ṽk
max,vn

))
=

(
1 −((

ṽk
max

)T
vn

)2)1/2
= 1√

2

∥∥ṽk
max

(
ṽk
max

)T −vnvn
T
∥∥
2

be the

average loss of the estimator ṽk
max, where ϕ

(
ṽk
max,vn

)
≜

cos−1
(∣∣(ṽk

max

)T
vn

∣∣) indicates the angle between ṽk
max and

vn. Taking λ ≜ 4
√

log p
N and ϵ ≜ log p

4N , Fig. 1(c) depicts
L(ṽk

max,vn) as a function of N for p ∈ {50, 100, 150} over
100 repetitions. In large N , the estimator ṽk

max converges to
the same mean loss for different p values. It proves that our
proposed estimator is independent of the k-sparsity level, in
case adequate sample observations are available.

V. CONCLUSION

In this letter, we proposed a method to detect the jamming
attack on PBCH in 5G NR and estimated the principal
direction of the deviated signal, with zero startup cost. Firstly,
a hypothesis testing problem was formulated to detect the
presence of an attack. Then, in case of an attack detection,
we estimated the leading eigenvector of the population
covariance matrix as a fundamental phase prior to the
jamming cancellation. Furthermore, these findings were also
computed using the SDP technique. Simulation results prove
the efficiency of the proposed method in various aspects.
Vulnerability of 5G NR from this physical channel motivates
researchers to further studies in this direction.

APPENDIX

Under H0: Let unit sphere RΩ be a subset of Rp,
i.e., Ω ⊂ {1, ..., p}, with the cardinality |Ω| = k, and
Σ̂Ω denotes the k × k submatrix of the finite set Ω,
with elements (Σ̂i,j){i,j}∈Ω. Then, we have λkmax(Σ̂) ≜
max
∥Ω∥=k

λmax(Σ̂Ω) ≜ max
vn∈Mv

vT
n Σ̂vn and λkmax(Σ̂) ≜ 1 +

max
∥Ω∥=k

{λmax(Σ̂Ω) − 1} for Σ̂ ⪰ 0. We denote v̇n and v̈n

respectively as the sparse principal components in the spaces
RΩ and Rk, such that v̇n = v̈n and ∥v̇n∥2 = ∥v̈n∥2 = 1.
Therefore, we have

v̇T
n Σ̂Ωv̇n − 1 = v̈T

n Σ̂v̈n − 1 =
1

N

N∑
n=1

[(v̇T
n ŷn)

2 − 1]. (25)

Referring to Lemma 1 in [12], the following tail bound holds
for any positive x

P

(
1

N

N∑
n=1

[(v̇T
n ŷn)

2 − 1] ≥ 2

√
x

N
+ 2

x

N

)
≤ e−x. (26)

Using a 1/4-net over RΩ, there is NΩ as a subset of RΩ

with cardinality smaller than 9k, such that the inequality
λkmax(Σ̂) ≤ 2 max

vn∈NΩ

vT
n Σ̂vn holds for any Σ̂ ⪰ 0 [11].

Therefore, with the definition of ΨΩ =
{
λmax(Σ̂Ω) − 1 ≥

4
√

x
N +4 x

N

}
and using Boole’s inequality for any x > 0, we

have

P(ΨΩ) ≤ P

(
max

vn∈NΩ

1

N

N∑
n=1

(vT
n ŷn)

2−1 ≥ 2

√
x

N
+ 2

x

N

)
≤ 9ke−x. (27)

We define the new event Ψ =
⋃

|Ω|=k

ΨΩ =

max
|Ω|=k

{λmax(Σ̂Ω) − 1} ≥ 4
√

x
N + 4 x

N . Let Cp,k be

the combinatorial number of parameters k and p. The
Boole’s inequality on the Cp,k subsets of Ω yields
P
(
λkmax(Σ̂) ≥ 1 + 4

√
x
N + 4 x

N

)
= P(Ψ) ≤ Cp,k9

ke−x.
Finally, using the inequality Cp,k ≤ (ep/k)k, the upper bound
for λkmax(Σ̂) is defined as τ0 = 1 + 4

√
x
N + 4 x

N .

Under H1: Referring to (2), we have λkmax(Σ̂) ≥ vT
n Σ̂vn =

1
N

∑N
n=1(ŷ

T
nvn)

2. Let Σ̂0 = Ip, which denotes a p×p identity
matrix. Then, using (3), we have ŷT

nvn ∼ N (0, 1 + θ). Let

Z ≜ 1
N

∑N
n=1

(
(ŷT

nvn)
2

1+θ − 1

)
be a new random variable.

Using Lemma 1 in [12], the inequality P(Z ≤ −2
√
ρ/N) ≤

e−ρ holds for any ρ > 0. Thus, the following inequality can
be simply proved

λkmax(Σ̂) ≥ 1 + θ − 2(1 + θ)

√
ρ

N
. (28)
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