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Abstract

This paper presents a method to reduce a set of n 2D points to a smaller set of s 2D points

with the property that the convex hull on the smaller set is the same as the convex hull of the

original bigger set. The paper shows, experimentally, that such reduction accelerates com-

putations; the time it takes to reduce from n down to s points plus the time of computing the

convex hull on the s points is less than the time to compute the convex hull on the original

set of n points. The method accepts 2D points expressed as real numbers and thus extends

our previous method that required points as integers. The method achieves a percentage of

reduction of points of over 90% in a collections of four datasets. This amount of reduction

provides speedup factors of at least two for various common convex hull algorithms. Theo-

retically, the reduction method executes in time within O(n) and thus is suitable for prepro-

cessing 2D data before computing the convex hull by any known algorithm.

Introduction

The convex hull of a set of points in two dimensions (2D) gives a polygonal shape as a visual

indication of the smallest region containing all the points. It is used as the base for other geo-

metric algorithms; it is always found as a function in computational geometry software pack-

ages [1]. Reports of applications of the convex hull continue to appear in different areas such

as zoology [2] and immunoinformatics [3].

Discarding points that cannot be part of a 2D convex hull, before computing it, has proven to

be popular and useful as a preprocessing step. Indeed, CGAL [4], a popular package for perform-

ing computational geometry tasks, includes the convex hull function ch_akl_toussaint
that has embedded into it a simple method for discarding 2D points, dating from 1978 [5].

This preconditioning method is linear in time but only discards around half the points. In

previous work [6], it was observed that the greater the reduction of points the greater the

speedup that is achieved when computing the convex hull; only that method requires integer

points. The new method presented here accepts points expressed as real numbers. The

method in [5], uses four extremal points to create a region from where points are discarded.

The preprocessing method here, drawing on from our previous work [6], aggressively seeks to

discard more points by quickly identifying many more regions where to operate. On each
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region, a one-step test decides which points to keep or remove. As a result, the percentage of

reduction of points seen in four datasets is of over 90%, reaching up to 98% at instances. With

this amount of reduction, speedups of at least a factor of two were measured when computing

the convex hull via this proposed preprocessing method (compared to the computation with-

out the preprocessing using the same algorithm for the convex hull). The main features of the

new preprocessing method are:

• We prove the method is linear, with a computational time within O(n). This is key to provide

computation speedups for state-of-the-art convex hull algorithms.

• No explicit sorting of points is required at any step of the preprocessing.

• The method discovers parallel work in its internal processing. The results reported in this

paper do not exploit this parallelism, however. This new found parallelism can be exploited

leading to even further accelerations (to be reported elsewhere).

The first two bullet points are key for the method to be useful. The best known general convex

hull algorithm is of time complexity O(n lg h) (lg n denotes log2 n throughout) where h is the

number of points in the convex hull (h is unknown from the outset) [7]; any preconditioning

method shall be of at most that same complexity. The proposed method remains simple and

practical. The preprocessing takes a pointer to the points and its size n and returns the cardi-

nality of the reduced subset s and an array containing the indices of points of the reduced sub-

set. This simplicity plus its time complexity of O(n) makes the method suitable for being

integrated into any existing computational geometry package.

The paper starts by explaining the processing steps of the method and proving that the

method is linear. It follows giving a heuristic to determine a parameter m, the number of

regions on where to operate, that leads to speedups greater than 1. Determining to which

region a point belongs to in constant time is fully developed. This was a challenge since this is

a statistical binning problem with a typical cost of O(n lg m) time for binning data when bins

are of a different sizes. The paper gives a solution to the data binning, as it emerges in the pro-

posed method for this problem, in O(n) time. This is an extra contribution of this work. The

experiments carried out here use the same four datasets used in our previous work [6]. Simi-

larly, convex hull algorithms available from standard packages such as CGAL and SciPy [8]

(both of best case time complexity of O(n lg n)) were used when benchmarking speedup bene-

fits of the preprocessing in the computation. In spite of the algorithm of Chan [7] being the

best known convex hull algorithm, it is not found in common computational geometry pack-

ages and so the paper includes results using an ad-hoc implementation of Chan’s algorithm.

Materials and methods

Proposed preconditioning method

We assume a set of 2D points with (x, y) coordinates; x, y as real numbers. This set is the input

to the convex hull problem. The cardinality of this set, n, is not known a priori. For the purpose

of computation, all input points reside in an array P = [XC, YC] with XC and YC as vectors of

length n corresponding to the x-coordinate and y-coordinate of all points in P respectively.

Values in vectors XC, YC may appear in arbitrary order and so they are not sorted. Each x and

y coordinate value is expressed in either single or double precision floating-point format.

A convex hull algorithm finds a polygon CH of h points derived from processing all points

from the input set P. The proposed method takes as input the set of n original points in P and

outputs a subset of points PS, of s points, such that the convex hull of PS is also CH. The pro-

posed preprocessing method is given as a number of contiguous steps. These are as follows:
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1. Find n, pxmin = min(XC), pxmax = max(XC) from P. This is illustrated in Fig 1A. Note min
(XC), max(XC) are values, not points. If there are multiple points having their x-coordinate

equal to these extreme values, we keep any one of those points. These two extreme points

pxmin and pxmax correspond to the points with smallest and greatest x-coordinate values of

the set P.

2. Given a constant parameter m, quantize the points of P according to the x-coordinate

value. This quantization divides the range of values of vector XC, that is the range max(XC) −
min(Xc), into m equally-sized intervals. This is a form of binning each point into m bins, so

that, each point is tagged with integer values 1, . . ., m corresponding to the bin where its x-

coordinate value lies. The choice of parameter m is discussed later.

3. Find the two points in each bin whose y-coordinate values are maximum and minimum.

Step 2 and step 3 are easily understood graphically as shown in Fig 1B. With these two

points per bin, we form two vectors of points, each of size m.

Fig 1. Steps of the proposed preprocessing method for reducing points. A: Step 1 finds pxmin and pxmax values and

points. B: Steps 2 and 3 of quantization of points into bins and points with minimum and maximum y-coordinate per

bin. C: Step 4 creates the upper and lower fence. D: Step 5: get convex lower and upper fences. E: Step 6 finds points

outside the upper and lower fences. F: An example of bin boundaries moved according to lower fence points.

https://doi.org/10.1371/journal.pone.0212189.g001
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4. Starting with the point at pxmin, join the points across all the m bins whose y-coordinate is

minimum, ending with point at pxmax. These line segments form a lower envelope of size

m + 2 points and it looks like a fence, or lower fence. Similarly, we build an upper fence also

starting with point at pxmin and ending with point at pxmax connecting the points whose y-

coordinate is a maximum across all bins. These line segments also connect m + 2 points.

Notice these two fences are polylines; the points are sorted according to its x-coordinate

value due to the nature of the bin intervals. The upper and lower polylines fences are shown

in Fig 1C.

5. Remove non-convex points from the lower and upper fences. Note that in Fig 1C both the

lower and the upper fences have points which make the polylines non-convex; we remove

those points to make the fences convex polylines. Note that the method in this step deals

with a small subset of points, of size m + 2, for each one of these two fences. Fig 1D shows

the convex fences after this quick removal step. All points from each convex fence polyline

are included in the output set PS.

6. Find all points in P that are outside the convex upper and convex lower fences and include

them in the output set PS. These points are shown in Fig 1E along with the convex hull com-

puted from the original points P. Note that, in essence, all points inside the region formed

by the lower and upper fence have been removed from input P. Also, note that the bound-

aries of the bins in Fig 1E have moved to coincide with the points of the upper fence. This is

most convenient when finding points outside the upper fence. Similarly, for finding the

points outside the lower fence, the bin boundaries are moved as shown in Fig 1F. This

rebinning of points is key for the method to be of linear time, and thus is addressed in detail

later in a separate section.

The proposed method runs in O(n) time

Step 1 of the method requires seeing all points of P once and it is of O(n) time. In Step 2, each

point in P is quantized in constant time, according to its x-coordinate value, since we assume

the number of intervals to be m (known value) and all intervals are of equal size. As a small

example, suppose the x-coordinate values of pxmin and pxmax as 2.3 and 9.1 respectively with

m = 4. The boundaries of the intervals are {2.3, 4.0, 5.7, 7.4, 9.1}, that is an interval size of 1.7

(calculated as (9.1-2.3)/4). Determining to which interval a given (x-coordinate) value belongs

to inside these interval boundaries is a trivial calculation; thus Step 2 takes O(n) time.

Step 3 uses the quantized value for each point from Step 2 to find points with extreme y-

coordinate values on each bin. Say we keep array L[j] for j = 1, . . ., m to record points with the

minimum y-coordinate for each bin. When seeing point pi = (xi, yi) for any i = 1, . . ., n, if in

Step 2 the quantized value of pi is b then the array is updated as L[b] = min(L[b], yi). Thus, this

Step 3 is done in O(n) time for the set P by visiting each point once. Note that finding the max-

imum y-coordinate value in each bin is also performed in the same pass along P.

Step 4 does the work of creating a polyline; this is straightforward and of time O(m). Step 5

makes the lower and upper fence to be of convex line segments. As these are polylines of size

m + 2, we could ultimately use Melkman [9] to complete this task in time O(m). Working on

the lower and upper fence can be done concurrently and so there is some level of parallelism

made explicit in this step. Parameter m is either given as a constant or we will make m� n. All

that remains to be shown is that Step 6 can run in O(n) time. We discuss Step 6 separately

below.

Step 6: Keeping points outside lower and upper fences. The operation performed by

Step 6 is simple. Consider the situation for three points p1, p2, p3 and the lower and upper
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fence as shown in Fig 2. We run two checks: one for checking whether points are outside the

lower fence and one for checking whether they are outside the upper fence (these could be exe-

cuted in parallel).

For example, for checking whether points are outside the lower fence, we set up new inter-

val boundaries by projecting the x-coordinate of the lower fence points a, b, c, d into the x axis.

Then, for point p1, we determine that it belongs to the bin spanning from boundary values

from ax to bx. A simple test, based on the cross-product of a, b, p1 will determine whether p1 is

outside the lower fence in Fig 2. This is equivalent to finding if point p1 is on the right or left of

the line segment ab. That is, we set new bins along the x axis, and all points of P whose x-coor-

dinate value lies on the same bin are checked against a single line segment; we check whether

these points are on the right or left of this unique line. The computation keeps (in Ps) those

points that are on the right of the line segments used in the cross-product check. Note that this

step has made explicit a great deal of parallelism. The number of line segments of the upper

and lower fences combined, is as many independent tasks that can be executed in parallel.

When deciding whether to keep point p3, for example, we check to see whether it is on the

right of the line segment gf in Fig 2; in such a case it is outside the upper fence.

Although all above seems simple at first, determining the new bin for a point in Fig 2 is the

challenge in this step. The challenge is to determine it fast. Note that all points were previously

quantized (Step 2) into m bins that were all of equal size intervals. We observe two things that

change when the bin boundaries are moved according to the projection of the lower/upper

fence points as shown in Fig 2. First, the bins are now of different interval sizes and secondly,

the number of bins might be less than m. These two observations are clearly shown in Fig 3,

using a lower fence as an instance.

The idea pursued in this work is to reuse the quantized values for points as computed back

in Step 2 to determine the new quantized values in this Step 6. We will see that each point is

re-binned into the new bins in constant time. From the same Fig 3 we see that the points

located in the new Bin 1 interval (shaded at the bottom) could have originally been quantized

as either 1 or 2. Similarly, points located within the new Bin 3 interval (also shaded at the

Fig 2. Three points to be managed by Step 6 of the preprocessing. Lower fence is composed of points a, b, c, d and

upper fence by points e, f, g. For each point p1, p2, p3 we need to find whether or not they are outside either of the two

fences. When checking points against the lower fence, interval boundaries along the x axis are aligned with the lower

fence.

https://doi.org/10.1371/journal.pone.0212189.g002
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bottom) could have originally been quantized as either 3, 4 or 5. There is an easy way to deter-

mine the new quantized value for a point (according to the new bin intervals in Step 6) by

using the information of the previous quantized value for the same point computed back in

Step 2.

The idea is shown at the top of Fig 3. First we project the points of the polyline found in

Step 4 onto the x axis (marked with the cross symbol ×), say into vector C. Then we annotate a

1 on each position where the point has been removed from this polyline in Step 5 (at C2, C5)

and perform a prefix sum over C into vector S. Observe the prefix sum takes O(m) time.

Consider the point p in Fig 3 with a projected value of x into the x-axis as shown. Point p was

originally quantized as belonging to bin 4. Note that as x> C5, then point p, now quantized

according to the new bins, is of value 5 − S5 = 5 − 2 = 3. Note, that should the x-coordinate of

point p been located between C4 and C5 the new bin value would have been of 4 − S4 = 4 − 1 =

3; this is also clear from the figure. In general, this re-binning of points is presented as Algo-

rithm 1.

Algorithm 1: Rebinning of points
input: An array P of n points as (x, y) (reals); an array Q of original
quantized values for P (integers); an array C of size m + 2 with bound-
ary interval values for the bins based on fences (reals); an array S
of size m + 2 with a prefix sum of removed non-convex points from
fences (integers)
output: Array Q updated with quantized values for the new bins based
on convex fences
for i = 0 to n do
x, y = P[i];
q = Q[i];
if x � C[q + 1] then
Q[i] = Q[i] + 1 − S[q + 1];

Fig 3. New bins intervals derived from a lower fence. For an original six bins of equal size intervals (dotted vertical

lines), the polyline joining the points with minimum y-coordinate values on each bin was processed into a convex

polyline. The points of the convex polyline are projected into the x axis to form five new bins; these are of non-equal

sizes.

https://doi.org/10.1371/journal.pone.0212189.g003
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else
Q[i] = Q[i] − S[q];

end
end

From the pseudo-code it is clearly seen that rebinning the quantized values for each point

takes O(1) time and thus an overall O(n) time to quantize all points according to the new bins

of different interval sizes. Binning data for a number of bins of different interval sizes, typically

takes O(lg m) time per value using binary search [1]; this results in a global O(n lg m) time for

n values. This cost is avoided here by reusing the previous quantization values for the points.

More on this key issue is postponed to the discussion section.

Once the points have been rebinned, keeping or rejecting points is straightforward. The

procedure is shown in Algorithm 2. The procedure is applied as a function to each fence inde-

pendently (input C is different for each fence) and so the output set Ps is the union of the out-

put arrays PR while s is the sum of the returns nr. The function IsLeft(p1, p2, p) is a cross

product test. Thus deciding whether a point shall be accepted or rejected is performed in con-

stant time resulting in a global computational time O(n) for the whole set P in Step 6.

Algorithm 2: Procedure to keep points for a given convex fence
input: An array P of n points as (x, y) (reals); an array Q of new
rebinned values for P (integers); an array F of size O(m) with the con-
vex points of a fence (reals)
output: Array PR with points to be kept outside the fence of size nr
nr = 0;
for i = 0 to n do
p = P[i];
q = Q[i];
p1 = F[q];
p2 = F[q + 1];
if not IsLeft(p1, p2, p) // p is to the right of line p1 ! p2
then
PR[nr] = p; // Keep point p
nr = nr + 1;

else
// Point p is rejected

end
return nr;

end
All steps, from Step 1 to Step 6 have an upper bound in computational time of O(n) and

thus the preconditioning method proposed here can be applied to any known convex hull

algorithm without any detriment to the computational complexity of the algorithm.

Choosing parameter m
We just stated that the value of m is a constant; and probably a small value compared to the

input size n. Without assuming any statistical distribution for the input set of points P, it is not

easy to determine an optimal value for this parameter. For the method to be practical, we

would like to choose a value of m that provides the greatest acceleration when computing the

convex hull of the input P using known algorithms. It would not be sensible to seek only for a

value of m that maximimizes the greatest reduction of points. Thus, this paper takes an empiri-

cal approach to suggest a suitable value of m.

Fig 4 was generated keeping n size constant while parameter m changes from the value of 2

to the value b2 lg nc. We kept n to 1 million points and a number of runs were performed with

random points, uniformely distributed, inside a convex superellipse: we controlled the superel-

lipse parameters to keep the shape from a rhombus shape to a rectangle shape with rounded

Preprocessing 2D convex hull
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corners. We have chosen a uniform distribution as it provides a well behaved scenario in

which all vertical regions delimited by the bins will have points in the lower and upper fences.

In general, this is a difficult problem that depends on the distribution of points. From this sim-

ple experiment, we derive a simple rule for choosing m. This rule is applied, in the results sec-

tion, to real datasets. The results show that the rule is not only practical but useful.

The convex hull algorithm used in Fig 4 is the ch_bykat from the CGAL package [4]; this

has an expected time complexity of O(n lg n). From the figure, we see that a suitable value for

parameter m is somewhere around m = 10 and m = lg n if we are seeking to maximise the

speedup gain. Note that with the m value in this region the percentage of reduction is above

95% for this experiment. In the result section we will conduct our experiments twice, one for

m = 10 and one for m = lg n for real datasets. Of course, this makes sense for n sizes from a few

hundred points and up, which are the most typical cases in real datasets.

Many rules have been suggested to determine the optimal number of bins, commonly for

the purpose of computing histograms [10], with some suggesting a number between 5-20 bins.

In fact, numerical packages such as Matlab or numpy (Python) accept arguments for specify-

ing the binning algorithm to be used to determine the number of bins; each algorithm uses a

different rule. For instance, the ‘sturges’ algorithm gives the number of bins as m = lg n +

1. Our suggestion for a suitable value of m between 10 and lg m is consistent with some of

these rules (Matlab and R use 10 bins as default).

Results

The time to compute the convex hull on n 2D points is denoted by tn. The time it takes reduc-

ing n points to s points by the preprocessing proposed here is denoted by tr. The time to com-

pute the convex hull on s 2D points is denoted by ts. The speedup achieved by preprocessing

Fig 4. Preprocessing method as a factor of parameter m with n constant. Upper left: Speedup gained by reducing

the n points first to s points and then computing the convex hull on s points. Upper right: Percentage of reduction of

points. Lower left: Time spent reducing the points in seconds. Lower right: Time reducing the points plus convex hull

time on the reduced set in seconds. The grey lines are a visual aid to the reader of the underlying pattern shown by the

plot. The values for dm = lg ne are marked.

https://doi.org/10.1371/journal.pone.0212189.g004
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2D points by the method proposed here is then calculated as:

speedup ¼
tn

tr þ ts

This section shows the amount of speedup for computing the convex hull through the

preprocessing on various datasets. As previously stated we use the same four datasets of our

previous work [6] where it was shown that the widely accepted preprocessing method in [5]

discards roughly half the points.

Mammal dataset

This dataset is from a 3D scan of points of 13 skeletons of mammals [11]; each mammal with a

data size ranging from around half million points to 5 million points. Mammals’ scans include

a bull (1.4M points), a horse (1.7M points), a reindeer (0.8M points), a giraffe (2.2M points),

an elephant (4.9M points) etc. They generate convex hulls of around 20-60 points each. The

speedup has been calculated as the average of the convex hull running times for the three 2D

projections for each mammal data points (that is keeping (x, y), (x, z) and (y, z) coordinates of

the 3D points). The convex hull was computed using the akl_toussaint algorithm as

available from the CGAL package. Fig 5 shows the speedup in the convex hull computation for

the cases of 10 bins and for m = lg n number of bins.

As the difference in speedup between m = 10 and m = lg n in Fig 5 is of around 10%, Fig 6

only shows the speedup for m = 10 across three different convex hull algorithms. Note that the

algorithm due to Chan is not commonly found in computational geometry packages and so

we have used an implementation of the algorithm as available from [12]. Even though this ad-

hoc implementation of Chan is probably not optimised for production, the proposed precon-

ditioning method offers an speedup of at least a factor of two for this dataset.

Fig 5. Speedup gained by the reduction method using CGAL. Bar ‘10’ is for parameter m = 10 while bar ‘lgn’ is for

m = lg n; this m value is the number of bins used in Step 2 of the proposed preprocessing method.

https://doi.org/10.1371/journal.pone.0212189.g005
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Homerange dataset

We have used data from the Biodeversity & Wildlife section of the Kenya GIS Data (Geo-

graphic Information Systems) [13]. In particular these are spatial distribution of wildlife spe-

cies (including buffalos, elephants, giraffes, etc.) as observed from low-altitude flights in Kenya

across a number of years in the 70’s and 90’s; this spatial distribution of wildlife is their home-

range. The number of observations (2D points) of individual species is not very large, typically

under 1000 observations; these are of wildebeest, zebras, buffalos, etc. The convex hulls are of

around 10-50 points. Note this dataset is sparse and not dense as the mammal dataset, and it is

small. Each point has been transformed from CRS (Coordinate Reference System) 32637 (used

for topographical mapping for a strip area of the world containing Kenya) to CRS 4326 (basi-

cally lattiute, longitude coordinates for GPS). This dataset also includes all species combined

for different years (with names ke_wildlife_1970 and ke_wildlife_1990 from the

web site). The left part of Fig 7 shows the speedup gain when using the proposed preprocessing

using three convex hull algorithms. Again, a speedup factor of at least two is observed in spite

of the small size of n. On the right of Fig 7, the percentage of reduction achieved by the pro-

posed method as a function of parameter m is shown; this is consistently above 90%.

Synthetic dataset

The number of points n was varied from 1 million to 10 million, and all these points were

inside a convex superellipse. Results were averaged over several runs (for each n value) with

random parameters for the superellipse. Fig 8 shows the average speedup gained when the pre-

processing method was applied before each of the convex hull algorithms. The shape of the

superellipses may result in convex hull polygons of over 500 sides in this dataset. Again, the

smaller computed speedup was for Chan’s algorithm and it was above a factor of two. On the

right of Fig 8, the percentage of reduction achieved by the the preprocessing is shown for this

synthetic dataset; it is above 95%.

Fig 6. Speedup gained by the reduction method for three convex hull algorithms. Bar ‘cgal’ is for from CGAL

package as before, bar ‘scipy’ is from convex hull found in SciPy package [8] and bar ‘chan’ is from an ad-hoc

implementation of the Chan algorithm. Speedup is reported for m = 10 bins.

https://doi.org/10.1371/journal.pone.0212189.g006
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Fig 7. Speedup factor and percentage of reduction of time for three convex hull algorithms for a homerange

dataset. Label ‘Method-1’ (for instance cgal1) corresponds to m = 10 while ‘Method-2’ (for instance cgal2)

corresponds to m = lg n. ‘cgal’ is from CGAL package, ‘scipy’ is from SciPy package [8] and ‘chan’ is from an ad-hoc

implementation of the Chan algorithm. The thin bars represent the distribution of speedup provided by the

preprocessing for each algorithm across all the wildlife species; from minimum to maximum (median as a dot). On the

right, the bars represent the distribution of the percentage of reduction across all species, except at m = 16 that is the

median (of the reduction) of all species combined.

https://doi.org/10.1371/journal.pone.0212189.g007

Fig 8. Speedup and percentage of reduction for three convex hull algorithms for a synthetic dataset. On the left,

speedup was computed with parameter m = 10 for the three algorithms, ‘cgal’, ‘scipy’ and ‘chan’. On the right the

percentage of reduction is shown for the case of a constant parameter m = 10 and for a variable parameter m = lg n.

https://doi.org/10.1371/journal.pone.0212189.g008
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Image dataset

This dataset is composed of 49 brain MRI midsaggital planes [14]. Each image is not very large

with a number of points of around 5 thousand. Their convex hull is of around 30 points each.

But importantly, they are integers; this is to show the method is generic regarding the data

representation of points. The speedup obtained across these images is shown on the left of Fig

9, while the percentage in the reduction of points is shown on the right. This time the reduc-

tion of points is of over 95% with an speedup factor of at least three.

Discussion

Our numerical results, in four datasets, show empirical evidence that the proposed preprocess-

ing method for convex hulls offers a reduction of points of over 90% while providing speedups

of at least a factor of two when computing the convex hull with the fastest known algorithm.

The percentage of reduction of points is above 98% at some instances. We find that parameter

value m, for binning data used in the method, can be kept constant at a value of 10 or calcu-

lated from the data size to around the value of lg n. We have computed the speedup as
tn

trþts
; that

is execution time without preprocessing (tn, convex hull time for n points) divided by execu-

tion with preprocessing (tr + ts; time to perform the preprocessing, tr, plus convex hull time for

the reduced set of s points, ts). The preprocessing method achieves a reduction factor of pr =

1 − s/n. One way to explain the speedup seen here is to think in terms of the Amdhal’s law

used to measure performance gain in computer architectures [15]. As such, speedup in Amd-

hal’s law is given by speedup ¼ 1

1� fenhþfenh=speedupenh
with fenh as the fraction of the computation that

was enhanced and speedupenh the speedup achieved for that fraction of the computation

enhaced. In our case, fenh = pr but it is hard to determine the enhanced speedup since the pre-

processing method and a convex hull algorithm perform different computational tasks.

Fig 9. Speedup factor and percentage of reduction of points for three convex hull algorithms for an image dataset.

On the left, speedup was computed for a constant parameter value of m = 10 for the three algorithms, ‘cgal’, ‘scipy’ and

‘chan’. On the right the percentage of reduction of points is shown for both a constant parameter value of m = 10 and

for a variable parameter value of m = lg n. Note all points are integers in this dataset.

https://doi.org/10.1371/journal.pone.0212189.g009
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Nevertheless, for a convex algorithm such as ch_akl_toussaint with a complexity of O(n
lg n), theoretically we expect an enhanced speedup of k = c lg n since our preprocessing is of

time O(n). That is, we expect an overall speedup of 1

ð1� prÞþ
pr
k

(in this case). Numerically, we

could calculate k from our experiments as k ¼ tnðn� sÞ
nðtrþtsÞ� stn

and take the average over different

runs.

To illustrate this reasoning we used the ‘bull’ data from the mammal dataset which has a

calculated value (using the formula above) of k = 5.9. Fig 10 shows the actual speedup from the

measured tr, ts, tn running times and the expected speedup according to Amdhal’s law (in

terms of pr, k); the plot shows this reasoning is helpful to explain the speedup reported here.

The preprocessing method, as such, contributes to this speedup by making substantial reduc-

tions of points of well over 90%. However, greater speedups can be achieved by larger values of

k. One obvious way forward, to get a larger k, is to exploit the parallelism that is now explicit in

some of the steps of the preprocessing method. Steps 4 and 5 process the lower and upper

fences independently for example. But it is in Step 6 where much more parallelism is available

within each of up to 2(m + 1) regions (line segments). In each one of these regions computa-

tion can work independently in the process of accepting/rejecting points. Exploring this poten-

tial further speedup is left for future work.

Also, Step 6 of the preprocessing method requires quantizing data into a set of bins defined

by boundary values whose size is not uniform. This operation is very common in histogram-

ming or for preconditioning data for machine learning. Different quantization methods (bin-

ning) could have been explored; this work has opted for the simplest since we are seeking for a

fast preprocessing, for other methods, see [16].

This quantization process requires comparing the value to be quantized against the bin

boundaries. The common method to establish the bin where a given value belongs to, in a set

of m bins, is to apply a binary search algorithm per item [1]. That takes O(lg m) time per item

Fig 10. Speedup measured and expected according to Amdhal’s law on the ‘bull’ data from the mammal dataset.

The solid line is the measured speedup, while the dashed line is the one predicted from applying Amdhal’s law. For

Amdhal’s law an enhanced speedup was calculated as an average over m into a constant k. CGAL was used to compute

the convex hull.

https://doi.org/10.1371/journal.pone.0212189.g010
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resulting in O(n lg m) for n items. If we had chosen binary search for quantizing the data in

Step 6, preprocessing would have been of time complexity O(n lg m). In such a case it would

not be theoretically faster than Chan’s convex hull algorithm of O(n lg h). Alternatively, bin-

ning can be done with fractional cascading [17] having a O(lg m + l) time per item (l a constant

to be chosen) or with interpolation search with an average time of O(lg lg m) per item [18].

These alternatives, although much faster than a simple binary search, are still not fast enough

for this problem since in general neither O(lg lg m)< O(lg h) nor O(lg m + l)< O(lg h) can be

claimed.

Conclusion

The preprocessing method for a set of 2D points proposed here is general in the sense that it

can be applied to points expressed as real or integers. We prove that the method is linear in

time, and so it is suitable to be applied in combination with any known convex hull algorithm.

Indeed, the results from applying the method in the computation of the convex hull of 2D

points, report an speedup of at least a factor of two when using Chan’s algorithm, which is the

fastest known convex hull algorithm. Empirical results on small and large datasets, show the

method reduces points in an amount well over 90%. As there is little room for improvement

based on the reduction of points alone, yet faster speedup factors can be achieved by exploiting

parallelism made explicit across the different computational steps as described in the paper;

this is left for future work. The preprocessing method given here is simple to implement and

can easily be incorporated into computational geometry packages via an on/off flag.
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