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1. Introduction  

The vibrations of the structures that are made of isotropic and homogeneous materials has been an 
important subject in the study of noise control, in the aeronautical industry, in the study of fluid-solid 
interactions and in construction industry for double leaf partitions as building structures. When a sound 
wave impinges on a structure, a part of acoustic energy is reflected back into source medium, a part is 
dissipated in the structure and the rest of acoustic energy is transmitted through the structure into the 
other medium. In building acoustics applications, the reflected acoustic energy builds up a reverberant 
sound field in the source room that in turn vibrates the walls. The vibrations in the common walls radiate 
sound directly into the receiver room. The vibrations in the other walls of the source room travel as 
structure-borne noise to the all walls of the receiving room and radiate sound into the receiver room. 

Complex structures may be modelled as systems that are made of individual plate like elements. The 
theory of vibration of porous and non-porous structures is a well-known branch of engineering 
mechanics. Previous works on classical theory of the plate [1-7] has investigated vibration of isotropic 
and anisotropic plates for various boundary conditions. The vibration of porous plates can be described 
using two coupled equations [8], which are based on Biot’s stress-strain relations [9, 10] and which 
introduce two types of compressional waves (‘fast’ and ‘slow’) and a shear wave. They assumed that 
the thickness of plate is smaller than the wavelength and that interaction can take place between the 
slow waves and the bending waves in the plate. They also ignored the amplitude of the fast wave. 
Galerkin’s variational techniques were applied to porous plates [11-13], taking into account a classical 
set of trial functions obtained from the linear combination of trigonometric and hyperbolic functions for 
various boundary conditions. The effects of fluid loading on the vibration of rectangular porous plates 
and on their radiated sound power was investigated by including an extra term into the equations for 
the porous plate vibration, corresponding to the additional external force acting on the plate [14]. 
Previous study on low frequency vibration of porous plates [15] has demonstrated the existence of low 
frequency absorption coefficient resonance in configurations consisting of clamped poroelastic plates 
with an air cavity between the plates and a rigid termination. An analytical model that takes into account 
the effect of perforations and the effect of the flexural vibrations in the plates has been formulated and 
used to calculate the insertion loss in the absence, and in the presence of air flow [16, 17].  

Important progress in predicting acoustic radiation from baffled structures including plates and beams 
has been made in the last three decades. Many previous studies have focused on the calculation of the 
radiation efficiency of these structures [18-21] and the radiation of sound from a baffled, rectangular 
plate with edges elastically restrained against deflection and rotation [22-23]. The models used for the 
radiation efficiency of plate-like radiators, ranged from very simple ones based on modal average 
expressions to refined calculations of the radiation impedance matrix with cross-modal coupling have 
been evaluated, and developed a new approach based on Taylor’s expansion of the Green’s function 
[24]. Variational method that is based on the Rayleight-Ritz model, can be used to determine the 
radiation of sound from the plates that are immersed either in a light fluid or in a heavy fluid by reducing 
the quadruple integral into a double integral using a specific change of variable and by integrating the 
double integral with a numerical method using Gaussian quadrature formulae [25-28].  

Recently, Aygun and McCann [29] has studied composite recycled glass bead panels in order to assess 
their suitability for civil engineering application, especially in noisy urban environments, either as 
structural panel components that also offer acoustic insulation or as dedicated noise barriers for outdoor 
applications.   

The aim of this paper is to investigate the vibrational and acoustical parameters of thin composite plates 
that are made of fibreglass, which are used for applications ranging from aerospace and automotive to 
construction industry. To author’s best knowledge, vibroacoustical properties of composite plate have 
been reported in this paper for first time. The deflection of composite plate has been predicted at 
difference locations on the plate using the classical theory of the vibrating plate for simply supported 
and clamped boundary conditions. Computational simulations have been carried out to determine 
deformations of the plate in 3D for different frequency ranges for simply supported and clamped 
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boundary conditions. Here, vibroacoustic indicators including the radiation efficiency, the mean square 
velocity, and the radiated sound power have been computed for a square composite plate. Furthermore, 
the radiation impedance matrix has been predicted for simply supported boundary condition by using 
equations for eigenfunctions and Green’s function without interpolation, convergence and without 
reducing the quadruple integral into a double integral.    

2. Theory of plate vibration 

Wave motion in solid structures stores energy in shear as well as in compression. Many different types 
of waves can be seen in solid structures when a solid is excited by different ways of stressing. The solid 
structures should have energy storage capability in the form of potential and kinetic energy in order to 
allow wave propagation through the medium. Potential energy is stored in solid structure parts that have 
undergone elastic deformation while kinetic energy is stored in any part of the medium that has mass 
and is in motion. When a flat plate is subjected to a transverse, time dependent force density F(x, y, t), 
the transverse deflection of the plate is governed by the fourth order differential equation. The 
transverse vibration under free wave conditions stems entirely from inertial loading. A thin, baffled 
square plate of dimension a x a (along aces x and y, respectively) and uniform thickness h is considered 
in this study. The plate displacement induced by bending waves is in the direction of z axis and is 
function of time. The geometry of the plate is shown in Figure 1.  

 

 

                        Figure 1: The geometry of a baffled plate. 

 

The flexural wave equation for composite thin plate are given below;   
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where sw  is the transverse plate deflection, 
..

sw  is the second order derivative of the plate deflection, 

)1(12/ 23 vEhD   is the flexural rigidity,  224   and 
22222 yx   in the system of 

coordinates (x, y) with x and y parallel to the plate sides of length a and b respectively, s is the mass 

density, E is the Young’s modulus of the plate, and v  is the Poisson ratio of the plate.  

The plate deflection sw  for harmonic wave motion is expressed in the form of the beam functions as 

given below; 
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where mnA  is the unknown coefficients to be determined, m, n = 0, 1, 2, 3 …..∞, and nm YX and  are 

the beam functions in x and y direction respectively.  

The beam functions have been selected to satisfy different boundary conditions at the edges of the 

plate. An appropriate trigonometric function for vibrating beams has been used for nm YX and  different 
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boundary conditions. For simply supported plates, the beam functions are ),/sin()( axmxX m  and

)/sin()( bynyYn   which should satisfy the equations of equilibrium. The boundary conditions for 

simply supported edges of the plate are axx
x
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. The shape of each mode of vibration of plate can be determined 

from Equation (2) by knowing the relative values of mnA  and the values of nm YX and functions. In the 

static and dynamic analysis, the excitation function F(x, y) has been expanded into double infinite sine 
series of variables x and y for each value of the couple (m, n) by using the equation below; 
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where mnF  are the expansion coefficients.  

The properties of the plate used for numerical analysis are given in the Table 1.   

Table 1: Properties of thin composite plate 

Length 
(m) 

Width 
(m) 

Thickness 
(m) 

Density 
(kg/m3) 

Young’s 
Modulus (Pa) 

Loss 
Factor 

Poisson 
Ratio 

0.50 0.50 0.0025 1600 7.489 x 109 0.03 0.2 

The square velocities of thin composite plate for simply supported boundary condition are computed 
using a MATLAB code at the centre of the plate for 100 Hz, 500 Hz and 1 kHz  in Figures 2 and 3. 
Circular dot shows the location of the force applied to the plate. Dark red contours show the high 
pressure areas while dark blue contours show the minimum pressure areas.  

 

Figure 2: Square velocity (contour) of fibreglass composite simply supported plate at a) 100 Hz, b) 500 
Hz, and c) 1 kHz respectively.  

 

Figure 3: Square velocity (contour) of fibreglass composite clamped plate at a) 100 Hz, b) 500 Hz, and 
c) 1 kHz respectively.  
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3.  Acoustic radiation from a composite plate  

Mean square velocity is the squared velocity normal to the surface of the plate in a given frequency 
band and it is averaged over time and the surface area of the plate.  It expresses the global behaviour 
of the vibration of the plate. Mean square velocity of thin composite plate is defined as a time-space 
average of the square vibrational velocity of plate. Mean square velocity of thin composite plate is given 
by [22]; 
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where 


2
T , a and b are the coordinates of plates in x and y directions, respectively, and S is the 

surface area of the plate. 

The total sound field generated by vibrating plates can be expressed in terms of the distribution of sound 
pressure over a given surface. The radiated sound power expresses the sound energy radiated into the 
surrounding environment by vibration of the plate. It can be obtained from the integration of the sound 
intensity over the plate surface. The radiated sound power of thin composite plate is given by equation 
(5); 
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where ),0,,( tyxP is the surface acoustic pressure which is often called Rayleigh integral, and is given 

by the Equation (6), 
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where )0,,;0,,( yxyxG   is the Green function and it is given by the Equation (7);    
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where k is the wave number, and R is the distance between points, and is given by the Equation (8); 
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The size and shape of the vibrating plate play an important role to determine the radiation efficiency of 
the plate. The radiation efficiency of the plate is small at low frequencies because of larger wavelength 
while the radiation efficiency approaches unity at higher frequencies because of smaller wavelength of 
sound. The radiation efficiency expresses the ratio of the vibration energy (mean square velocity) 
transformed into acoustic energy (sound power). The radiation efficiency of the plate does not depend 
on the amplitude of vibrating structure. It can be obtained using analytical methods. The radiation 
efficiency of the plate is given by the Equation (9); 
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Where Z is the characteristic impedance of air.   

If the plate deflection given by Equation (2) is solved, then the mean square velocity of the plate can 
easily be predicted. A Gaussian quadrature scheme with 20 terms of the Legendre polynomial has been 
used to expand the deflection of the plate and mean square velocity of the plate with 30 elements in 
each direction (m, n). The mean square velocity of composite plate is shown in Figure 4 while the 
predicted real part of the radiated sound power of a composite plate is shown in Figure 5. The radiation 
efficiency of the plate has been calculated by using the radiated sound power and the mean square 
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velocity of the plate. The radiation efficiency of a square simply supported composite plate is shown in 
Figure 6.  

 

Figure 4: Mean square velocities of the composite plate at x = 0.25m and y = 0.25m 

 

Figure 5: The real part of radiated sound power of the composite plate at x = 0.25m and y = 0.25m   

 

Figure 6: Radiation efficiency of the composite plate.  
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4. Conclusion  

An investigation of the vibrational and acoustical parameters of thin composite plate that is made of 
fibreglass has been carried out. Computational simulations have been carried out to determine 
deformations of the plate in square velocities for different frequency ranges for simply supported and 
clamped boundary conditions. It has been shown that clamping the plate at four edges delayed first 
resonance of the plate by 15 Hz and second resonance of the plate by 30 Hz. Vibroacoustic indicators 
including the radiation efficiency, the mean square velocity, and the radiated sound power have been 
computed for a square composite plate.   
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