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Preface

This thesis represents a pivotal advancement in the realm of behavioural finance, seamlessly
integrating both classical and state-of-the-art models. It navigates the performance and applica-
bility of the Irrational Fractional Brownian Motion (IFBM) model, while also delving into the
propagation of investor sentiment, emphasizing the indispensable role of hands-on experiences
in understanding, applying, and refining complex financial models.

Financial markets, characterized by ’fat tails’ in price change distributions, often challenge tra-
ditional models such as the Geometric Brownian Motion (GBM). Addressing this, the research
pivots towards the Irrational Fractional Brownian Motion Model (IFBM), a groundbreaking
model initially proposed by (Dhesi and Ausloos, 2016) and further enriched in (Dhesi et al.,
2019). This model, tailored to encapsulate the ’fat tail’ behaviour in asset returns, serves as the
linchpin for the first chapter of this thesis.

Under the insightful guidance of Gurjeet Dhesi, a co-author of the IFBM model, we delved
into its intricacies and practical applications. The first chapter aspires to evaluate the IFBM’s
performance in real-world scenarios, enhancing its methodological robustness. To achieve this,
a tailored algorithm was crafted for its rigorous testing, alongside the application of a modified
Chi-square test for stability assessment. Furthermore, the deployment of Shannon’s entropy,
from an information theory perspective, offers a nuanced understanding of the model. The
S&P500 data is wielded as an empirical testing bed, reflecting real-world financial market
dynamics. Upon confirming the model’s robustness, the IFBM is then applied to FTSE data
during the tumultuous COVID-19 phase. This period, marked by extraordinary market oscilla-
tions, serves as an ideal backdrop to assess the IFBM’s capability in tracking extreme market
shifts.

Transitioning to the second chapter, the focus shifts to the potentially influential realm of
investor sentiment, seen as one of the many factors contributing to fat tails’ presence in return
distributions. Building on insights from (Baker and Wurgler, 2007), we examine the potential
impact of political speeches and daily briefings from 10 Downing Street during the COVID-19
crisis on market sentiment. Recognizing the profound market impact of such communications,
the chapter seeks correlations between these briefings and market fluctuations.
Employing advanced Natural Language Processing (NLP) techniques, this chapter harnesses
the power of the Bidirectional Encoder Representations from Transformers (BERT) algorithm
(Devlin et al., 2018) to extract sentiment from governmental communications. By comparing the
derived sentiment scores with stock market indices’ performance metrics, potential relationships
between public communications and market trajectories are unveiled. This approach represents a
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melding of traditional finance theory with state-of-the-art machine learning techniques, offering
a fresh lens through which the dynamics of market behaviour can be understood in the context
of external communications.

In conclusion, this thesis provides an intricate examination of the IFBM model’s performance
and the influence of investor sentiment, especially under crisis conditions. This exploration
not only advances the discourse in behavioural finance but also underscores the pivotal role of
sophisticated models in understanding and predicting market trajectories.

ii



Dedication and acknowledgements

I dedicate this work to my dear mother Dalila, who gave up everything for me. Her hard work
has always been and will continue to be an inspiration.

I would also like to dedicate this work to my loving husband Adam, who has been a constant
source of support and encouragement during the challenging times of this thesis. I love you,
and I am truly thankful for having you in my life.

I would also like to give a special thank you to my thesis supervisor Valerio, who stayed
in the fight to the very end to complete this work. You have been a true motivation, and
without you this would not have been possible.

Lastly, I dedicate this work to my sister Katiya and brother Nazime, whom I love so deeply
and who hold a special place in my heart. To my grandparents, who raised me with boundless
love and instilled values that have shaped me into the person I am today, my gratitude knows
no bounds. Your legacy is an integral part of this journey and this work.

iii





Table of Contents

Page

List of Tables xi

List of Figures xvii

1 The Irrational Fractional Brownian Motion and the Shannon Entropy 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Origin and Evolution of the IFBM Model . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Paper 1: Modified Brownian Motion Model . . . . . . . . . . . . . . . . 13

1.5.1.1 Geometric Brownian Motion (GBM) . . . . . . . . . . . . . . . 14

1.5.1.2 Modified Brownian Motion Model (MBMM) . . . . . . . . . . 14

1.5.2 Paper 2: Irrational Fractional Brownian Motion Model . . . . . . . . . . 17

1.5.2.1 Discussion and Details of the Model, Parameters, and Regions 17

1.5.2.2 The Soliton Aspect and behaviour . . . . . . . . . . . . . . . . 20

1.5.3 Paper 3: IFBM Modelling and Forecasting the Kurtosis of Financial Markets 20

1.6 Financial data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 S&P 500 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.2 FTSE100 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 IFBM procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7.1 Parametric Influence on Feedback Function and GBM Behaviour . . . . 32

1.7.1.1 Parameter K influence . . . . . . . . . . . . . . . . . . . . . . 32

1.7.1.2 Parameter c influence . . . . . . . . . . . . . . . . . . . . . . . 34

1.7.2 Methodology - IFBM formalised procedure and stability testing . . . . . 35

1.7.3 Pivoting Towards Enhanced Analysis: Shannon’s Entropy and FTSE 100

Examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.7.4 Methodology - IFBM under Different Market Dynamics: The FTSE 100

Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



TABLE OF CONTENTS

1.8 Methodology - IFBM procedure & Shannon’s Entropy . . . . . . . . . . . . . . 48

1.9 Results - S&P500 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.9.1 Parameter Stability & method agreement . . . . . . . . . . . . . . . . . 53

1.9.1.1 Stability Analysis under Shannon’s Entropy . . . . . . . . . . . 53

1.9.1.2 Stability Analysis under Chi-Square Methodology . . . . . . . 53

1.9.1.3 Methods agreement - Shannon’s entropy vs Chi-Square . . . . 54

1.10 Results - FTSE100 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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1.12.3 The Feedback Mechanism and Market Dynamics . . . . . . . . . . . . . 64

1.12.4 Efficacy of the IFBM Model During the COVID-19 Pandemic . . . . . . 64

1.13 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.13.1 Insights from Parameter Stability and Method Agreement . . . . . . . . 66

1.13.2 Understanding IFBM behaviour . . . . . . . . . . . . . . . . . . . . . . 66

1.13.3 IFBM’s Response to COVID-19 and Market Dynamics . . . . . . . . . . 67

1.14 Limitations, Future Work, & Concluding remarks . . . . . . . . . . . . . . . . . 68

1.14.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.14.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.14.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2 Financial Markets in the COVID-19 Era 73

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.1.1 COVID-19 Pandemic Timeline in the UK . . . . . . . . . . . . . . . . . 75

2.1.2 Governments’ response in COVID-19 . . . . . . . . . . . . . . . . . . . . 76

2.1.3 Government Briefings as the Unit of News in COVID-19 . . . . . . . . . 77

2.1.4 Government Briefings and Investors’ Sentiment in COVID-19 . . . . . . 78

2.2 Research motivation & contributions . . . . . . . . . . . . . . . . . . . . . . . . 82

2.2.1 Behavioural finance and market sentiment: . . . . . . . . . . . . . . . . 82

2.2.2 Governmental interventions, political news and financial markets . . . . 83

2.2.3 Application of NLP in financial research . . . . . . . . . . . . . . . . . . 84

2.2.4 Granular contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.2.4.1 Novelty in Analysing COVID-19 Government Announcements: 86

2.2.4.2 Temporal Depth of Analysis: . . . . . . . . . . . . . . . . . . . 87

vi



TABLE OF CONTENTS

2.2.4.3 Sentiment Analysis of Government Announcements: . . . . . . 88

2.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.4 Related Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.4.1 Public news impact on financial markets . . . . . . . . . . . . . . . . . . 93

2.4.2 COVID-19 and the financial market . . . . . . . . . . . . . . . . . . . . 96

2.4.3 Sentiment Analysis and Financial markets . . . . . . . . . . . . . . . . . 99

2.5 Data collection and description . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.5.1 Data Collection from the COVID-19 UK Government Briefings . . . . . 106

2.5.2 Web scraping procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.5.3 COVID-19 UK conference briefings text Pre-processing . . . . . . . . . 107

2.5.4 Data collection for the UK stock market . . . . . . . . . . . . . . . . . . 108

2.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.6.1 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.6.2 Sentiment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.6.3 Rule/Lexicon-Based approach . . . . . . . . . . . . . . . . . . . . . . . . 115

2.6.3.1 Valence Aware Dictionary and Sentiment Reasoner (VADER) 115

2.6.3.2 Text-Blob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.6.4 Limitations of Lexicon-based Sentiment Analysis . . . . . . . . . . . . . 116

2.6.4.1 Transformer Architectures: BERT and its Variants . . . . . . . 117

2.6.5 Illustrative Sentiment Analysis Examples . . . . . . . . . . . . . . . . . 118

2.6.6 Sentiment Score Aggregation Procedure . . . . . . . . . . . . . . . . . . 120

2.6.7 Challenges and Nuances in Briefing Sentiment Analysis . . . . . . . . . 121

2.6.8 Financial modelling via correlations . . . . . . . . . . . . . . . . . . . . 123

2.6.9 Financial modelling via Granger Causality test . . . . . . . . . . . . . . 125

2.7 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.7.1 The COVID-19 pandemic in periods . . . . . . . . . . . . . . . . . . . . 131

2.7.2 Correlations of Sentiment polarity vs COVID-19 fatalities and cases . . 133

2.7.2.1 Period 1 – Cases/Deaths vs Sentiment . . . . . . . . . . . . . . 133

2.7.2.2 Period 2 & 3 – Cases/Deaths vs Sentiment . . . . . . . . . . . 134

2.7.2.3 Period 1, 2, & 3 – “Vaccine”: A Control Variable in Sentiment

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2.7.2.4 Summary Insights—Part 1 . . . . . . . . . . . . . . . . . . . . 136

2.7.3 Correlations of Sentiment polarity vs UK stock market movement . . . 137

2.7.3.1 Period – Sentiment vs Stock prices . . . . . . . . . . . . . . . . 137

2.7.3.2 Impact of ’Vaccine’ Mentions on Stock Market Dynamics . . . 138

2.7.3.3 AstraZeneca Stock Dynamics in Response to ’Vaccine’ Mentions

and Its Unique Position in the Analysis . . . . . . . . . . . . . 140

2.7.3.4 Isolated Influence of Sentiment on AstraZeneca Stock Returns 141

vii



TABLE OF CONTENTS

2.7.3.5 Summary Insights—Part 2 . . . . . . . . . . . . . . . . . . . . 142

2.7.4 Correlations of COVID-19 fatalities and cases vs UK stock market movement143

2.7.4.1 Correlation between COVID-19 Cases and FTSE Prices . . . . 143

2.7.4.2 Correlation between COVID-19 Deaths and FTSE Prices . . . 144

2.7.4.3 Conclusion and Significance of the Analysis for Research ques-

tion 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

2.7.5 Granger Causality analysis . . . . . . . . . . . . . . . . . . . . . . . . . 151

2.7.5.1 Granger causality for the FTSE100 and Sentiment polarity . . 152

2.7.5.2 Granger causality for the FTSE100 and the term frequency

“Vaccine” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

2.7.5.3 Granger Causality between FTSE100 and COVID-19 New Deaths

and Cases for Period 1 . . . . . . . . . . . . . . . . . . . . . . 155

2.7.5.4 Granger Causality between FTSE100 and COVID-19 New Deaths

and Cases for Period 2 . . . . . . . . . . . . . . . . . . . . . . 156

2.7.5.5 Granger Causality between FTSE100 and COVID-19 New Deaths

and Cases for Period 3 . . . . . . . . . . . . . . . . . . . . . . 157

2.8 Conclusions, limitations, and future work . . . . . . . . . . . . . . . . . . . . . 158

2.8.1 Period 1: Pre-testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

2.8.2 Period 2: Peak pandemic . . . . . . . . . . . . . . . . . . . . . . . . . . 158

2.8.3 Period 3: Vaccine roll-out . . . . . . . . . . . . . . . . . . . . . . . . . . 159

2.8.4 Overall Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

2.8.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

2.8.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

2.9 Concluding Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A Appendix 167

A.1 UK stocks returns distributions throughout the COVID-19 pandemic . . . . . . 167

A.2 Sentiment Polarity scores— Methods comparison (BERT vs TextBlob vs Vader) 168

A.3 Bert-based Sentiment polarity scores distribution . . . . . . . . . . . . . . . . . 169

A.4 COVID-19 daily new deaths versus new cases lagged . . . . . . . . . . . . . . . 170

A.5 Word frequency ”Vaccine” vs COVID-19 cases and deaths - Period 2 . . . . . . 171

A.6 Correlation of sentiment polarity scores (VADER-based) vs AstraZeneca plc

overnight stock returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.7 Correlations of Covid-19 cases vs FTSE250 prices - All periods . . . . . . . . . 172

A.8 Correlations of Covid-19 deaths vs FTSE250 prices - All periods . . . . . . . . 173

A.9 Correlations of Covid-19 cases vs AstraZeneca plc prices - All periods . . . . . 174

A.10 Correlations of Covid-19 deaths vs AstraZeneca plc prices - All periods . . . . . 175

A.11 Correlations of Covid-19 cases vs AstraZeneca plc daily returns - All periods . 176

A.12 Correlations of Covid-19 cases vs AstraZeneca plc daily returns - All periods . 176

viii



TABLE OF CONTENTS

A.13 Granger causality for Vaccine mentions vs AstraZeneca plc - Period 2 . . . . . 177

A.14 Granger causality for Vaccine mentions vs Sentiment polarity scores - All periods178

A.15 Granger causality for Sentiment polarity vs Covid-19 death and cases - Period 1 179

A.16 Granger causality for Sentiment polarity vs Covid-19 death and cases - Period 3 181

Bibliography 183

ix





List of Tables

Table Page

1.1 Summary statistics of the S&P 500 variables here considered. N indicates the number

of observations in the period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 S&P 500 – Summary of the years divided into pairs . . . . . . . . . . . . . . . . . 27

1.3 Summary statistics of the FTSE-100 variables here considered. N indicates the

number of observations in the period. . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 S&P 500 - Tabulated Results from the Exercise Conducted in Dhesi et al. (2019),

Employing 1000 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5 S&P 500 - Tabulated Results of K and c Estimations Across Varying Simulation

Counts Utilizing the Chi-Square Based Procedure . . . . . . . . . . . . . . . . . . . 42

1.6 FTSE 100 – Tabulated Results from the Exercise Conducted in Dhesi et al. (2019),

Employing 1000 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.7 FTSE 100 – Tabulated Results of K and c Estimations Across Varying Simulation

Counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.8 Results derived from the methodology for estimating (K̂, ĉ) utilizing Shannon’s
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Chapter 1

The Irrational Fractional Brownian

Motion and the Shannon Entropy

1.1 Introduction

Traditional finance theories provide invaluable insights into the investment decision-making

process by observing and investigating price behaviours. These theories are fundamentally

grounded on the rational expectation of investors and the efficient market hypothesis (EMH)

(Mill (1874); Fama (1970)). EMH, initially proposed by Fama (1970), asserts that financial

markets are always efficient in reflecting all available information, hence no possibility of earning

abnormal returns.

A cornerstone of such traditional financial theories, which assume rationality and market

efficiency, is the Geometric Brownian Motion (GBM). Introduced by mathematician Louis

Bachelier in his 1900 thesis “The Theory of Speculation” (Davis and Etheridge, 2006), GBM

is a statistical process that has been widely used in financial modelling, especially in options

pricing models, such as the seminal Black-Scholes-Merton model (Black and Scholes, 1973).

The GBM model is widely used in finance to simulate the behaviour of asset prices under

the assumption that price changes are normally distributed and independent of each other. It

assumes that small, continuous changes, which are a product of numerous random events, lead

to a Gaussian distribution of price changes, conforming to the principles of the EMH ((Black

and Scholes, 1973),(Merton, 1973)).

However, a widely recognized critique of traditional financial theories like EMH concerns the

assumption that asset price fluctuations follow a Gaussian or normal distribution characterized

by a symmetrical bell-shaped curve. EMH assumes that changes in asset prices should ideally

follow a Gaussian or normal distribution, considering that these changes result from the arrival

of new, independently and identically distributed information.

However, numerous empirical studies have revealed that these fluctuations often exhibit a

behaviour known as leptokurtosis, resulting in ’fatter tails’ and a higher peak than a normal
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distribution. Some notable studies include those by ((Mandelbrot, 1963),(Taleb, 2007),(Rachev

et al., 2007)), among others. This observation effectively challenges EMH and similar traditional

financial theories. The term “fatter tails” refers to the increased likelihood of large price changes,

resulting in more volatile and less predictable markets, in contrast to the thin tails of a Gaussian

distribution, which implies that extreme events are exceedingly rare.

In recognition of these limitations, the field of behavioural finance has emerged to provide

alternative perspectives on investor behaviour and financial market dynamics. At its core, be-

havioural finance incorporates insights from psychology and social sciences to better understand

how irrationality and cognitive biases can influence investment decisions. Numerous studies

have shown that human investors do not always behave rationally, often being influenced by

psychological factors such as overconfidence, loss aversion, and herd behaviour ((Shefrin, 2002),

(Barberis, 2018)).

For instance, herd behaviour, where investors follow the crowd rather than their own analysis,

can contribute to the observed ’fat tails’ in asset price distributions by leading to sudden,

large-scale buying or selling activities (Bikhchandani et al., 1992). Moreover, behavioural biases

can lead to over- or under-reaction to information, resulting in price movements that are more

extreme than what would be expected under the EMH.

Therefore, traditional financial models may not fully account for the complexity of market

dynamics due to behavioural influences. To tackle this limitation, contemporary models have

begun to incorporate behavioural factors to more accurately represent market phenomena

(De Bondt and Thaler, 1985; Shleifer and Summers, 1990; Barberis et al., 1998).

An innovative approach to understanding financial market dynamics is the “Irrational Frac-

tional Brownian Motion” (IFBM) model developed by Dhesi and Ausloos (2016). This model

seeks to integrate the irrational decision-making of market participants with the impact of

time-dependent news on financial markets. Central to the IFBM model is the concept of ’soliton

behaviour’, a term that has its origins in physics. In physics, a soliton is a self-reinforcing

solitary wave that maintains its shape while propagating at a constant velocity. Notably, solitons

are resilient, retaining their shape even after colliding with other solitons(Drazin and Johnson,

1989).

The IFBM model employs the soliton concept to mathematically mimic certain characteristics

of these solitary waves, illustrating how specific market trends can maintain their form despite

new information or market events. While the soliton serves as an analogy, it is grounded in the

mathematical function of the IFBM model, making it more than a mere metaphor.

Behavioural finance research indicates that investors often base their decisions not just on raw

information or news, but on how they perceive other market participants reacting to it (Barber

and Odean, 2008). For instance, suppose there is a significant piece of news about a company

that is expected to impact its stock price. Initially, a small group of investors reacted to this

news, leading to a minor fluctuation in the stock price. However, as other market participants

2



1.1. INTRODUCTION

observe this price movement and interpret it as a reaction to the news, they, too, may decide

to buy or sell the stock, leading to further price movement. This cascading effect can continue,

leading to a pronounced trend or pattern in the market that, like a ’soliton’ wave, maintains its

form even in the face of subsequent market events (De Bondt and Thaler, 1985; Shiller et al.,

1981; Hong and Stein, 1999). This suggests that the ’soliton’ behaviour observed in the IFBM

model may be indicative of underlying behavioural phenomena in financial markets, where the

response to information can be magnified by the reactions of other market participants.

One of the significant advantages of the IFBM model over traditional Geometric Brownian

Motion (GBM) models is its ability to capture the leptokurtic nature of financial returns, a

characteristic often observed in real-world markets but missed by GBM models (Mandelbrot,

1963). The connection between irrational behaviour and leptokurtosis is pivotal. When investors

overreact to others’ actions, it can lead to extreme price movements, resulting in ’fat tails’ in the

distribution of price changes (Dhesi et al., 2016). The ’soliton’ behaviour in the IFBM model,

therefore, is not just an analogy but a mathematical representation of certain market dynamics.

It sheds light on complex market behaviours, emphasizing the role of irrational decision-making

and highlighting the influence of time-dependent news. This makes the IFBM model a valuable

tool for a more nuanced understanding of market dynamics, accommodating both irrational

behaviours and the leptokurtic nature of financial returns.

It is worth highlighting that the focus of this study is not to identify these ’solitons’ or persistent

market trends per se but rather to delve deeper into the intricacies of the Irrational Fractional

Brownian Motion (IFBM) model. This model distinctively incorporates soliton-like behaviour

in its framework. While the IFBM model’s accuracy in replicating the actual distribution of

financial returns has been previously compared with traditional models like the Geometric

Brownian Motion (GBM), our study aims to further this investigation. This study primar-

ily focuses on exploring the stability and robustness of the IFBM model and developing an

algorithm to improve its repeatability in financial market analyses. A secondary perspective

involves applying tools from information theory to the IFBM model, allowing us to investigate

the information content carried in the market dynamics under different conditions.

We aim to critically evaluate the stability and robustness of the IFBM model, using historical

S&P500 data as our testing ground. Additionally, the algorithm we develop seeks to address

potential limitations and broaden the model’s practical applicability.

To gain a different perspective on the IFBM model, we will employ tools from information

theory, such as Shannon entropy. Shannon’s entropy quantifies the amount of ’information’

or ’surprise’ a particular event brings (Shannon, 1948). By using this measure, we aim to

comprehend the information content carried in the market dynamics when the IFBM model is

applied. This information-theoretic viewpoint allows us to understand the model’s behaviour

and implications better, providing a novel lens through which to examine market dynamics.

With this foundation, we then apply the IFBM model to the COVID-19 crisis period using
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FTSE data. The choice of the FTSE market, a different market from the S&P500, allows us

to validate the model’s versatility and adaptability in various market contexts. During such

periods of market volatility, investor irrationality and information dynamics can significantly

influence market movements (Kahneman and Tversky, 2013; Shiller et al., 1981; Tversky and

Kahneman, 1992).

This comprehensive investigation, therefore, offers a fresh perspective on investor behaviour,

merging concepts from behavioural finance, mathematical finance, and information theory. The

objective is to foster a deeper understanding of financial markets, transcending the limitations

of traditional finance theories by accounting for behavioural factors and harnessing insights

from information theory.

In the following sections of this chapter, we embark on an in-depth examination of the under-

pinnings of these financial theories. Our investigation spans the traditional financial paradigms

rooted in rational expectations and market efficiency, as well as modern frameworks that recog-

nize the profound influence of behavioural biases and irrationality in investor decision-making.

Subsequent to the background analysis, we will then outline the motivation underpinning this

research, laying out the research objectives this chapter of the thesis seeks to address. Here, we

will articulate why the IFBM model and the unique perspective it provides on market dynamics

are worthy of detailed investigation and our contribution to it.

In subsequent sections, we transition into an in-depth examination of the origins and evolution

of the IFBM Model, which constitutes the focal point of this study.

Further, we will describe the datasets to be used in our study and outline the methods employed

for the analysis. The final chapters of the thesis will present the results of our analysis. Ulti-

mately, the thesis will conclude by discussing the key findings, their implications, and potential

directions for future research.

1.2 Background study

Traditional financial theories, such as the Efficient Market Hypothesis (EMH) and the Capital

Asset Pricing Model (CAPM), have been instrumental in shaping our understanding of financial

markets. However, these theories also have inherent limitations, predominantly stemming from

their underlying assumptions.

One of these key assumptions is that asset price changes follow a Gaussian or normal distribu-

tion characterized by its symmetrical bell-shaped curve. In such a distribution, extreme price

changes – those in the ’tails’ of the distribution – are extremely rare. This assumption underlies

various aspects of traditional finance theories, such as the idea that financial markets efficiently

incorporate all available information into asset prices (EMH) or that investors can optimize

their portfolios by balancing expected returns against the standard deviation of returns (CAPM)
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(Fama (1970); Sharpe (1964)).

However, empirical evidence often contradicts this assumption. Asset price changes frequently

display a distribution pattern known as leptokurtosis, characterized by ’fatter tails’ and a

sharper peak compared to a normal distribution. This pattern indicates a higher occurrence

of extreme price changes, leading to more volatile and less predictable markets (Mandelbrot

(1963); Campbell et al. (1997)).

Benoit Mandelbrot was among the pioneers who challenged the assumption of a Gaussian

distribution in financial market returns. In his 1963 paper, Mandelbrot argued for the presence

of ’fat tails’ in financial returns and introduced the idea of using fractal geometry and stable

Paretian distributions to better describe these phenomena (Mandelbrot (1963)). His work in-

spired subsequent research into modelling asset price changes with non-Gaussian distributions.

In “The Econometrics of Financial Markets,” Campbell, Lo, and MacKinlay (Campbell et al.

(1997)) highlighted the need for alternative models that can better capture the ’fat tails’ and

volatility clustering observed in financial markets. Similarly, Taleb in “The Black Swan” dis-

cusses the impact of highly improbable but high-impact events, which are often overlooked in

standard Gaussian models but are essential in understanding financial markets (Taleb (2007)).

In this context, the multifractal nature of asset returns has garnered attention. The multifractal

concept suggests that asset returns are not merely driven by a single scaling factor but can be

better understood through multiple scaling behaviours across different time frames. (Calvet

and Fisher, 2002) has offered a comprehensive analysis of its implications, emphasizing the

versatility of multifractals in capturing the intricacies of financial returns. Furthermore, the

non-normalities in these return distributions, especially their fat-tailed and skewed behaviours,

have been discussed by (Rachev et al., 2005). They provide valuable insights into the challenges

of simulating realistic financial data, emphasizing the complexities and deviations from the

standard Gaussian distribution.

Financial econophysicists have also pointed to the need for complex models that capture the

adaptive behaviours and ’fat-tail’ phenomena in financial markets (Potters et al. (1998); Sornette

and Malevergne (2001)). Such efforts show a clear trend towards developing financial models

that break away from the Gaussian assumption and better capture the true distribution of

asset price changes.

As we consider traditional quantitative models, we must also turn our attention to the domain

of behavioural finance. Financial decisions are not always driven by rational calculations or

predictions based on past data. In reality, investors, driven by emotions, psychological biases,

and a plethora of other non-quantitative factors, often act in ways that defy traditional eco-

nomic theories (Shiller, 2003). Various models have been proposed to better capture investor

behaviour in financial markets. These models often incorporate elements of behavioural finance,

emphasizing the role of psychological biases and irrationality in shaping investor behaviour.

The Prospect Theory by Kahneman and Tversky is a seminal work that illustrates this shift. It
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suggests that people make decisions based on the potential value of losses and gains, rather

than the final outcome. The theory highlights the asymmetry between gains and losses, where

losses cause more emotional impact than equivalent gains—a phenomenon called “loss aversion”

(Kahneman and Tversky (1979)).

Similarly, the Irrational Exuberance model, proposed by Shiller, suggests that investor be-

haviour can sometimes deviate significantly from rationality, leading to asset price bubbles and

subsequent crashes (Shiller (2000)). Shiller won the Nobel Prize for his work demonstrating that

stock market prices are more volatile than can be explained by the efficient market hypothesis.

In discussions about investor behaviour, it’s essential to understand the idea of ’normal

agents’—individuals who don’t always act rationally in the economic sense. Instead of the

theoretical rational agents that traditional financial theories often assume, these ’normal agents’

may exhibit tendencies like ’unconscious herding behaviour’, where they mimic the decisions of

the majority. Such behaviours can challenge traditional assumptions about the predictability

and normality of financial returns Prechter Jr (2001).

Moreover, researchers have found that introducing “agents who trade in a random way” into

financial market models can reproduce some well-known phenomena observed in real market

trading paths (Biondo et al. (2015)). This reinforces the concept that the presence of irrational-

ity or ’normal’ behaviours in market participants can be an essential factor in understanding

financial market dynamics.

In charting the evolution of behavioural finance, it’s crucial to appreciate that traditional

models’ perceived shortcomings laid the groundwork for more nuanced models, incorporating

psychological and behavioural factors for a fuller understanding of market phenomena.

To this end, De Bondt and Thaler (1985) initiated this shift by applying psychological the-

ories to financial markets. Their work probed the stock market’s potential for overreaction,

highlighting the psychological underpinnings of this phenomenon. This study’s findings not

only challenged the traditional efficient markets hypothesis but also paved the way for future

research in behavioural finance.

Building upon this foundational work, Shleifer and Summers (1990) introduced the noise trader

approach. Their research underscores the influence of noise traders, who base decisions not on

fundamental data but on extraneous ’noise’. This noise, according to their findings, generates

unpredictable fluctuations that significantly affect market prices.

Moving into the late 90s, Barberis et al. (1998) developed a model of investor sentiment and

its impact on asset pricing. Around the same time, Daniel et al. (1998) studied how investor

overconfidence and biased self-attribution could cause underreactions and overreactions to

information. Both studies advanced the understanding of investor behaviour’s complex role in

financial market dynamics.

Further progress was made by Hong and Stein (1999), who presented a model unifying underre-

action, momentum trading, and overreaction. Their unified framework underscores the intricate
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interplay between these behavioural elements in asset pricing.

The Adaptive Market Hypothesis, proposed by Lo, merges the principles of behavioural finance

with traditional models. According to this hypothesis, the degree of market efficiency is not

static but varies over time, influenced by environmental conditions, the number of competitors,

the magnitude of profit opportunities, etc. This model represents a more dynamic and realistic

picture of financial markets, taking into account the adaptive behaviours of investors (Lo

(2004)).

A new dimension was added to the field when Bakshi and Wu (2006) utilized options market

data to study investor behaviour and risk perceptions during the NASDAQ bubble. Their study

demonstrated the potential for unique insights to be gleaned from financial derivatives.

Around the same period, Hirshleifer et al. (2006) provided a model wherein irrational investors,

through their trading activities, could influence underlying cash flows and secure abnormal

profits. This work further accentuated the significant impact irrationality can exert in the

financial markets.

Moving into the next decade, Manapat et al. (2013) offered an evolutionary perspective on

trust, interpreting it as a manifestation of investor irrationality in economic interactions. Their

research underscores trust’s critical role in market transactions.

Adding further depth to our understanding of irrational behaviour, Dhesi and Ausloos (2016)

introduced an innovative model incorporating irrational agent behaviour in response to time-

dependent news. This research underscores the role of news in influencing stock prices through

its impact on irrational agents. Bordalo et al. (2018) presented a model of credit cycles arising

from diagnostic expectations, adding a new dimension to our understanding of financial markets.

This study highlights how cognitive biases can shape broader economic phenomena, including

credit cycles.

More recently, (Chen et al., 2020) observed a pervasive human tendency towards irrational

stockpiling during crises such as the COVID-19 pandemic. This behaviour, also termed hoarding

or panic buying, arises from limited, distorted, or exaggerated information that affects people’s

judgment. Such actions, though seemingly irrational, can be decoded using economics and

psychology frameworks, with repercussions on the economy, society, and local communities.

Parallelly, a study by (Ye et al., 2020), focusing on China’s A-share market, unveiled that

contrary to the efficient market hypothesis, investors often display herding behaviour. This

tendency to mimic the majority, influenced by cognitive psychology, is especially pronounced in

severe bear markets. Factors like loss aversion and extrapolative expectations, which anchor on

historical stock price trends, were identified as key drivers behind such behaviour.

In summary, the field has seen a gradual but significant shift from traditional models towards

a more behavioural approach, and as underscored by the multifractal nature of asset returns,

towards understanding the intricate structures and dynamics of financial markets. This body of

work underscores the importance of understanding investor behaviour to comprehend more
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fully the complex dynamics of financial markets.

1.3 Motivation of the study

The ”Irrational Fractional Brownian Motion” (IFBM) model, as presented by (Dhesi and

Ausloos, 2016), is a pioneering approach that delves into the effects of irrational agent behaviour

in response to time-dependent news. This innovative model posits the concept of a psychological

Soliton, suggesting that forecast errors can initiate a ripple-like effect in financial markets akin

to a Soliton. In fluid dynamics, a soliton is a solitary wave that retains its shape as it travels at a

constant velocity (Drazin and Johnson, 1989). Translating this to financial markets, it suggests

that the impact of a forecast error moves through the market, influencing prices and behaviours

over time without quickly dissipating. Such a prolonged effect stands in contrast to the Efficient

Market Hypothesis (EMH), which asserts that markets rapidly adjust to new information,

leaving little room for sustained anomalies (Fama, 1970). The soliton-like behaviour, thus,

presents a challenge to the EMH, implying that markets might not always be as efficient as

traditionally believed. The introduction of a “news factor” offers a unique avenue to consider

real-world stimuli that substantially influence financial markets, making it a departure from

conventional models that often overlook such effects. The response to the news, especially

during periods of financial turmoil or extreme market events, marks an area where irrationality

might exert a significant influence, thus underscoring the relevance of the IFBM model.

The IFBM model presents a groundbreaking shift from traditional financial models, such as the

Geometric Brownian Motion (GBM). By emphasizing investor irrationality and the leptokurtic

nature of financial returns ((Mandelbrot, 1963), (Taleb, 2007)), the IFBM model offers a more

nuanced portrayal of financial markets. These features are critical given the frequently observed

’fat tails’ and pronounced peaks in financial return distributions, suggesting a higher likelihood

of large price changes and more volatile market conditions. The IFBM model, characterized by

its parameters k and c, has been proposed as a more general and comprehensive alternative to

traditional models like the Geometric Brownian Motion (GBM) (Black and Scholes, 1973).

The GBM, a cornerstone in financial mathematics, is commonly used to depict the stochastic

progression of stock prices, presuming that percentage changes in these prices are normally

distributed. However, its assumption of constant volatility and normally distributed returns

often results in shortcomings, especially during financial market anomalies (Hull, 2012).

One of the standout features of the IFBM model is its adeptness at accurately capturing the fat

tails and pronounced leptokurtosis observed in financial returns distributions. Collectively, k and

c modulate the distribution of returns to resemble a leptokurtic nature, which is characterized by

pronounced peaks and fatter tails than a normal distribution. This leptokurtic behaviour is often
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observed in real-world financial returns, especially during turbulent times, making the IFBM

model a potentially more accurate reflection of market dynamics. Such a precise representation

is pivotal for practitioners, especially in the realm of Value at Risk (VaR) management Dhesi

et al. (2019). By offering a more accurate forecast of the fat-tailed frequency distribution for

returns, the IFBM model equips financial professionals with a robust tool that can enhance

risk management and foster more informed investment decisions.

Despite the evident advantages of the IFBM model, the stability of its to-be-estimated defining

parameters, k and c, remains largely untested in the literature. Given this gap, the study

proceeded to conduct extensive simulations of the IFBM model’s parameters to rigorously

assess its stability, especially in the paradigmatic case of S&P500, assessing its historical

data. This intensive testing phase sought to verify the resilience and reliability of the IFBM

model under real-world market conditions. Furthermore, earlier investigations into the model

primarily focused on its performance in relation to the GBM, utilizing the Chi-Square criterion

as the primary metric for comparison (Dhesi and Ausloos, 2016). While this approach offers

valuable insights, its robustness under varying conditions became a point of contemplation.

This encouraged a broader examination, paving the way for considering alternative methods

that might offer more consistent and reliable results.

Recognizing the potential depth and multifaceted nature of the IFBM model, our research aims

to expand this perspective. We propose to investigate the model’s attributes through alternative

analytical tools, notably Shannon entropy from information theory. Shannon’s entropy quantifies

the ’surprise’ or ’information’ content that a specific event yields. In the context of financial

markets, this can be considered the amount of unexpected or new information an event brings

to the market, such as an unexpected earnings announcement or a sudden change in interest

rates (Shannon, 1948).

Our exploration of financial time series through the lens of information theory is rooted in a rich

tapestry of research that spans several decades. The foundational concept of entropy, particularly

Shannon entropy, was established as a measure of information content within datasets. Pincus

(1991) was among the early pioneers who sought to quantify the complexity of time series

data. Introducing the concept of approximate entropy, Pincus provided a methodology to assess

system complexity, an idea that, while not strictly confined to financial datasets at the time, laid

the groundwork for future applications in finance. Building upon these foundational principles,

Darbellay and Wuertz (2000) ventured into the realm of finance, employing entropy measures to

detect and quantify statistical dependencies in financial time series. Their findings illuminated

the potential of entropy in capturing intricate market dynamics, setting the stage for further

investigations into the relationship between entropy and financial markets. Further advancing

this line of inquiry, Zunino et al. (2010) presented the complexity-entropy causality plane. This

novel approach was designed to measure stock market efficiency by elucidating the intricate

relationship between time series predictability (entropy) and complexity.

9



CHAPTER 1. THE IRRATIONAL FRACTIONAL BROWNIAN MOTION AND THE

SHANNON ENTROPY

In a similar vein, Rosso et al. (2007) leveraged permutation entropy to differentiate between

chaotic dynamics and stochastic noise within financial datasets. Their methodology underscored

the adaptability and versatility of entropy-based measures in discerning the underlying processes

driving financial data.

Given this historical context, our research seeks to harness the power of Shannon entropy in

understanding the IFBM model. In our study, we will apply Shannon entropy to historical price

data. We will calculate the entropy of price changes to elucidate the evolution of uncertainty and

the information content of market events over time; we aim to dissect the intricacies of financial

data and ascertain the accuracy of models like IFBM within the broader framework established

by the aforementioned studies. Specifically, we plan to use the IFBM model to simulate market

reactions to these events. Subsequently, the Shannon entropy of these simulated price changes

will be calculated. Our ultimate goal is to compare the entropy of actual price changes with

that of the simulated price changes under the IFBM model. This comparison allows us to assess

how effectively the IFBM model captures the complexity of real-world market dynamics.

Furthermore, while the theoretical foundation of the IFBM model is robust, in the literature,

there is a lack of a published best practice to use it. A formally designed algorithm would

not only streamline the application of the IFBM model but also ensure its consistent and

repeatable use in financial analyses. Addressing this gap, our research endeavours to develop a

comprehensive algorithm that encapsulates the core principles of the IFBM model, making it

more accessible and usable for both researchers and practitioners alike.

The IFBM model, characterized by two parameters (K and c), necessitated a procedure to

accurately estimate these parameters across biennial periods, thereby obtaining a corresponding

distribution of returns. An optimized Matlab algorithm was specifically developed for this

purpose, ensuring precision in replication. The core of this procedure hinged on selecting optimal

K and c values that, adhering to the Chi-Square criterion, minimized the divergence between

the historical and simulated frequency distributions.

However, a concern emerged regarding the lack of convergence when escalating the number

of simulations from 10 to 10, 000. This observation hinted at potential limitations within the

Chi-square-based approach, thereby sparking curiosity towards exploring alternative methods.

Shannon’s entropy method emerged as a promising alternative, veering towards quantifying

the variability inherent in given probability distributions. Moreover, to further scrutinize the

robustness and applicability of the IFBM model, it was deemed imperative to test it under

different market conditions. This line of thought naturally led to the application of the IFBM

model to FTSE 100 data, with a keen eye on observing the stability of parameters K and c

therein.

Moreover, the computational demands associated with the Chi-Square criterion, especially

evident when handling large datasets or conducting multiple simulations, underscored the need

for more computationally efficient metrics. Unlike the Chi-Square test, Shannon entropy directly
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employs observed probabilities, thus obviating the need for auxiliary computations, making it

a valuable alternative in scenarios necessitating extensive simulations. Its utility in financial

analyses has been underscored in studies by Zunino et al. (2010); Darbellay and Wuertz (2000),

both highlighting its versatility and computational efficacy.

Building on these foundational analyses, the research then introduces Shannon’s entropy as

an advanced analytical tool (Shannon, 1948). Shannon’s entropy quantifies the “informational

content” in a dataset, thereby assessing its randomness or unpredictability. In the financial realm,

understanding this unpredictability is paramount. High entropy values can indicate a vast array

of possible outcomes, suggesting higher unpredictability and more information in the evaluated

period. Conversely, low entropy values hint at more predictable outcomes, implying reduced

risk (Cover, 1999) and a less informative time span. In times of financial crisis, markets often

exhibit heightened volatility and unpredictability, which can amplify the effects of any model

inaccuracies or misjudgments. Understanding and quantifying this unpredictability becomes

even more essential during these periods as market participants seek to navigate turbulent

waters and protect their investments. The IFBM, with its incorporation of a “news factor”

and focus on investor irrationality, is particularly pertinent in this context. It offers a more

dynamic and responsive framework that can potentially capture the abrupt and often extreme

market reactions to unexpected news or events, which are characteristic of crises. Traditional

models might fall short in such scenarios due to their inherent assumptions, which might not

hold during turbulent times Mandelbrot and Hudson (2010); Shiller et al. (1981); Lo (2004).

Thus, employing tools like Shannon’s entropy in conjunction with the IFBM model can offer a

more holistic and accurate assessment of the market, especially during periods of heightened

uncertainty (Cont, 2001). The author posits that deviations from standard models during crises

arise due to the complex interactions and dependencies among various market factors. The

IFBM, by accounting for some of these complexities, positions itself as a potentially superior

tool for understanding and navigating markets in crisis scenarios. By evaluating its predictions

and behaviours through Shannon’s entropy, we aim to test its mettle in truly challenging market

conditions, offering insights that could reshape our approach to risk management and strategic

decision-making during future crises.

Finally, the robustness and versatility of the developed algorithm for the IFBM model will

be further evaluated by testing it on different market data, specifically the FTSE during the

COVID-19 crisis period. This period, characterized by high volatility and potential behavioural

biases Baker et al. (2020a); Al-Awadhi et al. (2020); Goodell (2020); Zaremba et al. (2020),

presents an ideal testing ground to evaluate the model’s ability to capture market dynamics

under extreme conditions. This practical test will offer insights into the model’s adaptability

across diverse market contexts.

By integrating insights from the Chi-Square approach, stability assessments, Shannon’s entropy,

and different market data, this thesis aims to offer a comprehensive, multi-faceted perspective

11



CHAPTER 1. THE IRRATIONAL FRACTIONAL BROWNIAN MOTION AND THE

SHANNON ENTROPY

on the dynamics and associated risks of the IFBM model. In essence, our research seeks to

journey through the relatively uncharted territories of the IFBM model, aiming to provide

a comprehensive understanding of its dynamics, its practical applicability, and its value in

capturing the multifaceted intricacies of financial markets.

1.4 Research objectives

Qualitative: How does the IFBM model, with its incorporation of investor irra-

tionality and leptokurtosis, offer a more accurate representation of financial markets

compared to the GBM model?

The Irrational Fractional Brownian Motion (IFBM) model, proposed by Dhesi (2016), diverges

from traditional financial models like the Geometric Brownian Motion (GBM) by incorporating

investor irrationality and leptokurtosis, an empirical reality often overlooked in classical models.

The IFBM acknowledges that asset price fluctuations often exhibit a leptokurtic behaviour

((Mandelbrot, 1963), (Taleb, 2007)), characterized by ’fatter tails’ and a higher peak than a

normal distribution. This implies an increased likelihood of large price changes, resulting in

more volatile and less predictable markets. Investigating the merits of this alternative model

can provide a fresh perspective on financial market dynamics, shedding light on how irrational

investor behaviours contribute to observed patterns in financial markets. In this research, we

aim to revisit and elaborate on the IFBM model, highlighting its core principles and detailing

its methodology. Our intention is to deepen understanding and provide a clear interpretation of

the IFBM, making it more accessible to the broader financial academic community. We respect

the foundational work on the model and seek to enhance, rather than critique, its presentation,

especially considering its innovative approach.

Empirical: How does the IFBM model perform in terms of stability and robustness

when tested against historical data?

Prior research has compared the GBM and IFBM models (Dhesi and Ausloos, 2016), focusing

on how these models represent asset price dynamics. However, the stability and robustness

of the IFBM model remain largely unexplored. The stability of the k and c parameters is a

critical aspect of the IFBM model’s applicability and reliability. This research question aims

to rigorously test these parameters using both Chi-Square and Shannon entropy metrics. By

employing these tests on historical S&P500 and FTSE100 data, we strive to validate the stability

and robustness of the IFBM model, filling a crucial gap in the existing literature.

Methodological: Can we develop a repeatable and robust algorithm to facilitate

the application of the IFBM model in financial market analyses?

While the IFBM model offers a more nuanced understanding of financial market dynamics, its
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application can be complex and not readily repeatable. To overcome this hurdle, this research

aims to develop a robust algorithm for implementing the IFBM model in financial market

analyses. This effort will ensure the model’s practical applicability, making it a versatile tool

for practitioners and researchers alike.

Practical: How does the developed algorithm for the IFBM model perform when

applied to different market data, specifically the FTSE, during the COVID-19 crisis

period?

The robustness and versatility of the developed algorithm for the IFBM model will be further

evaluated by testing it on different market data, specifically the FTSE during the COVID-19

crisis period. This period, characterized by heightened volatility and pronounced behavioural

biases (Baker et al., 2020a; Goodell, 2020), presents an ideal testing ground to evaluate the

model’s ability to capture market dynamics under extreme conditions. This practical test will

offer insights into the model’s adaptability across diverse market contexts.

Empirical: Using tools from information theory like Shannon entropy, what in-

sights can we glean about the information content inherent in market dynamics as

captured by the IFBM model?

Finally, to further our understanding of the IFBM model, we will employ tools from information

theory, like Shannon entropy, to study the information content inherent in market dynamics as

captured by the model. Shannon’s entropy quantifies the amount of ’information’ or ’surprise’

a particular event brings ((Shannon, 1948)). By applying this measure to the IFBM model,

we aim to explore the model’s ability to capture the complex interactions and dependencies in

financial markets, potentially offering a richer understanding of market behaviour and risks,

especially during turbulent times (Cont, 2001).

1.5 Origin and Evolution of the IFBM Model

In financial research, accurately modelling financial returns is a persistent challenge. A significant

advancement in this domain is the introduction of the IFBM model, designed to capture intricate

patterns of financial returns. The origins of the IFBM can be traced back to the paper titled

“Modified Brownian Motion Approach to Modelling Returns Distribution” (Dhesi et al., 2016).

This pioneering research, which introduced the concept of the MBMM, serves as the foundation

for the more evolved IFBM model.

1.5.1 Paper 1: Modified Brownian Motion Model

The authors of the MBMM sought to bridge the gap between traditional financial theories,

rooted in the efficient market hypothesis (EMH) (Fama, 1970), and empirical findings. The
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EMH posits that financial returns, driven by rational investor expectations, are normally

distributed. However, empirical evidence frequently contradicts this, showing that financial

returns often display leptokurtosis (Mandelbrot, 1963). This misalignment signals a need for a

model that better represents the distribution of financial returns. The study’s impetus came

from an experimental paper on a semi-closed stock market (Dhesi et al., 2011), which incorpo-

rated the Geometric Brownian Motion (GBM) model with additional demand and supply factors.

In this section, we delve into the mathematical intricacies of the models under consideration,

focusing on the Geometric Brownian Motion (GBM) and its innovative extension, the Modified

Brownian Motion Model (MBMM).

1.5.1.1 Geometric Brownian Motion (GBM)

The cornerstone of classical quantitative finance can be expressed by the equation:

(1.1) ln

(
Pt

Pt−1

)
= µ + ϵt

where ϵt ∼ NID(0, σ2). This equation, in continuous time, is represented as:

(1.2)
dP

P
= µdt + σdZ

In the classical GBM (Black and Scholes, 1973), the stochastic process is influenced solely

by a random shock. This often falls short in capturing intricate patterns in financial returns,

particularly during volatile market conditions (Dhesi and Ausloos (2016); Dhesi et al. (2016,

2019)).

1.5.1.2 Modified Brownian Motion Model (MBMM)

Building on the GBM, the research introduced an innovative extension to the model. This

extension incorporates a weighting factor and a stochastic function, enhancing its ability to

reflect real-world financial return distributions more accurately. The resulting formulation is:

(1.3) Pt+δ = Pt exp
(
µδ + σ

√
δZt + Kf(Zt)µδ

)
The function f(Z) is defined as:

(1.4) f(Z) = (2 exp(−cZ
2

2
)− 1) arctan(Z)

This function, in conjunction with the parameters K and c, enables the model to encapsulate

deviations from rational behaviour commonly observed in financial markets. The behaviour of

f(Z) and the influence of parameters K and c are detailed in the subsequent sections.
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Function f(Z) and Parameters K and c

This section explores the behaviour of the function f(Z) and the roles of parameters K and c

in the MBMM.

The function f(Z), in conjunction with the parameter K, enables the model to encapsulate

deviations from rational behaviour commonly observed in financial markets.

The function f(Z)

• When Zt is small: Such instances can be interpreted as minimal news or slight market

fluctuations. Here, the collective investor sentiment might lean towards a perceived market

stagnation, potentially driving them to sell their assets. Consequently, the MBMM’s

predicted price surge is subdued compared to the GBM’s projection.

• When Zt is substantially positive: Such scenarios can be seen as significant positive news

or robust market trends. Here, the market sentiment might be overwhelmingly bullish,

triggering a herding effect with investors scrambling to invest. The resulting demand

overshadows supply, leading to a steeper price ascent in the MBMM compared to the

GBM.

Parameter K

• K functions as a weighting factor, magnifying the impact of the f(Z) function within the

MBMM.

• At K = 0, the MBMM reverts to the traditional GBM, underscoring its role in accommo-

dating deviations from this classic model.

• K’s values modulate market reactions to varying news magnitudes and orientations. The

paper emphasizes that the optimal K values differ across datasets, showcasing the model’s

adaptability to specific market nuances.

• K amplifies corrections on the GBM. In simpler terms, it accentuates price changes,

making them more pronounced. A high positive value of K indicates anticipation of higher

prices, pushing the distribution of returns to have “fatter tails”. These fatter tails imply

a higher probability of extreme price changes, which becomes particularly crucial during

market crises when unexpected price fluctuations are rampant.

Parameter c

• c serves as a controlling variable in the f(Z) function, pinpointing where tail “flattening”

commences relative to standard deviations from the mean.
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• The magnitude of c designates the proximity to the mean where this flattening phenomenon

initiates.

• c equips the model with the flexibility to recalibrate based on empirical data, ensuring

congruence between the model’s distribution and real-world observations. Analogous to

K, the ideal c value is dataset-dependent, accentuating the model’s versatility.

• c introduces phases wherein the MBMM’s influence on the GBM is subdued, working

towards stabilizing the prices. This means that with c in play, the MBMM model tries to

concentrate more prices around the average or mean. Such a concentration makes the

distribution peak, indicating that most price changes are close to the mean, and fewer

are farther away.

Collectively, K and c modulate the distribution of returns to resemble a leptokurtic nature,

which is characterized by pronounced peaks and fatter tails than a normal distribution. This

leptokurtic behaviour is often observed in real-world financial returns, especially during turbu-

lent times, making the MBMM model a potentially more accurate reflection of market dynamics.

The research findings highlighted the superiority of the Modified Brownian Motion Model

(MBMM) in several ways. Upon optimization, the MBMM showcased an exemplary fit to the

historical histogram of returns, distinctly outperforming the traditional Geometric Brownian

Motion (GBM). This supremacy was further solidified through chi-squared goodness of fit

tests. One of the standout traits of the MBMM is its proficiency in capturing the leptokurtic

tendencies intrinsic to financial return distributions, a feature that is often overlooked by many

traditional models. The introduction of the parameter K and the function f(Z) furnishes the

MBMM with the requisite tools to encapsulate the often irrational behaviours observed in

financial markets, marking a significant advancement in the field. Furthermore, the model’s

ability to adeptly represent leptokurtosis, a hallmark of empirical return data, emerged as a

salient feature.

Incorporating the function f(Z) into the MBMM provides a nuanced mechanism to modulate

the influence of random shocks based on real-time market observations. This refinement offers

a truer representation of financial return distributions, adeptly capturing both the central peak

and the expansive tails. Such tails and peaks in the returns distribution are the manifestations

of volatile asset price movements, which are frequently steered by factors like investor sentiment,

herd behaviour, or unforeseen external shocks. Through f(Z) and the parameters K and c,

the model discerningly adjusts the influence of these random shocks. In essence, the MBMM

effectively bridges the chasm between theoretical finance constructs and empirical market

behaviours, offering invaluable insights into the idiosyncratic nature of financial markets (Dhesi

et al., 2016).

16



1.5. ORIGIN AND EVOLUTION OF THE IFBM MODEL

1.5.2 Paper 2: Irrational Fractional Brownian Motion Model

Having delved deep into the intricacies of the MBMM model and its implications for under-

standing market behaviours in the previous paper, it’s imperative now to turn our attention to

a subsequent piece of research that further refines this perspective, introducing the Irrational

Fractional Brownian Motion (IFBM) model and shedding light on the nuanced behaviours of

market agents.

The primary motivation for Dhesi and Ausloose al.’s subsequent research paper appears to be the

identification and quantification of the irrational behaviours exhibited by agents in financial mar-

kets. Building on their previous model, the authors sought to delve deeper into the implications

of irrational agent behaviour, especially in response to time-dependent news on log returns, and

its effect on financial market evolution. The authors were particularly intrigued by the observable

kink-like effect reminiscent of soliton behaviour, suggesting the role of analysts’ forecast errors

in adjusting stock prices, thereby aiming to propose a measure of the irrational force in a market.

The initial paper by Dhesi et al. introduced a novel model that enhanced the Geometric Brow-

nian Motion (GBM) by integrating an additional stochastic function, capturing the erratic and

irrational movements observed in financial markets more accurately. This subsequent research

builds upon the foundational model, but it focuses more intently on the psychological and

behavioural aspects of agents in response to financial news or economic information. While the

first paper laid the groundwork for the model and its parameters, this continuation seeks to

apply, interpret, and further explore the implications of the model, especially in terms of the

“stochastic psychological soliton”.

1.5.2.1 Discussion and Details of the Model, Parameters, and Regions

The new paper reintroduces the model, now termed the Irrational Fractional Brownian Motion

(IFBM) model, emphasizing its distinction from the traditional GBM. The change in nomencla-

ture from MBMM to IFBM underscores the model’s focus on capturing irrational behaviours

in the market, emphasizing the fractional nature of the Brownian motion considered.

The IFBM model utilizes the feedback function f(Z), which is a function of the random number

Z that’s assumed to represent financial news or economic information at a given time. The

function f(Z) is critical as it measures and models the irrational feedback behaviour of agents,

especially when K < 0. The paper identifies six distinct regions based on the value of Z, which

describe various market scenarios and the corresponding irrational behaviours.

These regions serve as a comprehensive framework to understand how agents might react to

different market news, either amplifying or dampening their reactions based on the nature of
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Figure 1.1: The plot showcases the f(Z) feedback function, which represents the market’s
response to financial news intensity Z at time t. This function is integral to capturing deviations
from the classic Geometric Brownian Motion (GBM) model by considering irrational behaviours
in financial markets. The six regions on the graph highlight various market scenarios, ranging
from extreme optimism to pronounced pessimism, further elucidating the market dynamics in
response to varying intensities of financial news.

the news.

Understanding the different Regions on the Graph of the Feedback Function f(Z):

The feedback function f(Z), when graphed against the variable Z, provides insights into how

the market might respond to varying degrees of financial news or economic information:

Positive Feedback:

This refers to a scenario where the feedback function amplifies or increases the original behaviour

of the GBM. In the context of the graph, it’s when f(Z) has the same sign as Z, thus amplifying

the effect of the news on the GBM.

For instance, in regions where the market is flooded with overwhelmingly positive news (high

positive Z), the response (represented by f(Z)) is also positive and greater than the GBM’s

prediction. Similarly, when the news is extremely negative (very negative Z), the market re-

sponse is also negative and more pronounced than what GBM would suggest. This exaggeration

or amplification in response to the news is termed as positive feedback.
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Negative Feedback:

In this context, the term “negative feedback” refers to the regions where the feedback function

f(Z) acts in a way that the modified Brownian motion model approaches the behaviour of the

classic GBM. Here, the influence of f(Z) is such that the market’s response is more in line

with the predictions of the classic GBM, even when considering the effects of financial news

intensity Z.

Essentially, in these negative feedback regions, the deviations or modifications introduced by

the f(Z) function are such that the market’s behaviour is closer to what would be expected in

a purely rational market, as described by the GBM.

The feedback is about the behaviour of the market in response to the news, captured by the

feedback function f(Z), and how this behaviour deviates from the classic GBM. It’s about how

market agents collectively respond to the news and how this collective response deviates from

what would be expected in a purely rational market as described by GBM.

Region 1:

Even with a hint of positive news, market agents react with caution. Instead of capitalizing on

the good news, they might be selling assets, possibly out of impatience or scepticism. It’s as if

they doubt the credibility or longevity of this positive information.

Region 2:

As the news becomes more distinctly positive, the market’s cautious or even negative response

intensifies. The scepticism grows stronger, leading agents to possibly continue their sell-off,

doubting the sustainability of the good news.

Region 3:

When the market is flooded with overwhelmingly positive news, there’s a dramatic shift in

behaviour. The market reacts with euphoria or over-enthusiasm, leading to buying sprees. It’s

as if the positivity is too strong to ignore or doubt.

Region 4:

On the flip side, with just a touch of negative news, the market surprisingly responds with a

bit of optimism. Instead of panicking, agents might see this as a buying opportunity, hoping

it’s just a temporary dip.

Region 5:

As the negative news becomes more apparent, the market’s optimism or hopeful behaviour
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grows stronger. Agents could be acting contrarily, hoping for a turnaround or considering the

more pronounced negative situation as a significant buying opportunity.

Region 6:

However, when faced with extremely negative news, the market finally succumbs to fear. There’s

a strong negative reaction, with the market likely in a state of panic, leading to rapid sell-offs.

1.5.2.2 The Soliton Aspect and behaviour

A significant highlight of this paper is the introduction of the concept of a “stochastic psycholog-

ical soliton”. The term “soliton” traditionally describes a self-reinforcing solitary wave or pulse

that maintains its shape while it propagates at a constant velocity (Drazin and Johnson, 1989).

In the context of this paper (Dhesi and Ausloos, 2016), the soliton represents the consistent,

travelling kink in market behaviour due to the irrational actions of investors. It’s a visual and

mathematical manifestation of the market’s irrational tendencies, providing both a theoretical

and practical framework for understanding and measuring these behaviours.

The paper’s findings underscore the relevance and efficacy of the IFBM model in capturing the

leptokurtic distribution of asset returns and measuring irrational behaviour in financial markets.

The research suggests that this model, with its incorporation of the “stochastic psychological

soliton”, offers a more foundational approach than the GBM for financial contexts. The IFBM

not only captures the irrational tendencies in asset pricing but also provides a tangible measure

for this irrational behaviour. The authors conclude by proposing several avenues for future

research, emphasizing the broader applications and implications of the IFBM model.

1.5.3 Paper 3: IFBM Modelling and Forecasting the Kurtosis of Financial

Markets

The ever-evolving landscape of financial markets continually challenges existing forecasting

models. Building on foundational concepts introduced in the MBMM and IFBM papers, this lat-

est research (Dhesi et al., 2019) embarks on a deeper exploration into the intricacies of financial

returns distributions. It delves into the relationship between the kurtosis of the distribution and

the parameters k and c through autoregressive (AR) processes. Kurtosis, as a statistical measure,

offers insight into the distribution of observed data. A mesokurtic distribution, characterized by

a kurtosis value of three, mirrors a normal distribution. In the realm of financial returns, distribu-

tions often exhibit leptokurtosis, characterized by a kurtosis exceeding three. Such distributions

indicate fat tails, suggesting a higher propensity for outliers and extreme market events (DeCarlo,

1997). In the context of this research, the exploration of leptokurtic behaviour provides a lens

to understand and predict significant market movements, forming a core aspect of the paper’s
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methodology. This research illuminates not only the intricate relationship between kurtosis and

the model parameters but also the dynamics between the ratio k
c and the parameters themselves.

Methods

The research employs AR processes, a statistical tool utilized in time series analysis. In an AR

process, the value of a variable at a given time is linearly dependent on its prior values, allowing

it to capture inherent temporal dependencies (Wulff, 2017). Within the context of this research,

AR processes were instrumental in dissecting the dynamics between k, c, and their subsequent

influence on kurtosis, leveraging a rich dataset of financial returns from January 1, 1950, to De-

cember 31, 2015. This dataset was pivotal for validating the AR models and the ensuing findings.

Paper Findings

The research’s findings are multifaceted:

• The relationship between kurtosis and the parameters k and c is captured by:

ln(Kurtt) = 1.66 + 0.078 ln(kt)− 0.081 ln(ct)

This equation underscores the temporal dependencies of kurtosis on the parameters. By

modelling the relationship between kurtosis and these parameters, the equation provides

insights into the propensity for extreme market events. This understanding is vital for

risk management; by predicting the likelihood of these “fat tail” events, risk managers

can better strategize to mitigate potential losses.

• The dynamics of the k
c ratio, when analysed through AR processes, unveiled significant

outliers corresponding to major market events, such as the Cuban missile crisis in 1962.

This suggests the potential of the k
c ratio as an early warning system for market disruptions.

• The refined model has profound implications for risk management, especially in the

calculation of Value at Risk (VaR). By accurately forecasting the leptokurtic nature of

financial returns, the model enables practitioners to better estimate the potential downside

of an investment portfolio over a specific timeframe (Jorion, 2007).
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1.6 Financial data gathering

To explore the IFBM model’s performance and adaptability, this study leverages two pivotal

datasets that encapsulate the multifaceted dynamics of real-world financial markets. Two

seminal datasets are employed: the S&P 500 and the FTSE 100. The former, an emblematic

index of American equities, offers a panoramic view of the U.S. market, reflecting its historical

highs and lows, its reactions to global events, and its inherent volatility. Given its extensive

historical data, the S&P 500 serves as an empirical crucible, testing and validating theoretical

frameworks in a setting that mirrors real-world financial dynamics (Hamilton, 1983; Malkiel,

2003; Carlson, 2007).

On the other hand, the FTSE 100, which represents the top 100 publicly traded companies in

the UK, reflects the economic and financial conditions of the United Kingdom. This study finds

the FTSE 100 data during the COVID-19 pandemic particularly relevant due to the period’s

significant market volatility and uncertainty. The dataset, characterized by its relevance and

the distinct challenges brought by the pandemic, offers a suitable platform to examine the

performance of models like the IFBM in capturing extreme market movements (Crafts and

Mills, 2017; Emmerson et al., 2016). Note that all data presented in the table was downloaded

from the official Bloomberg terminal.

1.6.1 S&P 500 Dataset

Figure 1.2a showcases the historical progression of the S&P 500’s daily closing prices over an

extensive time frame, stretching from 03/01/1950 to 22/08/2014. The graphical representation

employs alternating colours at two-year intervals, streamlining the data segmentation strategy

of this study.

Prominent market events can be discerned by observing the data. The speculative bubble of the

late 1960s and early 1970s, the “Nifty Fifty” era, possibly caused noticeable market behaviours.

The oil crisis of 1973-1974, which led to a significant stock market downturn, might be reflected

as well. The recession and high inflation of the early 1980s, Black Monday in 1987, the Dot-com

bubble of the late 1990s, the aftermath of the 9/11 attacks in 2001, and the Global Financial

Crisis between 2007-2009 are all pivotal moments in financial history that likely influenced the

trends and volatility observed in the figure (Hamilton, 1983; Malkiel, 2003; Carlson, 2007).

Furthermore, the natural logarithm of the daily closing prices (Figure 1.2c is also depicted. The

use of natural logarithm transformations is common in financial econometrics to stabilize the

variance and to make patterns more discernible, especially when dealing with financial time

series data (Tsay, 2005).

Figure 1.2b exhibits the empirical distribution of returns for the S&P 500. This visual represen-

tation offers insights into the frequency and magnitude of returns, allowing researchers and

investors to glean a better understanding of the index’s volatility and risk dynamics over the

22



1.6. FINANCIAL DATA GATHERING

years.

The data source, having also been used by (Dhesi and Ausloos, 2016; Dhesi et al., 2016, 2019)

publications, ensures continuity in research methodologies and allows for comparative analysis

with previous findings.
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(a) S&P 500 closing prices.

(b) Histogram of the S&P 500’s daily returns. (c) Natural Logarithm of the S&P 500 closing prices.

Figure 1.2: S&P 500 closing prices and returns historical data. The colours change every two
years to match the dataset breakdown used in this study.
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Table 1.1 presents a comprehensive statistical summary of the S&P 500 index over various

biennial periods from 1950 to 2015, focusing on closing prices and returns. The skewness

and kurtosis values provide insights into the symmetry and tail heaviness of the distribution,

respectively. For instance, the skewness values fluctuate around zero, suggesting a mix of left and

right-skewed distributions over the periods, while the kurtosis values, mostly below 3, signify a

platykurtic distribution indicative of lighter tails compared to a normal distribution. The latter

part of the table, focusing on returns, elucidates the performance of the S&P 500 index, which

is paramount for investors and market analysts. It’s evident that the returns have varied widely

over the years, with some periods witnessing significant positive returns while others experienced

notable negative returns. Particularly, during the financial crisis period of 2008-2009, the data

exhibited heightened volatility with a noticeable decrease in the mean closing price. The Sharpe

ratio also declined during this period, indicating a decreased risk-adjusted performance of the

S&P 500 index.

Table 1.2 delineates the start and end dates for each biennial period from 1950 to 2014, serving

as a chronological guide to the data analysis presented in the previous table. By establishing

these temporal boundaries, the table facilitates a structured and organized examination of the

S&P 500 market dynamics across distinct historical phases. Each row represents a two-year

segment, beginning on the first trading day of the year and concluding on the last trading day

of the subsequent year. This segmentation allows for a granular analysis of market behaviours

and trends over time. It is worth noting that some pairs of years have fewer observations due

to either a lack of data or the presence of a different number of non-trading days in each year.
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type N max min µ σ µ/σ skew. kurt.

Clo. Pr. 1950-51 498 23.85 16.66 20.3596 2.1832 9.3256 -0.11001 1.6392
Clo. Pr. 1952-53 501 26.66 22.71 24.6096 0.83798 29.3679 0.41511 2.5594
Clo. Pr. 1954-55 504 46.41 24.8 35.1115 6.2706 5.5994 0.1303 1.7927
Clo. Pr. 1956-57 503 49.64 38.98 45.5292 2.4756 18.391 -0.68495 2.9134
Clo. Pr. 1958-59 505 60.71 40.33 51.8219 6.4558 8.0272 -0.43821 1.6615
Clo. Pr. 1960-61 502 72.64 52.2 61.0353 5.7908 10.54 0.33773 1.6582
Clo. Pr. 1962-63 503 75.02 52.32 66.0826 5.8747 11.2486 -0.5348 2.0266
Clo. Pr. 1964-65 505 92.63 75.43 84.7584 4.3467 19.4994 -0.091414 2.2609
Clo. Pr. 1966-67 503 97.59 73.2 88.562 5.7691 15.3512 -0.61923 2.3814
Clo. Pr. 1968-69 476 108.37 87.72 98.0596 4.7969 20.4423 -0.084633 2.2315
Clo. Pr. 1970-71 507 104.77 69.29 90.7196 8.9111 10.1805 -0.41008 2.0208
Clo. Pr. 1972-73 503 120.24 92.16 108.2849 5.2305 20.7028 -0.28473 3.7632
Clo. Pr. 1974-75 506 99.8 62.28 84.4811 9.196 9.1867 -0.63944 2.3399
Clo. Pr. 1976-77 505 107.83 90.71 100.1124 3.5173 28.4625 -0.47142 2.7866
Clo. Pr. 1978-79 505 111.27 86.9 99.5633 5.7248 17.3916 -0.30985 2.4772
Clo. Pr. 1980-81 506 140.52 98.22 123.374 9.895 12.4683 -0.62929 2.4807
Clo. Pr. 1982-83 506 172.65 102.42 140.0894 22.6124 6.1952 -0.12449 1.4184
Clo. Pr. 1984-85 505 212.02 147.82 173.6198 15.2975 11.3495 0.34846 2.1901
Clo. Pr. 1986-87 506 336.77 203.49 261.6942 33.6349 7.7804 0.53819 2.1311
Clo. Pr. 1988-89 505 359.8 242.63 294.4092 33.7079 8.7341 0.48966 1.7694
Clo. Pr. 1990-91 506 417.09 295.46 355.4092 27.5915 12.8811 -0.23065 1.8093
Clo. Pr. 1992-93 507 470.94 394.5 433.6455 20.2202 21.4461 0.12237 1.6311
Clo. Pr. 1994-95 504 621.69 438.92 501.0678 52.3581 9.57 0.80351 2.2038
Clo. Pr. 1996-97 507 983.79 598.48 771.7612 117.941 6.5436 0.3804 1.6843
Clo. Pr. 1998-99 504 1469.25 927.69 1206.4164 136.0961 8.8644 -0.091741 1.8023
Clo. Pr. 2000-01 500 1527.46 965.8 1311.6322 137.5035 9.5389 -0.31962 1.9271
Clo. Pr. 2002-03 504 1172.51 776.76 979.5812 98.9107 9.9037 0.1129 1.9231
Clo. Pr. 2004-05 504 1272.74 1063.23 1168.9394 49.0787 23.8176 0.05069 2.0311
Clo. Pr. 2006-07 502 1565.15 1223.69 1393.8228 96.3255 14.4699 -0.030881 1.6142
Clo. Pr. 2008-09 505 1447.16 676.53 1084.3135 208.5795 5.1986 0.1306 1.6585
Clo. Pr. 2010-11 504 1363.61 1022.58 1203.8022 87.2458 13.7978 0.019123 1.8647
Clo. Pr. 2012-13 502 1848.36 1277.06 1512.1033 153.3999 9.8573 0.41859 1.9194
Clo. Pr. 2014-15 162 1992.37 1741.89 1890.4495 59.6813 31.6758 -0.057852 2.2133
Ret. 1950-51 497 0.026546 -0.055316 0.00071512 0.0082253 0.086941 -1.1773 8.9124
Ret. 1952-53 500 0.016692 -0.03142 8.3122e-05 0.0055507 0.014975 -0.80731 6.2984
Ret. 1954-55 503 0.035116 -0.068476 0.0011936 0.0080511 0.14826 -1.2932 15.6885
Ret. 1956-57 502 0.043916 -0.029695 -0.0002422 0.0080041 -0.030259 0.2795 5.5254
Ret. 1958-59 504 0.021859 -0.0211 0.00078455 0.0057989 0.13529 -0.22207 3.8557
Ret. 1960-61 501 0.034213 -0.036778 0.0003544 0.0064786 0.054703 -0.21085 6.7828
Ret. 1962-63 502 0.045438 -0.069089 0.00011083 0.0083484 0.013276 -0.79358 16.248
Ret. 1964-65 504 0.020538 -0.018543 0.00040327 0.0038742 0.10409 -0.67827 6.7526
Ret. 1966-67 502 0.028037 -0.024912 9.0615e-05 0.0064832 0.013977 -0.14848 4.7018
Ret. 1968-69 475 0.024963 -0.0203 -9.0638e-05 0.0061406 -0.01476 0.10073 3.8759
Ret. 1970-71 506 0.049003 -0.028072 0.0001843 0.0081164 0.022707 0.48718 6.4175
Ret. 1972-73 502 0.030113 -0.030991 -8.2405e-05 0.0079202 -0.010404 -0.012977 4.4705
Ret. 1974-75 505 0.044934 -0.037403 -0.00015798 0.011945 -0.013226 0.30672 3.6962
Ret. 1976-77 504 0.018435 -0.018137 8.9621e-05 0.0064062 0.01399 0.059687 2.8908
Ret. 1978-79 504 0.038952 -0.030024 0.00027817 0.007374 0.037723 0.1295 4.9089
Ret. 1980-81 505 0.035727 -0.030529 0.00029178 0.0094515 0.030871 -0.11723 3.4958
Ret. 1982-83 505 0.046459 -0.040498 0.00058506 0.010038 0.058282 0.41818 4.6627
Ret. 1984-85 504 0.027223 -0.018374 0.00050213 0.0072512 0.069248 0.64442 4.0292
Ret. 1986-87 505 0.087089 -0.229 0.00032586 0.016397 0.019873 -5.5467 80.6733
Ret. 1988-89 504 0.033907 -0.070082 0.00064019 0.0095121 0.067303 -1.4471 13.4975
Ret. 1990-91 505 0.036642 -0.037272 0.00029319 0.0095265 0.030776 -0.045572 4.2283
Ret. 1992-93 506 0.019094 -0.024293 0.00022024 0.005769 0.038176 -0.043394 4.1181
Ret. 1994-95 503 0.021123 -0.022936 0.00055696 0.0056296 0.098934 -0.29578 4.4817
Ret. 1996-97 506 0.049887 -0.071127 0.00088309 0.009645 0.091559 -0.67927 10.2059
Ret. 1998-99 503 0.049646 -0.070438 0.00081517 0.012114 0.067294 -0.33588 5.9224
Ret. 2000-01 499 0.048884 -0.060045 -0.00047508 0.013789 -0.034453 0.0071553 4.4182
Ret. 2002-03 503 0.055744 -0.042423 -7.5003e-05 0.013867 -0.0054088 0.27792 4.1436
Ret. 2004-05 503 0.019544 -0.016862 0.00023615 0.006737 0.035053 -0.067225 2.8668
Ret. 2006-07 501 0.02879 -0.035343 0.00029157 0.0083881 0.03476 -0.43967 5.3257
Ret. 2008-09 504 0.10957 -0.094695 -0.00051718 0.021983 -0.023526 -0.11768 7.2996
Ret. 2010-11 503 0.046317 -0.068958 0.00020745 0.013134 0.015794 -0.44035 6.0113
Ret. 2012-13 501 0.025086 -0.025328 0.000738 0.0074983 0.098422 -0.1421 4.1087
Ret. 2014-15 161 0.015152 -0.023097 0.0005089 0.0066107 0.076981 -0.87811 4.5575

Table 1.1: Summary statistics of the S&P 500 variables here considered. N indicates the number
of observations in the period.
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years Start End

1950-51 03-Jan-1950 31-Dec-1951
1952-53 02-Jan-1952 31-Dec-1953
1954-55 04-Jan-1954 30-Dec-1955
1956-57 03-Jan-1956 31-Dec-1957
1958-59 02-Jan-1958 31-Dec-1959
1960-61 04-Jan-1960 29-Dec-1961
1962-63 02-Jan-1962 31-Dec-1963
1964-65 02-Jan-1964 31-Dec-1965
1966-67 03-Jan-1966 29-Dec-1967
1968-69 02-Jan-1968 31-Dec-1969
1970-71 02-Jan-1970 31-Dec-1971
1972-73 03-Jan-1972 31-Dec-1973
1974-75 02-Jan-1974 31-Dec-1975
1976-77 02-Jan-1976 30-Dec-1977
1978-79 03-Jan-1978 31-Dec-1979
1980-81 02-Jan-1980 31-Dec-1981
1982-83 04-Jan-1982 30-Dec-1983
1984-85 03-Jan-1984 31-Dec-1985
1986-87 02-Jan-1986 31-Dec-1987
1988-89 04-Jan-1988 29-Dec-1989
1990-91 02-Jan-1990 31-Dec-1991
1992-93 02-Jan-1992 31-Dec-1993
1994-95 03-Jan-1994 29-Dec-1995
1996-97 02-Jan-1996 31-Dec-1997
1998-99 02-Jan-1998 31-Dec-1999
2000-01 03-Jan-2000 31-Dec-2001
2002-03 02-Jan-2002 31-Dec-2003
2004-05 02-Jan-2004 30-Dec-2005
2006-07 03-Jan-2006 31-Dec-2007
2008-09 02-Jan-2008 31-Dec-2009
2010-11 04-Jan-2010 30-Dec-2011
2012-13 03-Jan-2012 31-Dec-2013
2014-15 02-Jan-2014 22-Aug-2014

Table 1.2: S&P 500 – Summary of the years divided into pairs
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1.6.2 FTSE100 Dataset

Figure 1.3a illustrates the historical trajectory of the FTSE 100’s daily closing prices from 1984

to 2022. The data is visually segmented at two-year intervals, employing alternating colours in

alignment with the data segmentation strategy of this study, facilitating a clearer understanding

of the FTSE 100’s performance across different time periods.

Several market events might have potentially influenced the trends observed in the figure. For

instance, the Black Monday in 1987, the Dot-com bubble around the year 2000, the financial

crisis of 2007-2008, and the more recent COVID-19 pandemic-induced market fluctuations in

2020-2021 are all significant events that could have impacted the market behaviours.

In Figure 1.3c, the natural logarithm of the daily closing prices is depicted. Similar to the S&P

500 analysis, the use of natural logarithm transformations is common in financial econometrics

to stabilize the variance and to make patterns more discernible, especially when dealing with

financial time series data.

Figure 1.3b portrays the empirical distribution of returns for the FTSE 100. This graphical

representation provides insights into the frequency and magnitude of returns, aiding researchers

and investors in better understanding the index’s volatility and risk dynamics over the years.

It further allows for a clearer analysis of how market events have potentially impacted the

distribution of returns, enhancing our comprehension of the FTSE 100’s performance.

Table 1.3 presents a comprehensive statistical summary of the FTSE 100 index over various

biennial periods from 1984 to 2022, focusing on closing prices and returns. The skewness

and kurtosis values provide insights into the symmetry and tail heaviness of the distribution,

respectively. For instance, the skewness values fluctuate around zero, suggesting a mix of left and

right-skewed distributions over the periods, while the kurtosis values, mostly above 3, signify a

leptokurtic distribution indicative of heavy tails and, therefore, potential outliers or extreme

values. The latter part of the table, focusing on returns, elucidates the performance of the FTSE

100 index, which is paramount for investors and market analysts. It’s evident that the returns

have varied widely over the years, with some periods witnessing significant positive returns

while others experienced notable negative returns. Notably, during the COVID-19 pandemic

period of 2020-2021, the data exhibited heightened volatility with a noticeable decrease in the

mean closing price. The Sharpe ratio also declined during this period, indicating a decreased

risk-adjusted performance of the FTSE 100 index. The negative skewness suggests a tendency

for the distribution to exhibit a longer left tail, potentially due to a few instances of sharp

declines in the index value.
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(a) FTSE-100 closing prices.

(b) Histogram of the FTSE-100’s daily returns.
(c) Natural Logarithm of the FTSE-100 closing
prices.

Figure 1.3: FTSE-100 closing prices and returns historical data. The colours change every two
years to match the dataset breakdown used in this study.
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type N max min µ σ µ/σ skew. kurt.

Clo. Pr. 1984-85 506 1455.5 986.9 1200.4318 119.7839 10.0216 -0.0038948 1.7743
Clo. Pr. 1986-87 520 2443.4 1370.1 1812.5663 293.0029 6.1862 0.70715 2.112
Clo. Pr. 1988-89 505 2426 1694.5 1989.0196 214.6952 9.2644 0.50415 1.8159
Clo. Pr. 1990-91 506 2679.6 1990.3 2345.6482 178.532 13.1385 -0.098636 1.822
Clo. Pr. 1992-93 507 3462 2281 2760.3598 248.4548 11.1101 0.2641 2.5375
Clo. Pr. 1994-95 504 3689.3 2876.6 3245.854 209.8769 15.4655 0.4026 1.8624
Clo. Pr. 1996-97 507 5330.8 3632.3 4261.558 504.414 8.4485 0.49474 1.8383
Clo. Pr. 1998-99 504 6930.2 4648.7 5955.505 438.4843 13.582 -0.43736 2.779
Clo. Pr. 2000-01 505 6798.1 4433.7 5964.5129 516.2268 11.5541 -0.6825 2.378
Clo. Pr. 2002-03 505 5323.8 3287 4318.7159 511.6661 8.4405 0.67255 2.3281
Clo. Pr. 2004-05 506 5638.3 4287 4839.7067 373.3482 12.963 0.39898 1.9015
Clo. Pr. 2006-07 505 6732.4 5506.8 6162.3663 300.5508 20.5036 -0.02554 1.998
Clo. Pr. 2008-09 507 6479.4 3512.09 4966.6566 739.9251 6.7124 0.063949 1.7912
Clo. Pr. 2010-11 504 6091.33 4805.75 5574.2038 310.7519 17.9378 -0.16006 1.9244
Clo. Pr. 2012-13 505 6840.27 5260.19 6108.3601 402.1224 15.1903 -0.006932 1.7051
Clo. Pr. 2014-15 506 7103.98 5874.06 6635.5853 259.3159 25.5888 -0.73572 2.9409
Clo. Pr. 2016-17 505 7687.77 5536.97 6926.2401 542.8201 12.7597 -0.67717 2.1223
Clo. Pr. 2018-19 506 7877.45 6584.68 7319.6854 258.1794 28.3512 -0.19547 2.513
Clo. Pr. 2020-21 507 7674.56 4993.89 6638.6532 584.6195 11.3555 -0.36376 2.1525
Clo. Pr. 2022-23 250 7672.4 6826.15 7357.4331 203.0286 36.2384 -0.73548 2.5719
Ret. 1984-85 505 0.033516 -0.028331 0.00068898 0.0086123 0.08 -0.18301 3.605
Ret. 1986-87 519 0.07597 -0.13029 0.00037117 0.013734 0.027027 -2.936 30.2422
Ret. 1988-89 504 0.025057 -0.032113 0.00064821 0.0080791 0.080233 -0.36709 3.6934
Ret. 1990-91 505 0.034976 -0.03692 4.7425e-05 0.0088724 0.0053453 0.097474 4.1607
Ret. 1992-93 506 0.054396 -0.041399 0.00062404 0.0082531 0.075614 0.742 9.0502
Ret. 1994-95 503 0.021778 -0.022617 0.00015738 0.0074362 0.021165 -0.20875 2.9656
Ret. 1996-97 506 0.031251 -0.031027 0.00065439 0.0079563 0.082248 -0.19592 4.4598
Ret. 1998-99 503 0.043451 -0.036595 0.00057352 0.012338 0.046484 -0.040964 3.6335
Ret. 2000-01 504 0.039839 -0.058853 -0.00048612 0.01279 -0.038008 -0.22075 3.8665
Ret. 2002-03 504 0.059038 -0.055888 -0.00030405 0.015017 -0.020247 -0.037844 5.033
Ret. 2004-05 505 0.019733 -0.023209 0.0004352 0.006027 0.072208 -0.32831 3.9846
Ret. 2006-07 504 0.034441 -0.04185 0.00025384 0.0095781 0.026502 -0.3983 5.0047
Ret. 2008-09 506 0.093843 -0.092656 -0.00033621 0.019713 -0.017056 -0.011834 7.2124
Ret. 2010-11 503 0.050322 -0.047792 2.5834e-05 0.012246 0.0021095 -0.15054 4.6125
Ret. 2012-13 504 0.030323 -0.030272 0.00033523 0.0081968 0.040898 -0.14892 3.9452
Ret. 2014-15 505 0.034976 -0.047795 -0.0001454 0.0092176 -0.015774 -0.29861 5.6192
Ret. 2016-17 504 0.03515 -0.035192 0.00046115 0.0083388 0.055302 0.040784 5.749
Ret. 2018-19 505 0.023255 -0.032839 -2.7548e-05 0.0077219 -0.0035675 -0.38024 4.5273
Ret. 2020-21 506 0.086668 -0.11512 -5.7955e-05 0.014335 -0.004043 -1.2006 15.8202
Ret. 2022-23 249 0.038391 -0.039555 -2.8682e-05 0.010348 -0.0027718 -0.34439 5.1673

Table 1.3: Summary statistics of the FTSE-100 variables here considered. N indicates the
number of observations in the period.
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1.7 IFBM procedure

In the domain of financial modelling, the widely held assumption concerning the normality of

returns distributions is often challenged, especially among practitioners. Despite such objections,

the Geometric Brownian Motion (GBM) continues to be a linchpin for simulating stock returns.

As described in Section 1.5, the GBM is encapsulated by the equation:

(1.5) Pt+δt = Pt exp (µδt + σZt

√
δt)

where Pt denotes the stock price at time t, µ and σ symbolize the mean and standard deviation

of observed returns over a specified timeframe, δt is the designated time step, and Zt ∼ N(0, 1).

The utilization of GBM for simulating prices and returns frequently misses the mark in accu-

rately representing the observed distribution of returns. This shortfall is majorly attributed to

the leptokurtic nature of returns distributions. Therefore, the inclusion of higher moments, such

as skewness (third moment) and kurtosis (fourth moment) is deemed necessary. It is observed

that stock returns often exhibit a left skewness, indicating a tendency towards negative returns

during specific periods (Critchley and Jones, 2008; Groeneveld and Meeden, 1984).

The imperative for precise forecasting amplifies the importance of modelling empirical distri-

butions to capture skewness and/or kurtosis Rubio and Steel (2015). Alterations of known

symmetric distributions by introducing parameters to govern skewness are termed “skewing

mechanisms” Ley and Paindaveine (2010), while the inclusion of a kurtosis parameter is referred

to as “elongations” Fischer and Klein (2004), given their impact on the distribution’s shoulders

and tails. Significant collections of flexible tail distributions are outlined in Jones (2014) and

Ley (2015), while other methodologies like semi-parametric models Ferreira et al. (2009) or

fully non-parametric models provide alternative avenues for achieving model flexibility.

The limitations of GBM prompted the exploration of non-Gaussian processes and Fractal

Brownian Motion to better portray the behaviour of financial assets (Nunzio Mantegna, 1991;

Castellano et al., 2020; Di Matteo et al., 2005). A notably innovative approach is the Irrational

Fractional Brownian Motion (IFBM) Dhesi and Ausloos (2016); Dhesi et al. (2016, 2019). The

IFBM enhances GBM as shown in:

(1.6) Pt+δt = Pt exp (µδt + σZt

√
δt− µKf(Zt)δt)

where,

(1.7) f(Zt) =

[
2 exp

(
−cZ

2
t

2

)
− 1

]
arctan (Zt)

As a reminder from Section 1.5, the terms Pt, µ, σ, δt, and Zt maintain their meanings from the

GBM formulation, while K, and c are new parameters contributing to the “feedback function”
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as outlined in Dhesi and Ausloos (2016), referred by Eq. (1.7).

This discourse elucidates the interaction between the component −µKf(Zt)δt and the conven-

tional GBM, spotlighting the characteristics of parameters K and c.

A: When −µKf(Zt)δt < 0, the GBM component µδt + σZt

√
δt is diminished in comparison

to its standard form.

B: Conversely, when −µKf(Zt)δt > 0, the GBM component µδt + σZt

√
δt is amplified

relative to its standard form.

1.7.1 Parametric Influence on Feedback Function and GBM Behaviour

In the analysis that follows, we delve into the impact of varying parameters K and c on a

mathematical mechanism designed to apply corrections to the Geometric Brownian Motion

(GBM), a common model used to describe the stochastic evolution of financial prices. The

corrections are aimed at moderating the price movements generated by the GBM, especially

around certain critical points, improving the predictability and stability of the modelled financial

system. The behaviour of this corrective mechanism under different settings of parameters K

and c is explored through graphical illustrations in the referenced subfigures below.

Given the parameters µ = 0.0001; K = −5; c = 1; δt = 1, subfigure 1.4a elucidates that the

intervention of the “feedback function” can manifest as positive, negative, or zero, contingent

on the sampled value Zt ∼ N(0, 1) which is taken within the range of -3 to 3. subfigure 1.4c

delineates a series of simulated values, illustrating that −µKf(Zt) predominantly aligns around

the mean, thereby exerting a mild influence on the GBM in terms of magnitude as indicated by

Equation (1.6).

1.7.1.1 Parameter K influence

Upon the modification of the parameter K within the range of -100 to 100, while other variables

remain constant, subfigure 1.4b illustrates a symmetrical transition in the corrections applied

to the returns distribution, along with a variation in the magnitude of these corrections. It’s

observed that the mechanism’s corrective action transitions from a mild influence (central area)

to a pronounced one at the points where Zs values satisfy −µKf(Zt)δt = 0, which denote

the roots of −µKf(Zt)δt. These roots represent points of equilibrium where the mechanism’s

corrective action on the GBM is neutralized.

Subfigure 1.4d delves into the distribution variations with K, derived from a simulation of 1000

steps for each K in the range K = [−100, . . . , 0, . . . , 100]. This subfigure showcases a clustering

of values around the mean and at the Zs points where −µKf(Zt) = 0, reflecting the mecha-

nism’s self-correcting nature against the GBM’s generated values. Essentially, the mechanism
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−µKf(Zt)δt operates to centralize the returns around the mean, thereby moderating the price

movements relative to those generated by the GBM, especially within the “feedback function’s”

roots where −µKf(Zt)δt = 0. This behaviour is indicative of a self-correcting system striving to

maintain a balanced state in the face of the GBM’s inherent volatility. Conversely, beyond these

roots, the corrective restraint by the mechanism diminishes, and the price movements become

more pronounced in absolute terms compared to those generated by the GBM, highlighting the

mechanism’s bounded influence.

(a) The “feedback function”. (b) The “feedback function” when K varies.

(c) The “feedback function” simulated 1000 times.
(d) The histogram of the realization obtained with
−µKf(Zt, c) when K varies.

Figure 1.4: Depiction of the corrective mechanism −µKf(Z, c) and −µKf(Zt, c) under various
conditions, with µ = 0.0001; K = −5; c = 1. subfigure 1.4a displays −µKf(Z, c) where Z is
considered as a subset of the domain of the standard normal density function, restricted to
[-3,3], representing a time-independent scenario. subfigure 1.4c showcases 1000 simulations of
−µKf(Zt, c), illustrating the mechanism’s behaviour over time. subfigure 1.4d extends the
analysis by varying K in the range of [-100,100] for each simulation, highlighting the mechanism’s
response to different K values. Lastly, subfigure 1.4b presents −µKf(Z, c) as K varies within
the same range, providing a complementary view of the mechanism’s sensitivity to K variations.
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1.7.1.2 Parameter c influence

The parameter c plays a pivotal role in modulating the feedback function’s corrective influence

on the Geometric Brownian Motion (GBM). By varying c, we can observe how the feedback

function adapts and how these adjustments manifest in the returns distribution generated by

the IFBM. The referenced subfigures elucidate these dynamics under different settings of c.

Figure 1.5 presents an analysis analogous to that of Figure 1.4, albeit focusing on the variation

of the parameter c. subfigure 1.5a illustrates that with c = 0.1 (a relatively small value), the

roots of the feedback function are distanced further apart, indicating that the tails of the

IFBM-generated returns distribution commence farther from the mean.

Subfigure 1.4c displays a series of simulated values from the feedback function, showcasing a

more homogeneous spread of values, with a noticeable concentration towards the margins of the

plot compared to the scenario in subfigure 1.4b. This behaviour is accentuated as c approaches

one, where the area of low feedback function values diminishes, albeit encompassing the majority

of the values. Conversely, with a smaller c, the feedback function exhibits a broader area of

influence. These dynamics are further elucidated in subfigure 1.5d, portraying the variations in

the feedback function’s corrective behaviour as c varies.

The parameter K serves as a pivotal controller in modulating the direction and magnitude of the

interventions exerted by the “feedback function” on the mechanics of the Geometric Brownian

Motion (GBM). It orchestrates how the feedback function interacts with the underlying GBM,

thereby playing a critical role in the subsequent dynamics.

On the flip side, the parameter c specifically impacts the points where −µKf(Zt)δt = 0,

designated as the Zs roots. These roots are crucial as they delineate the Zt levels at which the

feedback function begins to significantly amend the tails of the GBM generative process. As c

enlarges, the resulting distribution of returns exhibits a more platykurtic nature, expanding

the tails and moderating the peak, which is indicative of a broader dispersion of returns. This

interplay between K and c offers a nuanced control over the feedback mechanism, enabling a

tailored adjustment to the behaviour of the GBM, and, thus, the resultant returns distribution.
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(a) The “feedback function”. (b) The “feedback function” when c varies.

(c) The “feedback function” simulated 1000 times.
(d) The histogram of the realization obtained with
Kf(Zt, c) when c varies.

Figure 1.5: The set of plots collectively illustrates the behaviour of the feedback function
−µKf(Z, c) and −µKf(Zt, c) under different settings, with parameters set at µ = 0.0001,K =
−5, and c = 0.1. subfigure 1.5a displays −µKf(Z, c), where Z represents a sub-set of the domain
of the standard normal density function, specifically within the range of [-3,3], thus depicting
a time-independent scenario. On the other hand, subfigure 1.5c showcases 1000 simulations
of −µKf(Zt, c), elucidating the temporal evolution of the feedback function. In Subplot 1.5d,
simulations are conducted for varying c values within the range [0,1], offering a multidimensional
view of the feedback function’s behaviour. Lastly, subfigure 1.5b encapsulates the variation of
−µKf(Z, c) as c transitions within the range [0,1], portraying the sensitivity of the feedback
function to c alterations.

1.7.2 Methodology - IFBM formalised procedure and stability testing

To ascertain the values of parameters K and c, pivotal in encapsulating market behavioural

facets, a methodological approach is elucidated in Dhesi et al. (2016), leveraging the chi-square

test. This section succinctly delineates the core tenets of this procedure, alongside the nuanced

amendments undertaken—discussed in a comparative discourse—to faithfully replicate the

findings presented in Dhesi et al. (2019). The discourse navigates through this analytical

expedition using the empirical realization of the S&P 500 index during the years 2012-2013, as

illustrated in Figure 1.6a, serving as a pragmatic backdrop for this exploratory endeavour.
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(a) Daily S&P 500 closing price time series.

(b) Tabulation of the returns in 50 equally spaced classes

Figure 1.6: Data from daily observations of the S&P500 during the years 2012-2013
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1 Initially, the mean (µ) and standard deviation (σ) of the returns during the specified

period are documented. For the interval spanning 2012 to 2013, these are denoted as

µ12−13 = 0.0007 and σ12−13 = 0.006, respectively.

2 The core of this procedure rests on the utilization of the chi-square test statistics to

facilitate a comparative analysis of empirical distributions. The employment of the chi-

square test necessitates ensuring that the frequencies of the tabulated returns do not

plummet below a predefined threshold, thereby circumventing unreliable outcomes from

the chi-square test. Consequently, any realizations that reside outside the boundaries

of µ ± 3σ are expunged from the series of returns, as advocated in Dhesi et al. (2016).

This prudent step aids in the eradication of outliers that could potentially engender

complications.

Moreover, the edges of the bins, delineating the categories for data tabulation, are

meticulously selected and amalgamated to ascertain that each bin encompasses at least

1.5% of the series’ observations (for the case of 2012-13, this equates to 1.5% of 501).

While Dhesi et al. (2016) recommends a threshold of 1%, this adjustment aims for a more

conservative data representation.

3 Additionally, an optimal number of bins is determined to prevent the reduction of frequency

to a critical level. In this instance, data is initially tabulated into 50 bins; subsequent

calibration of bin widths and merging of low-frequency bins on the tails are undertaken

to satisfy the minimum observation threshold. This procedure culminates in the data

representation depicted in Figure 1.7 for the years 2012-13. The ensuing frequencies are

designated as Customised Observed Frequencies, foch; h = 1, . . . , 50 (with 50 representing

the number of bins).

The theoretical framework delineated in Eq. (1.6) is employed, utilizing µ12−13, σ12−13,

K̄ = {−100, . . . , 0, . . . , 100} and c̄ = {0.01, 0.02, . . . , 1} to simulate the series of returns.

Substituting Eq. 1.7 into Eq. (1.6), we obtain the expression:

(1.8) Pt+δt = Pte
µ12−13δt+σ12−13Zt

√
δt−µK̄

[
2 exp

(
−c̄

Z2
t
2

)
−1

]
arctan (Zt)δt

4 A simulation of price series is conducted for each pair derived from the cross-combination

of K̄ and c̄, with ℓ(K̄) = 201 and ℓ(c̄) = 101, resulting in a KC matrix housing 20, 100

pairs (Km, cm). This leads to a total of 20, 100 × 1000 = 20, 100, 000 simulations. For

each simulation, the returns are tabulated based on the bin edges defined in Step 2. The

frequencies acquired from these tabulations are then averaged across the 1000 simulations

for each (Km, cm) pair, denoted as Customized Expected Frequencies, fecm,h; m =

{1, . . . , 20, 100}; h = {1, . . . , 50} (with 50 representing the number of bins). Consequently,
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a 50× 20, 100 matrix F is generated, encapsulating the average frequencies per bin per

pair.

5 In aligning with the chi-square test statistics formulation, the objective is to identify the

pair (Km, cm) that minimizes the expression:

min

(
50∑
h=1

(foch − fecm,h)2

fecm,h

)
∀m = {1, . . . , 20100}

The optimal pair (Km, cm), denoted as (K̂χ2;m, ĉχ2;m), minimizes the discrepancy between

the observed and simulated empirical distributions. For the period 2012-13, the optimal

pair is (K̂χ2 = 2, ĉχ2 = 0.38), as tabulated in Table 1.4 and consistent with the findings

in Dhesi et al. (2019)’s Table 11. Figure 1.8 exhibits the superior fit achieved.

It is pertinent to note that the aforementioned procedure was implemented using data from the

S&P 500 index. The procedure, as outlined, yielded the estimations of parameters K̂ and ĉ for

the years 2012-2013, which are documented in Table 1.5. The table delineates the outcomes

of the procedure under varying simulation counts—specifically at 10, 100, 1000, and 10, 000

simulations. The derived parameters, annotated with a subscript reflecting the simulation count,

are tabulated alongside.

Furthermore, a visual representation of these outcomes is provided in Figure 1.9, which

underscores the sensitivity of the parameter estimations to the simulation count. Particularly

for parameter ĉ, as depicted in subfigure 1.9b, the influence of simulation count is prominently

highlighted, thus laying a substantial groundwork for the subsequent phases of this research.

1Minor variations may arise due to the number of simulations.
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Figure 1.7: S&P 500 - The histogram showcases three distinct categories of data manipulation
to prepare for the chi-square test. The black bars represent the data points that have been
excised to eliminate outliers, ensuring a more reliable chi-square analysis. The blue bars depict
the frequency count post-outlier removal, while the orange bars illustrate the strategic merging
of bins, each now encompassing a minimum of 1.5% of the total observations, thus adhering to
the requisite threshold for a robust statistical analysis.
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Figure 1.8: S&P 500 - Frequency Levels Represented by IFBMI Using Estimated Parameters
(K̂ = 2, ĉ = 0.38) for the Years 2012-2013.
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years µ K̂ ĉ

1950-51 0.00071512 3 0.06
1952-53 8.3122e-05 15 0.12
1954-55 0.0011936 2 0.06
1956-57 -0.0002422 -8 0.29
1958-59 0.00078455 1 0.37
1960-61 0.0003544 5 0.24
1962-63 0.00011083 31 0.08
1964-65 0.00040327 2 0.22
1966-67 9.0615e-05 16 0.31
1968-69 -9.0638e-05 -6 0.32
1970-71 0.0001843 15 0.42
1972-73 -8.2405e-05 -20 0.34
1974-75 -0.00015798 -6 0.2
1976-77 8.9621e-05 0 0
1978-79 0.00027817 4 0.33
1980-81 0.00029178 2 0.23
1982-83 0.00058506 3 0.29
1984-85 0.00050213 1 0.21
1986-87 0.00032586 29 0.06
1988-89 0.00064019 5 0.26
1990-91 0.00029319 5 0.2
1992-93 0.00022024 7 0.67
1994-95 0.00055696 3 0.65
1996-97 0.00088309 2 0.09
1998-99 0.00081517 2 0.14
2000-01 -0.00047508 -4 0.29
2002-03 -7.5003e-05 -34 0.62
2004-05 0.00023615 5 1
2006-07 0.00029157 11 0.36
2008-09 -0.00051718 -19 0.32
2010-11 0.00020745 27 0.45
2012-13 0.000738 2 0.38
2014-15 0.0005089 2 0.11

Table 1.4: S&P 500 - Tabulated Results from the Exercise Conducted in Dhesi et al. (2019),
Employing 1000 Simulations
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years µ K̂10 K̂100 K̂1000 K̂10000 ĉ10 ĉ100 ĉ1000 ĉ10000
1950-51 0.00071512 3 2 3 3 0.19 0.05 0.06 0.06
1952-53 8.3122e-05 14 14 15 15 0.12 0.12 0.12 0.12
1954-55 0.0011936 2 2 2 2 0.07 0.06 0.06 0.06
1956-57 -0.0002422 -7 -8 -8 -8 0.48 0.4 0.29 0.33
1958-59 0.00078455 1 1 1 1 0.31 0.42 0.37 0.41
1960-61 0.0003544 5 5 5 5 0.38 0.31 0.24 0.26
1962-63 0.00011083 32 31 31 31 0.1 0.08 0.08 0.08
1964-65 0.00040327 2 2 2 2 0.26 0.23 0.22 0.18
1966-67 9.0615e-05 19 16 16 15 0.35 0.3 0.31 0.36
1968-69 -9.0638e-05 -3 -5 -6 -6 0.01 0.33 0.32 0.24
1970-71 0.0001843 15 16 15 16 0.37 0.41 0.42 0.44
1972-73 -8.2405e-05 -17 -17 -20 -19 0.43 0.28 0.34 0.3
1974-75 -0.00015798 -5 -6 -6 -6 0.2 0.22 0.2 0.11
1976-77 8.9621e-05 0 1 0 0 0 0.68 0 0
1978-79 0.00027817 6 5 4 4 0.27 0.33 0.33 0.37
1980-81 0.00029178 3 2 2 2 0.29 0.2 0.23 0.23
1982-83 0.00058506 3 3 3 3 0.1 0.05 0.29 0.34
1984-85 0.00050213 2 2 1 1 0.03 0.2 0.21 0.16
1986-87 0.00032586 28 29 29 29 0.05 0.05 0.06 0.06
1988-89 0.00064019 5 5 5 5 0.29 0.29 0.26 0.26
1990-91 0.00029319 6 5 5 5 0.17 0.26 0.2 0.2
1992-93 0.00022024 5 7 7 7 0.49 0.74 0.67 0.68
1994-95 0.00055696 3 3 3 3 0.42 0.63 0.65 0.64
1996-97 0.00088309 2 2 2 2 0.17 0.08 0.09 0.07
1998-99 0.00081517 2 2 2 2 0.17 0.13 0.14 0.14
2000-01 -0.00047508 -4 -4 -4 -4 0.37 0.31 0.29 0.28
2002-03 -7.5003e-05 -36 -36 -34 -34 0.66 0.65 0.62 0.52
2004-05 0.00023615 4 5 5 5 0.94 1 1 1
2006-07 0.00029157 12 11 11 11 0.31 0.32 0.36 0.34
2008-09 -0.00051718 -18 -19 -19 -19 0.2 0.32 0.32 0.3
2010-11 0.00020745 26 27 27 28 0.47 0.45 0.45 0.44
2012-13 0.000738 2 2 2 2 0.53 0.46 0.38 0.42
2014-15 0.0005089 2 2 2 2 0.01 0.19 0.11 0.11

Table 1.5: S&P 500 - Tabulated Results of K and c Estimations Across Varying Simulation
Counts Utilizing the Chi-Square Based Procedure
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(a) S&P 500 - Box Plot Representation of Estimated K Values Across Different Year Pairs

(b) S&P 500 - Box Plot Representation of Estimated c Values Across Different Year Pairs

Figure 1.9: S&P 500 - These box plots depict the variability in the estimations of parameters
K and c from Eqs (1.6) and (1.7), across different numbers of simulations employed in the
estimation procedure (refer to Table 1.5 for a tabular presentation of these results). Each box
plot illustrates the interquartile range (IQR) of the estimations: the bottom and top edges of
the box represent the 25th and 75th percentiles, respectively, while the red markers indicate
the medians. The whiskers extend to the most extreme data points, not classified as outliers. A
key observation from these plots is the absence of convergence towards specific values as the
number of simulations escalates from 10 to 10, 000; however, the estimations for K̂ exhibit a
relatively more stable pattern compared to those for ĉ.
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1.7.3 Pivoting Towards Enhanced Analysis: Shannon’s Entropy and FTSE

100 Examination

Having successfully replicated the procedure and executed stability tests, the journey of ex-

ploration into the dynamics of the Extended IFBM does not halt. The endeavour now veers

towards a more comprehensive understanding, prompted by the desire to delve deeper into the

model’s behaviour under varying conditions. Two significant avenues beckon: the utilization

of Shannon’s Entropy for nuanced parameter estimation and the application of the IFBM to

FTSE 100 data, a market that has also weathered crises such as COVID-19. These pursuits are

not merely academic exercises but are tethered to the real-world exigencies of understanding

market dynamics amidst different scenarios.

The methodology (described in 1.7.2) initially employed entailed representing the returns of

historical, GBM, and IFBM-based prices in distinct histograms, with each bin’s frequency

meticulously recorded. The Chi-square criterion served as a pivotal tool for comparing the

observed frequencies with the expected ones derived from simulations. A prudent step within

this procedure entailed the exclusion of return realizations beyond the range of µ± 3σ, owing to

the Chi-square formula’s sensitivity to outliers. To enhance the interpretability of the Chi-square

results, the bins across the histograms were tailored to ensure each encompassed a frequency of

at least 1.5% of the total data set values.

The IFBM model, harbouring two parameters (K and c) requiring estimation, propelled us

to simulate these parameters across each biennial period, thereby obtaining a corresponding

distribution of returns. Subsequent steps involved computing the average bin heights across the

histograms to ascertain the respective frequencies for each two-year time frame. The crux of

this procedure hinged on selecting optimal K and c values that, adhering to the Chi-square

criterion, minimized the divergence between the historical and simulated frequency distributions.

However, a notable concern emerged regarding the lack of convergence when escalating the

number of simulations from 10 to 10,000. This observation hinted at potential limitations

within the Chi-square-based approach, thereby sparking curiosity towards exploring alternative

methods. Shannon’s entropy method emerged as a promising alternative, veering towards

quantifying the variability inherent in given probability distributions. Moreover, to further

scrutinize the robustness and applicability of the IFBM model, it was deemed imperative to

test it under different market conditions. This line of thought naturally led to the application

of the IFBM model to FTSE 100 data, with a keen eye on observing the stability of parameters

K and c therein. The ensuing sections delve into the intricacies of this method and the findings

from the FTSE 100 application, aiming to potentially overcome the convergence challenge and

further refine the estimation of parameters K and c.
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1.7.4 Methodology - IFBM under Different Market Dynamics: The FTSE

100 Scenario

Transitioning to a different market scenario, the same procedural framework (detailed in 1.7.2)

was applied to data from the FTSE 100 index, aiming to comprehend the behaviour of the

IFBM under divergent market conditions. This endeavour also included the application of a

stability test to the derived estimations. The contrasting market conditions and the subsequent

analysis further enrich the comprehension of the IFBM’s behaviour, providing a more robust

foundation for the overarching investigation.

The results of this application are tabulated and presented in Table 1.6 and Table 1.7. Table

1.6 showcases the outcomes from the exercise conducted as per Dhesi et al. (2019), employing

1000 simulations, while Table 1.7 enumerates the estimations of parameters K and c across

varying simulation counts, utilizing the Chi-Square based procedure. The distinct estimations

of K and c across different year pairs are further visually represented through box plots in

Figure 1.10. subfigures 1.9a and 1.10b distinctly illustrate the variability in the estimations of

parameters K and c respectively.

These representations collectively provide a comprehensive insight into the behaviour of the

IFBM under the diverse market conditions presented by the FTSE 100 index, thereby con-

tributing to a more nuanced understanding of the model’s performance and stability across

different market scenarios.

A detailed discussion on the implications and analysis of these results can be found in Section

1.9.
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years µ K̂ ĉ

1984-85 0.00068898 1 0.72
1986-87 0.00037117 14 0.01
1988-89 0.00064821 0 NaN
1990-91 4.7425e-05 12 0.01
1992-93 0.00062404 2 0.01
1994-95 0.00015738 2 0.95
1996-97 0.00065439 2 0.15
1998-99 0.00057352 3 0.75
2000-01 -0.00048612 -4 0.75
2002-03 -0.00030405 -14 0.28
2004-05 0.0004352 1 0.05
2006-07 0.00025384 7 0.2
2008-09 -0.00033621 -21 0.4
2010-11 2.5834e-05 100 0.46
2012-13 0.00033523 6 0.66
2014-15 -0.0001454 -20 0.39
2016-17 0.00046115 6 0.15
2018-19 -2.7548e-05 -45 0.25
2020-21 -5.7955e-05 -100 0.37
2022-23 -2.8682e-05 -100 0.37

Table 1.6: FTSE 100 – Tabulated Results from the Exercise Conducted in Dhesi et al. (2019),
Employing 1000 Simulations

years K̂χ
10 K̂χ

100 K̂χ
1000 K̂χ

10000 ĉχ10 ĉχ100 ĉχ1000 ĉχ10000 K̂I
10 K̂I

100 K̂I
1000 K̂I

10000 ĉI10 ĉI100 ĉI1000 ĉI10000
1984-85 1 2 1 1 0.77 0.65 0.72 0.74 62 62 62 62 0.01 0.01 0.01 0.01
1986-87 15 13 14 14 0.01 0.01 0.01 0.01 10 8 8 8 1 1 1 1
1988-89 1 0 0 0 0.7 NaN NaN NaN 60 60 60 60 0.02 0.02 0.02 0.02
1990-91 9 9 12 11 0.01 0.01 0.01 0.01 40 35 40 39 1 1 1 1
1992-93 2 2 2 2 0.01 0.01 0.01 0.01 89 89 89 89 0.01 0.01 0.01 0.01
1994-95 3 2 2 1 0.16 0.95 0.95 1 2 2 2 3 1 1 1 1
1996-97 1 1 2 1 0.73 0.18 0.15 0.02 66 66 66 66 0.01 0.01 0.01 0.01
1998-99 4 4 3 3 0.36 0.5 0.75 0.57 100 100 100 100 0.01 0.01 0.01 0.01
2000-01 -5 -3 -4 -4 0.39 0.58 0.75 0.65 -5 -5 -4 -4 1 1 1 1
2002-03 -18 -14 -14 -15 0.28 0.31 0.28 0.27 -8 -9 -9 -9 1 1 1 1
2004-05 1 2 1 1 0.33 0.11 0.05 0.02 67 67 67 67 0.01 0.01 0.01 0.01
2006-07 6 7 7 8 0.23 0.16 0.2 0.23 6 8 7 7 1 1 1 1
2008-09 -21 -21 -21 -21 0.4 0.44 0.4 0.37 -11 -13 -13 -13 1 1 1 1
2010-11 91 100 100 100 0.66 0.52 0.46 0.48 62 95 94 93 1 1 1 1
2012-13 7 6 6 6 0.78 0.8 0.66 0.63 98 98 98 98 0.01 0.01 0.01 0.01
2014-15 -23 -20 -20 -20 0.28 0.33 0.39 0.37 -9 -14 -14 -13 1 1 1 1
2016-17 5 6 6 6 0.21 0.16 0.15 0.15 100 100 100 100 0.01 0.01 0.01 0.01
2018-19 -45 -46 -45 -45 0.07 0.09 0.25 0.14 -42 -36 -35 -35 1 1 1 1
2020-21 -100 -100 -100 -100 0.41 0.39 0.37 0.35 -57 -56 -56 -57 1 1 1 1
2022-23 -99 -100 -100 -100 0.38 0.37 0.37 0.36 -98 -63 -63 -68 1 1 1 1

Table 1.7: FTSE 100 – Tabulated Results of K and c Estimations Across Varying Simulation
Counts.
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(a) FTSE 100 – Box Plot Representation of Estimated K Values Across Different Year Pairs

(b) FTSE 100 – Box Plot Representation of Estimated c Values Across Different Year Pairs

Figure 1.10: FTSE 100 – These box plots depict the variability in the estimations of parameters
K and c from Eqs (1.6) and (1.7), across different numbers of simulations employed in the
estimation procedure (refer to Table 1.7 for a tabular presentation of these results).
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1.8 Methodology - IFBM procedure & Shannon’s Entropy

In response to the limitations observed in the Chi-square method, an exploration into alternative

methodologies was initiated. A pivotal concept from the realm of information theory, which

quantifies the extent of information inherent in entities such as events, random variables, and

distributions, was employed as a linchpin for this exploration. Within the purview of this

research, Shannon’s Entropy (Shannon, 1948) is leveraged to quantify the variability, or the

amount of information, embedded in a given probability distribution. The endeavour is to

compute the entropy’s for both observed and simulated returns distributions and to minimize

the entropy-based distance between observed and simulated data, thus providing a nuanced

understanding of the distributions.

The procedure employing Shannon’s Entropy unfolds as follows:

1. Record the mean (µ) and standard deviation (σ) of returns for the specified period,

utilizing the previously defined µ12−13 and σ12−13 for this instance.

2. Tabulate daily returns from the 2012-13 series, subsequently delineating probabilities

of returns occurrences across 50 equal-length segments, as depicted in Figure 1.6b. The

respective frequencies of each bin in the histogram are noted, from which the proportions

of returns falling in each bin are derived. Denote these probabilities as poh; h = {1, . . . , 50}
(with 50 representing the number of bins), and identify the entire empirical distribution

as P̄O.

3. Similar to the preceding section, employ µ12−13, σ12−13, K̄ = {−100, . . . , 0, . . . , 100} and

c̄ = {0.01, 0.02, . . . , 1} to simulate returns series using Eq. (1.8). Perform simulations for

each pair (Km, cm) generated from the linear combination of K̄ and c̄, resulting in 20, 100

pairs and a total of 20, 100, 000 simulations. Each simulation yields returns tabulated as

per Step 2, with the resulting probabilities averaged over 1000 simulations for each pair,

denoted as psm,h; m = {1, . . . , 20100}; h = {1, . . . , 50} (50 being the number of bins),

and the entire empirical distribution defined as P̄S. This step culminates in a 50× 20, 100

matrix M encapsulating the average probabilities per bin per pair.

4. Utilize Shannon’s Entropy formulation Shannon (1948) to calculate the entropy for both

observed (historical) and simulated data:

(1.9) I(X) = −
n∑

h=1

p(xh) log2 p(xh)

wherein X denotes the distribution of a random variable across a set of states X , and p

represents the probability of a state. In this context, n = 50 and X signify the empirical

distribution of both observed and simulated data. The term p(xh) encapsulates the

48



1.8. METHODOLOGY - IFBM PROCEDURE & SHANNON’S ENTROPY

probability of observing or simulating a value within the boundaries of bin h. The

objective is to identify the pair (Km, cm) that minimizes the following expression:

(1.10) (Km, cm) : min
(
I(P̄Om)− I(P̄Sm)

)
∀m = {1, . . . , 20, 100}

The optimal pair (Km, cm) minimizes the empirical distributions’ distance per Shannon’s

Entropy criterion, denoted as (K̂I;m, ĉI;m). For the 2012-13 period, the pair minimizing

the entropy difference is (K̂I;m = 49, ĉI;m = 0.01).

The stability of the estimated parameters via the Entropy criterion is further evaluated by

varying the simulation count. Specifically, price series are generated 10, 100, 1000, and 10, 000

times for each pair (Km, cm), examining the robustness of the estimations under different

simulation scenarios. This entropy-based procedure presents a novel avenue for parameter

estimation, aiming at a more coherent understanding of the underlying distributions and the

behaviour of the IFBM under specified market conditions.

The outcomes of employing Shannon’s Entropy procedure are meticulously tabulated and

exhibited in Table 1.8 and Table 1.9. Table 1.9 enumerates the estimations of parameters

K and c across a spectrum of simulation counts, utilizing the entropy-based procedure. The

distinctive estimations of K and c across different year pairs are further illustrated visually

through box plots in Figure 1.11. subfigures 1.11a and 1.11b distinctly delineate the variability

in the estimations of parameters K and c, respectively. A more in-depth discussion on the

implications and analysis of these results is nestled in Section 1.9.
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years µ K̂ k̂ ĉ k̂/ĉ kurtobs kurtsim Iobs;50 Isim;50

1950-51 0.00071512 55 0.039331 0.01 3.9331 8.9124 2.9259 4.1791 4.8696
1952-53 8.3122e-05 9 0.0007481 1 0.0007481 6.2984 3.3986 4.4153 4.5616
1954-55 0.0011936 39 0.046552 0.01 4.6552 15.6885 2.83 3.7255 4.9509
1956-57 -0.0002422 -7 0.0016954 1 0.0016954 5.5254 2.6898 4.3664 4.4995
1958-59 0.00078455 39 0.030598 0.01 3.0598 3.8557 2.5208 4.6911 5.4575
1960-61 0.0003544 100 0.03544 0.01 3.544 6.7828 2.8968 4.0835 5.0723
1962-63 0.00011083 17 0.0018842 1 0.0018842 16.248 2.739 3.5866 3.9271
1964-65 0.00040327 62 0.025003 0.01 2.5003 6.7526 2.8358 4.1632 5.5368
1966-67 9.0615e-05 15 0.0013592 1 0.0013592 4.7018 3.0304 4.527 4.6604
1968-69 -9.0638e-05 -12 0.0010877 1 0.0010877 3.8759 3.1776 4.6972 4.7907
1970-71 0.0001843 9 0.0016587 1 0.0016587 6.4175 2.9228 4.2579 4.4335
1972-73 -8.2405e-05 -20 0.0016481 1 0.0016481 4.4705 3.1088 4.6354 4.7491
1974-75 -0.00015798 -9 0.0014218 1 0.0014218 3.6962 2.7908 4.8081 4.892
1976-77 8.9621e-05 2 0.00017924 1 0.00017924 2.8908 3.3784 5.0889 5.1147
1978-79 0.00027817 6 0.001669 1 0.001669 4.9089 2.7959 4.3504 4.4656
1980-81 0.00029178 5 0.0014589 1 0.0014589 3.4958 3.0376 4.7984 4.8698
1982-83 0.00058506 98 0.057335 0.01 5.7335 4.6627 3.1006 4.4355 5.473
1984-85 0.00050213 63 0.031634 0.02 1.5817 4.0292 2.9854 4.8905 5.2121
1986-87 0.00032586 13 0.0042362 1 0.0042362 80.6733 2.6758 2.8301 3.413
1988-89 0.00064019 76 0.048655 0.01 4.8655 13.4975 3.0237 3.9816 4.8731
1990-91 0.00029319 6 0.0017591 1 0.0017591 4.2283 2.8067 4.6344 4.7284
1992-93 0.00022024 4 0.00088096 1 0.00088096 4.1181 2.9386 4.662 4.7656
1994-95 0.00055696 53 0.029519 0.01 2.9519 4.4817 3.3487 4.572 5.4268
1996-97 0.00088309 71 0.062699 0.01 6.2699 10.2059 3.1585 3.8749 5.2474
1998-99 0.00081517 84 0.068474 0.01 6.8474 5.9224 2.5956 4.2557 5.238
2000-01 -0.00047508 -5 0.0023754 1 0.0023754 4.4182 3.1689 4.5663 4.6969
2002-03 -7.5003e-05 -23 0.0017251 1 0.0017251 4.1436 3.0062 4.7631 4.8485
2004-05 0.00023615 0 0 0 NaN 2.8668 2.9146 5.1041 5.1448
2006-07 0.00029157 5 0.0014578 1 0.0014578 5.3257 3.0708 4.5483 4.7464
2008-09 -0.00051718 -10 0.0051718 1 0.0051718 7.2996 3.1718 4.1922 4.484
2010-11 0.00020745 11 0.0022819 1 0.0022819 6.0113 3.1066 4.3415 4.5555
2012-13 0.000738 49 0.036162 0.01 3.6162 4.1087 3.1577 4.8022 5.4256
2014-15 0.0005089 50 0.025445 0.01 2.5445 4.5575 2.7866 4.8473 5.1029

Table 1.8: Results derived from the methodology for estimating (K̂, ĉ) utilizing Shan-
non’s Entropy, as delineated in Section 1.8, with a set of 1000 simulations. Notably,
kurtobs, Iobs, kurtsim;50, Isim;50 represent the kurtosis and entropy, respectively, computed on
the observed returns for the period and on the returns simulated with the optimal (K̂, ĉ). The
subscript 50 signifies that the n in Eq. (1.9) is 50, corresponding to the number of bins utilized
in Step 2a of the specified procedure.
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years µ K̂10 K̂100 K̂1000 K̂10000 ĉ10 ĉ100 ĉ1000 ĉ10000
1950-51 0.00071512 89 55 55 55 0.43 0.01 0.01 0.01
1952-53 8.3122e-05 10 7 9 9 1 1 1 1
1954-55 0.0011936 39 39 39 39 0.01 0.01 0.01 0.01
1956-57 -0.0002422 -8 -6 -7 -7 1 1 1 1
1958-59 0.00078455 39 39 39 39 0.01 0.01 0.01 0.01
1960-61 0.0003544 100 100 100 100 0.01 0.01 0.01 0.01
1962-63 0.00011083 16 17 17 17 1 1 1 1
1964-65 0.00040327 62 62 62 62 0.01 0.01 0.01 0.01
1966-67 9.0615e-05 18 15 15 15 1 1 1 1
1968-69 -9.0638e-05 -5 -13 -12 -11 1 1 1 1
1970-71 0.0001843 10 9 9 8 1 1 1 1
1972-73 -8.2405e-05 -18 -18 -20 -19 1 1 1 1
1974-75 -0.00015798 -11 -12 -9 -10 1 1 1 1
1976-77 8.9621e-05 2 2 2 1 0.94 1 1 1
1978-79 0.00027817 7 6 6 6 1 1 1 1
1980-81 0.00029178 5 5 5 5 1 1 1 1
1982-83 0.00058506 98 98 98 98 0.01 0.01 0.01 0.01
1984-85 0.00050213 63 63 63 63 0.02 0.02 0.02 0.02
1986-87 0.00032586 16 13 13 13 1 1 1 1
1988-89 0.00064019 76 76 76 76 0.01 0.01 0.01 0.01
1990-91 0.00029319 8 6 6 6 1 1 1 1
1992-93 0.00022024 3 4 4 4 1 1 1 1
1994-95 0.00055696 53 53 53 53 0.01 0.01 0.01 0.01
1996-97 0.00088309 71 71 71 71 0.01 0.01 0.01 0.01
1998-99 0.00081517 84 84 84 84 0.01 0.01 0.01 0.01
2000-01 -0.00047508 -6 -6 -5 -5 1 1 1 1
2002-03 -7.5003e-05 -16 -24 -23 -25 1 1 1 1
2004-05 0.00023615 0 0 0 0 0 0 0 0
2006-07 0.00029157 3 5 5 5 1 1 1 1
2008-09 -0.00051718 -9 -9 -10 -9 1 1 1 1
2010-11 0.00020745 13 11 11 12 1 1 1 1
2012-13 0.000738 49 49 49 49 0.01 0.01 0.01 0.01
2014-15 0.0005089 72 50 50 50 0.33 0.01 0.01 0.01

Table 1.9: Tabulated results of (K̂, ĉ) estimations under varying simulation counts, employing
the procedure encapsulated in Shannon’s entropy as detailed in Section 1.8.

51



CHAPTER 1. THE IRRATIONAL FRACTIONAL BROWNIAN MOTION AND THE

SHANNON ENTROPY

(a) Box plot illustrating the variability in the estimations of Ks across different year pairs.

(b) Box plot illustrating the variability in the estimations of cs across different year pairs.

Figure 1.11: These box plots delineate the varied estimations of K and c from Eqs (1.6) and
(1.7), contingent on the number of simulations in the estimation procedure employing Shannon’s
entropy (refer to Table 1.9 for a tabular exposition). The red markers signify the medians,
while the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points and are not categorized as outliers. The
visualizations suggest a lack of convergence to specific values as the number of simulations
escalates from 10 to 10, 000; notably, the estimations of K̂ exhibit more promise compared to ĉ.
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1.9 Results - S&P500 Data

1.9.1 Parameter Stability & method agreement

The procedure outlined in Section 1.8 yields the estimated parameters (K̂, ĉ) for each pair

of years considered in this study. Table 1.9 delineates these estimations under Shannon’s

entropy methodology, while Table 1.5 presents the results under the Chi-Square methodology.

A joint examination of Figure 1.11 and Table 1.9 sheds light on the stability of these parameter

estimations across different simulation counts—specifically 10, 100, 1000, and 10, 000 simulations.

1.9.1.1 Stability Analysis under Shannon’s Entropy

Observing the estimations under Shannon’s entropy, the K̂ parameter predominantly showcases

stability across different simulation counts. For a majority of the years, the values remain

consistent, indicating a robustness in the estimation process. Notably, the estimations for

years such as 1954-55, 1958-59, and 1982-83 are exemplary of this stability, with their values

remaining unchanged across varied simulation counts. There are a few years that experience

minor deviations; however, these changes are not drastic enough to challenge the overall

consistency observed for K̂.

On the other hand, the ĉ parameter presents a mixed bag. While a significant portion of the

years exhibit consistent values across simulations, suggesting stability, there are specific years

that display more pronounced variation. A standout example is 1950-51, where ĉ alters notably

from 0.43 at 10 simulations to a mere 0.01 at 100 simulations, and it maintains this value for

higher simulation counts. Such instances underscore the relative variability in ĉ estimations

compared to K̂.

In conclusion, while the K̂ estimations under Shannon’s entropy are largely stable across varying

simulation counts, the ĉ estimations demonstrate occasional variability, necessitating a more

cautious interpretation for certain years.

1.9.1.2 Stability Analysis under Chi-Square Methodology

Observing the estimations using the Chi-Square-based procedure, it’s evident that the K̂

parameter displays a considerable degree of stability across varying simulation counts. For

instance, in the years 1952-53 and 1986-87, the K̂ estimations remain relatively stable, with

values of [14, 14, 15, 15] and [28, 29, 29, 29] across the simulation counts respectively. However,

in years like 2002-03, there’s a slight yet noticeable change in K̂ values from -36 to -34 as

simulations increase, although this variation is not drastic.

Conversely, the ĉ estimations present a more varied picture. While many years indicate stability,

certain years such as 1992-93 and 2004-05 highlight the inherent variability. Specifically, for

1992-93, ĉ values fluctuate from 0.49 at 10 simulations to 0.74 at 100 simulations, then slightly

decrease to stabilize around 0.67-0.68 for higher counts. For 2004-05, the ĉ estimation increases
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from 0.94 at 10 simulations to stabilize at 1 for subsequent higher simulation counts.

In summation, while the K̂ estimations predominantly exude stability, the ĉ estimations, though

generally stable, have certain years where more pronounced variations are observed, necessitating

a nuanced interpretation.

1.9.1.3 Methods agreement - Shannon’s entropy vs Chi-Square

A visual comparison of the results from both procedures is portrayed in Figure 1.12. Comparing

the estimations from Shannon’s entropy method with those from the Chi-Square procedure, we

observe the following:

For K̂ estimations:

• The mean difference in K̂ values for 10 simulations is approximately 29.55.

• For 100 simulations, the mean difference is about 28.12.

• For 1000 simulations, the mean difference is around 27.82.

• For 10000 simulations, the mean difference stands at about 27.79.

Both methods exhibit a degree of difference in K̂ estimations across different simulation counts.

Although differences exist, they seem to narrow slightly as the simulation count increases.

Notably, Shannon’s entropy method generally provides values that either exceed or fall short of

those from the Chi-Square method by a consistent margin across different simulation counts.

For ĉ estimations:

• The mean difference in ĉ values for 10 simulations is approximately 0.537.

• For 100 simulations, the mean difference is about 0.500.

• For 1000 simulations, the mean difference is around 0.525.

• For 10000 simulations, the mean difference is approximately 0.532.

The differences in ĉ estimations between the two methods are relatively smaller than those for

K̂. The Shannon’s entropy method appears to provide marginally more consistent ĉ values com-

pared to the Chi-Square method, especially as simulation counts rise, although the disparities

are not significant.

In conclusion, while both methodologies yield relatively stable estimations, Shannon’s entropy

method is slightly more consistent, particularly for ĉ estimations. The consistent parameter

estimations across varying simulation counts hint at the model’s stability, especially in Shannon’s
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entropy approach. Such stability underscores the model’s robustness and reliability in parameter

estimation, which is vital for accurately depicting real-world financial dynamics.

(a) K̂s estimated with both the procedures and compared.

(b) ĉs estimated with both the procedures and compared.

Figure 1.12: Comparison of (K̂⋆, ĉ⋆) when estimated via ⋆ = {χ2, I}.
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1.10 Results - FTSE100 Data

In this section, we delve into the simulation results for the FTSE 100 data, as presented in Table

1.7. We aim to provide insights into the stability and agreement of the K̂ and ĉ estimations

across different simulation counts and compare the findings with those of the S&P 500 data.

1.10.1 Stability of K̂ and ĉ Estimations

1. For the Chi-Square method:

• K̂: For most years, K̂ estimations are relatively consistent across varying simulation

counts. For instance, in years like ”1984-85”, ”1992-93”, and ”2016-17”, K̂ values

remain relatively stable across different simulation counts.

• ĉ: The ĉ values exhibit more fluctuation across the simulation counts. For instance,

in ”1984-85”, ĉ changes from 0.77 at 10 simulations to 0.65 at 100 simulations and

fluctuates further as the count increases.

2. For the Shannon’s entropy method:

• K̂: The values of K̂ are generally stable across different simulation counts. For

example, in years like ”1988-89” and ”2004-05”, the K̂ estimations remain consistent

irrespective of the simulation count.

• ĉ: The ĉ estimations remain highly consistent across simulation counts for almost all

years.

1.10.2 Agreement Between Chi-Square and Shannon’s Entropy Methods

1. For K̂ estimations: The values estimated using Shannon’s entropy method are generally

higher than those obtained from the Chi-Square method. For instance, in the year ”1986-

87”, while the Chi-Square method estimates values around 13-15, the Shannon’s entropy

method gives values around 8-10.

2. For ĉ estimations: There are notable differences in the ĉ estimations between the two

methods. In many years, Shannon’s entropy method tends to estimate ĉ values close to

the extremes (either near 0 or 1), while the Chi-Square method provides more varied

values.

1.10.3 Comparative Analysis with S&P 500

1. Stability: The FTSE 100 data shows a similar trend in stability as the S&P 500 data,

with K̂ estimations being more stable across simulation counts compared to ĉ estimations.

However, the Shannon’s entropy method’s estimations for the FTSE 100 seem to be even

more stable compared to the S&P 500 data, especially for ĉ.

56



1.10. RESULTS - FTSE100 DATA

2. Agreement: The discrepancies between the two methods’ estimations are more pro-

nounced for the FTSE 100 data than the S&P 500 data. Particularly for ĉ values, Shannon’s

entropy method’s tendency to estimate values close to 0 or 1 is more evident in the FTSE

100 dataset.

In conclusion, both the FTSE 100 and S&P 500 datasets exhibit relative stability in the K̂ and

ĉ estimations across varying simulation counts, with Shannon’s entropy method generally being

more stable. The discrepancies between the two methods are more pronounced for the FTSE

100 data.
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1.11 IFBM behaviour interpretation

Table 1.8 encapsulates the estimation results achieved with 1000 simulations of the series. A

visual comparison of the results from both procedures is portrayed in Figure 1.12.

The K̂ estimations exhibit a degree of agreement, particularly between 1966 and 1981, and

2000 to 2011, which are characterized by relatively stable market conditions. Conversely, ĉI

exhibits a dichotomous behaviour with values starkly polarized.

For instance, when ĉI = 1, K̂I fluctuates between 17 and -23. The extreme cases are as follows:

• The parameter pair (K̂I = 17, ĉI = 1) occurs during 1962-1963, with a returns’ average

of 0.0001 for the period. For the same period, the chi-square criterion yields (K̂χ2 =

31, ĉχ2 = 0.08).

• The parameter pair (K̂I = −23, ĉI = 1) occurs during 2002-2003, with a returns’ average

of -0.000007 for the period2. The parameters for the same period via the chi-square

criterion are (K̂χ2 = −34, ĉχ2 = 0.62).

To interpret the above, we resort to Figure 1.13, and reference Dhesi and Ausloos (2016), where

the “feedback function” is plotted for the relevant cases discussed herein.

In Figure 1.13, a comparative analysis between the Chi-square and entropy-based methods in

terms of their corrective influence on the Geometric Brownian Motion (GBM) is elucidated

through the depiction of blue and dashed yellow lines.

• Chi-Square Method (Dashed Yellow Line): The chi-square-based estimations exhibit

a dominant effect on the GBM base function, as the ”feedback function” operates more

intensively, either adding or deducting more, to adjust the distribution or fatten the tails

accordingly with the value Zt taken from the standard normal. This method aims to

align the shape of the distributions, specifically targeting the kurtosis to ensure a closer

match between the observed and simulated distributions. It’s noteworthy that the level of

kurtosis for 1962-63 is 16.248, necessitating a much higher corrective effort compared to

the 2002-03 case. This is mirrored in the oscillations of the ”feedback function,” signifying

a more aggressive corrective action to align the simulated kurtosis with the observed

kurtosis.

• Entropy-Based Method (Blue Line): In contrast to the Chi-Square method, the

entropy-based method exhibits a more gentle corrective action on the GBM. The conditions

observed in terms of entropy are much closer to the observed data’s entropies, leading

to the ”feedback function” interventions being closer to each other. This suggests a

finer calibration in the entropy-based method as it seeks to match the information

content between the observed and simulated distributions. The 1962-63 case highlights

2Note that in Figure 1.13’s legend the number has been rounded.
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an interesting observation where the entropy in the observed data is lower, hinting at a

tendency of the GBM function to overestimate the returns’ distribution entropy. Hence,

the ”feedback function” in this method tends to correct more in such instances to achieve

a closer alignment with the observed data’s entropy.

The distinct regimes of the IFBM, as depicted through the Chi-Square and Shannon’s entropy

methods, underscore the differential emphasis each method places on aligning either the distri-

bution shape or the information content with the empirical data. This comparative analysis

enriches the understanding of the corrective dynamics exerted by each method on the GBM,

showcasing the relative merits and considerations inherent in each approach.

The “feedback function”, contingent on the value Zt, either augments or diminishes the GBM

component of Eq. (1.6), albeit with varying magnitudes of effect.

The chi-square-based estimations exert a more dominant influence on the GBM base function

compared to the entropy-based estimations. The level of kurtosis for 1962-63 is 16.248, indicating

a heightened corrective effort on the GBM, as reflected in the oscillations of the “feedback

function”.

The conditions observed in terms of entropy are more congruent with the observed data’s

entropies, leading to closer “feedback function” interventions. The entropy estimated closely

mirrors the observed one, more so than the kurtosis.
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Figure 1.13: This figure contains the function µ · K̂ · f(Z, ĉ) when it is fed by:

years µ K̂χ2 K̂I ĉχ2 ĉI kurtobs kurtsim Iobs;50 Isim;50

1962-63 0.00011083 31 17 0.08 1 16.248 2.739 3.5866 3.9271
2002-03 -7.5003e-05 -34 -23 0.62 1 4.1436 3.0062 4.7631 4.8485
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By employing ĉI to discriminate the results, the opposite case to ĉI = 1 is ĉI ≈ 0.01 (except

for 1984-85 when it is estimated at 0.02). Thus, for ĉI ≠ 1, K̂I ranges between 0 and 100. The

extreme cases are:

• The parameter pair (K̂I = 100, ĉI = 0.01) occurs during 1960-1961, with the returns’

average for the period being 0.0003. For the identical period, (K̂χ2 = 5, ĉχ2 = 0.24) is

obtained.

• The parameter pair (K̂I = 0, ĉI = ‘NaN ′) occurs during 2004-2005, with the returns’

average for the period being 0.0002 (Note that when K̂ = 0, Eq. (1.6) reverts to the

GBM, rendering the estimation of ĉ redundant). Conversely, the parameters for the same

period estimated via the chi-square criterion are (K̂χ2 = 5, ĉχ2 = 1).

Figure 1.14 contains the “feedback” function when the parameters discussed above are used.

The entropy-based estimations determine K̂I = 0 for the years 2004-05, essentially proving

that the GBM estimate better than the IFBM the empirical distribution in such years when

it comes to considering distributions’ entropy. In fact, when K̂ = 0, Eq. (1.6) represents the

GBM, the “feedback function” does not act. Indeed, the estimated kurtosis is very close to

the observed one; a very similar situation can be appreciated in terms of entropy. It is worth

noting that the level of kurtosis for 1960-61 is 6.78, so the effort necessary to correct the GBM

is much bigger than in the 2004-05 case. So, also, in this case, the oscillations of the “feedback

function” prove it.
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Figure 1.14: This figure contains the function µ · K̂ · f(Z, ĉ) when it is fed by:

years µ K̂χ2 K̂I ĉχ2 ĉI kurtobs kurtsim Iobs;50 Isim;50

1960-61 0.0003544 5 100 0.24 0.01 6.7828 2.8968 4.0835 5.0723
2004-05 0.00023615 5 0 1 0 2.8668 2.9146 5.1041 5.1448
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1.12 Analysis of FTSE 100 Data: Understanding the IFBM

Model’s Response to Market Dynamics

The FTSE 100 data, especially during the years 2020-23 affected by the COVID-19 pandemic,

offers an insightful perspective on the performance and adaptability of the Irrational Fractional

Brownian Motion (IFBM) model.

1.12.1 Revisiting the IFBM Model

To appreciate the nuanced responses of the IFBM model to market dynamics, it’s essential to

break down its mathematical foundation:

Pt+δt = Pt exp
(
µδt + σZt

√
δt− µK̂f(Zt)δt

)
with the feedback function defined as:

f(Zt) =

[
2 exp

(
−ĉZ

2
t

2

)
− 1

]
arctan(Zt)

This equation highlights the pivotal roles of K̂ and ĉ in modulating the model based on market

feedback.

Impact of Varying K̂ Values

• K̂ = 0: When K̂ is zero, the feedback term −µK̂f(Zt)δt becomes null, making the IFBM

equation revert to the standard GBM model. In this scenario, the model doesn’t account

for any market feedback and solely relies on the GBM’s predictions.

• Positive K̂: A positive K̂ amplifies the GBM component, suggesting the feedback mecha-

nism is working in tandem with the GBM’s predictions. This can indicate that the market

is behaving in a manner consistent with the GBM’s expectations.

• Extremely Negative (or positive) K̂: As observed during the COVID-19 pandemic, an

extremely negative K̂ value intensifies the feedback mechanism’s effect, causing the model

to heavily counteract the GBM’s predictions. This is the model’s way of introducing

significant corrections to adapt to adverse market conditions.

Impact of Varying ĉ Values

• Low ĉ: A low ĉ value means the feedback mechanism is less sensitive to market movements.

The feedback function f(Zt) would decay slowly, making the model less reactive to market

changes.
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• High ĉ: A high ĉ value, as seen during the COVID-19 pandemic, implies the model’s

feedback mechanism is highly sensitive to market movements. This ensures the model

remains reactive to minor market shifts but scales down its feedback for larger shocks,

preventing overcorrections and ensuring stability.

Balancing K̂ and ĉ

The interplay between K̂ and ĉ is crucial. While K̂ determines the magnitude of the feedback,

ĉ scales it. Their combined effect ensures that the IFBM model remains adaptive, capturing

the intricacies of real-world market dynamics while ensuring stability in its predictions.

1.12.2 Deciphering the Impact of COVID-19 on K̂ and ĉ

During the pandemic years, the notably negative values of K̂, especially the extreme of -100,

indicate a strong negative feedback in the market returns. This negative feedback acts to

counteract positive market trends, suggesting that the IFBM model was adjusting for adverse

market conditions. Essentially, the feedback mechanism was working overtime to correct and

stabilize the model’s predictions, highlighting its adaptability during such tumultuous periods.

The consistent ĉ values, especially from Shannon’s entropy method, signify the stable scaling

factor applied to this feedback across various market scenarios. A high ĉ value implies that

the model remained sensitive to smaller market movements while ensuring that the feedback

mechanism didn’t overreact to larger market shocks.

1.12.3 The Feedback Mechanism and Market Dynamics

An extremely negative K̂ value, like -100, intensifies the feedback mechanism’s effect, causing

the model to heavily counteract the GBM’s predictions. This could be seen as the IFBM’s

attempt to bring its predictions closer to the real-world market dynamics during significant

disruptions, like the COVID-19 pandemic.

Conversely, the high ĉ values show the model’s intent to be reactive to minor market movements

but prevent overcorrection during major market upheavals. This behaviour showcases the IFBM

model’s potential to balance sensitivity and stability, even in challenging market conditions.

1.12.4 Efficacy of the IFBM Model During the COVID-19 Pandemic

The pronounced negative K̂ values during the COVID-19 period emphasize the IFBM model’s

ability to recognize and adjust for adverse market conditions. The model’s negative feedback

response aimed to stabilize its predictions during the pandemic, ensuring it remained adaptive.

The high ĉ values further reinforced this adaptability, ensuring a consistent scaling of feedback
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across various market scenarios.

Through its parameters K̂ and ĉ, the IFBM model demonstrated its potential to adapt to

real-world financial dynamics, especially during the unprecedented challenges posed by the

COVID-19 pandemic. The model’s feedback mechanism, governed by these parameters, ensured

that it remained both sensitive to market shifts and stable in its predictions, underscoring its

relevance and reliability in capturing market dynamics.
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1.13 Implications

1.13.1 Insights from Parameter Stability and Method Agreement

1. Robustness of Estimation Procedures: The stability observed in the K̂ parameter

across different simulation counts under both Shannon’s entropy and Chi-Square method-

ologies underscores the robustness of these estimation procedures. This stability indicates

that the model’s response to market feedback, as governed by K̂, can be reliably estimated

using either method.

2. Variability in Feedback Scaling: The ĉ parameter, which scales the feedback mecha-

nism, displays more variability, especially under Shannon’s entropy methodology. This

suggests that the intensity of feedback might be more challenging to pin down precisely

and could vary more significantly based on the estimation method and the number of

simulations.

3. Methodological Agreement and Discrepancies: While both Shannon’s entropy and

Chi-Square methodologies offer valuable insights, their differences in K̂ and ĉ estimations,

especially as simulation counts rise, emphasize the nuances in their approaches. Shannon’s

entropy method appears to be slightly more consistent, especially in ĉ estimations. This

implies that, while both methods aim to align the IFBM model with empirical data, they

might prioritize different aspects or features of the data.

1.13.2 Understanding IFBM behaviour

1. Consistent Feedback Mechanism: The agreement observed in K̂ estimations, especially

during periods of relative market stability, suggests that the model’s feedback mechanism

remains consistent across these times. This implies that the model can reliably adjust its

predictions based on market feedback during such periods.

2. Dichotomous behaviour in Feedback Scaling: The polarization observed in ĉI values

suggests that the model might operate in distinct regimes or modes. These regimes

could reflect different market conditions or dynamics, with the model either being highly

sensitive to market movements or largely insensitive.

3. Comparative Dynamics of Chi-Square vs. Entropy-Based Methods: The oscil-

lations of the “feedback function” in the Chi-Square method reflect a more aggressive

corrective action to align the simulated kurtosis with the observed kurtosis. In contrast,

the entropy-based method seeks a finer calibration, aiming to match the information

content between the observed and simulated distributions. This highlights the differential

emphasis each method places on aligning either the distribution shape (kurtosis) or the

information content (entropy) with empirical data.
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1.13.3 IFBM’s Response to COVID-19 and Market Dynamics

1. Adaptive Feedback during Adverse Conditions: The notably negative K̂ values

during the COVID-19 pandemic period emphasize the model’s adaptability. The strong

negative feedback suggests that the model was actively adjusting its predictions to account

for adverse market conditions.

2. Balancing Sensitivity with Stability: The consistent high ĉ values during this period

indicate that, while the model was sensitive to market movements, it was also ensuring

that the feedback mechanism did not overreact. This behaviour is crucial during major

market upheavals, where overreactions could lead to erratic or unstable model predictions.

3. Relevance and Reliability: The IFBM model’s performance during the challenging

times of the COVID-19 pandemic underscores its potential as a reliable tool for capturing

market dynamics. Its adaptive feedback mechanism, as evidenced by the pronounced

negative K̂ values and the consistently high ĉ values, demonstrates its relevance in

accurately representing real-world financial dynamics.

The insights derived from the stability and agreement analyses, combined with the deep dive

into the IFBM behaviour and its response to the COVID-19 pandemic, paint a comprehensive

picture of the model’s capabilities. The IFBM model emerges as a robust and adaptive tool,

capable of capturing intricate market dynamics and offering valuable insights into financial

markets’ behaviour.
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1.14 Limitations, Future Work, & Concluding remarks

The analysis utilizing the Irrational Fractional Brownian Motion (IFBM) model on both S&P

500 and FTSE 100 data provides a richer understanding of asset price dynamics across different

markets. However, certain limitations are inherent in the analysis, and opportunities for further

exploration abound.

1.14.1 Limitations

1. Model Assumptions: The IFBM model, akin to many financial models, is constructed

upon certain foundational assumptions which might not always mirror the intricate realities

of financial markets (Cont, 2001). For instance, the potential dichotomous behaviour of

the feedback scaling parameter ĉI indicates that the model might not entirely encapsulate

some intricate market behaviours. Furthermore, the reliance on parameters K and c

to represent market dynamics can sometimes be an oversimplification, especially when

considering the nuances of market participants’ reactions to fresh information, as explored

by (Black, 1976) during turbulent market situations or unparalleled financial events.

2. Parameter Estimation: While the Chi-Square and Entropy methods remain valuable

tools for parameter estimation, they come with their inherent biases and sensitivities

(Tsay, 2005). This is particularly evident in the discrepancies observed in parameter

estimations across these techniques and between different markets (S&P 500 and FTSE

100). Notably, the ĉ parameter displayed greater stability when analyzed under Shannon’s

entropy methodology than the chi-square approach. This not only emphasizes the relative

sturdiness of the entropy method but also underscores the importance of methodological

selection in financial modeling.

3. Historical Data Dependency: A prevalent challenge in financial modeling is the heavy

reliance on historical data (Engle, 1982). While these data provide invaluable insights into

past market behaviours, they may not always be indicative of future market movements.

This becomes especially poignant in light of unprecedented market events or significant

structural changes in the financial markets, as explored by (Lo, 2001). The challenges

associated with extrapolating from historical data accentuate the need for integrating

adaptive mechanisms within financial models.

1.14.2 Future Work

1. Model Extension: Consider incorporating macroeconomic indicators as exogenous

variables to improve the IFBM model’s forecasting performance. Indicators like interest

rates, inflation rates, or GDP growth have been known to influence asset prices (Stock
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and Watson, 1989). Furthermore, incorporating elements from other stochastic models

such as Jump Diffusion (Merton, 1976) can address sudden market jumps.

2. Robustness Checks: A wider application of the IFBM model across different asset

classes, including commodities and currencies, would help test its versatility. Previous

research by (Engle and Ng, 1993) on various asset classes could provide a benchmark for

comparison.

3. Comparative Analysis: A thorough comparison with other volatility models, such as

the GARCH family of models (Bollerslev, 1986), can highlight the relative strengths of

the IFBM model.

4. Alternative Parameter Estimation Methodologies: Exploring advanced estima-

tion techniques, such as the Generalized Method of Moments (Hansen, 1982), could

provide more robust parameter estimates, especially in the presence of potential model

misspecifications.

5. High-frequency Data Analysis: With the increasing availability of tick-by-tick data,

applying the IFBM model to high-frequency data can uncover intricate market dynamics

that daily data might miss. Research by (Andersen and Bollerslev, 1998) on high-frequency

data can serve as a guideline for such explorations.

6. Market Resilience Analysis: Investigate how the IFBM model’s parameters, especially

the feedback mechanism, change during major market events. Such an analysis can echo

studies like (Forbes and Rigobon, 2002) that delve into market reactions during crises.

The IFBM model, through the analysis of both S&P 500 and FTSE 100, presents a promising

framework for understanding asset price dynamics. The insights gleaned from this analysis

emphasize the model’s adaptability and potential reliability, especially in the face of significant

market upheavals like the COVID-19 pandemic. These insights propel further exploration

towards a more accurate and comprehensive understanding of financial markets.
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1.14.3 Concluding remarks

The study embarked on a multi-faceted exploration of the Irrational Fractional Brownian

Motion (IFBM) model, seeking to unveil its merits in capturing the intricacies of financial

market dynamics, particularly when juxtaposed with the conventional Geometric Brownian

Motion (GBM) model. The voyage was navigated through a methodological lens, an empirical

spectrum, and a practical pathway, each contributing a unique shade to the picture we painted

of the IFBM model’s potential and performance.

The IFBM model emerged as a promising alternative to the GBM model, offering a richer

representation of financial markets by embracing investor irrationality and leptokurtosis. Its

acknowledgement of fatter tails and heightened peaks in asset price distributions unveiled

a canvas where large price swings aren’t anomalies but part of the market’s unpredictable

essence. This leap from the GBM model, which assumes rationality and overlooks leptokurtosis,

establishes the IFBM model as a more realistic portrayal of market dynamics, echoing the

empirical realities documented in seminal works ((Mandelbrot, 1963), (Taleb, 2007)).

The empirical expedition into the S&P 500’s historical data rendered a testament to the IFBM

model’s stability and robustness. The stability in the k and c parameters across different

simulation counts, especially when estimated using Shannon’s entropy, portrays a model

grounded in reality yet not swayed easily by market whims. Though the data didn’t extend

to the pandemic period, the stability observed underscores the model’s potential reliability in

varying market conditions.

The expedition further led to the formulation of a robust and repeatable algorithm, unlocking the

gates for the IFBM model’s broader application in financial market analyses. This methodological

advancement, bridging the gap between complex theory and practical application, holds the

promise of making the IFBM model a versatile tool for both researchers and practitioners.

The algorithm’s foray into the tumultuous waters of the FTSE 100 during the COVID-19 crisis

rendered visible the IFBM model’s adaptability. The pronounced negative feedback mechanism

captured by the K̂ parameter during this period resonated with the market’s adverse conditions,

showcasing the model’s potential to mirror market dynamics even in extreme scenarios.

Lastly, the employment of Shannon entropy as a lens to scrutinize the information content

encapsulated by the IFBM model in portraying market dynamics unveiled a richer understanding

of market behaviour and risks. This venture into the realm of information theory accentuated

the model’s potential in offering a nuanced understanding of the complex interplays inherent in

financial markets, especially during turbulent times.

A particular highlight from the analysis is the observed stability in the parameter ĉ across

different market conditions and datasets. The entropy method, in particular, provided notably

more stable estimates for ĉ compared to the chi-square method. This consistent estimation,

particularly with the entropy method, underscores a level of robustness in the IFBM model.

This stability in parameter estimation is crucial as it suggests a reliable scaling factor for the
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feedback mechanism, aligning the model closer to empirical market dynamics.

In summary, the exploration of the IFBM model, through the complex dynamics of financial

markets and the precise realm of methodological formulation, unveiled a model with potential

as vast as the markets it seeks to represent. The empirical stability, methodological robustness,

and practical applicability observed not only shed light on the model’s merits but also pave

the way for further explorations into its boundless potential in understanding the enigmatic

behaviour of financial markets.

With a more robust understanding of the IFBM model established in Chapter 1, we transition

to Chapter 2, delving into the realm of investor sentiment. The study of investor sentiment

is particularly relevant as it offers insights into the behavioural aspects that could influence

the parameters of the IFBM model. Here, the focus shifts to understanding whether investor

sentiment, a distinct yet related aspect of market behaviour, propagates through a community

of traders and impacts market dynamics, especially during crises. The juxtaposition of investor

rationality/irrationality and sentiment forms a comprehensive narrative, exploring the different,

yet interconnected, facets of behavioural finance. Both chapters aim to unravel the complexities of

human behaviours that significantly influence market phenomena, emphasizing their paramount

role in shaping market trends, especially during times of crises, enriching our understanding of

the intricate dance between investor behaviour and market dynamics.
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Chapter 2

Financial Markets in the COVID-19

Era

2.1 Introduction

The COVID-19 pandemic, recognized as a global health emergency by the World Health

Organization (WHO) (WHO, 2020), has reverberated through economies worldwide, marking

its place in the annals of events that reshaped the global financial landscape (Nicola et al.,

2020). Historically, pandemics have shown a knack for disrupting economic equilibria, and

financial markets, in particular, have often been at the epicentre of these disturbances (Barro

et al., 2020).

Financial markets, often seen as the heartbeat of economies, have always been sensitive to global

events. Their forward-looking nature means that they constantly adjust to new information,

providing real-time feedback on the collective sentiments of the investment community (Fama,

1970). The advent of the COVID-19 pandemic amplified this inherent characteristic of financial

markets.

The rapid spread of COVID-19 created significant uncertainty in financial markets, prompting

concerns about the potential economic impacts of the pandemic (Goldstein et al., 2020).

According to (Goodell and Huynh, 2020; Al-Awadhi et al., 2020; Elnahas et al., 2018), market

returns respond negatively to any political, economic, or ecological crisis. Stock market crashes,

and pandemics tend to go hand in hand over the long haul. However, the reaction to COVID-19

in 2020 is considered unprecedented (Baker et al., 2020a). Furthermore, Zeren (Zeren and

Hizarci, 2020) argues that despite the initially modest number of illnesses and fatalities, the

quick decrease in the stock markets is due to the markets’ capacity to respond swiftly to

incoming information. As (Fernandes, 2020) notes, the pandemic generated “unprecedented

levels of uncertainty” for investors and policymakers, who were forced to grapple with a rapidly

evolving situation and a range of potential outcomes. (Sansa, 2020) analysed the emotional

impact of investing concerns and argued that “fears of a broader outbreak and its economic
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impact spread to financial markets.”

The deluge of daily news, ranging from infection rates to vaccine developments, meant that

markets were in a constant state of flux, trying to process and adapt to this new reality (Baker

et al., 2020a). In 2020, the prominence of the COVID-19 pandemic in global media reached levels

not seen since World War II, as illustrated by The Economist (Economist, 2020). This media

focus led to a marked uptick in news consumption globally, especially in the UK (Statista, 2021).

The UK government’s regular updates on the pandemic became essential viewing for many,

serving as a trusted information source during a time fraught with misinformation concerns

(Nielsen et al., 2020). With millions tuning in to these briefings, they represented a significant

news event during the pandemic.

In an era marked by the ubiquity of information and where the line between factual and

misleading news often gets blurred, official communication channels have become the beacon of

clarity. Governments and health organizations around the world stepped into this role, with their

updates becoming critical for individuals and institutions alike. Economic literature has empha-

sized the symbiotic relationship between macroeconomic news and stock prices. Government

announcements, given their authoritative nature and policy implications, often exert significant

influence on market movements (MacKinlay, 1997). Within the tumultuous environment of the

pandemic, these updates gained even more prominence. They not only reported on the current

state of the health crisis but also indicated the direction of future economic policies, potential

lockdown measures, and, most critically, vaccine-related developments—all of which are crucial

components in the information landscape that investors navigate. Such information, alongside

other global events and economic indicators, directly feeds into the collective psyche of the

financial community.

Investor sentiment, which gauges the emotions and attitudes of individual or institutional

investors, plays a pivotal role in determining market movements (Baker et al., 2016). This

sentiment is a barometer, reflecting investors’ collective reactions to various news items, economic

indicators, and global events. During the pandemic, this sentiment experienced significant

fluctuations. Notable events, such as the announcement of national lockdowns or breakthroughs

in vaccine trials, acted as potent triggers, driving pronounced shifts in stock market behaviours

(Zhang et al., 2020). Recognizing the profound influence of investor sentiment, especially

during turbulent times like the COVID-19 pandemic, this study seeks to unravel its intricacies,

examining it through the lens of government briefings.

Positioning the UK as the lens through which we examine these phenomena, this research

aims to comprehensively understand the nexus between the COVID-19 narrative, government

briefings, and stock market dynamics. By analysing the UK government’s daily updates,

we unravel their nuanced influences on stock market sentiments. This endeavour not only

enhances our understanding of the multifaceted relationship between public health crises,

official communication, and financial markets but also illuminates investors’ decision-making
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processes during unprecedented times.

In the forthcoming sections, we will embark on a journey that traces the trajectory of COVID-

19 and its multifaceted impact on global stock markets. We will then delve into the UK’s

governmental response, elucidating its pivotal role as a primary news source during this crisis.

A thorough exploration of investor sentiment, its underlying significance, and its profound

influence on stock markets will pave the way for our core investigation: we aim to illuminate

the broader implications of governmental responses during pandemics on financial markets and

the consequent investor decision-making processes.

2.1.1 COVID-19 Pandemic Timeline in the UK

Although the first cases of COVID-19 were recorded in 2019, the Western world at large became

aware of the disease in January 2020. On January 29, 2020, the first two infections in the UK

were confirmed. Six people died of the sickness in the United Kingdom on March 10th. Upon

this, the FTSE, the UK’s major index, fell more than 10% on March 12, 2020, on its worst day

since 1987 (Zhang et al., 2020), and continued to fall to its lowest level on March 23rd, when

the UK Prime Minister declared a national lockdown. The influence of this series of events on

the share price of all businesses listed on the London Stock Exchange, the FTSE All-Share

index, is shown in Figure 2.1. Between January 2 and March 23, 2020, the FTSE All-Share

index dropped by 35%.

Figure 2.1: Percentage change in FTSE All-Share Index, from January 2, 2020, to June 30, 2021

The UK stock market started to rebound from its lowest point in March 2020 in April. Between

April and June, restrictions such as the closure of schools were lifted, while UK Prime Minister
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Boris Johnson claimed that the UK was ”past the peak” of COVID-19. Furthermore, the UK

human COVID-19 vaccine trials started on April 22, 2020, offering hope for a viable therapy

and a way out of the COVID-19 crisis. Between July and October, the share price dropped

steadily again. On July 1, 2020, UK firms terminated 11,000 jobs in two days. Meanwhile, owing

to an increase in new cases, the UK government reinstated fresh COVID-19 restrictions. The

increase in cases might be ascribed to a variety of factors, including the loosening of mixing

regulations in the absence of a cure. Furthermore, the £500 million “Eat Out to Help Out”

scheme launched by the UK government in August was found to have increased new COVID-19

infections by 8% to 17% (Fetzer, 2022). The scheme was intended to support and create jobs in

the hospitality industry to offset the economic impacts of the COVID-19 pandemic. However,

this scheme involved indoor public mixing, which increased the spread of the disease.

On September 21, 2020, concerns of a resurgence of coronavirus outbreaks stripped off more

than £50 billion in UK stock market value. Unsurprisingly, the Prime Minister of the United

Kingdom announced a second four-week national lockdown on October 31, 2020, with non-

essential shopping, bars, and restaurants shuttered (Group, 2022).

Former UK Health Minister Matt Hancock announced in November 2020 that a vaccine might

be available the following month (for Government, 2022). This statement corresponded with

the FTSE All-Share’s recovery and its continued steady ascent with the official approval of a

COVID-19 vaccination in the UK. The FTSE All-Share has not dropped below -15% since the

official clearance of the vaccine. By May 9, 2021, one-third of people in the UK had been fully

vaccinated against COVID-19 (Government, 2021), providing the public and investors with

optimism that the worst was behind them.

The vaccination campaign has been successful in the UK, and the government’s decision to

prioritize vaccinating the elderly and vulnerable has likely contributed to the decrease in the

number of COVID-19 cases and deaths in the country. As a result, the UK government has

lifted most COVID-19 restrictions, allowing the economy to reopen and businesses to operate

as usual. This has had a positive effect on the UK stock market, with the FTSE All-Share

index reaching pre-pandemic levels by mid-2021 (Thomas, 2021).

2.1.2 Governments’ response in COVID-19

Amid economic uncertainties, governments play a pivotal role in shaping investor sentiment

and allaying their fears (Eachempati et al., 2021). The extent and nature of government

interventions not only stabilize the immediate market conditions but also provide valuable

cues about potential future market volatility to those managing equity portfolios (Mirza et al.,

2020). In the face of the unprecedented challenges posed by the COVID-19 pandemic, global

governments and central banks acted swiftly. They implemented a myriad of stimulus measures

to counterbalance the economic disruptions brought about by the virus, with the goal to instil

renewed trust in the financial markets. Taking the United Kingdom as a representative example,

76



2.1. INTRODUCTION

on March 17, 2020, several initiatives were announced to aid businesses and employees affected

by the pandemic’s containment measures. These included a year-long business rate relief for

entities in the retail, leisure, and hospitality sectors, as well as the Coronavirus Job Retention

Scheme (CJRS). Through the CJRS, furloughed employees were assured of receiving 80% of

their salaries, with a ceiling of £2,500 monthly per worker. Such measures were conceived to

sustain businesses that would have been viable under normal circumstances (Griffith et al.,

2020). Furthermore, the UK government prioritized transparency, holding daily press briefings

to keep the nation abreast of the pandemic’s developments. These updates, closely monitored

by the British public—including stock market investors—were invaluable. As (Liu et al., 2020)

suggests, navigating a crisis of the magnitude of COVID-19 requires the government to offer clear,

timely information, helping the public understand the steps being taken without introducing

ambiguity. This approach emphasized the importance of timely government communication

in assisting investors during such tumultuous times. Recognizing this, several governments

worldwide stepped up their communication efforts. One notable example is the United Kingdom.

During the height of the coronavirus pandemic, the UK government initiated regular briefings

from 10 Downing Street, the Prime Minister’s official residence. These commenced on March

3, 2020, in response to public demands for clarity on government strategies against COVID-

19, and while routine press briefings ceased on June 23, sporadic news conferences persisted

(BBC). Typically, these briefings were chaired by prominent government figures, including the

then-Prime Minister Boris Johnson, and frequently featured expert insights from the medical

and scientific community.

This investigation operates under two primary assumptions. Firstly, these briefings acted as

an informational bridge, linking technical pandemic experts with the general public. Their

purpose was to relay current developments and delineate forthcoming strategies to manage

the pandemic within the UK. Secondly, it is postulated that these conferences were keenly

observed by investors, influencing their perceptions, investment decisions, and understanding of

the pandemic’s trajectory.

2.1.3 Government Briefings as the Unit of News in COVID-19

Given the context and the media landscape during the pandemic, this study designates the

UK government’s daily briefings as the primary ”unit of news”. This decision is rooted in their

widespread coverage, high viewership, and the trust the UK public placed in them as reliable

sources of information about COVID-19. In essence, when referring to ”Government Briefings

as the Unit of News in COVID-19”, we emphasize the unique position these briefings held in

the information dissemination chain, acting as a bridge between official pandemic responses and

public perception and behaviour. In 2020, the COVID-19 pandemic occupied an unprecedented

position in global media coverage. As per a report by The Economist (Economist, 2020), the

pandemic has surpassed all other subjects in terms of news coverage since the era of the Second
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World War. The periodical underscored that during the peak of the pandemic in late March, a

notable 80% of their articles contained mentions of the terms ”COVID” or ”coronavirus”.

This increased coverage coincided with a significant increase in media consumption habits

worldwide, particularly in the UK, where people reported consuming news more frequently

than before the pandemic (Statista, 2021). During the pandemic, the UK government’s daily

briefings were broadcast on major news outlets. TV and online media were both widely used as

sources of information during the pandemic, with 70% of respondents using TV and 79% using

online sources (Nielsen et al., 2020). In this article, the authors found that news organisations

are the single most widely identified source of news and information about coronavirus.

On the other hand, the concern about misinformation regarding COVID-19 was widespread

during the pandemic (Statista, 2020). In the UK, where the government briefings were broad-

casted, the government briefings were seen as a reliable source of information during a time

when there was a lot of concern about the spread of misinformation. According to a survey

conducted by (Nielsen et al., 2020), both news organizations and the national government were

predominantly deemed trustworthy sources for obtaining Coronavirus news.

The popularity of the government briefings is evident in the viewership numbers. Boris Johnson’s

COVID-19 press briefings were watched by millions of people in the UK, with his announcement

of the first national lockdown being watched by an audience of 27.4 million across six networks

(Guardian, 2020). The announcement of a £330bn lifeline for the UK economy during one of

the briefings was expected to have a positive impact on the financial markets (News). This kind

of announcement could potentially boost investor confidence and lead to an increase in stock

prices and other financial indicators (Allen et al., 2011).

The widespread coverage and high viewership of the UK government’s daily updates during

the pandemic make them an effective unit of news for this study. Additionally, the trust that

the UK public placed in the government as a source of information about COVID-19 further

emphasizes the importance of government briefings in understanding public sentiment and

behaviour during the pandemic.

In conclusion, the COVID-19 pandemic led to a significant increase in media consumption and

the widespread coverage of the UK government’s daily briefings, which were seen as a reliable

source of information during a time of misinformation. The government briefings were popular,

and their impact on the financial markets highlighted their importance for investors. The trust

that the UK public placed in the government further emphasizes the significance of government

briefings in understanding public sentiment and behaviour during the pandemic.

2.1.4 Government Briefings and Investors’ Sentiment in COVID-19

Traditional finance theory posits that an asset’s value equates to its anticipated future cash

flows. In this paradigm, only systematic risk dictates the balance of expected returns, with any

deviations or mispricing rectified by arbitrageurs. This conventional understanding suggests that
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stock returns and volatility patterns should remain unaffected by externalities like investors’

sentiment or emotional state. However, research over the past two decades, including findings

by (Huang et al., 2019), indicates that classic financial theories fall short of comprehensively

accounting for market returns and volatility. This suggests that a blend of foundational factors

and non-financial elements, such as investor sentiment, might better explain stock returns.

Investor sentiment holds critical implications for investment timing. It captures irrational

anticipations about a stock’s risk-return dynamics that aren’t anchored in empirical evidence.

Insights from behavioural economics affirm that investors’ choices often deviate from rationality,

swayed instead by emotions and sentiments (Tikkanen, 2021). Key questions arise: Are market

fluctuations during the COVID-19 era driven by unwarranted investor anxieties? Did the

pandemic trigger a genuine market downturn, or did it amplify irrational pessimism, especially

regarding overvalued stocks?

Building on this, (Kaplanski and Levy, 2010) postulate that negative emotions, such as anxiety,

can shape investment decisions. Anxious investors might harbour a gloomier outlook on future

returns, leading them to adopt more conservative investment stances. This underlying anxiety

fosters a negative sentiment, further influencing investment choices and subsequent asset per-

formance.

The COVID-19 pandemic, accentuated by government pronouncements and actions, has unde-

niably eroded market confidence, precipitating a steep decline in UK stock prices. At its core,

stock prices mirror prospective earnings. Given the pandemic’s disruptive impact on economic

activities, investors’ concerns over future revenues have escalated, fuelling this decline (Liu

et al., 2020). Investor sentiment, undeniably, is shaped by a multifaceted confluence of factors.

Economic indicators, global events, sectoral performance, and media discourse all play a role

in influencing investor behaviour. However, the unique context of the COVID-19 pandemic

necessitates a deeper examination of governmental briefings. The COVID-19 pandemic’s unprece-

dented nature and its widespread impact on health and the economy have been well-established

(McKibbin and Fernando, 2021). In these challenging times, government briefings became

indispensable sources of information. They served as the chief channels for conveying policies,

public health directives, and updates on the pandemic’s evolution (WHO, 2020). Far from

being mere health updates, these briefings also outlined economic policies and interventions

aimed at mitigating the pandemic’s adverse effects (Takes, 2020). Consequently, they held a

dual significance, shaping both public health responses and economic decision-making (Atkeson,

2020).

Several academic studies have highlighted the interplay between government announcements

and financial market dynamics. (Baker et al., 2016) demonstrated that governmental policy un-

certainty can directly influence firm-level decisions, affecting both investment and employment.

Similarly, (Su et al., 2002) underscored the considerable influence of government interventions

on stock returns and market volatility. In the specific context of the pandemic, (Baker et al.,
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2020a) noted that governmental responses to COVID-19 have been primary drivers of stock

market reactions globally.

Moreover, the daily nature of COVID-19 briefings and their wide coverage in media made them

a focal point of public attention. During the COVID-19 pandemic, investors have exhibited

heightened sensitivity to daily updates and developments (Baker et al., 2020b). This increased

sensitivity can be attributed to the investor sentiment that has been influenced by the pandemic.

Investor sentiment, which is often reflected in trading volume, plays a significant role in stock

price sensitivity patterns (Ernawati et al., 2022). The fear and uncertainty surrounding the

pandemic have impacted both investors and individuals, leading to a dent in investor sentiment

(Van Hoang and Syed, 2021).

One might wonder about the mechanics underlying the transmission of sentiment from gov-

ernment briefings to investor behaviour. A prominent explanation lies in the realm of herding

behaviour. As posited by Banerjee (1992), investors often follow perceived prevailing trends

or sentiments, especially in times of heightened uncertainty. When a significant segment of

the investing community reacts to a stimulus, such as a government announcement, others

might follow suit, irrespective of their personal beliefs or analyses. Furthermore, the Media

Influence Theory suggests that news and media, including government announcements, can

directly influence investor sentiment (Tetlock, 2007).

Amidst this, Information Theory comes into play. In an environment characterized by uncer-

tainty and rapid changes, information becomes a premium asset. Government briefings, by

providing timely and official updates, serve as crucial information sources. Investors, in their

quest to make informed decisions, seek out these pieces of information and in doing so, may

inadvertently amplify the sentiment embedded within them. The daily briefings, with their

widespread coverage and analysis, become not just a focal point of investor attention but also a

vital conduit for information dissemination. This interplay between herding tendencies, media

influence, and the thirst for relevant information provides a plausible mechanism through which

the sentiment of the government’s daily briefings could be transferred to and mirrored by the

investor community.

While myriad factors shape investor sentiment, the centrality of governmental briefings during

the COVID-19 pandemic makes them a pivotal determinant of market dynamics. This study

acknowledges the broader influences on investor sentiment but posits that, in the unique

environment of the pandemic, government announcements held amplified significance. Building

on this premise, the research delves deeper into the mechanics of sentiment derivation and its

ramifications for the stock market.

This research extends the existing body of literature by exploring the potential impact of

government announcements on investor behaviour and the consequent shifts in stock market

dynamics amid the unique uncertainties of the COVID-19 era. A central focus is the sentiment
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derived from the UK government’s COVID-19 briefings.

The study is structured into two primary phases. The first phase, dubbed “sentiment extraction,”

aims to extract sentiment from the government’s pandemic-related communications. Considering

existing research that underscores the profound negative impacts of the pandemic on global

financial markets (Al-Awadhi et al., 2020; Baker et al., 2020a; Zhang et al., 2020; Ramelli and

Wagner, 2020a), we posit a cascading effect: the sentiment from governmental announcements

might shape and sway the sentiment of UK investors. The second phase leverages statistical

methodologies to analyse the relationship between this investor sentiment and the performance

trends of principal UK stock indices, thereby shedding light on the causal dynamics. This

exploration contributes to the broader academic dialogue on the influence of political news on

stock market behaviours.

The advent of advancements in computational linguistics, Natural Language Processing (NLP),

Machine Learning, and econometrics, enhanced by greater accessibility to diverse media content

and digital discussions, has spurred their application in a range of financial research areas

(Chouliaras, 2016).

Aligned with this trend, our approach harnesses NLP tools to distil sentiment from the widely

circulated COVID-19 government announcements. We theorize that the sentiment identified

from these official briefings reverberates within the sentiment landscape of the UK stock market,

subsequently affecting stock prices and returns.

In synthesizing the interactions between the COVID-19 crisis and the UK stock market, this

study endeavours to elucidate how investors responded to the UK government’s communications

during the pandemic. This initiative enriches the burgeoning body of work delving into the

nexus between news propagation and stock market reactions.
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2.2 Research motivation & contributions

The stock market’s response to the COVID-19 pandemic has been unparalleled, surpassing

the impacts of previous infectious disease outbreaks, including the Spanish Flu (Baker et al.,

2020a). Given this unprecedented influence, a deeper exploration becomes imperative.

Research by (Khanthavit, 2020) underscores that the pronounced market reactions during the

COVID-19 era were intimately tied to extensive media coverage and the official declaration of

the pandemic. In the United States, initial market reactions in the late February to early March

window predominantly mirrored news updates regarding the pandemic’s progression (Baker

et al., 2020a). Concurrently, studies by (He et al., 2020) revealed COVID-19’s transient yet

adverse effects on stock markets across several major countries. Reinforcing this, (Khanthavit,

2020) established a profound negative market response to the pandemic, attributing this largely

to the heightened media focus rather than emergent events.

In a detailed analysis of 100,000 COVID-19-related news headlines and articles across four

nations, (Ghasiya and Okamura, 2021) pinpointed the United Kingdom as harbouring the

highest proportion of negative sentiment throughout an 11-month span of the pandemic.

Parallelly, the findings of (Maligkris, 2017) suggest that optimistic political discourses bolster

stock returns and trading volumes while curbing volatility. Conversely, pessimistic tones in

political declarations induce the opposite effect.

The motivation for this research is rooted in the compelling evidence of the interplay between

news, especially concerning COVID-19, and financial markets. Furthermore, the pronounced

role of public announcements in modulating public sentiment—and by extension, investor

sentiment—stands out. Through this investigation, our objective is to delineate the reactions of

investors in the UK market to diverse government announcements made during the course of

the COVID-19 crisis.

This endeavour presents a spectrum of novel contributions, ranging from broader insights to

more nuanced, targeted findings in the fields we will detail subsequently.

2.2.1 Behavioural finance and market sentiment:

This research offers valuable insights into the fields of behavioural finance and market sentiment,

particularly in the exploration of how investor sentiment influences the stock market during crisis

situations like the COVID-19 pandemic. The current chapter builds upon the methodological

foundations laid in the first chapter, where we employed the innovative “irrational fractional

Brownian motion model” approach by (Dhesi et al., 2019) to empirically measure investor

rationality/irrationality, a central concept in behavioural finance. In the present chapter, we

extend this understanding of irrational investor behaviour by linking Dhesi and Ausloos (2016)

’psychological soliton’ concept to market movement during times of crises. In their paper,

the ’psychological soliton’ represents the propagation of investor sentiment, reflecting how
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collective emotion or sentiment can spread through a population of traders and influence market

behaviour.

The authors posit that this propagation of investor sentiment significantly affects financial

markets, especially during crises. This connection provides an additional layer of understanding

to the study of market sentiment, expanding its role in behavioural finance.

Our research situates itself in the rich tradition of behavioural finance and sentiment analysis,

tracing back to seminal works like Keynes’s notion of “animal spirits” (Keynes, 1936) and

(Kahneman and Tversky, 1979), which both provided initial insight into sentiment-driven and

bias-influenced behaviour in financial decision-making.

Moreover, Shiller’s assertion (Shiller et al., 1984) that stock prices are driven by popular

narratives and perceptions form a cornerstone of sentiment analysis in finance. Fast-forward to

the 2000s, (Baker and Wurgler, 2006) in their paper “Investor Sentiment and the Cross-Section

of Stock Returns”, examined the effect of investor sentiment on stock returns and found evidence

suggesting that investor sentiment does indeed play a significant role. And more recently, (Da

et al., 2021) in their paper ”Extrapolative Beliefs in the Cross-Section: What Can We Learn

from the Crowds?”, used a novel dataset from a popular online platform for individual investors

and found that the crowd’s extrapolative beliefs about stock returns predict cross-sectional stock

returns. In essence, the study provides empirical evidence that investor sentiment, especially

among non-professional investors, can influence stock prices. It confirms the theoretical notion of

“extrapolative beliefs” and shows they can be used to predict future stock returns, particularly

in the short term.

These findings align with the theories put forward by scholars like Robert Shiller who argue

that investor sentiment and popular narratives can impact financial markets. It would also

challenge traditional finance theories like the Efficient Market Hypothesis, which holds that

markets are perfectly efficient and that all public information is already reflected in current

prices.

By applying these foundational theories, this study enhances the understanding of the empirical

relationship between investor sentiment and market volatility during crises. Thus, we aim to

enrich the knowledge base in behavioural finance and sentiment analysis, contributing to the

ongoing conversation about the integration of investor sentiment and market volatility.

2.2.2 Governmental interventions, political news and financial markets

Our research contributes uniquely to the field of governmental interventions and financial

markets by examining the sentiment conveyed in UK government briefings during the COVID-

19 pandemic and its immediate impact on the FTSE stock market. This approach provides a

distinctive perspective by considering the sentiment expressed in these communications, offering

a novel understanding of how sentiments during governmental briefings can significantly sway

financial markets during pandemics. Our focus on sentiment analysis aligns this study with
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existing literature in behavioural finance, integrating it with a political economy perspective.

Most current research, including the work of (Pástor and Veronesi, 2013), and (Ramelli and

Wagner, 2020a), predominantly focuses on broader, long-term impacts of events and government

policies on financial markets, albeit through different lenses: one through a theoretical model of

political risk, the other through an empirical analysis of a specific historical event. In contrast,

our study explores the immediate effects of sentiment expressed during government briefings,

augmenting the current understanding of the role governmental communications play in financial

market behaviour.

By incorporating sentiment analysis into the investigation of governmental briefings, our research

extends the discourse on government interventions and financial markets. It highlights the

importance of considering sentiment in government communication, particularly in times of

crisis, and its immediate impact on the market. This novel integration enriches the field and

invites further research into the role of sentiment in political communications and their economic

implications.

In the context of political news, the research by (Tetlock, 2007), which delved into the role of

media sentiment in influencing the stock market, serves as a vital point of reference. Tetlock

found that negative words in the media could predict downward pressure on market prices. Our

research builds upon and refines Tetlock’s line of inquiry by focusing specifically on a single, yet

significant, type of media – governmental briefings. In the broader context of Tetlock’s study,

our research provides a micro-level examination of how sentiment expressed in a particular

form of political news (i.e., daily governmental briefings) can immediately influence financial

market movements. Tetlock’s study surveyed the broader landscape of media sentiment and

its short-term effects on market prices. In contrast, our study provides a deeper dive into the

immediate influence of sentiment expressed in government briefings, specifically in times of

crisis. This specificity enriches the existing body of literature by highlighting how real-time

political communications can have a unique and immediate impact on market behaviour.

2.2.3 Application of NLP in financial research

Our research represents a pivotal development in leveraging Natural Language Processing (NLP)

tools, especially the Bidirectional Encoder Representations from Transformers (BERT) model

(Devlin et al., 2018), in the realm of financial research. The integration of sentiment analysis in

finance has its roots in seminal works like that of (Antweiler and Frank, 2004), who employed

text analysis to decipher the correlation between online stock message board discussions and

stock market volatility. Nevertheless, the infusion of advanced NLP techniques such as BERT

in finance is a relatively recent evolution, considering BERT was officially introduced in 2018.

Central to our study is the seminal works of (Sousa et al., 2019) and (Ghasiya and Okamura,

2021). In their study, Sousa and his team utilized BERT for sentiment analysis of financial

news from reputed media outlets and used this sentiment as an indicator of daily fluctuations
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in the Dow Jones Industrial Average (DJIA). Despite achieving superior performance with

BERT over traditional methods, they identified a challenge – the complexity and noisiness of

the data when trying to link sentiment analysis results directly with the DJIA’s performance.

Their study provided a broader overview of market trends but did not specifically focus on the

immediate impact of individual news items on market movements.

In contrast, our research goes a step further by employing BERT to investigate the direct and

immediate impact of daily governmental briefings, a unique and relatively unexplored source

of data, on the FTSE stock market. Additionally, while (Sousa et al., 2019) study was set in

conventional financial contexts, ours delves into the exceptional conditions surrounding the

COVID-19 pandemic, hence offering valuable insights into market dynamics during crisis situa-

tions. Against the backdrop of these advancements, (Ghasiya and Okamura, 2021) spotlighted

the influence of media sentiments during the COVID-19 pandemic, providing an essential

foundation for our research. Drawing inspiration from their findings and the NLP advancements,

our study aims to refine and expand upon this by deploying BERT to assess the immediate

repercussions of daily governmental briefings on the FTSE stock market. Our research introduces

a methodological nuance by employing the BERT model. While Ghasiya and Okamura utilized

the larger RoBERTa model (Liu et al., 2019), our choice of BERT offers advantages in terms

of computational efficiency without compromising on analytical depth (Devlin et al., 2018).

Our approach, informed by(Ghasiya and Okamura, 2021) insights, and distinct from (Sousa

et al., 2019) methodology leveraged a pre-trained BERT model. Using a pre-established model

brings with it the advantage of leveraging vast amounts of data and training that BERT was

initially exposed to. Furthermore, unlike (Sousa et al., 2019), who offered a broader perspective

on market trends, we zoomed in on the immediate implications of daily governmental briefings

on the FTSE stock market amidst the challenges of the COVID-19 pandemic. This nuanced

focus, combined with our specialized NLP approach, not only accentuates the versatility of

NLP tools in diverse contexts but also underscores the potential of BERT in contemporary

financial analyses. Therefore, our study not only extends the current understanding of BERT’s

application in financial research but also opens new pathways for future investigations into

crisis communication, sentiment analysis, and immediate market responses.

2.2.4 Granular contributions

The significant influence of news on financial markets, especially during pivotal global events

like the COVID-19 pandemic, has been well-documented. (Khanthavit, 2020) and (He et al.,

2020) have demonstrated the intertwined nature of media coverage and market reactions during

the COVID-19 timeline. This sentiment aligns with findings by (Baker et al., 2020b), who

examined stock price crashes during the onset of the pandemic. Furthermore, (Albulescu, 2021)

delved into the effects of official announcements about COVID-19 infection rates and fatality

ratios on the financial market volatility in the United States. Albulescu’s empirical findings
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underscore the fact that the sanitary crisis significantly amplifies the realized volatility of the

S&P 500. This indicates that the persistence of the pandemic plays a pivotal role in financial

volatility, posing challenges to risk management activities.

However, while Albulescu’s research hones in on the correlation between official health announce-

ments and market volatility in the U.S., our study expands this scope by employing advanced

NLP techniques, specifically BERT, to analyse the impact of government announcements in

the UK on the FTSE stock market. This distinction not only situates our research within a

unique geographical and methodological context but also showcases the versatility of NLP in

providing nuanced insights into global financial market dynamics during crisis situations.

The UK’s scenario is distinct. While (Ghasiya and Okamura, 2021) provided insights into the

negative sentiment predominating UK headlines, other research, such as that by (Ramelli and

Wagner, 2020b), explored the global economic consequences of the pandemic, highlighting the

UK’s unique position.

Given the complex dynamics at play during the COVID-19 pandemic, the role of government

announcements becomes paramount in shaping economic landscapes (Baldwin and Di Mauro,

2020). Government announcements often serve as pivotal information sources for investors,

guiding them in an environment marked by uncertainty. Historically, government communi-

cations, especially during crises, have significantly influenced financial markets ((Baker et al.,

2016); (Smales, 2015)). For instance, during the 2008 financial crisis, public addresses by key

officials were pivotal in shaping investor sentiment and market reactions (Beetsma et al., 2012).

However, the COVID-19 pandemic presented a unique challenge. Unlike financial crises, where

economic indicators are primary, the pandemic intertwined public health with economics,

making government announcements a critical barometer for both health updates and economic

policies ((Takes, 2020); (McKibbin and Fernando, 2021)). Studies such as by (Baker et al.,

2020b) have shown that the economic implications of the pandemic have been intricately linked

to health-related news and policy announcements.

Yet, the specific influence of government announcements related to COVID-19 on investor

behaviour, particularly in the UK, remains an under-explored niche. This research seeks to

fill this gap, offering a novel perspective in a domain that demands deeper understanding.

Investigating the UK context is especially valuable given its dual role as a major financial hub

and one of the countries severely affected by the pandemic ((Kalaitzake, 2021), (Jebril, 2020).

2.2.4.1 Novelty in Analysing COVID-19 Government Announcements:

While numerous studies have analysed the influence of political speeches on various societal

dimensions, including financial markets, the specific impact of daily governmental briefings,

especially during a public health crisis, remains less explored. Historically, political speeches have

been known to sway public opinion, influence voter behaviour, and even affect financial markets.

For instance, studies such as (Snowberg et al., 2007), (Cinelli et al., 2021), (Herron, 2000) have
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investigated how political events and announcements can cause stock market fluctuations.

However, the COVID-19 pandemic introduced an unprecedented scenario: regular daily briefings

by governments worldwide. Unlike the periodic nature of traditional political speeches, these

daily communications became a consistent and primary source of information for millions,

setting them apart in terms of frequency, reach, and potential impact. Works by Khanthavit et

al. (Khanthavit, 2020), He et al. (He et al., 2020), and Alfaro et al. (Alfaro et al., 2020) have

explored the broader media landscape and its relationship with market dynamics during the

pandemic. Still, a deep dive into the specific influence of these daily briefings remains sparse.

These daily briefings, delivered by heads of state or top health officials, didn’t just communicate

statistics or guidelines; they were instrumental in framing official narratives, setting public

sentiment, and potentially influencing financial markets. The study by (He et al., 2020) further

underscores the swift and pronounced negative effects of the COVID-19 outbreak on stock

market returns, especially in Asian countries. This research suggests that investor sentiment,

driven by fears and uncertainties surrounding the pandemic, acts as a critical transmission

channel for these market effects. Importantly, it emphasizes the role of announcements by

health officials, indicating that their emotional and psychological impact plays a vital role in

shaping financial market reactions. While (Williams and Wright, 2022) delved into the linguistic

strategies of the UK’s daily COVID-19 briefings and their implications for governmental

responsibility, the direct correlation between these briefings and financial market reactions is

an area that warrants further exploration.

This research endeavours to bridge this gap, probing how daily official communications, with

their inherent linguistic subtleties and emotional undertones shaped by the unique nature of the

COVID-19 crisis, can influence market behaviour over an extended period. By focusing on these

official briefings and intertwining linguistic analysis with financial outcomes, this study aims to

unravel the intricate role of governmental communication in either stabilizing or destabilizing

financial markets during an extended crisis period.

2.2.4.2 Temporal Depth of Analysis:

In the initial wave of financial research on the COVID-19 pandemic, the temporal depth of

analysis might have been overshadowed. While many studies ((Mirza et al., 2020), (Fahlenbrach

et al., 2021), (He et al., 2020)) have focused on the immediate market reactions to the event,

there’s a clear need to also explore the longer-term effects of the pandemic on financial markets.

This research rises to the challenge by offering a comprehensive 16-month analysis, moving

beyond the immediate aftermath of the pandemic in 2020. This extended timeline is not merely

an analytical choice but a necessity. As (Eachempati et al., 2021) highlighted, market news

doesn’t swiftly absorb and mirror rapid changes in stock markets. Instead, it necessitates a

more extended period for the absorption and reflection of evolving sentiment. Their sentiment

analysis, leveraging machine learning on Twitter data, underscored the delayed response of
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global markets until the WHO’s official declaration of the pandemic, suggesting a lag in market

sentiment adjustments.

By expanding its analysis to encompass data up to June 2021, this research captures the

nuanced oscillations of market behaviour over a broader timeline. This approach provides

invaluable insights into market adaptability, resilience, and the extended influences of significant

global events. Furthermore, by moving beyond the immediate year of the pandemic’s outbreak,

this study stands as a testament to the importance of understanding market behaviour in the

long run, ensuring that conclusions drawn are both holistic and reflective of the market’s true

adaptive nature.

2.2.4.3 Sentiment Analysis of Government Announcements:

Building on the work of Tikkanen (Tikkanen, 2021), who studied the FTSE All Shares Index’s

daily close-to-close price and found that sentiment data could enhance a model’s stock market

direction forecasting performance, our research delves further into the complex relationship

between governmental announcements and financial market reactions during the COVID-19

pandemic. Ghasiya and Okamura (Ghasiya and Okamura, 2021) underscored a prevailing nega-

tive sentiment in COVID-19 news headlines, with a particular emphasis on the notably negative

media landscape in the UK. Their findings serve as a cornerstone for our specialized explo-

ration, wherein we focus on the sentiment inherent in the UK government’s specific COVID-19

announcements. Ghasiya and Okamura embarked on a large-scale exploration, harnessing a

dataset of over 100,000 news articles from four distinct nations. Their comprehensive approach

aimed to unveil the overarching sentiments and prevailing topics globally during the pandemic.

They found that the UK, among the countries studied, exhibited the most negative sentiment in

its news coverage, a finding that was congruent with its severe pandemic impact. Their research,

while expansive in scope, primarily centred on general news sentiment, offering a macroscopic

view of media narratives. In stark contrast, the current research narrows its lens to the UK’s

governmental announcements pertaining to COVID-19 and their consequential sway on investor

behaviour. This provides a granular insight into the immediate and evolving impact of official

communications on financial markets. Furthermore, the thematic essence of the two studies

diverges. While Ghasiya and Okamura delineate the sentiments across various sectors, including

education and sports, the present research is rooted in financial implications, resonating with

findings by (Ramelli and Wagner, 2020b) that emphasize the UK’s unique economic position

during the pandemic. This is further enriched by the study’s temporal depth, spanning a holistic

16-month view, a feature not extensively emphasized by Ghasiya and Okamura. Ghasiya and

Okamura (2021) mapped out the broader media landscape during the COVID-19 pandemic,

drawing attention to the pronounced negative sentiments in UK headlines. Building on this

foundational understanding, our research extends into the financial sphere, particularly focusing

on how these sentiments influence the financial markets. (Hassan et al., 2020) delved deep into
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the textual content of listed firms, constructing measures that identify firms’ primary concerns

linked to the spread of COVID-19 and other epidemic diseases. Their study discerned the

firms that perceived gains or losses from the pandemic and through textual decomposition,

illustrated how epidemics affected both demand and supply for these firms. Notably, they

identified that the effects of COVID-19 manifested as simultaneous shocks to both demand and

supply, with these shocks bearing equal weight on firms’ market valuations. However, it was

the demand-related impacts that played a pivotal role in the observed collapse of firm-level

investments during the crisis. Marrying the insights of Ghasiya and Okamura’s broad media

analysis with Hassan et al.’s nuanced financial textual exploration, our study seeks to provide a

comprehensive understanding of the interplay between governmental announcements, media

sentiment, and their consequential effects on investor behaviour and market dynamics.

In this research, we aim to understand how specific COVID-19-related government announce-

ments influenced investor behaviour in the UK. This adds to the existing literature on the

relationship between public policy, health crises, and financial market movements. Building on

this foundation, we use advanced techniques to study the potential effects of the UK govern-

ment’s announcements on the stock market. As noted by (Liu et al., 2020), the language used

in public announcements by health officials can have a significant impact on people’s emotions

and perceptions.

For clarity, the data we use, which includes UK Government communications and FTSE stock

indices (detailed in Section 2.5), focuses only on the initial statements of each COVID-19 brief-

ing, excluding the Q&A section. We believe the initial statements are a better representation of

the government’s official stance, as the Q&A, influenced by journalists’ questions, might not

always align with the primary message.

We also study the relationship between the stock market and investor sentiment, using corre-

lation and Granger causality analyses across different time frames. As (Mudinas et al., 2019)

highlighted, there’s a link between sentiment and stock price changes. Furthermore, based

on insights from (Huberman and Regev, 2001), we look into the potential delayed effects of

government briefings on the UK stock market.

By examining the relationship between COVID-19 and the UK stock market, we hope to

provide valuable insights into how investors reacted to UK government announcements during

the outbreak. This research contributes to the broader discussion on the influence of news and

public statements on stock markets. For further context, Table 2.1 lists related studies in this

area. The following sections will delve into the specific research questions of this study.

89



CHAPTER 2. FINANCIAL MARKETS IN THE COVID-19 ERA

2.3 Research questions

In the intricate web of market dynamics during a global pandemic, the flow of information

and its subsequent influence on investor behaviour assumes paramount importance, such a

point is based on the widely accepted principle that information flow is critical in financial

markets, especially during times of uncertainty like a global pandemic. This idea is rooted in

the Efficient Market Hypothesis (EMH), which posits that stock prices reflect all available

information Fama (1970). This study sits at the intersection of financial theory and information

dissemination, striving to uncover the ripple effects of governmental announcements on stock

market performance during the COVID-19 crisis.

Figure 2.2 provides a schematic of the research questions driving this investigation. At its core,

the research seeks to understand the relationship between the sentiment of UK government

updates—both positive and negative—during COVID-19 and the subsequent market returns,

both positive and negative. The foundational premise is that information conveyed through gov-

ernmental briefings can resonate deeply with investors, potentially influencing their perceptions

and actions or at least relating to these.

Figure 2.2: Information circulation

The first layer of this inquiry, represented by Research Question 1 (presented below), delves

into the correlation between daily COVID-19 cases and fatalities in the UK and the prevailing

sentiment of the associated government announcements. This phase aims to juxtapose the

emotional tone of the briefings against the stark realities of the pandemic, establishing a baseline

for the information flow. The underlying assumption is straightforward: as the pandemic’s

gravity escalates, it should ostensibly be mirrored in the tenor of governmental communications.

With the groundwork laid, Research Question 2 ventures deeper, exploring the potential cas-

cading effects of these government briefings on the stock market. By correlating the sentiment
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of these announcements with market returns, this phase seeks to unravel the intricate dance

between information dissemination and investor sentiment. It postulates that these briefings,

rife with pandemic-related updates, could sway investor moods, subsequently shaping their

perceptions about future business prospects and influencing stock market trajectories.

Yet, in the realm of scientific inquiry, it’s paramount to isolate variables and ensure that

observed relationships are not mere artefacts of confounding factors. This brings us to Research

Question 3, designed as a control mechanism. While the first two questions delve into the role of

sentiment, this phase investigates the direct correlation between pandemic severity (cases and

fatalities) and stock market performance. The objective is clear: to ascertain if the relationships

unearthed in the first two questions are genuine, or if they could merely be the by-products of

the pandemic’s overarching impact on the market.

We will now formally present the research questions in the following format:

• Question 1 (RQ1): How does the severity of the COVID-19 pandemic, as measured

by daily cases and fatalities in the UK, impact the sentiment of associated government

announcements?

This question seeks to establish a foundational relationship between the real-world impli-

cations of the pandemic and the emotional undertones of governmental communications.

It operates on the premise that the gravity of the pandemic situation should be reflected

in the sentiment of the briefings, providing the initial layer of information flow.

• Question 2 (RQ2): To what extent does the sentiment of UK government announcements

regarding COVID-19 relate to stock market prices and returns?

Building on the baseline established in RQ1, this question delves into the potential ripple

effects of the government’s informational broadcasts on investor behaviour. Through

correlation and Granger causality analyses, the research aims to uncover the dynamics of

information dissemination and its subsequent impact on investor perceptions and market

trajectories.

• Question 3 (RQ3): Is there a direct impact of the observable severity of the COVID-19

pandemic (cases and fatalities) on stock market performance, independent of the sentiment

from governmental announcements?

Designed as a control mechanism, RQ3 aims to isolate the direct effects of the pandemic

on the stock market from those potentially influenced by government communications.

Through both correlation and Granger causality analyses, the research seeks to discern

whether the relationships observed in RQ1 and RQ2 are genuine or if they might be

overshadowed by the broader implications of the pandemic’s progression.

In synthesising the results from these inquiries, the study not only contributes to the rich

tapestry of financial literature but also sheds light on the profound power of information in
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shaping market destinies during global crises.

The remainder of the chapter is structured as follows. In Section 2.4, we examine the relation-

ship between COVID-19 and the stock market, as well as the influence of news and public

announcements on investor mood. In Section 2.5, we detail the data sources and collecting

methodology, as well as the preparation of the conference briefings’ content. The gathering

and transformation of market data are described in detail, as are their descriptive statistics. In

Section 2.6, we give the approach for correlation analysis, which is supplemented with Granger

causality tests. In Section 2.7, we describe the thorough tests conducted to determine if the

COVID-19 UK government updates affected the UK stock market. Section 2.8 concludes with

closing comments and a discussion of future prospects.
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2.4 Related Studies

This section compiles published works and relevant research that have already been conducted on

the topic we are investigating. To begin, we review existing literature on how the dissemination

of news affects the stock market. This is followed by a lengthy body of material analysing the

financial impact of the coronavirus (COVID-19) epidemic over the last two years. Next, we take

a look at research that used Machine Learning/Sentiment analysis to understand the economy

and the markets. To wrap up, we draw attention to a select number of studies that examined the

relationship between sentiment analysis and the economic fallout from the COVID-19 epidemic.

2.4.1 Public news impact on financial markets

The influence of news on financial markets has been extensively studied. First, to analyse the

impact of news on stock prices, Niederhoffer’s (1971) research relied on New York Times front

pages(Niederhoffer, 1971). (Schumaker and Maida, 2018), investigated stock price movements

before and after the release of financial news articles using sentiment polarity and correlation

analysis for the S&P500 index. This study was able to identify a strong correlation between the

period following the release of a financial news article and abnormal price movement. (Chan,

2003), investigates stock response to news and no news by analysing headlines regarding specific

firms. The authors discovered that coherence in financial news is substantially connected with

and driven by volatility in financial markets, using Drift and reversal following headlines.

(Jazbec et al., 2021), analyses the spread and absorption of large-scale publicly accessible news

articles from the Internet to financial markets. The authors calculated information transmission

entropy and sentiment extraction by screening and topic modelling from public news items

to the US stock market. The authors discovered that, when compared to non-public and

commercial news data sources, the sentiment signals from public news have both economic

worth and complementing information when utilising a basic sentiment-based trading strategy

as an econometric instrument. (Pǐskorec et al., 2014), proposes a measure of collective behaviour

based on financial news on the web – the News Cohesiveness Index (NCI) using NCI to measure

the cohesiveness in the news by calculating the average similarity in the financial news and

Granger causality to test if NCI-financial is related to the volatility of the market.

(Stankevičienė and Akelaitis, 2014), used an event study analysis to explore the influence of

public announcements on stock prices, looking into the relationship between Stock Price Values

and Price Changes in the Lithuanian Stock Market. The investigation based on a comparison

of mean price movements in various stock price ranges in the Lithuanian stock market revealed

that the stocks with the lowest prices had the greatest distortion of results. (Maligkris, 2017),

investigates if presidential candidates’ political remarks impact stock market results throughout

their campaigns. Loughran and McDonald were used to detect the linguistic tone, and regression

analysis was utilised to analyse the impact. The authors discovered that economic information

93



CHAPTER 2. FINANCIAL MARKETS IN THE COVID-19 ERA

in political speeches increases aggregate market returns and trading volume while decreasing

market volatility.

(Atkins et al., 2018), compared predictability of volatility using Financial news and close price in

the US stock market. The authors used Machine Learning models of Latent Dirichlet Allocation

to represent information from news feeds, and simple näıve Bayes classifiers to predict the

direction of movements. The authors concluded that information extracted from news sources

is better at predicting the direction of underlying asset volatility movement, or its second-order

statistics, rather than its direction of price movement. They conclude that volatility movements

are more predictable than asset price movements when using financial news as Machine Learning

input, and hence could potentially be exploited in pricing derivatives contracts via quantifying

volatility.

(Nam and Seong, 2019), proposes a novel Machine Learning model to forecast stock price

movement based on the financial news, considering causality. Using Transfer entropy to find

causality and multiple kernel learning is used to combine features of target firms and causal

firms in the Korean market.

The authors’ experimental findings demonstrate that the suggested technique can forecast the

stock price directional movements even when there is no financial news on the target business,

but financial news is released on causal companies. Their results suggest that recognising causal

links is key in prediction problems.

(Alanyali et al., 2013), quantifies the relationship between decisions taken in financial markets

and developments in financial news. Using correlation analysis and a focus on four types of time

series for each of the 31 Dow Jones Industrial Average (DJIA) companies: the daily number

of mentions of a company’s name in the Financial Times, the daily transaction volume of a

company’s stock, the daily absolute return of a company’s stock, and the daily return of a

company’s stock. The authors discovered a positive relationship between the number of times a

firm was mentioned in the Financial Times on a given day and the number of shares traded

that day and the day before.

A summary of the aforementioned studies is shown in Table 2.1 along with a summary of the

paper and a description of the used approaches.
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Authors Description Approach

(Schumaker
and
Maida,
2018)

Investigating stock price movements be-
fore and after the release of financial
news articles using

Sentiment polarity and correlation anal-
ysis using for S&P500

(Chan, 2003) Examines stock reaction to news and no
news using headlines about individual
companies

Drift and reversal after headlines

(Jazbec
et al.,
2021)

Quantifies the propagation and absorp-
tion of large-scale publicly available
news articles from the World Wide Web
to financial markets

Quantify the information transfer from
public news articles to the U.S. stock
market through Transfer entropy and
sentiment Extraction via Screening and
Topic Modelling

(Pǐskorec
et al.,
2014)

Proposes a measure of collective be-
haviour based on financial news on the
web – the News Cohesiveness Index
(NCI)

NCI to measure the cohesiveness in the
news by calculating the average similar-
ity in the financial news and Granger
causality to test if NCI-financial is re-
lated to the volatility of the market

(Stankevičienė and
Akelaitis, 2014)

Impact of Public Announcements on
Stock Prices: Relation between Values
of Stock Prices and the Price Changes
in Lithuanian Stock Market

Event study analysis

(Maligkris,
2017)

Examines whether political speeches of
presidential candidates influence stock
market outcomes during their cam-
paigns

Loughran and McDonald to identify the
linguistic tone and regression analysis

(Atkins
et al.,
2018)

Comparing predictability of volatility
using Financial news and close price in
the US stock market

Machine Learning models of Latent
Dirichlet Allocation to represent infor-
mation from news feeds, and simple
näıve Bayes classifiers to predict the di-
rection of movements

(Nam
and
Seong,
2019)

Proposes a novel Machine Learning
model to forecast stock price movement
based on the financial news considering
causality in the Korean market

Transfer entropy is used to find causal-
ity and multiple kernel learning is used
to combine features of target firm and
causal firms.

(Alanyali
et al.,
2013)

Quantifies the relationship between de-
cisions taken in financial markets and
developments in financial news

Correlation analysis and a focus on four
types of time series for each of the 31
Dow Jones Industrial Average (DJIA)
companies.

Table 2.1: News and financial markets related work – List of references about News and financial
markets related work. Each row represents a study, starting from the left side; in the first
column there are the references; in the second the description of the respective papers; and in
the third column is the approach used.

95



CHAPTER 2. FINANCIAL MARKETS IN THE COVID-19 ERA

2.4.2 COVID-19 and the financial market

The academic community has been responding to the COVID-19 crisis for the last two years.

The effects of the COVID-19 pandemic on the stock market have been the topic of previous

research, utilising a number of different theoretical paradigms. Examining the pandemic’s effect

through the number of cases and fatalities, via financial news and government policies, Google

searches, and social media platforms were the frameworks that stood out in the literature. An

overview of prior research is provided below, organised by subject themes. Tables 2.2, 2.3, 2.4

summarises the previous literature related to COVID-19 and financial markets.

COVID-19 and the stock market

(Sharif et al., 2020), studied the connectedness between the spread of COVID-19, oil price

volatility shock, the stock market, geopolitical risk and economic policy uncertainty in the US

within a time-frequency framework. The author(s) used the coherence wavelet method and

the wavelet-based Granger causality tests applied to US daily data. The study found that the

COVID-19 outbreak has a higher impact on geopolitical risk and economic uncertainty in the

United States than on the stock market.

(Shehzad et al., 2020), analysed the non-linear behaviour of financial markets of the US,

Germany, Italy, Japan, and China during the COVID-19 and Global Financial Crises period

using Asymmetric Power Generalized Autoregressive Conditional Heteroscedasticity model.

COVID-19, according to (Shehzad et al., 2020), has a significant negative impact on market

returns in the United States and Japan. Furthermore, COVID-19 has had a greater impact on

the volatility of the stock markets in the United States, Germany, and Italy than the Global

Financial Crisis (GFC).

(So et al., 2021), studied the impacts of the COVID-19 pandemic on the connectedness of the

Hong Kong financial market and compared the impacts of the previous financial crises in the

past 15 years. The author(s) constructed dynamic financial Networks based on correlations

and partial correlations of stock returns. (So et al., 2021) found that in the partial correlation

Networks during the COVID-19 epidemic, Network density and clustering are greater than

in prior crises when Network density and clustering may be explained by co-movement with

market indices as in normal times.

(Şenol and Zeren, 2020), examined the effect of the COVID-19 outbreak on global markets

between January 21, 2020 and April 7, 2020 using the Fourier Co-integration test. The study

showed that stock markets reacted promptly to the risks posed by COVID-19, and stock market

indexes depreciated rapidly.

(Zhang et al., 2020), maps the general patterns of country-specific risks and systemic risks in

the global financial markets Correlation analysis and minimum spanning tree. According to the

author, global financial market risks have escalated significantly in reaction to the epidemic.

Individual stock market movements are obviously connected to the magnitude of each country’s
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epidemic.

(Mirza et al., 2020), assess the price reaction, performance, and volatility timing of European

investment funds during the outbreak of COVID-19 using a GARCH-based event study. The

author(s) demonstrated that market liquidity has decreased, which has harmed market returns.

(Al-Awadhi et al., 2020), investigated the COVID-19 pandemic effect on the Chinese stock

market using panel data regression. The author(s) found that The medical and pharmaceutical

industries had positive abnormal returns, whereas restaurants, hotels, and motels had negative

abnormal returns during the COVID-19 pandemic.

(Griffith et al., 2020), described how the impact of COVID-19 has varied across industries,

using data on share prices of firms listed on the London Stock Exchange.

(Mazur et al., 2021), investigate the US stock market performance during the crash of March

2020 triggered by COVID-19. In this study, the author(s), analysed single-day extreme events

by sector for industry returns and volatility. The study found that stocks in the healthcare,

food, natural gas, and software sectors performed exceptionally well during the March 2020

stock market crash, generating high returns, whereas firms in the crude petroleum, real estate,

entertainment, and hospitality sectors plummeted significantly, losing more than 70% of their

market capitalisation.

(Takyi and Bentum-Ennin, 2021), evaluated and quantified the short-term impact of the

coronavirus disease of 2019 on stock market performance in thirteen African countries, using

daily time series stock market data and Bayesian structural time series. According to Bayesian

posterior estimates, the author(s), demonstrated that stock market performance in Africa has

been considerably lowered during and after the occurrence of COVID-19, typically by -2.7% to

-21%.

(Samitas et al., 2022), identifies volatility and contagion risk among stock markets during the

COVID-19 pandemic using dependence dynamics and Network analysis on a bi-variate basis.

The study demonstrates “instant financial contagion” as a consequence of the shutdown and

the transmission of the new coronavirus.

COVID-19 – impact of cases and fatalities

(Giangreco, 2020), investigated the correlation between case fatality rate and social behaviour

during the Italian COVID-19 outbreak, using Correlation analysis of case fatality rate compared

with social habit variables. According to an examination of all Italian areas, the fatalities

are confined and have no correlation with any social conduct. (Sansa, 2020), investigates the

relationship between the COVID-19 confirmed cases and both China and USA stock markets

using descriptive statistics and regression models. The research results demonstrated a positive

substantial association between the COVID-19 verified instances and all financial markets

(Shanghai Stock Exchange and New York Dow Jones) in China and the United States from

March 1st to March 25th, 2020.
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(Onali, 2020), investigated the impact of COVID-19 cases and related deaths on the US

stock market (Dow Jones and S&P500 indices) using Generalized autoregressive conditional

heteroscedasticity (GARCH) and Vector autoregression (VAR) models. The author(s) indicated

that variations in the number of cases and fatalities in the United States and six other countries

heavily impacted by the COVID-19 problem had little effect on US stock market returns, except

the number of reported cases in China. However, there is evidence of a beneficial influence on

the conditional heteroscedasticity of the Dow Jones and S&P500 returns for certain nations.

(Albulescu, 2021), empirically investigates the effect of the official announcements regarding

the COVID-19 new cases of infection and fatality ratio, on the financial market’s volatility in

the United States using ordinary Least Squares (OLS) regression to test both global and US

reported data. This paper found that the new infection cases reported at the global level and

in the US amplify the financial volatility.

COVID-19 – impact of news, social media, and Google searches

(Goodell and Huynh, 2020), assesses the reactions of US industries to sudden COVID-related

news announcements, concomitantly with an analysis of levels of investor attention to COVID-

19. Using Capital asset pricing (CAPM) model and ordinary least squares (OLS).

(Cepoi, 2020), found a piece of novel empirical evidence on the relationship between COVID-

19-related news and stock market returns across the top six most affected countries by the

pandemic, using the Panel quantile regression framework. The study demonstrates that stock

markets exhibit asymmetric reliance on COVID-19-related information such as fake news, media

coverage, or contagion. The outcome implies that suitable communication channels should be

used more intensively to reduce COVID-19-related financial turmoil.

(Haroon and Rizvi, 2020), explored whether the media reporting of COVID-19, panic amongst

investors, and global sentiment have played a role in the previously unseen volatility in the

equity markets using exponential GARCH models. The authors found that the excessive fear

caused by news sources has been linked to increased volatility in the financial markets. The

authors’ findings for specific economic sectors show that panic-laden news contributed more to

volatility in sectors believed to be most impacted by coronavirus outbreaks.

(Khanthavit, 2020), investigated how and how early the world and national markets reacted

to COVID-19 events and news coverage using an Event study and Abnormal returns analysis.

The study concludes that the responses were to COVID-19’s enormous media attention and

pandemic announcement, not to the real unfolding events and conditions.

(Baker et al., 2020a), examined the role of COVID-19 developments in recent stock market

behaviour and drew comparisons to previous infectious disease outbreaks, In their methodology,

the authors, examined next-day newspaper explanations for each daily move in the US stock

market. The evidence the author(s) have gathered suggests that government restrictions on

commercial activity and voluntary social distancing, both of which have powerful effects in a
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service-oriented economy, are the primary reasons the US stock market reacted so strongly to

COVID-19 than to previous pandemics in 1918-1919, 1957-1958, and 1968.

(Cinelli et al., 2020), provided an in-depth analysis of the social dynamics in a time window

where narratives and moods in social media related to COVID-19 have emerged and spread.

The research showed that the interaction paradigm imposed by the unique social media or/and

the specific interaction patterns of groups of users involved with the issue drives knowledge

dissemination.

(Cerqueti and Ficcadenti, 2020), investigates the relationship between the Google search volumes

of “coronavirus” and the stock index prices of different markets, using design indicators able

to capture the connection between anxiety for the pandemic and expectations on the future

outcomes of financial markets. The authors found that anxiety is manifested via the intensity

of the searches run on Google related to the COVID-19 virus.

(Topcu and Gulal, 2020), explored the predictive power of Google searches on stock market

volatility during the COVID-19 pandemic using regression analysis and Driscoll-Kraay estimator.

The author(s) found that the COVID-19 outbreak’s effect is considerably lower in developing

countries where governments implemented necessary actions on time and announced greater

stimulus packages.

(Lyócsa et al., 2020), explores the predictive power of Google searches on stock market volatility

during the COVID-19 pandemic using trends analysis and ordinary least squares. The author(s)

reveal that Google searches for coronavirus are not just correlated; they forecast variation in

the future for every nation studied.

2.4.3 Sentiment Analysis and Financial markets

Investment banks and hedge funds are among the many financial firms focusing on investor

sentiment in order to refine their market predictions. According to (Mudinas et al., 2019), two

of the most well-known companies in the financial news and data industry, Thomson Reuters

and Bloomberg, have lately extended their services to include company sentiment research. The

following is a non-exhaustive collection of research into the use of sentiment analysis in the

business world. The results of this literature synthesis are summarised in Table 2.5.

(Zaenen and van den Bosch, 2007), explored a computable metric of positive or negative

polarity in financial news text, which is consistent with human judgments and can be used in a

quantitative analysis of news sentiment impact on financial markets. The author(s) elaborated

a Lexical cohesion-based metric of sentiment intensity and polarity in text and evaluated this

metric relative to human judgments of polarity in financial news. (Mao et al., 2011), compared

a range of different online sources of information (Twitter feeds, news headlines and volumes

of Google search queries) using sentiment-tracking methods and compared their values for

financial prediction of market indices, such as the DJIA, trading volumes, implied market

volatility (VIX) and gold prices.
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The authors’ findings suggest that typical investor intelligence surveys are lagging indicators of

the financial markets. Weekly Google Insight Search volumes on financial search inquiries, on

the other hand, have predictive value. The frequency of occurrence of financial keywords on

Twitter in the preceding 1-2 days, as well as an indicator of Twitter Investor Sentiment, are

proven to be extremely statistically significant predictors of daily market log return.

(Casarin and Squazzoni, 2013), computed the Bad News Index as the weighted average of

negative sentiment words in the headlines of three distinct news sources. Their results showed

that the press and markets influenced each other in generating market volatility. Their findings

support the reflexive character of stock markets. When the situation is ambiguous and unex-

pected, market behaviour may even reflect qualitative, large picture, and subjective information,

such as streamers in a newspaper, the economic and informational worth of which is debatable.

(Ranco et al., 2015), explored the effects of Twitter Sentiment on Stock Price Returns for

companies that form the Dow Jones Industrial Average (DJIA) index using an Event study

to identify events as Twitter volume peaks, Support Vector Machine (SVM) for sentiment

extraction, Correlation analysis, and Granger causality tests.

All things considered, the authors discovered a low Pearson correlation and Granger causal-

ity between the two-time series in question. They do, however, discover a robust correlation

between Twitter sentiment and abnormal returns across Twitter’s busiest times. The authors

use an event analysis to demonstrate that the direction of cumulative anomalous returns is

mirrored by the polarity of sentiment during Twitter peaks. While the total aberrant returns

are small (about 1-2%), the correlation remains statistically significant for many days after the

occurrences.

(Kalyani et al., 2016), examined non-quantifiable data such as financial news articles about a

company and predicted its future stock trend with news sentiment classification using Support

Vector Machine (SVM), Random forests, and Näıve Bayes classification. In their study, the

authors found that stock trends can be predicted using news articles and previous price history.

More recently, (Mudinas et al., 2019), investigated the causal relationship between sentiment

attitude/emotion signals and stock price movements through financial news using various

sentiment signal sources and different time periods. The study used Support vector Machine

(SVM) for emotions and sentiment detection, Various stock indices (DJIA, S&P500 and JPM),

and Granger causality to test the causal relationship between emotions/sentiment polarity of

financial news.

Although the authors found no Granger causality between positive and negative attitudes

and stock prices, they did find that positive and negative emotions did have a significant

impact on the price of select companies. (Tikkanen, 2021), tested if emotions from a smaller

subgroup, i.e., people from the UK, perform better than emotions from the worldwide public in

predicting close-to-close price direction of selected investment instruments from the London

Stock Exchange.
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The study used the sentiment of Twitter users as a proxy for the UK public sentiment. The

authors discovered that the emotion “Fear” was found to Granger-cause differences in the

close-to-close pricing in the worldwide dataset, while the emotion “Sadness” was shown to do

the same in the UK dataset. (Eachempati et al., 2021), analysed the differential impact of

COVID-19 through the sentiment of tweets and the connectedness of countries’ stock markets

using VAR spillover over for the pre-lockdown and post-lockdown phase. The study used 72000

tweets, extracted between January–May 2020 and closing prices of stocks in 4 countries USA,

UK, China, and India. The results highlighted that the pre-lockdown period of the pandemic,

considers the UK to be second most influential with positive spillover.

(Ghasiya and Okamura, 2021), investigated COVID-19 News Across Four Nations using Topic

Modelling and Sentiment Analysis Approaches such as top2vec and RoBERTa for sentiment

classification. The study used 100,000 COVID-19 news headlines and articles from four countries

for 11 months. The conclusions of the authors were that the worst affected country, i.e., the

UK, also had the highest percentage of negative sentiment during the studied period.

(Farimani et al., 2022), conducted an analysis of information gain of market data and mood in

specialized financial newsgroups for price prediction using a BERT-based transformer language

model fine-tuned for financial domain sentiment analysis. The author’s experiments demonstrate

the effectiveness of considering the mood of financial news when making market predictions.
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Table 2.2: COVID-19 and financial markets related work – Part 1

Authors Description Approach

(Cerqueti
and
Ficca-
denti,
2020)

Investigates the relationship between
the Google search volumes of “coron-
avirus” and the stock index prices of
different markets

Design indicators able to capture the
connection between anxiety for the pan-
demic and expectations on the future
outcomes of financial markets

(Cepoi,
2020)

Novel empirical evidence on the relation-
ship between COVID-19 related news
and stock market returns across the top
six most affected countries by the pan-
demic

Panel quantile regression framework

(Albulescu,
2021)

Empirically investigates the effect of
the official announcements regarding the
COVID-19 new cases of infection and
fatality ratio, on the financial markets
volatility in the United States

Applied Ordinary Least Squares (OLS)
regression to test on both global and US
reported data

(Mazur
et al.,
2021)

This paper investigates the US stock
market performance during the crash of
March 2020 triggered by COVID-19

Analysing single-day extreme events by
sector for industry returns and volatility

(Sharif
et al.,
2020)

Studies the connectedness between the
spread of COVID-19, oil price volatility
shock, the stock market, geopolitical risk
and economic policy uncertainty in the
US within a time-frequency framework

The coherence wavelet method and the
wavelet-based Granger causality tests
applied to US daily data

(Haroon
and
Rizvi,
2020)

Explores whether the media reporting
of COVID-19, panic amongst investors,
and the global sentiment has played a
role in the previously unseen volatility
in the equity markets

Exponential GARCH models

(Shehzad
et al.,
2020)

Analyses the non-linear behaviour of fi-
nancial markets of the US, Germany,
Italy, Japan, and China during the
COVID-19 and Global Financial Crises
period

Asymmetric Power Generalized Autore-
gressive Conditional Heteroscedasticity
model

(So
et al.,
2021)

Studies the impacts of the COVID-19
pandemic on the connectedness of the
Hong Kong financial market and com-
pares the impacts of the previous finan-
cial crises in the past 15 years.

Construction of dynamic financial Net-
works based on correlations and partial
correlations of stock returns

(Giangreco,
2020)

Study of the correlation between cases
fatality rate and social behaviour of the
Italian COVID-19 outbreak

Correlation analysis of cases fatality rate
compared with social habit variables

(Şenol
and
Zeren,
2020)

Investigates the effect of COVID-19 out-
break on global markets between Jan-
uary 21, 2020 and April 7, 2020

Fourier Co-integration test
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Table 2.3: COVID-19 and financial markets related work – Part 2.

Authors Description Approach

(Onali,
2020)

Investigates the impact of COVID-19
cases and related deaths on the US stock
market (Dow Jones and S&P500 indices)

GARCH and VAR models

(Samitas
et al.,
2022)

Identifies volatility and contagion risk
among stock markets during the
COVID-19 pandemic

Dependence dynamics and Network
analysis on a bi-variate basis

(Al-
Awadhi
et al.,
2020)

Investigates the COVID-19 pandemic
effect on the Chinese stock market

Panel data regression

(Goodell
and
Huynh,
2020)

Assesses the reactions of US indus-
tries to sudden COVID-related news
announcements, concomitantly with an
analysis of levels of investor attention
to COVID-19

CAPM model and ordinary least squares
(OLS)

(Lyócsa
et al.,
2020)

Explores the predictive power of Google
searches on stock market volatility dur-
ing the COVID-19 pandemic

Trends analysis and ordinary least
squares

(Zhang et al., 2020) Maps the general patterns of country-
specific risks and systemic risks in the
global financial markets

Correlation analysis and minimum span-
ning tree

(Erdem,
2020)

Analyses whether there is a relation-
ship between the freedom of countries
and their stock market movements in
response to COVID-19 announcements

Panel regression analysis with 75 coun-
tries using their stock market index re-
turns and volatilities as dependent vari-
ables and their COVID-19 data, their
level of freedom, as independent vari-
ables.

(Zaremba
et al.,
2020)

This study is the first attempt to exam-
ine the influence of non-pharmaceutical
policy responses to the COVID-19 pan-
demic

Capital Asset Pricing Model, Three and
four-factor models

(Mirza
et al.,
2020)

Assess the price reaction, performance,
and volatility timing of European in-
vestment funds during the outbreak of
COVID-19

GARCH based event study

(Eachempati
et al.,
2021)

Statistical analysis of the relationship
between daily market returns, COVID-
19 outbreak and the market liquidity for
firms listed in the FTSE 100

Regression models as measures for
market liquidity including the trading
turnover ratio (TVR), bid-ask spread
(BAS) and high-low inter-day price
(HLP)

(Rizwan
et al.,
2020)

Investigating how COVID-19 impacted
the systemic risk in the banking sectors
of eight of the most COVID-19 affected
countries

CATFIN for systemic risk and Kruskal-
Wallis one-way analysis-of-variance)
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Table 2.4: COVID-19 and financial markets related work – Part 3

Authors Description Approach

(Liu
et al.,
2020)

Evaluates the short-term impact of the
coronavirus outbreak on 21 leading stock
market indices in major affected coun-
tries

Event study investigating the abnormal
returns (ARs) and cumulative abnormal
returns (CARs)

(Cinelli
et al.,
2020)

provide an in-depth analysis of the so-
cial dynamics in a time window where
narratives and moods in social media
related to the COVID-19 have emerged
and spread

Models the spread of information us-
ing epidemic models and provide basic
growth parameters for each social media
platform

(Griffith
et al.,
2020)

Describes how the impact of COVID-19
has varied across industries, using data
on share prices of firms listed on the
London Stock Exchange

Trends and correlation analysis

(Sansa,
2020)

Investigates the relationship between
the COVID-19 confirmed cases and both
China and USA

Descriptive statistics and regression
models

(Baker
et al.,
2020a)

examine the role of COVID-19 develop-
ments in recent stock market behaviour
and draw comparisons to previous infec-
tious disease outbreaks

Examines next-day newspaper explana-
tions for each daily move in the US stock
market – Text-based analysis and EMV
tracker

(Topcu
and
Gulal,
2020)

Explores the predictive power of Google
searches on stock market volatility dur-
ing the COVID-19 pandemic

regression analysis and Driscoll-Kraay
estimator

(Azimli, 2020) Examines the impact of the novel coro-
navirus (COVID-19) on the degree and
structure of risk-return dependence in
the US

Quantile regression analysis

(Li
et al.,
2020)

Investigates whether the Infectious Dis-
ease EMV tracker proposed by (Baker
et al., 2020a) has the additional pre-
dictive ability for European stock mar-
ket volatility during the COVID-19 pan-
demic

Heterogeneous autoregressive models
and Model Confidence set (MCS) test

(Takyi
and
Bentum-
Ennin,
2021)

Evaluates and quantifies the short-term
impact of the coronavirus disease of 2019
on stock market performance in thirteen
African countries, using daily time series
stock market data spanning 1st October
2019 to 30th June 2020

Bayesian structural time series

(Khanthavit,
2020)

How and how early the world and na-
tional markets reacted to COVID-19
events and news coverage

Event study and Abnormal returns anal-
ysis
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Table 2.5: Sentiment analysis and financial markets related work

Authors Description Approach

(Mudinas
et al.,
2019)

Investigated the causal relationship be-
tween sentiment attitude/emotion sig-
nals and stock price movements through
financial news using various sentiment
signal sources and different time periods

Support vector Machine SVM for emo-
tions and sentiment detection, Various
stock indices (DJIA, S&P500 and JPM),
Granger causality to test causal relation-
ship between emotions/sentiment polar-
ity of financial news

(Tikkanen,
2021)

Predicting the FTSE All-Share index
daily close-to-close price direction using
sentiment analysis on tweets from the
UK

Support vector Machine and Granger
causality test

(Zaenen
and
van den
Bosch,
2007)

Explores a computable metric of pos-
itive or negative polarity in financial
news text which is consistent with hu-
man judgments and can be used in a
quantitative analysis of news sentiment
impact on financial markets

Lexical cohesion-based metric of senti-
ment intensity and polarity in text, and
an evaluation of this metric relative to
human judgments of polarity in financial
news.

(Ranco
et al.,
2015)

Explores the Effects of Twitter Senti-
ment on Stock Price Returns for compa-
nies that form the Dow Jones Industrial
Average (DJIA) index

Event study to identify events as Twit-
ter volume peaks, Support Vector Ma-
chine for sentiment extraction, Corre-
lation analysis, and Granger causality
tests

(Kalyani
et al.,
2016)

Taking non-quantifiable data such as
financial news articles about a company
and predicting its future stock trend
with news sentiment classification.

Support Vector machine, Random
forests, and Näıve Bayes classification

(Eachempati
et al.,
2021)

Analysing the differential impact of the
COVID-19 through sentiment of tweets
and the connectedness of countries stock
markets using VAR spillover over for
pre-lockdown and post-lockdown phase

72000 tweets with extracted between
January–May 2020 and closing prices of
stocks of 4 countries USA, UK, China,
and India

(Ghasiya
and
Oka-
mura,
2021)

Investigating COVID-19 News Across
Four Nations: A Topic Modelling and
Sentiment Analysis Approach using
top2vec and RoBERTa for sentiment
classification

100,000 COVID-19 news headlines and
articles from four countries for 11
months

(Farimani
et al.,
2022)

Analysis of information gain of market
data and mood in specialized financial
newsgroups for price prediction

BERT-based transformer language
model fine-tuned for financial domain
sentiment analysis.
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2.5 Data collection and description

This section outlines the methodology employed in data collection for both the UK government’s

COVID-19 briefings and the UK stock market data. We begin with the acquisition and

preparation of textual data from the government’s briefings. Following this, we provide a

comprehensive overview of the data and variables associated with the UK stock market

employed in this study.

2.5.1 Data Collection from the COVID-19 UK Government Briefings

In order to analyse the sentiment fluctuations in the UK government’s stance on the Coronavirus

pandemic, we collected data from their daily COVID-19 briefings. The primary source for

this data is the official UK government website, Gov.UK (Wikipedia contributors, 2022). The

timeframe for our research commences on the first trading day subsequent to the UK’s initial

COVID-19 briefing and concludes on the day the government detailed the vaccine roll-out

strategy, preceding the lifting of all COVID-19 public restrictions. This translates to a period

stretching from the 3rd of March 2020 to the 23rd of June 2021. Over this duration, a total of

160 COVID-19 briefings were held. It’s noteworthy that our dataset only comprises the official

statements initiated at the onset of each briefing, excluding the Q&A sessions.

2.5.2 Web scraping procedure

The collection of briefings was automated using a web scraping technique, a prevalent data

mining method to harvest information from websites. In this case, our target was the UK

government’s official site. Two primary Python libraries facilitated this process:

• requests - Enables making HTTP requests to access web content.

• BeautifulSoup - An efficient package for parsing HTML and XML structures, generating

a parse tree that aids in data extraction.

Initially, the target website was visually inspected to comprehend the layout and struc-

ture of the content. The UK government lists the COVID-19 statements chronologically at:

https://www.gov.uk//collections/slides-and-datasets-to-accompany-coronavirus-press-government-

conferences. Each statement possesses a unique URL. For illustration, the statement for July 31st,

2020 can be accessed at: https://www.gov.uk/government/speeches/prime-ministers-statement-

oncoronavirus-COVID-19-31-july-2020.

Subsequently, the HTML source code for each URL was analysed to identify the relevant content

elements, such as the title, date, and the actual transcript. After pinpointing these elements,

the requests library fetched the content, looping over all 160 URLs to aggregate the statements.

BeautifulSoup was then employed to parse and extract the requisite data from the fetched

HTML content. The accumulated daily briefings were systematically catalogued in a table.
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Finally, each briefing underwent a rigorous text preprocessing regimen to prime it for subsequent

sentiment analysis.

2.5.3 COVID-19 UK conference briefings text Pre-processing

Upon collecting the conference briefing data, we subjected the daily textual content to analysis

using Natural Language Processing (NLP) algorithms, focusing on the content of each COVID-

19 government update. Our approach is rooted in standard text mining practices—a specialized

domain within artificial intelligence (AI) that transforms unstructured textual input into

structured, analysable data (Feldman and Sanger, 2007). The methodologies and techniques

utilized for text processing in our research are illustrated in Figure 2.3. Our preprocessing

Figure 2.3: Text preprocessing procedure

commenced with the standardization of the corpus. This involved converting all text to lowercase

to ensure uniformity. Subsequent steps included the removal of URLs, email addresses, stop

words, special characters, and numbers. Following the cleansing, the text was tokenized—splitting

the monolithic string into discernible sub-units or tokens, commonly referred to as words

(Grefenstette, 1999). With a cleansed corpus at hand, we constructed a Term Document Matrix

(TDM). This matrix enumerates terms and their respective frequencies across all texts, laying

the foundation for word cloud analysis. The word cloud offers insights into the most recurrent

terms within the COVID-19 conference briefings.
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As illustrated in Figure 2.4, each cluster signifies a specific subject. For illustrative purposes,

the clusters represent UK ministers, categorizing remarks made by each speaker throughout the

pandemic briefings. It’s interesting to observe that the predominant themes of speeches can be

Figure 2.4: UK ministers Word-cloud throughout the COVID-19 pandemic

discerned merely from the vocabulary chosen by each minister. For instance, in the discourses of

Robert Jenrick, the Secretary of State for Housing, Communities, and Local Government, terms

like “rough sleepers”, “local council”, and “domestic violence” frequently surfaced. Similarly,

Gavin Williams, the Secretary of State for Education, often gravitated towards words such as

“school” and “children”, reflecting his office’s core concerns.

In addition to the word cloud, we also compiled a daily frequency time series for words. This

time series is designed for subsequent in-depth analytical exploration to discern patterns and

trends over the duration of the pandemic for specific words.

While the word cloud analysis highlights the terms most commonly associated with the COVID-

19 conference briefings, the mere frequency of word usage does not suffice to gauge the stock

market’s reaction to the pandemic. Therefore, this research extends its ambit to extract

sentiment polarity from the COVID-19 UK government updates, delving deeper into this aspect

in the methodology Section 2.6.2.

2.5.4 Data collection for the UK stock market

This study is centred on the UK stock market data. We procured hourly data, aligning with

the timeframe of the daily COVID-19 conference briefings. Specifically, daily data for the FTSE

100, FTSE 250, FTSE 350, and FTSE All-Shares index was amassed.

The FTSE All-Share Index, maintained by the FTSE Russell—a subsidiary of the London Stock

Exchange Group—is a capitalization-weighted index (Exchange, n.d.). Such an index weights

its constituents, in this case, firms, based on their shares’ market value. It amalgamates the

FTSE 100, FTSE 250, and FTSE Small Cap Indexes, encapsulating approximately 600 of the

2000+ businesses listed on the London Stock Exchange. Among these, the top 100 represent

the highest capitalisation, with the subsequent 250 being mid-capitalized.

Additionally, daily opening and closing prices of shares from AstraZeneca plc, a FTSE 100 con-
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stituent, were obtained. AstraZeneca, a prominent multinational bio-pharmaceutical company,

specializes in the discovery, development, and distribution of prescription medicines (Birming-

ham et al., 2018). Given their pivotal role in developing a COVID-19 vaccine, examining the

impact of investor sentiment on this specific stock provides a focused case study, enriching our

comprehensive understanding of the pandemic’s effects on the market.

It’s pivotal to recognize that the majority of the COVID-19 conference briefings were conducted

around 5:00 pm UK time, post the closure of the London Stock Exchange market.

During the specified period of the COVID-19 conference briefings, the daily data collection was

not necessarily synchronized with the exact timing of the briefings. Rather, data was collected

for the same day on which a conference briefing occurred.

The London Stock Exchange is open from Monday to Friday, except for public holidays in

England and Wales. The standard trading hours for the London Stock Exchange are from 8:00

a.m. to 4:30 p.m. UK time, except on the Friday before Christmas Day when trading hours are

from 8:00 a.m. to 12:30 p.m. Thus, we collected hourly stock prices starting from 8:00 a.m. and

continuing each subsequent hour. This data is available as such on the Bloomberg Terminal,

where data is only available at the top of the hour, meaning precisely at the start of each hour.

The first available hourly data point of a trading day would correspond to the hour starting

at 8:00 a.m. The second hourly data point for the trading day would correspond to the hour

ending at 9:00 a.m., and so forth. The last available hourly data point would correspond to the

hour ending at 4:00 p.m. instead of 4:30 p.m. (market closing time), as hourly data are only

available at the top of the hour, and the last hour available is 04:00 p.m. For this reason, in

this research, 04:00 p.m. is assumed to be the last trading data point.

The COVID-19 conference briefings were held daily at 5:00 pm UK time after the London Stock

Exchange had closed at 4:30 pm. To explore the impact of these briefings on the UK stock

market, we analysed stock returns at three different periods to provide a nuanced understanding

of market behaviour:

• (1) On the day of the COVID-19 conference briefing – Build up Returns (Rtb):

Rtb was calculated between market opening (08:00 am) and market closing (04:00 pm) of

the same day (d) and on a day a conference briefing was about to occur, as this period

represents the build-up to the conference and the potential effects of pre-conference news

and announcements. The following formula was used to calculate Rtb:

(2.1) Rtb =
price(close)d − price(open)d

price(open)d

• (2) Day post COVID-19 conference briefing – Overnight Returns (Rto):

Rto was calculated over the period that covers the last data point recorded at market

closing (d− 1), which is at 4:00 pm, right before the start of the COVID-19 conference

briefing at 05:00 pm, until market reopening on the next day (d) at 08:00 am. Overnight
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returns are particularly interesting to study because the COVID-19 briefings occurred

after market closing, which means that investors had to wait until the next day to respond

to any news or announcements made during the briefings. Therefore, analysing overnight

returns can help capture the market’s reaction to the previous day’s events, including any

developments or news that may have been discussed during the briefing. The following

formula was used to calculate Rto:

(2.2) Rto =
price(open)d − price(close)d−1

price(close)d−1

• (3) Day post COVID-19 conference briefing – First 2 hours of trading returns (Rtf ):

Rtf was calculated for the day following a conference briefing during the first two opening

hours between 8:00 (h = 0) am and 10:00 am (h = 2); overnight returns (Rto) can capture

any immediate reaction to news or events that occur after market close, while the first

2 hours of the next day after the briefings can provide insight into how that reaction

has evolved once the market reopens and additional information becomes available. The

following formula was used to calculate Rtf :

(2.3) Rtf =
price(open)h=2 − price(open)h=0

price(open)h=0

The rationale for employing three return variables is anchored in capturing the nuanced reactions

of the stock market to the COVID-19 conference briefings at various times:

Build-up Returns (Rtb): This return measures market anticipation and early reactions on the day

of a conference briefing. The financial market is a forward-looking entity and anticipatory moves

often occur before significant events. This notion stems from the Efficient Market Hypothesis

(EMH), which suggests that stock prices instantly reflect all available information, and thus

always trade at their fair value on exchanges (Fama, 1970). This means that investors, in their

collective wisdom, are always looking ahead, trying to anticipate future events and adjust their

trading strategies accordingly. By observing the build-up returns, we can gauge how the market

is positioning itself in anticipation of the briefing.

Overnight Returns (Rto): As the conference briefings occurred after the market close, this metric

is essential to capture any immediate reactions to the announcements. The overnight period is

when the market digests the information presented during the briefing and any other related

news. Analyzing these returns provides insight into the immediate sentiment and forecasts of

investors based on the briefing content.

First 2 hours of trading returns (Rtf ): This metric captures how the immediate reactions (from

overnight returns) evolve when faced with the reality of a new trading day and additional

110



2.5. DATA COLLECTION AND DESCRIPTION

information. It’s a window into the sustained or changed sentiment from the overnight period

and offers a more granular look at investor behaviour.

Figure 2.5: Visual representation of the timeline for the calculation of the returns.

The combination of these three return variables offers a comprehensive view of the returns

across different time intervals surrounding the conference briefings. While each variable in-

dividually provides a snapshot, collectively, they form a more holistic picture of market dynamics.

Table 2.6 provides a summary of statistics of the daily stock returns analysed during the

COVID-19 pandemic. It is important to note that after excluding weekends, which are observed

on Saturdays and Sundays in the United Kingdom and during which the London Stock Exchange

remains closed, a total of 138 data points have been retained. These data points represent

instances where the London Stock Exchange was open and coincided with the occurrence of

the UK COVID-19 conference briefings.

Statistics FTSE100 FTSE250 FTSE350 FTSE All-Shares AstraZeneca PLC

N 138 138 138 138 138
µ 0.04 0.05 0.05 0.05 0.02
σ 0.90 0.86 0.89 0.87 1.52

Min -3.07 -2.79 -2.88 -2.83 -4.85
25% -0.41 -0.45 -0.38 -0.38 -0.94
50% 0.01 -0.00 0.00 0.00 -0.05
75% 0.38 0.46 0.36 0.35 1.02
Max 3.98 4.71 4.96 4.94 4.70
Skew. 0.76 1.09 1.27 1.26 0.02
Kurt. 6.49 8.24 8.73 8.81 3.45

Table 2.6: Summary statistics of UK daily stock returns during the COVID-19 pandemic

Table 2.6 presents a comprehensive summary of the UK’s daily stock returns throughout

the COVID-19 pandemic. The table not only offers central tendencies, denoted by µ, but

also provides an in-depth view of dispersion measures, which include standard deviation (σ),

minimum and maximum values, and interquartile ranges. Additionally, it gives insights into the
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distribution shape via skewness and kurtosis metrics.

A notable observation is the skewness values for the FTSE 250, 350, and All-Shares indices,

which exceed one, suggesting a right-skewed distribution. In contrast, the FTSE 100’s skewness

value, being less than one, indicates only a slight skew. AstraZeneca plc’s daily returns display

near symmetry, with a skewness of just 0.02.

The skewness in the FTSE 250, 350, and All-Shares indices suggests more significant occa-

sional gains than losses. However, consistent positive skewness can sometimes be a precursor

to market corrections if the market has been under-reacting to positive news. The near-zero

skewness of AstraZeneca plc’s daily returns indicates a relatively symmetrical return distribution.

The pronounced kurtosis values for the FTSE indices, exceeding three, highlight the potential

for extreme returns. Such leptokurtic behaviour implies that while these stocks might exhibit

expected performance patterns most of the time, there exists a higher risk of significant devia-

tions. This can be attributed to increased market sensitivity, especially given the uncertainties

of a pandemic. Investors often view such distributions as indicators of heightened risk due to

their potential for extreme positive and negative returns (Taleb, 2007).

The kurtosis values for all FTSE stocks surpass three, signalling a leptokurtic distribution. In

the context of stock returns, this implies that these stocks experienced greater volatility and

a heightened potential for extreme price changes than a standard normal distribution would

suggest (Hair Jr et al., 2021). Such behaviour can be indicative of increased market sensitivity,

especially during unpredictable events like a pandemic. Visual representations of the return

distributions for each stock are available in Figure A.1 within the Appendix.

Furthermore, this research extends beyond mere stock returns. It delves into both closing and

opening stock prices and their respective fluctuations amidst the COVID-19 pandemic. Detailed

findings on these aspects are elaborated upon in the Results and Discussion section 2.7.

Complementing the stock data, information on the number of COVID-19 cases and fatalities in

the UK was sourced from https://ourworldindata.org, ensuring temporal alignment with the

UK stock market data collection period.
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2.6 Methodology

This section introduces the machine learning and deep learning methodologies employed in

the sentiment polarity classification. Subsequently, we delve into the techniques adopted for

analysing the correlation between the UK stock market’s response and the COVID-19 pandemic.

Finally, we provide an in-depth exploration of the Granger causality approach, enabling the

assessment of potential Granger causal relationships among the study’s focal variables.

2.6.1 System design

Following the system design delineated below, we first extract the sentiment from these briefings.

Then, we correlate this sentiment with the UK stock market performance. Finally, we employ

the Granger causality approach to discern any potential causative relationships between the

extracted sentiment and market movements.

Figure 2.6: System Design

Initially, web scraping is employed to collate the daily COVID-19 conference briefings. This

method automates the extraction of text from the UK government’s conference briefings pub-

lished online (further elaborated in the data collection and description section 2.5). Following

the removal of punctuation, stop words, and subsequent tokenisation, among other textual

preprocessing steps (illustrated in Figure 2.3), the briefings are primed for sentiment classifica-

tion. Here, both lexicon rule-based and transformers-based techniques are utilised (detailed

in subsection 2.6.2) to discern the sentiment polarity of the daily COVID-19 UK updates.

Subsequent stages involve gathering the FTSE indices prices and AstraZeneca PLC stock details,

from which stock returns are computed. In addition, data on COVID-19-related UK fatalities

and cases are amassed to serve as benchmark variables. Ultimately, with the sentiment polarity

scores of each UK daily update, alongside the FTSE and AstraZeneca plc prices and stock

returns, we proceed to correlation analysis and Granger causality tests.
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2.6.2 Sentiment analysis

For years, finance researchers have endeavoured to quantify and assess the impact of information

on financial markets. Recent advancements in computational linguistics, Natural Language

Processing (NLP), Machine Learning (ML), and econometrics have empowered scholars to

apply these methodologies across diverse financial research areas (Chouliaras, 2016). In this

research, we harness the capabilities of Natural Language Processing and Machine Learning

to delve deeply into the market’s response to the COVID-19 crisis. In particular, we explore

sentiment classification methods to gauge the daily investor sentiment within the UK’s financial

market throughout the COVID-19 pandemic.

Sentiment classification primarily serves two core objectives: emotion recognition and polarity

detection within textual or transcribed data (Tikkanen, 2021). Emotion recognition strives to

identify specific emotions conveyed in texts, such as joy, anger, or sadness. In contrast, polarity

detection categorises texts based on their overarching positive or negative sentiment. While

this typically results in a binary classification—namely, “positive” or “negative”—it can be

further refined to include nuanced categories like “neutral”, “very positive”, and “very negative”

(Cambria et al., 2017).

Sentiments can manifest at various levels: individual words, sentences, or entire documents.

Analysis can be tailored accordingly. In our research, we focus on extracting sentiment from

individual sentences. By aggregating these, we derive the overall sentiment of a specific COVID-

19 update.

Sentiment analysis can be categorised into three primary approaches (Kansal et al., 2020).

Firstly, there’s the Rule/Lexicon-Based approach. In this method, a lexicon—a collection of

words with their respective polarities—is employed. Each word maps to a specific sentiment,

and the overall sentiment of a sentence is derived from the combined sentiment of its constituent

words. Typically, lexicon sentiment analysis yields a polarity score ranging from -1 to 1, where

-1 signifies a strongly negative sentiment, and 1 indicates a robust positive sentiment.

The second technique is the Machine Learning-Based approach. This method hinges on a

classifier trained extensively using a vast repository of labelled data, enhancing its efficacy in

predicting the sentiment of a given text or document.

Lastly, there’s Cross Domain sentiment analysis. This approach is invoked when a model or

classifier, initially trained on data from one domain (referred to as the “input domain”), is

subsequently applied to data from a distinct domain (the “output domain”). This application

holds true irrespective of whether the data in the latter domain is labelled.

For our research, we employ a combination of the Rule/Lexicon-Based and Machine Learning-

Based approaches to extract sentiment from the daily COVID-19 government updates.
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2.6.3 Rule/Lexicon-Based approach

We commence our exploration with the Rule/Lexicon-Based approach, utilising the Valence

Aware Dictionary for Sentiment Reasoner (VADER) model (Hutto and Gilbert, 2014) and

Text-Blob (?). Both are NLP Lexicon-based sentiment analysers. These techniques draw upon

dictionaries that associate lexical features with emotion intensities, termed sentiment scores.

2.6.3.1 Valence Aware Dictionary and Sentiment Reasoner (VADER)

Using the VADER-based approach, the sentiment score of a sentence is determined by aggregat-

ing the sentiment scores of each word found within the VADER dictionary that appears in the

sentence. The creators of VADER then employ Hutto’s (Hutto and Gilbert, 2014) normalisation

(refer to Eq. 2.4) to generate the final sentiment scores. These scores span from -1, denoting

negative sentiment, to 1, representing positive sentiment.

(2.4)
x√

x2 + α

where,

• x is the sum of the sentiment scores of the constituent words of the sentence, and

• α is a normalization parameter that was set to 15 in the authors’ (Hutto and Gilbert,

2014) experiment.

2.6.3.2 Text-Blob

This method employs the Näıve Bayes model for the classification task. This classifier, a

supervised Machine Learning technique, leverages the Bayes theorem to determine sentiment

distribution across the data. The model has been trained using the Natural Language Toolkit

(NLTK) to identify the valence of aggregated tweets (?). The equation, grounded in Bayes’

theorem, used to forecast sentiment probability is as cited in (Wagenmakers, 2007; Medhat

et al., 2014; Manguri et al., 2020):

(2.5) P (label/features) =
P (label) ∗ P (features/label)

P (features)

where,

• P (label is the prior probability of a label, and

• P (features/label) is the prior probability that a given feature set is being classified as a

label and

• P (features) is the prior probability that a given feature set is occurring
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2.6.4 Limitations of Lexicon-based Sentiment Analysis

Historically, lexicon-based sentiment analysis has been the favoured approach for predicting

financial market movements (Farimani et al., 2022). However, this technique is not without

its drawbacks. The primary limitation of rule-based systems is their inability to accurately

interpret linguistic nuances and contextualise them. For instance, while lexicon-based sentiment

analysis might correctly deem the statement “I love Statistics” as positive, it could misclassify

the phrase “I do not love Statistics” as negative (Tikkanen, 2021). Additionally, these systems

may struggle with sarcasm, idiomatic expressions, and cultural variations in language use.

This is where Machine Learning (ML) comes into the picture. ML, a subset of artificial

intelligence, focuses on developing algorithms that improve through experience. Its application

to economic issues has a long-standing history, traceable back to 1974 (Lee and Lee, 1974). To

the best of our knowledge, the study by (Wang et al., 1984) was the pioneering effort employing

an ML approach explicitly for an economics topic. Although (Gogas and Papadimitriou, 2021)

references the term ’AI’ in their research, it’s plausible that ’ML’ would have been the more

accurate designation. By 1988, the application of ML in economics had advanced, with (White,

1988) utilising Neural Networks (NN) to predict daily stock returns for IBM. Since then, the

adoption of ML within the realm of economics has seen significant growth.

Within the realm of ML, Neural Networks (NN) stand out, especially for sentiment analysis tasks.

Comprising interconnected layers of algorithms called neurons, they’re designed to recognise

and interpret patterns. According to (Otter et al., 2020), Neural Networks are conceived as

interconnected nodes or neurons. Each neuron accepts various inputs and subsequently produces

an output. The nodes in the output layers determine a weighted sum of the values sourced from

the input nodes. Following this, they employ fundamental nonlinear transformation functions

on these aggregate sums to generate outputs. When the network exhibits errors or discrepancies

at the output nodes, weight adjustments are made to rectify them. In contemporary networks,

such rectifications are typically achieved using stochastic gradient descent combined with the

derivatives of errors at nodes—a process termed back-propagation.

In the context of Natural Language Processing, Neural Networks undergo training with labelled

text data. Each piece of this data is introduced into the network individually for assessment. The

primary objective of the Neural Network is to identify and harness combinations of elements with

predictive capacities. For instance, when presented with textual data, the network discerns and

represents sentiment by amalgamating these elements into coherent representations (Colnerič

and Demšar, 2018). Given the evident limitations of lexicon-based systems, it’s clear that the

depth and adaptability offered by ML, and especially NN, present a promising direction for

refining sentiment analysis methodologies.

One standout model in the realm of Neural Networks that has garnered significant attention for

its prowess in NLP tasks is BERT (Bidirectional Encoder Representations from Transformers).

Developed by researchers at Google, BERT revolutionised the way we understand and process
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language through deep learning.

2.6.4.1 Transformer Architectures: BERT and its Variants

The introduction of the Attention Mechanism in NLP has marked a significant shift in the way

textual data is processed and understood (Bahdanau et al., 2014; Vaswani et al., 2017). This

mechanism, which provides context to words in a given sentence, has led to the development of

models that outperform many state-of-the-art algorithms, particularly when combined with

bidirectional techniques (Sousa et al., 2019).

One such groundbreaking model is the Bidirectional Encoder Representations from Transformers

(BERT) (Devlin et al., 2018). BERT revolutionised the NLP landscape by achieving state-of-

the-art results on a range of tasks, including sentiment classification. Its bidirectional nature

means it can understand the context from both the left and right of a word in a sentence,

making it particularly adept at understanding the nuances of human language.

Following BERT’s success, there have been several variants aimed at refining and optimising

its foundational architecture. One notable variant is RoBERTa (A Robustly Optimized BERT

Pretraining Approach) (Liu et al., 2019). While BERT relies on masked language modelling

for pretraining, RoBERTa modifies this approach by using more data, larger batch sizes, and

removing the next-sentence pretraining objective. As a result, RoBERTa often outperforms

BERT in specific NLP tasks.

Recognising the significance of Transformer-based architectures, (Wolf et al., 2019) introduced

the transformers’ library in 2020. This library is dedicated to supporting these architectures

and has made deploying pre-trained models like BERT and RoBERTa more accessible.

In this study, we leverage the capabilities of the transformers’ library, namely the BERT model,

to classify sentiment in text. Nevertheless, the choice to employ BERT over RoBERTa in this

study was made after careful consideration. BERT’s pre-training methodology, which involves

both masked language model and next-sentence prediction tasks, might be more suited for

capturing the semantic relationships present in the government briefings, which often have

intricate contextual nuances. Furthermore, BERT’s extensive usage and validation across a

myriad of NLP tasks provides a well-established foundation for sentiment analysis, particularly

in the context of financial data.

Moreover, while RoBERTa has shown impressive results, its optimisations might not necessarily

translate to significant improvements in the specific task of sentiment analysis for our data

set. Given the computational costs, it was deemed prudent to adopt BERT, a tried and tested

model with proven efficacy in similar scenarios.
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2.6.5 Illustrative Sentiment Analysis Examples

In this research, we use both VADER and Text-Blob, based on the Lexicon approach, to

calculate the sentiment mood time series. To improve our sentiment scores, we also use a

BERT-based transformer language model. It’s important to note that our main goal isn’t to

find the best sentiment model but to analyse the sentiment in the UK government’s COVID-19

announcements and see its possible effect on the UK stock market. Despite using different

methods, the sentiment scores are consistent across all. A clear relationship between the three

sentiment score methods can be seen in Figure ?? in the Appendix.

To further cement our understanding of these methods, let’s delve into some specific instances

of sentiment classification. Figure 2.7 presents a few representative examples, highlighting the

capabilities and occasional limitations of our chosen algorithms.

Figure 2.7: Sentiment classification examples according to the methods described in Section
2.6.3, and 2.6.4.1

118



2.6. METHODOLOGY

Looking at the first example in Figure 2.7, the UK Prime Minister addresses the British public

about the COVID-19 pandemic. All three sentiment analysis methods have rightly identified

the sentiment as positive. Using the BERT-based model, the statement is labelled as “positive”

with a high confidence score of 99%. The VADER approach gives a compound sentiment score,

which reflects 43% positivity – here, any score above zero is considered positive. Meanwhile,

Text-Blob offers a singular polarity score of 31%, marking the statement as positive since its

score exceeds zero.

In the second instance, only the BERT-based model correctly identifies the sentiment as

”negative”, and with a confidence score of 99%. This highlights a limitation of Lexicon/Rule-

based methods, which can struggle with statements that combine positive and negative elements.

The third example further underscores BERT’s accuracy. It effectively identifies the sentiment

in the idiomatic phrase “because we are not out of the woods” as negative, demonstrating a

confidence score of 98%. This showcases BERT’s advantage over Lexicon/Rule-based models in

interpreting idiomatic expressions.

While these isolated examples provide insights into the individual performance of each sentiment

analysis method, a comprehensive evaluation requires a more structured aggregation of these

scores. The following section delineates the procedure we employed to cohesively aggregate

sentiment scores for entire briefings.
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2.6.6 Sentiment Score Aggregation Procedure

To comprehensively evaluate the sentiment of each COVID-19 conference briefing, we incorpo-

rated three distinct sentiment analysis algorithms: VADER, Text-Blob, and BERT.

• VADER and Text-Blob: These algorithms generate polarity scores within a range of

-1 to 1. A score closer to -1 signifies a negative sentiment, whereas a score closer to 1

indicates a positive sentiment.

• BERT: BERT provides labels along with confidence intervals. These labels are subse-

quently converted into numerical scores. Specifically, a negative label is given a value of

-1, while a positive label is assigned a value of 1.

Figure 2.8: Sentiment scores aggregation procedure

120



2.6. METHODOLOGY

For a holistic sentiment score of each briefing:

1. The briefing text is segmented into individual sentences.

2. Each sentence is then assigned a sentiment score using the aforementioned algorithms.

3. The individual scores are aggregated, culminating in the final sentiment score for the

entire briefing. For instance, if a briefing’s sentences have scores of -0.5, 0.5, and 0.99,

the aggregate sentiment score would be calculated as 0.99 + 0.5 0.5 = 0.99. A higher

value implies a more positive briefing sentiment, and conversely, a lower or negative value

indicates a more negative sentiment.

Figure 2.7 is an example of the final output table for the first five COVID-19 government

updates in the United Kingdom.

Conference briefing Number of sentences Sentiment polarity (Text-Blob) Sentiment polarity (VADER) Sentiment polarity (BERT)

Day1 18 3.24 4.47 4
Day2 21 3.36 4.18 5
Day3 49 5.48 3.84 1
Day4 42 4.45 4.02 -2
Day5 31 3.67 3.66 5

Table 2.7: Final table with 5 COVID-19 UK government updates and their sentiment scores

2.6.7 Challenges and Nuances in Briefing Sentiment Analysis

Having outlined our sentiment aggregation procedure and presented preliminary results, it’s cru-

cial to delve deeper into the complexities and challenges associated with interpreting sentiment

from government briefings on a topic as multifaceted as COVID-19. The inherently subjective

nature of sentiment analysis presents a challenging aspect in the context of COVID-19 briefings.

For instance, consider the sentence, ”The lockdown has successfully flattened the curve.” At

face value, this statement appears to be positive, as it suggests that the lockdown measures have

achieved their intended effect. However, the notion of a ’successful lockdown’ could be fraught

with negative sentiment for individuals who have experienced economic hardship, social isolation,

or mental health struggles due to the restrictions. Therefore, the sentiment associated with

this statement is complex and could be interpreted as both positive and negative, depending

on the context and the audience. This example underscores the intricate challenges associated

with language and sentiment in these COVID-19 briefings, necessitating a nuanced approach to

sentiment analysis.

In light of these complexities, we undertook a qualitative comparative assessment involving

BERT, VADER, and Text-Blob. In this assessment, the BERT model consistently demonstrated

a more accurate interpretation of sentiment from the COVID-19 daily briefings compared to

VADER and Text-Blob. We manually inspected a range of predictions across these models to
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ensure our selection was optimally attuned to this nuanced context.

BERT’s superior performance, as observed in this comparative assessment, aligns with the

findings in the literature. BERT is known for its ability to understand the context of a word

based on its surroundings, thanks to its sophisticated bidirectional training mechanism. This

capacity allows BERT to capture the semantic meanings of sentences more accurately, thereby

making it a highly suitable choice for our study (Devlin et al., 2018).

Conversely, VADER and Text-Blob utilize simpler techniques such as lexical approaches and

rule-based methods. While these methods have shown to perform well in general scenarios

(Sudhir and Suresh, 2021), they may struggle with the complex language structures or spe-

cialized terminologies present in our data, as observed in our qualitative assessment. Thus,

for the subsequent stages of our research, specifically the correlation and Granger causality

analysis, we opted to exclusively utilise the sentiment scores derived from the BERT model.

This decision aims to ensure that our analyses are rooted in the most accurate and contextually

aware sentiment data available.

In the subsequent phase of our methodology, we will delve into financial modelling, specifically

correlations and the Granger causality test, to ascertain the influence of the sentiment polarity

derived from the UK’s COVID-19 conference updates on the nation’s stock market.

122



2.6. METHODOLOGY

2.6.8 Financial modelling via correlations

Being a global health crisis that created strong effects on the real economy (Goldstein et al.,

2021), one would expect to see correlations between the COVID-19 pandemic and the stock

market. In the process of investigating this hypothesis, we examine how the UK financial market

movements are related to the COVID-19 pandemic through the number of COVID-19 fatalities

and cases. We also scrutinise scrutinize the UK stock market by looking for correlations between

the most relevant UK stock indexes and the public mood, which arguably would translate to the

market investors’ sentiment. The investors’ sentiment is implied through the sentiment polarity

of the COVID-19 UK daily government updates. For more details regarding the sentiment

analysis calculation, refer to the Sentiment classification section 2.6.2.

Correlation analysis

Correlation is a statistical measure of a monotonic relationship between two variables. A

monotonic connection between 2 variables is one in which, as the value of one variable increases,

the value of the other variable also increases, or, as the value of one variable increases, the

value of the other variable declines. In correlated data, the change in magnitude of one variable

is coupled with the change in magnitude of another variable, either in the same or opposite

direction. In other words, higher values of one variable are typically associated with either

higher (positive correlation) or lower (negative correlation) values of the second variable and

vice versa (Schober et al., 2018). In this study, we employed:

• Pearson correlation coefficient

The Pearson correlation coefficient (rXY ), named after the English mathematician and

bio-statistician Karl Pearson, is a statistical measure of the linear connection between

two variables X and Y and is defined as follows (Profillidis and Botzoris, 2018):

(2.6) rXY =
(cov(X,Y ))

σX .σY

where,

– cov(X,Y ) is the covariance between X and Y , and

– σX, σY is the standard deviation of X and standard deviation of Y

The values of rXY range between [−1 , 1] where rXY = 0 indicating that there is no linear

relationship between X and Y , and the relationship becomes more substantial as the

absolute value of rXY increases and ultimately approaches the coefficient −1 or 1. The

Pearson correlation coefficient assumes that both variables should be normally distributed

and is very sensitive to outliers. For non-normal distributions (for data with extreme

values outliers), the Pearson correlation coefficient should be calculated from the ranks

of the data and not from their actual values. The coefficients designed for this purpose

123



CHAPTER 2. FINANCIAL MARKETS IN THE COVID-19 ERA

are Spearman’s and Kendall’s Tau coefficients (see the below paragraphs for definitions).

These coefficients can be calculated as a measure of linear and nonlinear monotonic (i.e.,

continuously increasing or decreasing) relationships without any assumptions (Akoglu,

2018).

• Spearman rank correlation coefficient

A Spearman coefficient is similar to a Pearson correlation coefficient. However, the

Spearman rank correlation coefficient is computed using rankings rather than actual

values for each variable. The Spearman correlation coefficient is not limited to continuous

variables. The coefficient quantifies strictly monotonic correlations between two variables

using ranks. In addition, this trait renders a Spearman coefficient comparatively resistant

against outliers. As for the Pearson coefficient, the Spearman coefficient varies between -1

and 1. It may be regarded as expressing anything from a perfect monotonic connection

with a value of 1 to the absence of any correlation where the coefficient is 0, (Caruso and

Cliff, 1997).

• Kendall Tau rank correlation coefficient

The Kendall rank correlation coefficient (Abdi, 2007), measures the degree of similarity

between two sets of rankings assigned to the same collection of objects. This coefficient is

dependent on the number of object pair inversions required to change one rank order into

the other. In order to accomplish this, each rank order is represented by the set of all

pairs of objects (e.g., [a, b] and [b, a] are the two pairs representing the objects a and b,

and a value of 1 or 0 is assigned to each pair based on whether its order matches or does

not match the order in which the two objects were placed.

The correlation analysis using the above correlation coefficient is presented in the Results and

Discussion section 2.7.
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2.6.9 Financial modelling via Granger Causality test

Lastly, we examine possible justifications for the UK stock market response to COVID-19 by

performing a Granger causality test. First proposed in 1969 by the British econometrician Sir

Clive Granger Granger (1969), the Granger causality method is a statistical hypothesis test

that answers the question: Can the previous values of a time series X be used to forecast the

current value of a time series Y ? If the past values of X help in forecasting the current value

of Y , it is said that time series “X Granger causes time series Y ” Tikkanen (2021). The null

hypothesis H0 is rejected at any α level provided that the probability value is less than that

level. In his seminal paper ”Testing for Causality: A Personal Viewpoint”,(Granger, 1980).

Granger defines causality based on two fundamental axioms:

• Axiom A. The past and present may cause the future, but the future cannot cause the

past.

• Axiom B. It contains no redundant information, so if some variable Zt is functionally

related to one or more other variables, in a deterministic fashion, then Zt should be

excluded from It.

Based on these axioms, Granger provides a definition of causality as follows:

A variable Yt is said to cause Xt+1 if the probability distribution of future values of Xt+1 given

the set of all past information It differs from the probability distribution of Xt+1 given all

past information excluding Yt (denoted as It − Yt), for some set A. This can be represented

mathematically as:

Let A be an arbitrary set. Yt is said to Granger-cause Xt+1 if:

(2.7) P(Xt+1 ∈ A|It) ̸= P(Xt+1 ∈ A|It − Yt)

Where:

• P refers to the probability operator,

• A is an arbitrary non-empty set,

• I(t) denotes the set of all information available up to and including time t,

• I − X(t) is the set of all information available up to and including time t, excluding

information about X.

In a Granger causality test, this statement serves as the null hypothesis, asserting that past

values of Yt do not provide useful information in predicting future values of Xt+1. If this null

hypothesis is rejected, then we can conclude that Yt Granger-causes Xt+1.

To conduct such a test, we commonly begin by modelling Xt+1 as an autoregressive (AR)

process. We then assess whether adding lagged values of Yt to this AR model improves the
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prediction of Xt+1. If so, we conclude that Yt is a Granger cause of Xt+1.

Let us assume that Y and X are two variables having stationary time series of data or

observations. To test the null hypothesis that X does not Granger-cause Y , we first find the

appropriate p lagged values of Y (the order p of the AR(p) process) to include in an AR process

of Y (Profillidis and Botzoris, 2018):

(2.8) yt = c + Φ1.yt−1 + Φ2yt−2 + ... + Φpyt−p + ϵt

where,

• yt is a time series variable measured at time t, and

• yt−1 is a time series variable measured at time t− 1, and

• Φ1,Φ2, ...,Φp are the parameters of the AR model, and

• c is the intercept of the AR(p) process, and

• ϵt is white noise.

Next, the (2.8) equation is augmented by including lagged values of the variable X:

(2.9) yt = c + Φ1yt−1 + Φ2yt−2 + ... + Φpyt−p + ω1xt−1 + ω2.xt−2 + ... + ωnxt−n + ϵt

where,

• n is the longest lag length for which the lagged value of the variable X has been proved

statistically significant.

The Granger causality test is a test of a joint hypothesis that lagged values of X are not

statistically significant. Therefore, the null hypothesis is:

(2.10) H0 : ω1 = ω2 = ... = ωn = 0

While the alternative hypothesis:

(2.11) H1 : ωn ̸= 0, for at least one value of n

Thus, to test the null hypothesis, one needs to estimate two models. One is a restricted model

which omits historical values of X, represented in Eq. (2.8) while the second model (unrestricted)

has the full specification mentioned in Eq. (2.9). Furthermore, to test for Granger causality, one

needs to carry out a χ2 test which compares the restricted model (2.8) with the unrestricted

model (2.9).

We retain in Eq. (2.9) all lagged values of the variable X that are statistically significant,

provided that jointly all of them contribute to the explanatory ability of Eq. (2.9) according to
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the χ2 test.

In this study, the Granger causality test is applied to investigate the influence of the COVID-19

pandemic on the behaviour of the Financial Times Stock Exchange (FTSE) indices in the United

Kingdom. The FTSE indices behaviour, denoted by Mc19t , can be represented by either market

returns or market prices at time t. We test the Granger causality through three hypotheses:

1. H0: The sentiment polarity of COVID-19 conference briefings, denoted by Sc19t−1 , does

not Granger cause Mc19t .

The null hypothesis is tested by estimating a restricted and an unrestricted model.

The restricted model excludes the historical values of sentiment polarity and is given by:

(2.12) Mc19tr = c + Φ1Mc19t−1 + . . . + ΦpMc19t−p + ϵt

where:

• Mc19tr represents the market state at time t in the restricted model,

• c is a constant,

• Φ1, ...,Φp are parameters to be estimated,

• ϵt is the error term at time t.

The unrestricted model includes the historical values of sentiment polarity, Sc19t−1 :

(2.13) Mc19tu = c + Φ1Mc19t−1 + . . . + ΦpMc19t−p + ω1Sc19t−1 + . . . + ωnSc19t−n + ϵt

where:

• Mc19tu represents the market state at time t in the unrestricted model,

• ω1, ..., ωn are the additional parameters representing the influence of historical values

of sentiment polarity.

We then perform a χ2 test which compares Mc19tr with Mc19tu. If the χ2 test value exceeds

a certain critical value, we reject the null hypothesis that Sc19t−1 does not Granger cause

Mc19t .

2. H0: The number of COVID-19 cases, denoted by Cc19t−1 , does not Granger cause Mc19t .

Again, we test this null hypothesis by estimating a restricted model that excludes the

historical values of Cc19t−1 and an unrestricted model that includes these values:
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(2.14) Mc19tr = c + Φ1Mc19t−1 + ... + ΦpMc19t−p + ϵt

(2.15) Mc19tu = c + Φ1Mc19t−1 + ... + ΦpMc19t−p + ω1Cc19t−1 + ... + ωnCc19t−n + ϵt

A similar χ2 test is then performed to compare these two models. If the test result is

greater than a certain critical value, we reject the null hypothesis that Cc19t−1 does not

Granger cause Mc19t .

3. H0: The number of COVID-19 related deaths, denoted by Dc19t−1 , does not Granger

cause Mc19t .

The testing of this null hypothesis involves estimating a restricted model excluding the

historical values of Dc19t−1 and an unrestricted model that includes these values:

(2.16) Mc19tr = c + Φ1Mc19t−1 + ... + ΦpMc19t−p + ϵt

(2.17) Mc19tu = c + Φ1Mc19t−1 + ... + ΦpMc19t−p + ω1Dc19t−1 + ... + ωnDc19t−n + ϵt

The χ2 test is then performed to compare these two models. If the test result exceeds a

certain critical value, we reject the null hypothesis that Dc19t−1 does not Granger cause

Mc19t .

In these hypotheses and models, the variables are defined as follows:

• Mc19t represents the state of the market (either market returns or prices) during the

COVID-19 pandemic at time t,

• Cc19t−1 represents the number of COVID-19 cases at time t− 1,

• Dc19t−1 represents the number of deaths due to COVID-19 at time t− 1,

• Sc19t−1 represents the sentiment polarity of COVID-19 conference briefings at time t− 1.

Prior to the application of the Granger causality test, it is critical to ensure that the time series

under investigation are covariance stationary. This precondition stems from the fundamental

assumption of Granger causality, which mandates that the analysed signals or time series must

be stationary. A stationary series is characterized by time-invariant properties such as consistent
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mean, variance, and autocorrelation structure.

In order to test for stationarity, we perform Unit root tests, which are a characteristic of time

series that makes the signal non-stationary. For the purpose of this study, we perform the

following unit root tests: Augmented Dickey-Fuller Test (Dickey et al., 1984) and Kwiatkowski

test(Shin and Schmidt, 1992).

Following the unit root tests, and subject to the satisfactory condition of stationarity for all

the Granger Causality studied time series, we make use of χ2 a test constructed with a Wald

test (Gourieroux et al., 1982) and assert when values of the variable X provide statistically

significant information about the evolution of the future values of the variable Y . In cases

where the studied time series is non-stationary. We apply a transformation by squaring the

given time series, i.e., converting the studied time series from non-stationary to stationary. See

non-stationary results in 2.23.

Of course, the Granger causality is not necessarily true causality. In fact, Granger causality

merely gives information about predicting abilities; it does not reveal the underlying causal

link between two variables (Maziarz, 2015). According to (Granger, 1980), Granger causality,

grounded on the axiom that the future cannot cause the past, primarily aids in forecasting.

Its relevance is questionable if this axiom is not accepted. While not a measure of absolute

causality, Granger causality indicates if one variable contains predictive information about

another. The quality of the results is reliant on the sophistication of the analysis. Note that its

applicability is limited to data sequences, not unique events or ultimate causes. Hence, Granger

causality interpretations should remain within these constraints and not extend to philosophical

or theological domains.

The application of Granger causality in this research hinges on its inherent axiom that the

future cannot cause the past. It underpins the sequential investigation of this study, which

explores whether the sentiment expressed in COVID-19 speeches, Granger causes subsequent

stock market movements. Nevertheless, it’s imperative to realize that the effectiveness of our

Granger causality tests is largely contingent upon the sophistication of our analysis, particularly

our ability to properly specify our model. Moreover, while a significant Granger causality may

suggest that the sentiment of these speeches contains information that can predict stock market

movements, it does not establish that these speeches are the only or even the primary cause of

such movements. Indeed, other factors not included in our analysis could also be driving the

market. Lastly, given that Granger causality is tailored to sequences of data, it’s well-suited

to our time-series examination of speeches and stock market data, but we must refrain from

drawing conclusions about one-off speeches or unique market events based solely on Granger

causality.

The hypothesis grounding this portion of our research is that investors’ sentiment in the UK

stock market is reflected in the UK government’s daily COVID-19 updates. To prove this,

we extract sentiment polarity scores from each COVID-19 government update by applying
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traditional Machine Learning methods alongside advanced AI techniques on the text of the daily

briefings. These scores create a time series, which we then juxtapose with the time series of

the UK stock indices through correlation analysis and Granger causality tests. If the sentiment

conveyed in a briefing is positive, we postulate that the briefing’s impact on the market will

be favourable, increasing the likelihood of a rise in index prices. We extend this analysis by

comparing the sentiment scores and the stock market time series to the number of COVID-19

cases and deaths, aiming to gain further insight into the information chain.
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2.7 Results and discussion

This section presents the findings from the experiments carried out throughout the present

thesis to answer the research questions introduced in section 2.3. The data used comprises

the computed sentiment scores of the daily COVID-19 briefings, the daily frequencies of the

mentions of the word “vaccine” during the COVID-19 briefings, the computed UK market stock

returns, the main UK stock indexes prices, and the COVID-19 deaths and cases time series.

Section 2.5 contains further information and a description of the data-gathering method used.

We compute and report the results of the correlation findings, which are supplemented by

Granger causality, using the methodologies described in section 2.6.

First, we investigate the relationship between the number of COVID-19-related deaths and

cases and the inferred investors’ sentiment scores. This is to understand whether the calculated

sentiment scores reflect the severity of the COVID-19 pandemic. Second, we examine the

interrelationship between the inferred investors’ sentiment scores and the UK stock index prices

and returns. Finally, we look into the COVID-19 fatalities and cases and the UK stock indexes

variables relationship.

It is important to note that the aforementioned investigations were broken down into three

distinct time periods. We expand on this in the below section 2.7.1.

2.7.1 The COVID-19 pandemic in periods

In order to understand the pandemic evolution in relationship to the financial variable over

time, we segregate the changes of this epidemic into three different time periods that we mark

as periods 1, 2, and 3. Figure 2.9 presents the evolution of the UK’s new daily COVID-19 deaths

Figure 2.9: Cumulative COVID-19 cases vs New COVID-19 daily deaths

plotted against the cumulative number of new COVID-19 cases between the 3rd of March 2020

and the 23rd of June 2021. The three periods are as follows:

• Period 1: Prior to testing [March 2020 – June 2020]

This interval (in blue) corresponds to the time of the pandemic when self-testing for
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the illness was not prevalent owing to the scarcity of COVID-19 tests. In reality, the

seven-day average virus tests reported exceeded 100,000 only on 30/06/2020. And, since

the COVID-19 fatalities were more accurately measured, we see a substantially greater

number of deaths as compared to the less precise number of cases owing to a lack of

testing. This time period is distinguished by the inconsistency of the COVID-19-related

cases in comparison to the number of new COVID-19 deaths. And is consequently isolated

in its own temporal period.

• Period 2: Peak pandemic [July 2020 – January 2021]

This timeframe (in orange) corresponds to the pandemic period when the number of

cases was more accurately measured at a large scale owing to the availability of testing

facilities such as home self-testing kits. In this situation, as the number of reported cases

grows, so does the number of fatalities. The green data points belong to the Christmas

and New Year’s festive period when testing slowed owing to the holiday season. With the

absence of a cure for the COVID-19 virus and with the abundance of testing, we can see

a positive relationship between the number of new deaths and the cumulative number of

cases. This correlation is statistically significant, especially after 10 days of contamination.

See Figure A.4 in the appendix.

• Period 3: Vaccine roll-out [February 2021 – June 2021]

This time period (in red) corresponds to the phase pandemic when the United Kingdom

began to experience the benefit effects of the vaccine’s efficacy in the form of a steady

drop in the number of COVID-19 deaths despite the high number of cases that were a

result of less stringent lockdown rules and more mixing. The vaccination campaign started

in January 2021, and the assumption here is that the vaccine would take effect a month

later, therefore, this time begins in February, a month after the vaccine campaign began

in the United Kingdom.
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2.7.2 Correlations of Sentiment polarity vs COVID-19 fatalities and cases

This section presents the correlations between the sentiment of the UK government’s daily

COVID-19 updates and the reported number of fatalities and cases. The focus is on Period 1

(Prior to testing), as described in section 2.7.1. The objective is to address the first research

question highlighted in Section 2.3. Throughout the Results and Discussion section 2.7, we

emphasize statistically significant findings, omitting non-significant ones for brevity.

2.7.2.1 Period 1 – Cases/Deaths vs Sentiment

Table 2.8 provides insights into these correlations. A salient observation during Period 1 is the

positive relationship between the number of new daily COVID-19 cases and the sentiment scores

from the UK government’s updates. All correlation techniques, namely Pearson, Spearman,

and Kendall, confirm this significant relationship. Notably, a stronger association emerges at

lag = 2, suggesting that the sentiment of a government update is closely tied to the number of

cases reported two days prior.

Table 2.8: Correlation of Sentiment Polarity with COVID-19 Deaths and Cases for Period 1.
This table illustrates the relationship between the number of reported COVID-19 cases and
deaths and the BERT-based sentiment scores of the daily UK government updates during the
”Prior to testing” phase. The ”lag” denotes a shift in days in the time series; e.g., ”New Daily
Cases (lag = 1)” refers to cases reported a day prior to the government statement.

Correlations Period Sentiment Polarity (BERT)

Pearson (ρp) Spearman (ρs) Kendall(τ)

New daily cases Period 1 0.24** 0.24*** 0.17***
New daily cases (lag=1) Period 1 0.31*** 0.30*** 0.21***
New daily cases (lag=2) Period 1 0.35*** 0.33*** 0.23***

New daily deaths Period 1 0.27*** 0.27*** 0.19***
New daily deaths (lag=1) Period 1 0.34*** 0.34*** 0.24***
New daily deaths (lag=2) Period 1 0.21** 0.25*** 0.17***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Interestingly, the correlation is more pronounced for the ”new daily deaths” metric at lag = 1.

Specifically, the sentiment of a government announcement is significantly influenced by the

number of fatalities reported just a day prior. This suggests that fatalities might have had a

more immediate and pronounced impact on the sentiment of official announcements.

One potential interpretation of this trend is the government’s intention to maintain a sense

of hope and optimism in the face of rising pandemic numbers. Despite the growing number

of fatalities and cases during Period 1, the government’s updates leaned towards a positive

tone, possibly as an effort to instil confidence and resilience among the public during these

challenging times.
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2.7.2.2 Period 2 & 3 – Cases/Deaths vs Sentiment

An analysis of Table 2.9 for Period 2 (Peak pandemic) indicates a positive correlation between

the number of new daily COVID-19 cases and the sentiment scores of the UK government’s

updates, similar to Period 1. However, a notable difference emerges in this period: only at

lag = 5 do all correlation methods (Pearson, Spearman, and Kendall) reflect a statistically

significant association. This suggests that the sentiment of a UK government update is signifi-

cantly influenced by the number of cases reported five days earlier, potentially due to a time

lag in data processing and strategy formulation before public communication.

Table 2.9: Correlation between Sentiment Polarity and COVID-19 Cases for Period 2. The
table showcases the relationship between reported COVID-19 cases and BERT-based sentiment
scores from daily UK government updates during the ”Peak pandemic” phase. A ”lag” denotes
a day shift in the time series; for instance, ”New Daily Cases (lag = 1)” refers to cases reported
a day prior to the government announcement.

Correlations Period Sentiment Polarity (BERT)

Pearson (ρp) Spearman (ρs) Kendall(τ)

New daily cases Period 2 0.15 0.14 0.11
New daily cases (lag=1) Period 2 0.30* 0.24 0.19*
New daily cases (lag=2) Period 2 0.32** 0.21 0.17
New daily cases (lag=5) Period 2 0.33** 0.32** 0.23**
New daily cases (lag=10) Period 2 0.33** 0.19 0.12

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Interestingly, in Period 2, there’s no statistically significant correlation between the number of

new daily deaths and the sentiment of government updates, which is why it’s not included in

Table 2.9. Moreover, in Period 3 (Vaccine roll-out), neither the number of new daily COVID-19

cases nor the fatalities show a statistically significant correlation with the sentiment scores of

the government’s announcements. This could reflect a communication shift, focusing more on

vaccination progress and less on daily pandemic metrics as a measure of success and control.

It’s worth highlighting that while some significant correlations emerge between the number of

cases and government sentiment in Period 2, only Period 1 consistently showcases a correlation

between both the number of COVID-19 cases and fatalities and the sentiment of the UK

government updates.
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2.7.2.3 Period 1, 2, & 3 – “Vaccine”: A Control Variable in Sentiment Validation

In our endeavour to analyse sentiment through textual analysis, it’s essential to ensure the

robustness and validity of our sentiment scoring. The term “vaccine” served as a pivotal control

variable in this validation process. Given its central role in the discourse around COVID-19

and its potential impact on sentiment, the frequency of its mentions in government briefings

provided a tangible metric to cross-check and validate our sentiment calculations.

Delving into Table 2.10: In Period 1, the sporadic mentions of “vaccine” aligned with the

broader global uncertainty of the pandemic’s early days. However, as we transitioned to Periods

2 and 3, the term’s increasing frequency in government announcements resonated with the

growing optimism and anticipation surrounding vaccine development and distribution. This

shift in sentiment, as mirrored by the term “vaccine”, not only validates our sentiment analysis

methodology but also underscores the intricate relationship between specific terms and the

broader sentiment landscape.

Table 2.10: Correlation between the Word Frequency of “Vaccine” and Sentiment Polarity –
Across All Periods. This table illustrates the relationship between the occurrence of the term
“vaccine” in UK COVID-19 government announcements and the BERT-based sentiment scores
of these updates.

Correlations Period Sentiment Polarity (BERT)

Pearson (ρp) Spearman (ρs) Kendall(τ)

Word frequency (keyword=Vaccine) Period 1 0.08 0.05 0.04
Word frequency (keyword=Vaccine) Period 2 0.53*** 0.26* 0.20*
Word frequency (keyword=Vaccine) Period 3 0.51*** 0.51*** 0.35***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

The term “vaccine” was chosen as a control variable to validate our sentiment scores. Given its

pronounced impact on public sentiment during the pandemic, it served as a tangible benchmark

against which the accuracy and sensitivity of our sentiment analysis could be gauged.

By tracking the frequency and sentiment associated with “vaccine” across different periods

of the pandemic, we could assess how well our sentiment analysis captured prevailing public

sentiments and narratives. If our sentiment scores aligned well with the expected sentiment

around “vaccine” (e.g., more positive as vaccine developments progressed), it would validate

our sentiment scoring methodology.

Using “vaccine” as a control variable helps ensure that our sentiment analysis is both robust

and reflective of real-world narratives and sentiments. It acts as a quality check, ensuring our

sentiment scores aren’t merely artefacts of our analysis method but resonate with actual public

sentiment.
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2.7.2.4 Summary Insights—Part 1

The findings presented provide insights that directly address Research Question 1, which seeks

to understand the impact of the rising number of COVID-19 deaths and cases on the sentiment

of the government’s daily COVID-19 statements.

Government Sentiment vs. COVID-19 Numbers:

• In Period 1 (Prior to Testing), there’s a significant positive correlation between the daily

number of new COVID-19 cases and the sentiment scores of UK government updates.

Interestingly, the sentiment seems to be more positive as the number of new daily cases

increases. This positive correlation suggests that, in the early days of the pandemic when

testing was limited, the government may have adopted a more optimistic tone in their

updates despite the rise in cases.

• In Period 2 (Peak Pandemic), this correlation shifts. Only at a lag of 5 days do we

see a consistent positive correlation across all three correlation methods. This might

indicate that, during the peak of the pandemic, the government’s sentiment reaction to

case numbers was delayed, possibly due to the evolving nature of the situation and the

time taken to collate and process information.

• In Period 3 (Vaccine roll-out), no significant correlation exists between COVID-19

numbers (cases or deaths) and government sentiment. This suggests that, as vaccines

were being rolled out and a solution to the pandemic was in sight, the daily numbers

might have had a diminished impact on government sentiment.

Absence of Death Correlation in Period 2:

In Period 2, there’s no statistically significant correlation between the number of new daily

deaths and the sentiment of the government updates. This could suggest that, during the

pandemic’s peak, the sentiment of government announcements might have been more influenced

by other factors, such as economic indicators, lockdown measures, or vaccine developments,

rather than the immediate toll of the pandemic.

Significance of the Term “Vaccine”:

The term “vaccine” served as a pivotal control variable, and its frequency and associated

sentiment serve as a temporal gauge of the pandemic’s progression and the government’s

shifting stance. The minimal mention in Period 1 mirrors the early days’ uncertainty, whereas

its increasing prominence in Periods 2 and 3 indicates growing optimism around pandemic
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control and economic revival. The positive sentiment associated with ”vaccine” mentions further

validates the sentiment analysis methodology and suggests a direct relationship between the

term’s prominence and the broader sentiment landscape.

In conclusion, the findings unequivocally address Research Question 1, illustrating that the

rising number of COVID-19 cases and deaths did impact the sentiment of the government’s daily

statements. Specifically, in Period 1, the government appeared to maintain a positive sentiment

despite the rise in cases, possibly as an approach to managing public sentiment. By Period 2,

the sentiment’s correlation with case numbers became delayed, suggesting a more measured

governmental response to the peak of the pandemic. By Period 3, as vaccines were rolled out,

daily numbers seemed to have a diminished impact on government sentiment, indicating a shift

in focus towards recovery and solutions. This dynamic interplay between case numbers, deaths,

and sentiment underscores the nuanced approach the government took in managing public

communications during the pandemic.

2.7.3 Correlations of Sentiment polarity vs UK stock market movement

In this section, we elucidate the correlation between sentiment scores and the opening and

closing prices of the FTSE stock indices across the three time periods specified in section 2.7.1.

The aim is to discern the influence of the sentiment scores, derived from the government’s

daily COVID-19 briefings, on the UK stock market during the COVID-19 pandemic, thereby

addressing research question two as presented in 2.3.

We initially directed our focus towards returns, aligning with conventional financial research

methodologies. Returns, as a measure of percentage change in stock prices, are often employed

for their normalization of stock performance ?. However, our empirical findings led us to pivot

our focus. Specifically, while returns did not yield significant correlations, absolute stock prices

did. Such prices, untouched by normalization, can sometimes capture insights that returns

might overlook Grossman and Stiglitz (1980). Thus, the decision to concentrate on stock prices

was data-driven, reflecting an adaptability in our research approach.

2.7.3.1 Period – Sentiment vs Stock prices

The most salient findings are from Period 2 (Peak of the Pandemic). As observed in Table 2.11,

during this period, a statistically significant positive relationship emerges between sentiment

scores of government updates and the subsequent day’s FTSE stock indices, both for opening and

closing prices. This relationship holds across all correlation measures. An intriguing observation

is the lack of a statistically significant correlation for FTSE250, hinting at potential unique

factors influencing this specific index which warrants a deeper investigation.
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Table 2.11: Correlations of Sentiment polarity vs FTSE prices: The table showcases the
relationship between the BERT-based sentiment scores of the COVID-19 daily UK government
updates during Period 2 (Peak pandemic) and the FTSE stock prices’ opening and closing
values on the subsequent day after a COVID-19 announcement. For example, for the FTSE100
index, the table elucidates the influence of sentiment scores from the government’s COVID-19
announcements on the following day’s FTSE100 opening and closing prices.

Correlations Period Sentiment Polarity (BERT)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Next day Open price) Period 2 0.33** 0.31** 0.22**
FTSE100 (Next day Close price) Period 2 0.34** 0.30* 0.21*

FTSE250 (Next day Open price) Period 2 0.20 0.18 0.12
FTSE250 (Next day Close price) Period 2 0.22 0.20 0.15

FTSE350 (Next day Open price) Period 2 0.31* 0.30* 0.20*
FTSE350 (Next day Close price) Period 2 0.32* 0.29* 0.21*

FTSE All Shares (Next day Open price) Period 2 0.30* 0.30* 0.20*
FTSE All Shares (Next day Close price) Period 2 0.31* 0.29* 0.20*

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

2.7.3.2 Impact of ’Vaccine’ Mentions on Stock Market Dynamics

In the context of validating our sentiment analysis, the term ”vaccine” was earlier identified

as a pivotal control variable, given its substantial influence on public sentiment. However,

beyond sentiment validation, the frequency of this term also bears potential insights into market

dynamics during the pandemic. The global anticipation surrounding vaccine development and

deployment has had significant socio-economic implications. It was not just a medical solution,

but a potential economic catalyst — a key to reopening economies, reviving businesses, and

restoring investor confidence.

Given this backdrop, it becomes imperative to understand the direct impact of the term ”vaccine”

on stock market movements. While sentiment scores capture the broader tone of government

communications, the sheer mention frequency of ”vaccine” could act as a more immediate and

tangible indicator for investors. Frequent mentions might signify rapid developments, imminent

approvals, or roll-out strategies — all of which could have direct ramifications on the stock

market. By correlating the frequency of ”vaccine” mentions with stock market movements, we

aim to dissect this relationship and quantify the extent to which this single term influenced

investor behaviour and market dynamics during the pandemic.

The analysis of the term ”vaccine” in relation to stock market movements ties directly into

Research Question 2. By examining the frequency of the term ”vaccine” and correlating it with

stock market movements, we are essentially exploring a specific facet of this broader question.

It helps discern the direct influence of a particular term within government statements on stock

market dynamics, which is a subset of understanding the overall sentiment influence.
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Table 2.12 reveals a noteworthy observation: there exists a robust positive correlation between

the frequency of the term “vaccine” in the UK government’s daily COVID-19 announcements

and the subsequent day’s performance of all FTSE indices, both for opening and closing prices.

This association is consistently significant across the three correlation metrics, namely, Pearson,

Spearman, and Kendall.

Table 2.12: Correlation between “Vaccine” Mentions and FTSE Performance. The table show-
cases the relationship between the frequency of “vaccine” mentions in the UK government’s
daily COVID-19 briefings and the next day’s opening and closing prices of various FTSE
indices during Period 2 (Peak pandemic). To illustrate, the row corresponding to the FTSE100
index examines how the frequency of ”vaccine” mentions in a government briefing impacts the
FTSE100’s opening and closing prices the following day.

Correlations Period Word frequency (keyword=Vaccine)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Next day Open price) Period 2 0.67*** 0.76*** 0.56***
FTSE100 (Next day Close price) Period 2 0.66*** 0.78*** 0.57***

FTSE250 (Next day Open price) Period 2 0.64*** 0.78*** 0.59***
FTSE250 (Next day Close price) Period 2 0.63*** 0.80*** 0.61***

FTSE350 (Next day Open price) Period 2 0.67*** 0.77*** 0.58***
FTSE350 (Next day Close price) Period 2 0.66*** 0.80*** 0.58***

FTSE All Shares (Next day Open price) Period 2 0.67*** 0.77*** 0.57***
FTSE All Shares (Next day Close price) Period 2 0.66*** 0.80*** 0.58***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Given the global anticipation and the potential impact of a COVID-19 vaccine, it’s not sur-

prising that its mention in government briefings would have a profound effect on the stock

market. As the vaccine was heralded as the crucial instrument to curtail the pandemic, restore

normalcy, and rejuvenate economies, any government communication hinting at its progress or

distribution would likely be perceived as a beacon of hope. This leads to the hypothesis: the

more frequent the mentions of the vaccine in government updates, the more bullish the stock

market response, reflecting heightened investor optimism and confidence in economic recovery.
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2.7.3.3 AstraZeneca Stock Dynamics in Response to ’Vaccine’ Mentions and Its

Unique Position in the Analysis

In the pursuit to answer our second research question—how does the sentiment of the govern-

ment’s daily COVID-19 briefings influence stock market movements—we delve into specific

examples that shed light on unique market dynamics. AstraZeneca, as a prime player in the

COVID-19 landscape, offers an insightful case study.

Table 2.13 showcases intriguing dynamics specific to the AstraZeneca stock in relation to the

frequency of the term “vaccine” in the UK government’s COVID-19 daily updates during Period

2 (Peak pandemic).

Table 2.13: Correlation of the word frequency “Vaccine” with AstraZeneca plc’s Prices and
Volume. This table presents correlation outcomes between the frequency of “vaccine” mentions
in the UK COVID-19 daily government communications and the subsequent day’s opening,
closing prices, and trading volume for AstraZeneca plc during Period 2 (Peak pandemic).

Correlations Period Word frequency (keyword=Vaccine)

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Next day Open price) Period 2 -0.47*** -0.57*** -0.41***
AstraZeneca plc (Next day Close price) Period 2 -0.46*** -0.57*** -0.40***
AstraZeneca plc (Next day Trading volume) Period 2 0.42*** 0.36*** 0.26***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Being a constituent of the FTSE 100 and a direct player in COVID-19 vaccine development and

distribution, AstraZeneca occupies a unique position compared to other companies. Its share

price during this period wasn’t solely influenced by the general market sentiment, but also by a

myriad of factors tied to its direct involvement in the pandemic response. From vaccine trial

outcomes and governmental approval timelines to its production and delivery capacities, each

of these elements added layers of complexity to the stock’s performance.

The robust negative correlation observed between the mentions of ’vaccine’ and both the

opening and closing prices of AstraZeneca’s stock hints at the potential challenges the company

faced, possibly from reported side effects Vogel and Kupferschmidt (2021). On the flip side,

the positive correlation with trading volume indicates a heightened market activity, potentially

driven by investors reacting to evolving news about the vaccine.

While this study primarily aims to gauge the broader FTSE market reaction to the UK

government’s COVID-19 briefings, AstraZeneca’s inclusion was essential. It epitomizes the

diverse ways the pandemic has shaped the trajectories of FTSE 100 companies. Recognizing

the multi-faceted influences on AstraZeneca’s stock price, this analysis does not delve deep

into individual company dynamics, but instead seeks to understand market reactions from a

more holistic viewpoint. This exploration into AstraZeneca’s stock behaviour in relation to

government briefings, offers a detailed lens into the multifaceted ways sentiment can influence
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stock market movements, thereby enriching our understanding of the second research question.

2.7.3.4 Isolated Influence of Sentiment on AstraZeneca Stock Returns

Table 2.14 reveals a nuanced relationship between the sentiment scores of the government’s

COVID-19 updates, as gauged by the BERT model, and AstraZeneca’s stock returns. Notably,

the overnight returns (Rto) of AstraZeneca demonstrate a weak positive correlation across all

correlation measures. This is particularly significant given that this is the only instance where

we observed a statistically significant correlation with stock returns in our analysis. Conversely,

the immediate stock returns following the briefing (Rtf ) and returns on the day of (Rtb) the

briefing did not present any notable correlation.

Table 2.14: Sentiment Polarity and AstraZeneca’s Stock Performance. This table showcases
correlations between the BERT-derived sentiment scores from the UK’s daily COVID-19 updates
and AstraZeneca’s stock performance metrics during Period 2 (Peak pandemic). Specifically,
it contrasts sentiment with the overnight stock returns (Rto), the returns in the two hours
post-briefing (Rtf ), and the entire day’s returns on the briefing day (Rtb). Notably, the overnight
returns (Rto) represent the sole significant correlation with stock returns observed in our study.

Correlations Period Sentiment Polarity (BERT)

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Rto) Period 2 0.18*** 0.14* 0.09*
AstraZeneca plc (Rtf ) Period 2 -0.08 -0.06 -0.04
AstraZeneca plc (Rtbe) Period 2 -0.10 -0.13 -0.09*

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Several interpretations emerge from these findings. For example, the market, or a subset of

investors, might require time to assimilate and respond to the sentiment expressed in government

briefings. Additionally, AstraZeneca’s stock is potentially influenced by a myriad of factors

beyond just government sentiment. Elements like clinical trial outcomes, international distribu-

tion agreements, and vaccine production rates are just a few of the multifaceted influences.

In summary, while sentiment scores from government updates offer a unique lens into potential

stock behaviour, the intricate dynamics of AstraZeneca reiterate the complex nature of stock

market reactions during unprecedented events like a pandemic. This correlation serves as a

reminder that while sentiment provides insights, a holistic approach that encompasses multiple

influences is crucial to decipher stock behaviour, especially for stocks like AstraZeneca that are

at the heart of the pandemic discourse. The analysis was strategically broken down into three

periods, capturing different phases of the pandemic. The most pronounced findings emerged

from Period 2, which represented the peak of the pandemic.

141



CHAPTER 2. FINANCIAL MARKETS IN THE COVID-19 ERA

2.7.3.5 Summary Insights—Part 2

The overarching goal of this section was to uncover the relationship between sentiment scores

sourced from the government’s daily COVID-19 briefings and the FTSE stock indices across

three distinct periods. This exploration directly seeks to address Research Question 2: How does

the sentiment of the government’s daily COVID-19 briefings influence stock market movements?.

The most pronounced findings emerged from Period 2, which represented the peak of the

pandemic.

• Stock Prices vs. Returns: Traditional financial research often gravitates towards

returns. However, this study’s empirical observations emphasized absolute stock prices,

revealing that they might capture nuances potentially missed by normalized returns.

• Significant Findings during Peak Pandemic: In Period 2, a statistically significant

positive relationship emerged between sentiment scores and both the opening and closing

prices of various FTSE indices. Curiously, FTSE250 remained an outlier, lacking a

significant correlation and suggesting unique dynamics affecting this index. A potential

explanation is provided in the conclusion section 2.8.

• The ’Vaccine’ Factor: Beyond being a pivotal control variable in sentiment analysis,

the frequency of the term “vaccine” in government briefings was found to profoundly

influence market dynamics. Its regular mention possibly signalled rapid vaccine-related

developments, acting as an indicator for investors.

• Nuanced Influences on AstraZeneca Stock Returns: Sentiment scores had a weak

but positive correlation with AstraZeneca’s overnight returns. This stood out as a unique

observation, being the only significant correlation with stock returns throughout the

study.

• Interpretative Highlights for AstraZeneca: AstraZeneca’s stock movements can be

attributed to a multitude of factors, including but not limited to government sentiment.

While sentiment scores provide a valuable lens into the potential behaviour of stocks, the intricate

dynamics seen, especially with stocks like AstraZeneca, emphasize the importance of multifaceted

analysis. The insights derived from this section contribute richly to the understanding of Research

Question 2, shedding light on the myriad ways government communications during a pandemic

can sway stock market movements.
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2.7.4 Correlations of COVID-19 fatalities and cases vs UK stock market

movement

In this section, we present the correlation analysis between the reported number of COVID-19

fatalities and cases versus the opening and closing prices of the FTSE stock index during

the three time periods indicated in section 2.7.1. The aim is to understand the influence of

COVID-19’s progression on the UK stock market during the pandemic, addressing research

question three listed in Section 2.3.

Research question 3 examines the potential influence of COVID-19-related fatalities and cases in

the UK on the movement of the UK stock market. While at first glance, this question might seem

tangential to sentiment theory, which is central to research questions 1 and 2, its inclusion serves

a crucial purpose. By addressing this question, we aim to ensure that the observed relationship

between COVID-19 briefings and stock market performance, as explored in questions 1 and

2, is not merely a function of the number of cases or fatalities. In essence, we’re controlling

for the possibility that the stock market’s reactions are rooted in the tangible progress of

the pandemic (as reflected by cases and fatalities) rather than the sentiment of government

announcements. If a significant relationship emerges between COVID-19 cases/fatalities and

stock market performance in our analysis for question 3, it could suggest that the correlations

observed in questions 1 and 2 might be influenced or even overshadowed by the sheer number of

cases/fatalities rather than the sentiment conveyed in government announcements. Subsequently,

we discuss the influence of the number of reported COVID-19 fatalities and cases on the UK

stock market during the COVID-19 epidemic, providing potential explanations for observed

patterns.

2.7.4.1 Correlation between COVID-19 Cases and FTSE Prices

• Overall Periods (Table 2.15): there was a positive and statistically significant correla-

tion between the lagged reported number of new COVID-19 cases and both the opening

and closing prices of all FTSE stock indexes. The relationship was especially strong for

the FTSE250. The observed correlation suggests that the stock market was reacting to

more than just the raw numbers of the pandemic. Other factors, such as governmental

and monetary interventions, the anticipation of economic recoveries, and the sentiment

surrounding these numbers, likely played a role. The resilience of the FTSE250 might in-

dicate that medium-sized enterprises were either beneficiaries of certain pandemic-related

trends or were more agile in adapting to the changing landscape. Further details on this

is presented in the conclusion section 2.8.

• Period 1 (Pre-testing, Table 2.17): The number of lagged COVID-19 cases negatively

correlated with FTSE stock indexes. This period marked the onset of the pandemic,

characterized by uncertainty and fear. The stock market’s decline could be attributed to
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concerns about the unknown trajectory of the virus, potential lockdowns, and the ensuing

economic implications.

• Period 2 (Peak pandemic, Table 2.18): The number of lagged COVID-19 cases

had a positive relationship with the FTSE stock indexes, especially the FTSE250. This

phase might have seen a level of market acclimatization to the pandemic’s realities. The

positive correlation suggests that investors were possibly banking on robust governmental

interventions, potential treatments, and an eventual return to normalcy. The FTSE250’s

performance again points to the adaptability of medium-sized businesses during this

tumultuous period. This also indicates that stock prices rebounded and stabilized in

Period 2 after the significant decline in Period 1. This trend is further visualized in Figure

2.1.

• Period 3 (Vaccine roll-out, Table 2.19): Similar to Period 1, the number of lagged

COVID-19 cases negatively influenced the FTSE stock indexes. The greater the number

of cases, the lower the UK FTSE prices. All correlation measures indicate this significant

negative association. The roll-out of vaccines, while promising, also brought to light

challenges like distribution bottlenecks, vaccine hesitancy, and concerns about new variants.

The market might have perceived these as indicators of a prolonged path to full economic

recovery.

2.7.4.2 Correlation between COVID-19 Deaths and FTSE Prices

• Overall Periods (Table 2.16): There was a negative correlation between the lagged

number of COVID-19 deaths and FTSE indexes. The death toll represents a more direct

and tangible consequence of the pandemic, potentially exerting a more pronounced

psychological impact on investors. This could have influenced market sentiments more

consistently.

• Period 1 (Pre-testing, Table 2.20): The number of lagged COVID-19 deaths negatively

correlated with FTSE stock indexes. As fatalities began to rise, the tangible reality and

severity of the pandemic became evident. This grim milestone could have compounded

initial market fears, pushing stock prices down.

• Period 2 (Peak pandemic, Table 2.21): The number of lagged COVID-19 deaths

showed a positive correlation with the FTSE stock indexes. This indicates a recovery and

stabilization of stock prices in Period 2, following their significant decline in Period 1.

This trend is further visualized in Figure 2.1. While counterintuitive, this suggests that

the market had somewhat decoupled from the immediate emotional response to the death

toll. Instead, it might have been focused on broader recovery narratives, interventions,

and long-term economic implications.
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• Period 3 (Vaccine roll-out, Table 2.22): The number of lagged COVID-19 deaths

had a strong negative relationship with FTSE stock indexes. The resurgence of a negative

correlation during vaccine roll-out could have been due to concerns about the vaccines’

effectiveness against emerging variants or challenges in achieving global herd immunity,

given the continuing fatalities.
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Table 2.15: Correlation of Daily COVID-19 Cases with Next Day’s FTSE Stock Prices Across
All Periods. This table illustrates how the reported number of new cases correlates with the
subsequent day’s opening and closing stock prices, considering a one-day lag.

Correlations Period COVID-19 New Daily Cases (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) All periods 0.22*** 0.23*** 0.12***
FTSE100 (Close price) All periods 0.23*** 0.24*** 0.12***

FTSE250 (Open price) All periods 0.30*** 0.39*** 0.21***
FTSE250 (Close price) All periods 0.30*** 0.39*** 0.22***

FTSE350 (Open price) All periods 0.25*** 0.25*** 0.12***
FTSE350 (Close price) All periods 0.25*** 0.25*** 0.13***

FTSE All Shares (Open price) All periods 0.25*** 0.25*** 0.13***
FTSE All Shares (Close price) All periods 0.25*** 0.25*** 0.13***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Table 2.16: Correlation of Daily COVID-19 Deaths with Next Day’s FTSE Stock Prices Across
All Periods. The table demonstrates the relationship between the reported number of deaths
and the following day’s stock prices, considering a one-day lag.

Correlations Period COVID-19 New Daily Deaths (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) All periods -0.01 -0.14*** -0.09***
FTSE100 (Close price) All periods -0.02 -0.13*** -0.08***

FTSE250 (Open price) All periods -0.00 -0.16*** -0.11***
FTSE250 (Close price) All periods 0.00 -0.16*** -0.11***

FTSE350 (Open price) All periods -0.01 -0.16*** -0.10***
FTSE350 (Close price) All periods -0.01 -0.15*** -0.09***

FTSE All Shares (Open price) All periods -0.01 -0.16*** -0.10***
FTSE All Shares (Close price) All periods -0.01 -0.15*** -0.10***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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Table 2.17: Correlation of Daily COVID-19 Cases with Next Day’s FTSE Stock Prices During
Period 1 (Pre-testing). This table presents how the reported daily cases relate to the subsequent
day’s stock prices, using a one-day lag.

Correlations Period COVID-19 New Daily Cases (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) Period 1 -0.28*** -0.42*** -0.32***
FTSE100 (Close price) Period 1 -0.32*** -0.43*** -0.32***

FTSE250 (Open price) Period 1 -0.30*** -0.39*** -0.28***
FTSE250 (Close price) Period 1 -0.32*** -0.40*** -0.29***

FTSE350 (Open price) Period 1 -0.29*** -0.41*** -0.31***
FTSE350 (Close price) Period 1 -0.32*** -0.42*** -0.32***

FTSE All Shares (Open price) Period 1 -0.29*** -0.42*** -0.32***
FTSE All Shares (Close price) Period 1 -0.32*** -0.42*** -0.32***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Table 2.18: Correlation of Daily COVID-19 Cases with Next Day’s FTSE Stock Prices During
Period 2 (Peak pandemic). This table showcases the relationship between daily reported cases
and the subsequent day’s stock prices, accounting for a one-day lag.

Correlations Period COVID-19 New Daily Cases (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) Period 2 0.61*** 0.38*** 0.19***
FTSE100 (Close price) Period 2 0.62*** 0.40*** 0.22***

FTSE250 (Open price) Period 2 0.82*** 0.76*** 0.56***
FTSE250 (Close price) Period 2 0.82*** 0.77*** 0.58***

FTSE350 (Open price) Period 2 0.67*** 0.40*** 0.22***
FTSE350 (Close price) Period 2 0.68*** 0.42*** 0.25***

FTSE All Shares (Open price) Period 2 0.68*** 0.41*** 0.23***
FTSE All Shares (Close price) Period 2 0.69*** 0.43*** 0.26***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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Table 2.19: Correlation of Daily COVID-19 Cases with Next Day’s FTSE Stock Prices During
Period 3 (Vaccine roll-out). The table indicates how daily cases correspond with the next day’s
stock prices, factoring in a one-day lag.

Correlations Period COVID-19 New Daily Cases (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) Period 3 -0.25*** -0.24** -0.21***
FTSE100 (Close price) Period 3 -0.27*** -0.27*** -0.23***

FTSE250 (Open price) Period 3 -0.32*** -0.33*** -0.27***
FTSE250 (Close price) Period 3 -0.32*** -0.35*** -0.28***

FTSE350 (Open price) Period 3 -0.27*** -0.25** -0.22***
FTSE350 (Close price) Period 3 -0.28*** -0.28*** -0.24***

FTSE All Shares (Open price) Period 3 -0.27*** -0.25** -0.22***
FTSE All Shares (Close price) Period 3 -0.28*** -0.27*** -0.24***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Table 2.20: Correlation of Daily COVID-19 Deaths with Next Day’s FTSE Stock Prices During
Period 1 (Pre-testing). The table elucidates the relationship between reported daily deaths and
the subsequent day’s stock prices, given a one-day lag.

Correlations Period COVID-19 New Daily Deaths (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) Period 1 -0.14 -0.26** -0.21***
FTSE100 (Close price) Period 1 -0.17 -0.26** -0.22***

FTSE250 (Open price) Period 1 -0.12 -0.23* -0.18**
FTSE250 (Close price) Period 1 -0.14 -0.24** -0.19**

FTSE350 (Open price) Period 1 -0.14 -0.25** -0.20**
FTSE350 (Close price) Period 1 -0.17 -0.26** -0.22***

FTSE All Shares (Open price) Period 1 -0.14 -0.25** -0.21***
FTSE All Shares (Close price) Period 1 -0.17 -0.26** -0.22***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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Table 2.21: Correlation of Daily COVID-19 Deaths with Next Day’s FTSE Stock Prices During
Period 2 (Peak pandemic). The table emphasizes the correlation between daily deaths and the
next day’s stock prices, accounting for a one-day lag.

Correlations Period COVID-19 New Daily Deaths (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) Period 2 0.72*** 0.60*** 0.40***
FTSE100 (Close price) Period 2 0.72*** 0.61*** 0.41***

FTSE250 (Open price) Period 2 0.89*** 0.75*** 0.54***
FTSE250 (Close price) Period 2 0.82*** 0.76*** 0.55***

FTSE350 (Open price) Period 2 0.76*** 0.61*** 0.41***
FTSE350 (Close price) Period 2 0.76*** 0.62*** 0.42***

FTSE All Shares (Open price) Period 2 0.77*** 0.61*** 0.42***
FTSE All Shares (Close price) Period 2 0.78*** 0.63*** 0.42***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

Table 2.22: Correlation of Daily COVID-19 Deaths with Next Day’s FTSE Stock Prices During
Period 3 (Vaccine roll-out). This table describes how reported daily deaths influence the
subsequent day’s stock prices, with a one-day lag.

Correlations Period COVID-19 New Daily Deaths (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE100 (Open price) Period 3 -0.72*** -0.85*** -0.65***
FTSE100 (Close price) Period 3 -0.73*** -0.85*** -0.67***

FTSE250 (Open price) Period 3 -0.72*** -0.85*** -0.67***
FTSE250 (Close price) Period 3 -0.72*** -0.84*** -0.65***

FTSE350 (Open price) Period 3 -0.72*** -0.85*** -0.67***
FTSE350 (Close price) Period 3 -0.73*** -0.86*** -0.67***

FTSE All Shares (Open price) Period 3 -0.72*** -0.86*** -0.67***
FTSE All Shares (Close price) Period 3 -0.73*** -0.86*** -0.67***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

2.7.4.3 Conclusion and Significance of the Analysis for Research question 3

Research Question 3 aimed to discern if the number of COVID-19-related fatalities and cases

in the UK could elucidate the trends in the UK stock market during various pandemic phases.

The findings suggest a noteworthy relationship:

During the pandemic’s onset (Period 1), an increase in cases and deaths corresponded with a

decline in stock market prices. However, in the pandemic’s peak (Period 2), the stock market

exhibited an unexpected resilience, with prices stabilizing and even increasing alongside rising

cases and fatalities. By the vaccine roll-out phase in Period 3, despite the promise of vaccines,

the market displayed sensitivity to the challenges surrounding vaccine distribution, fears of new

virus variants, and the potential long-term economic repercussions.
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These findings underscore that while there is a relationship between the pandemic’s progression

(in terms of cases and deaths) and stock market movements, it isn’t straightforward. Other

factors, such as governmental responses, market sentiments, and evolving economic perspectives,

heavily influence stock market trends. Thus, while the number of cases and deaths provides

some insight into stock market movements, it’s one piece of a larger puzzle. The sentiment

and contextual environment during each phase played a pivotal role, indicating that the stock

market’s reactions were not solely driven by the pandemic’s direct impacts, but also by the

broader socio-economic context.

In the context of this study, the significant correlations found in Research Question 3 emphasize

the need to consider the direct impacts of the pandemic alongside other influencing factors

when examining the relationship between government announcements, market sentiments, and

stock market performance.
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2.7.5 Granger Causality analysis

After observing significant correlations in the preceding analysis, it becomes essential to probe

the causative relationships between the variables of interest. The Granger causality tests provide

a mechanism to understand if one variable can predict another, offering insights beyond mere

correlation. In the complex tapestry of financial market behaviour amidst a global health crisis,

the dissemination and reception of information play a pivotal role. Granger causality tests offer

a means to decipher this complexity, shedding light on the causal pathways and sequencing of

information exchange.

• From COVID-19 Numbers to Sentiment:

Research Question 1 postulated a relationship between the sentiment of government

announcements and stock market performance. In the context of information flow, it’s

crucial to determine if the unfolding pandemic scenario, as represented by COVID-19

numbers, ’Granger causes’ or influences the sentiment of government announcements.

This would suggest that the tangible progression of the pandemic shapes the narrative

tone of governmental communications.

• From Sentiment to Stock Market Performance:

Research Question 2 delved into the connection between the sentiment scores from the

government’s COVID-19 updates and FTSE index prices. Having established a potential

causative relationship from COVID-19 numbers to sentiment, it becomes imperative to

understand if this sentiment in turn ’Granger causes’ stock market movements. This

would imply that market dynamics are significantly swayed by the tone and content of

government communications, forming the next link in our chain of information flow.

• Direct Influence of COVID-19 Numbers on Stock Prices:

For Research Question 3, while the earlier correlations signposted a relationship between

the pandemic’s progression and stock market reactions, Granger causality can pinpoint if

the number of COVID-19 cases and deaths directly influence stock prices, bypassing the

sentiment intermediary. This would be akin to the market reacting directly to raw data

about the pandemic’s progression, underscoring the magnitude of its impact.

The above analysis can be visualized as a circular mechanism of information flow, reminiscent of

information theory: COVID-19 numbers influence government sentiment, which in turn affects

stock prices, while also checking if there’s a direct pathway from COVID-19 numbers to stock

prices.

Before setting this mechanism in motion, it’s vital to ensure that our time series data adheres to

the principles of stationarity. Non-stationary data can misguide our understanding of causality.

The adherence to stationarity is verified using the methods outlined in the methodology section

2.6.9, and the outcomes are consolidated in Table 2.23.
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Table 2.23: Unit Root Test Results – It displays the unit root test results for the time series
under investigation, thereby testing for stationarity before performing the Granger Causality
test, as per the methodology Section 2.6.9. Based on the results from both the Augmented
Dickey-Fuller (ADF) and KPSS tests presented in Table 2.23, we can confirm that all the
series under consideration are stationary. This ensures that we can proceed with the Granger
causality tests without the risk of encountering spurious results due to non-stationary data.
The stationarity of the series provides a solid foundation for the subsequent analyses, ensuring
that the relationships we identify are genuine and not a mere artifact of non-stationarity.

Variables ADF Test KPSS Test

Unchanged Transformed* Unchanged

Statistics p-value Statistics p-value Statistics p-value

Sentiment BERT -5.86 0.00 − − − −

New Cases -3.43 0.04 -3.89 0.01 − −
New Deaths -2.42 0.36 -3.21 0.08 − −

FTSE100 (Pro**) -2.31 0.16 − − 1.54 0.01
FTSE250 (Pro) -1.40 0.58 − − 1.80 0.01
FTSE350 (Pro) -2.07 0.25 − − 1.63 0.01
FTSE All-Shares (Pro) -1.97 0.29 − − 1.65 0.01

FTSE100 (Prc***) -1.31 0.62 − − 1.54 0.01
FTSE250 (Prc) -2.03 0.27 − − 1.80 0.01
FTSE350 (Prc) -1.27 0.64 − − 1.63 0.01
FTSE All-Shares (Prc) -1.23 0.65 − − 1.65 0.01

FTSE100 (Rt****) -18.83 0.00 − − − −
FTSE250 (Rt) -17.64 0.00 − − − −
FTSE350 (Rt) -18.08 0.00 − − − −
FTSE All-Shares (Rt) -18.08 0.00 − − − −

AZN PLC (Pro) -2.93 0.04 − − − −
AZN PLC (Prc) -3.09 0.02 − − − −
AZN PLC (Rt) -18.97 0.00 − − − −
AZN PLC (V *****) -3.33 0.01 − − − −

* Squared, ** Price(Open), *** Price(Close) , **** Return , ***** TradingV olume

2.7.5.1 Granger causality for the FTSE100 and Sentiment polarity

The Granger causality tests delved into the potential of sentiment polarity from the govern-

ment’s COVID-19 updates as a harbinger for FTSE100’s opening and closing prices. It’s pivotal

to stress that “Granger causality” here pinpoints predictive precedence between time series,

rather than a direct cause-and-effect linkage. Table 2.24 showcases the outcomes during the

pandemic’s peak (Period 2), a time frame characterized by palpable correlations as spotlighted

in Table 2.11. In the Granger causality paradigm:
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• A left arrow (←) connotes that the second variable has predictive precedence over the

first.

• A bidirectional arrow (⇄) signals a mutual predictive relationship: both time series seem

to hold foresight over each other’s future values.

• A dash (-) signifies an absence of any Granger causality between the involved series.

Table 2.24: Granger causality for the FTSE100 Sentiment polarity – Period 2. It displays the
Granger Causality test results for the opening and closing prices of the FTSE100 and the UK
government updates’ Sentiment polarity time series in Period 2 (Peak of the pandemic).

Null Hypothesis - Period 2 Lag Wald Test

Chi− square p− value Direction

Sentiment does not Granger − cause FTSE100 (open) (Slag=1) 4.2412** 0.03 ←
Sentiment does not Granger − cause FTSE100 (close) (Slag=1) 5.4261** 0.01 ←
Sentiment does not Granger − cause FTSE100 (open) (Slag=10) 119.8843*** 0.00 ⇄
Sentiment does not Granger − cause FTSE100 (close) (Slag=10) 72.1222*** 0.00 ⇄

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

From Table 2.24:

• During Period 2, sentiment polarity with a one-day lag (Slag=1) doesn’t appear to possess

foresight over the FTSE100 prices. Interestingly, the FTSE100 prices might have predictive

precedence over sentiment polarity. This could hint at a complex interplay where market

movements might be anticipating or reacting to other external factors, which subsequently

reflect in government sentiments.

• With a ten-day lag (Slag=10), a bidirectional Granger causality emerges. This intriguingly

suggests that not only does sentiment polarity from a government update ten days prior

hold predictive power over FTSE100’s prices but also that market movements might

have some predictive capacity over government sentiment released ten days later. While

this mutual foresight is statistically robust, its real-world interpretation is intricate.

It could allude to a nuanced feedback loop where market reactions and governmental

communications are intertwined in a dance of mutual influence. Nevertheless, given the

unexpected nature of this result, it is presented primarily for academic rigour and to

inspire further probing into this intricate relationship.
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2.7.5.2 Granger causality for the FTSE100 and the term frequency “Vaccine”

The Granger causality tests sought to discern if the frequency of the term “Vaccine” in the

COVID-19 UK government updates offers predictive insights into the FTSE100’s opening and

closing prices. The rationale behind the emphasis on the FTSE100 mirrors that elucidated in

the exposition of results in Table 2.24. The Granger causality tests are spotlighted during the

pandemic’s zenith (Period 2), aligning with the epoch that revealed statistically significant

correlations as documented in Table 2.12. Table 2.25 elucidates the outcomes of the Granger

causality test.Observations from Table 2.25 reveal:

• In Period 2, the term frequency “Vaccine” with a one-day lag (Vlag=1) doesn’t offer

predictive value over the FTSE100 prices. Notably, the Granger causality is solely from

the FTSE100 prices towards the term frequency “Vaccine”. This could indicate that market

movements may, directly or indirectly, influence subsequent government communications

or the emphasis on the vaccine narrative.

• With a ten-day lag (Vlag=10), there emerges a bidirectional Granger causality. This

suggests that the frequency of the term “Vaccine” in a government update ten days prior

might offer foresight into FTSE100’s prices. Conversely, the market’s dynamics might

provide insights into the vaccine narrative ten days hence. While statistically valid, this

bidirectional causality might be somewhat counterintuitive, especially in the direction

of stock prices predicting future government communications. Such findings could be

emblematic of deeper, latent factors influencing both the stock market and government

narratives, leading to this observed interplay. Given the complexities and potentially

unexpected nature of this result, it’s featured primarily for academic completeness and to

inspire further nuanced explorations into the relationship between market dynamics and

the vaccine discourse.

Table 2.25: Granger causality for the FTSE100 vs COVID-19 death and cases – Period 2. It
showcases the Granger Causality test outcomes for the FTSE100’s opening and closing prices
vis-à-vis the frequency of the term “Vaccine” in COVID-19 UK government updates during the
pandemic’s peak (Period 2).

Null Hypothesis - Period 2 Lag Wald Test

Chi− square p− value Direction

“Vaccine” does not Granger − cause FTSE100 (open) (Vlag=1) 14.6205*** 0.00 ←
“Vaccine” does not Granger − cause FTSE100 (close) (Vlag=1) 19.9195*** 0.00 ←
“Vaccine” does not Granger − cause FTSE100 (open) (Vlag=10) 25.2945*** 0.00 ⇄
“Vaccine” does not Granger − cause FTSE100 (close) (Vlag=10) 69.6700*** 0.00 ⇄

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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2.7.5.3 Granger Causality between FTSE100 and COVID-19 New Deaths and

Cases for Period 1

The Granger causality tests were conducted to assess if the number of reported COVID-19

cases and deaths could provide predictive insights into the FTSE100’s opening and closing

prices during Period 1 (Pre-testing). As with the previous analyses, the spotlight is on the

FTSE100 stock index due to its analogous behaviour, as depicted in Tables 2.24 and 2.25. The

Granger causality tests correspond to Period 1, a juncture that unveiled statistically significant

correlations, as captured in Tables 2.15 and 2.16. Table 2.26 distils the outcomes of the Granger

causality test. Salient observations from Table 2.26 are:

• During Period 1, the number of COVID-19 cases, whether lagged by one day (Clag=1)

or ten days (Clag=10), is not predictive of the FTSE100’s opening or closing prices. Yet,

intriguingly, the FTSE100 prices appear to offer predictive value over the reported number

of new COVID-19 cases. While this may appear counterintuitive at first blush, it suggests

that market dynamics could, directly or indirectly, reflect public anticipation or reaction

to emerging health trends, even before they’re officially reported.

• The number of reported COVID-19 deaths, when lagged by ten days (Dlag=10), reveals a

bidirectional Granger causality with the FTSE100 prices. This intimates that not only can

the number of deaths from ten days prior offer predictive insights into FTSE100 prices,

but also the converse. The logical conundrum here, particularly the notion that stock

prices could foretell future reported deaths, implies that there might be latent variables or

dynamics at play, affecting both the stock market and reported health metrics. It’s pivotal

to handle such results with caution, recognizing that while statistical models can unveil

such patterns, they do not necessarily confer direct causation or practical interpretation.

Table 2.26: Granger causality between FTSE100 prices and reported numbers of COVID-19
cases and deaths for Period 1.

Null Hypothesis - Period 1 Lag Wald Test

Chi− square p− value Direction

Nb cases does not Granger − cause FTSE100 (Open) (Clag=1) 10.0867*** 0.00 ←
Nb cases does not Granger − cause FTSE100 (Close) (Clag=1) 12.4075*** 0.00 ←
Nb cases does not Granger − cause FTSE100 (Open) (Clag=10) 26.6129*** 0.00 ←
Nb cases does not Granger − cause FTSE100 (Close) (Clag=10) 24.1751*** 0.00 ←

Nb deaths does not Granger − cause FTSE100 (Open) (Dlag=1) 0.2524 0.61 −
Nb deaths does not Granger − cause FTSE100 (Close) (Dlag=1) 0.1998 0.65 −
Nb deaths does not Granger − cause FTSE100 (Open) (Dlag=10) 38.9946 0.90 ←
Nb deaths does not Granger − cause FTSE100 (Close) (Dlag=10) 16.4071* 0.08 ⇄

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

155



CHAPTER 2. FINANCIAL MARKETS IN THE COVID-19 ERA

2.7.5.4 Granger Causality between FTSE100 and COVID-19 New Deaths and

Cases for Period 2

The Granger causality tests were conducted to investigate if the reported number of COVID-19

cases and deaths could provide predictive insights into the FTSE100’s opening and closing prices

for Period 2, which is designated as the ”Peak of the pandemic”. As has been the approach in

previous analyses (Tables 2.24, 2.25, and 2.26), the focus remains on the FTSE100 stock index.

For a glimpse into the statistically significant correlations identified for this period, we refer to

Tables 2.15 and 2.16. The Granger causality results for this period are consolidated in Table

2.27. Salient observations from Table 2.27 are:

• During Period 2, the number of reported COVID-19 cases, when lagged by one day

(Clag=1) and ten days (Clag=10), emerges as a significant predictor for the FTSE100’s

opening prices. However, only the one-day lag (Clag=1) offers predictive value over the

FTSE100’s closing prices. This indicates that near-term reported COVID-19 case trends

might influence stock market movements more immediately than longer-term trends.

• Concerning the number of reported COVID-19 deaths, the FTSE100 prices, both opening

and closing, appear to provide predictive insights over the number of reported deaths

when lagged by one day (Dlag=1) and ten days (Dlag=10). This finding reiterates a

pattern observed in the previous period, suggesting that market dynamics might reflect

public sentiments, concerns, or reactions to health trends, possibly even before they’re

documented or officially acknowledged.

Table 2.27: Granger causality for Sentiment polarity vs COVID-19 death and cases – Period 2.
It displays the Granger Causality test results for the opening and closing prices of the FTSE100
and the number of COVID-19 new cases and deaths in Period 2 (Peak of the pandemic).

Null Hypothesis - Period 2 Lag Wald Test

Chi− square p− value Direction

Nb cases does not Granger − cause FTSE100 (Open) (Clag=1) 3.7991** 0.05 →
Nb cases does not Granger − cause FTSE100 (Close) (Clag=1) 3.7606** 0.05 →
Nb cases does not Granger − cause FTSE100 (Open) (Clag=10) 18.9528** 0.04 →
Nb cases does not Granger − cause FTSE100 (Close) (Clag=10) 13.7508 0.18 −

Nb deaths does not Granger − cause FTSE100 (Open) (Dlag=1) 15.5653*** 0.00 ←
Nb deaths does not Granger − cause FTSE100 (Close) (Dlag=1) 14.6400*** 0.00 ←
Nb deaths does not Granger − cause FTSE100 (Open) (Dlag=10) 26.9884*** 0.00 ←
Nb deaths does not Granger − cause FTSE100 (Close) (Dlag=10) 19.5921*** 0.00 ←
* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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2.7.5.5 Granger Causality between FTSE100 and COVID-19 New Deaths and

Cases for Period 3

For the ”Vaccine roll-out” period, designated as Period 3, we again conducted Granger causality

tests to determine whether reported COVID-19 cases and deaths had predictive power over the

FTSE100’s opening and closing prices. Keeping in line with our previous analyses (Tables 2.24,

2.25, 2.26, and 2.27), the spotlight remains on the FTSE100 stock index. Relevant correlation

analyses for this period can be revisited in Tables 2.15 and 2.16. The Granger causality results

for this phase are documented in Table 2.28. From the findings presented in Table 2.28, we

observe:

• The number of reported COVID-19 cases, when lagged by one day (Clag=1) and ten days

(Clag=10), doesn’t possess strong predictive power over the FTSE100’s opening prices

for this period. However, an intriguing exception is seen when the ten-day lagged new

COVID-19 cases time series appears to exhibit a bidirectional Granger causality with the

FTSE100’s closing prices.

• For the number of reported COVID-19 deaths, there’s a noticeable bidirectional Granger

causality pattern between the deaths time series and the FTSE100 prices (both opening

and closing), when the data is lagged by either one day (Dlag=1) or ten days (Dlag=10).

This suggests that during the vaccine roll-out period, the stock market movements were

deeply intertwined with the health scenario, possibly reflecting public sentiments or

concerns.

Table 2.28: Granger causality for Sentiment polarity vs COVID-19 death and cases – Period 3.
It displays the Granger Causality test results for the opening and closing prices of the FTSE100
and the number of COVID-19 new cases and deaths in Period 3 (Vaccine roll-out)

Null Hypothesis - Period 3 Lag Wald Test

Chi− square p− value Direction

Nb cases does not Granger − cause FTSE100 (Open) (Clag=1) 12.7429*** 0.00 ←
Nb cases does not Granger − cause FTSE100 (Close) (Clag=1) 12.8323*** 0.00 ←
Nb cases does not Granger − cause FTSE100 (Open) (Clag=10) 21.5957*** 0.00 ←
Nb cases does not Granger − cause FTSE100 (Close) (Clag=10) 27.4723*** 0.00 ⇄

Nb deaths does not Granger − cause FTSE100 (Open) (Dlag=1) 3.2732* 0.07 ⇄
Nb deaths does not Granger − cause FTSE100 (Close) (Dlag=1) 2.7645* 0.09 ⇄
Nb deaths does not Granger − cause FTSE100 (Open) (Dlag=10) 17.6711* 0.06 ⇄
Nb deaths does not Granger − cause FTSE100 (Close) (Dlag=10) 30.8576*** 0.00 ⇄

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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2.8 Conclusions, limitations, and future work

This research seeks to understand investor sentiment using a unique approach. We analyse the

sentiment found in the UK government’s daily COVID-19 updates, using it as a representation

of UK investor sentiment. The idea is that these government communications, especially during

significant events like a pandemic, can provide insights into the broader mood and perspectives

of the population, including investors. Our main objective is to explore how this sentiment

relates to fluctuations in the UK stock market.

The analysis is grounded in data spanning from March 3rd 2020 to June 23rd 2021, capturing

the range from the first to the last COVID-19-related governmental press briefings.

Our findings depict a multifaceted relationship between the sentiment derived from the updates

and stock prices. While certain stock indices displayed clear correlations in specific instances,

these links were absent in others. To capture the changing influence of the pandemic, we

segmented its progression into three distinct phases, labelled as Periods 1, 2, and 3, as depicted

in Figure 2.9. The evolution of governmental responses across the three periods sheds light on

the adaptive nature of crisis management.

2.8.1 Period 1: Pre-testing

• Testing and Cases Dynamics: This period was marked by a disparity between the

reported COVID-19-related cases and the number of new fatalities, largely due to the

absence of widespread testing, which potentially led to the underreporting of cases Watson

et al. (2020).

• Sentiment Dynamics: The government consistently projected optimism despite the

rise in fatalities and cases. This strategy of bolstering positivity during crises aligns with

the findings of Coombs (2007) on crisis communication strategies.

• Market Reactions: Rising fatalities seemed to have a correlation with the sentiment

of the subsequent day’s governmental updates, suggesting an urgency to uplift the

public’s and investors’ mood during turbulent times, as observed by Tetlock (2007) in his

examination of media sentiment and its impact on markets.

2.8.2 Period 2: Peak pandemic

• Rise in Cases: The advent of testing facilities, including self-testing kits, allowed for

a more accurate depiction of the pandemic’s spread. As such, reported cases surged,

reflecting a trend observed globally during this time Peeling et al. (2020).

• Sentiment Dynamics: The term ”vaccine” gained prominence in governmental com-

munications, echoing its public discourse significance. This observation aligns with Bish
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and Michie (2010), which emphasizes pivotal solutions in public health communications

during health crises.

• Market Reactions: The interaction between market indicators and governmental senti-

ment, as described in Table 2.10, is consistent with Baker and Wurgler (2007) findings on

the influence of investor sentiment on stock returns.

2.8.3 Period 3: Vaccine roll-out

• Vaccination Impact: Following the vaccine roll-out, its success was reflected in govern-

mental communications and market reactions. This mirrors the societal and economic

impacts of successful vaccination campaigns highlighted by Larson et al. (2014).

• Sentiment Dynamics: The sustained emphasis on vaccination in governmental commu-

nications resonates with Slovic (1987) insights into the role of public sentiment in guiding

policy responses during crises.

• Market Reactions: The dynamics between information, sentiment, and the market,

as exemplified in Table 2.28, align with Tetlock (2007) exploration of media sentiment’s

relationship with stock market movements.

2.8.4 Overall Insights

• Governmental Strategy:

Sentiment Management in crisis: Throughout the analysed periods, governmental

communications emerged as more than just an information relay; they became a strategic

tool for shaping and steering public sentiment. In the ”Pre-testing period” (Period 1), the

escalating health crisis did not translate into overtly negative government communications.

Instead, there was a discernible push towards optimism (Table 2.8). The sentiment polarity

curve’s positive tilt (Figure A.3) showcases the government’s proactive approach to crisis

communications, underlining the vital role of sentiment management in influencing both

public perception and market sentiments.

• Prominence of the Vaccine Narrative:

Symbol of Hope: As the pandemic’s chapters unfolded, the term ”vaccine” emerged as

more than a medical solution—it became a symbol of hope. During the pandemic’s peak

and the subsequent vaccine roll-out (Periods 2 and 3), its mentions echoed its lifesaving

potential and its role as an emblem of resilience and recovery. The heightened emphasis on

this narrative had palpable ripple effects, notably on investor sentiments (Table 2.10 and

Table A.10). Such strategically positioned narratives underscore their power in guiding

public behaviour and setting expectations during unprecedented times.
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• Differential Impact on Stock Indices:

Sector Vulnerabilities: According to our research, using data from Bloomberg, a

striking 74% of FTSE 250 index firms are from sectors that bore the brunt of the

COVID-19 pandemic, compared to just 26% for the FTSE 100. The sectors hardest

hit encompassed Tourism and Leisure (including air travel), fossil fuel production and

distribution, insurance, and non-essential merchants, aligning with findings by (Griffith

et al., 2020). Conversely, industries like utilities, high-tech manufacturing, tobacco, food,

and pharmaceutical merchants weathered the storm better, even outpacing the market.

Notably, medical and biotech research firms, which include giants like AstraZeneca, surged

by 6%, countering the overall market decline of 21%. It’s noteworthy that 75% of all FTSE-

listed medical and biotech entities are housed within the FTSE 100, leaving the FTSE

250 with just 25%. This disparity in sectoral distribution and vulnerability underpins the

differential behaviours of the two indices during the pandemic, offering valuable context

to our results.

• Granger Causality Insights:

Narrative Dynamics and Market Reactions: The Granger causality tests unveiled

intricate predictive patterns, especially around the term ”vaccine”. This narrative wasn’t

just a buzzword; it actively influenced market trajectories (Table A.9 and Table 2.28). Such

findings resonate with established financial theories like the efficient market hypothesis

Fama (1970), underpinning the critical role of timely information and sentiment modulation

in shaping stock market movements. In a world increasingly governed by narratives,

understanding these temporal causality patterns becomes paramount for both policymakers

and market players.

2.8.5 Limitations

• Indirect Sentiment Analysis:

Utilizing governmental communications as a sentiment proxy presents inherent limitations.

These communications are curated for broad audiences and might miss the multifaceted,

rapidly evolving views of investors. While they provide transparency and manage broader

perceptions, they might lag behind real-time market sentiments. Direct sentiment mea-

surements from platforms like StockTwits and Twitter have emerged as invaluable tools

(Antweiler and Frank (2004); Bollen et al. (2011)), offering almost instantaneous snap-

shots of investor sentiments. As Tetlock (2007) illustrated, even the mood of financial

news can impact stock market movements. Moreover, the rise of algorithmic trading has

underscored the importance of real-time sentiment data. These algorithms, reacting faster

than humans, often leverage sentiments from multiple sources for trading decisions. Zhang

et al. (2011) further supported this by highlighting the predictive power of social media

sentiment on stock market behaviours. While governmental communications offer a broad
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perspective on investor sentiment, other platforms, such as investor forums and social

media message boards, can provide a more detailed view of specific stocks or sectors.

These platforms capture nuanced sentiments in ways that governmental channels might

overlook. Nguyen et al. (2015) underscored this by proposing a model that integrates

sentiment derived from specific topics discussed on message boards to predict stock price

movement. Their research emphasizes the importance of understanding the specific topics

of discussion and the associated sentiments, rather than just the overall mood, to better

inform stock market predictions.

• Macro vs. Micro Insights:

While our study paints a picture of overarching trends in governmental communications and

their impact on stock market indices, it might inadvertently gloss over the subtle intricacies

that can be pivotal in understanding investor sentiment. These nuances, often found in

discrete events or specific stock behaviours, can be pivotal in shaping the larger trends we

observe. Kolari and Pynnönen (2010) underscored the importance of event-driven analyses

in financial studies, suggesting that zeroing in on these specific occurrences can reveal

granular insights that macro trends might obscure. Further, supporting this,Tetlock (2007)

demonstrated how even short-lived media content could significantly impact stock price

movements. These micro-analyses can unearth anomalies, identify previously unnoticed

correlations, and offer actionable strategies for investors and policy-makers. Balancing

the broad strokes of macro analysis with the detail-oriented scrutiny of micro insights

ensures a more comprehensive understanding of market dynamics.

• Broad Information Landscape:

The informational ecosystem that investors operate within is multifaceted and ever-

evolving. While our study has placed emphasis on governmental communications, it’s

crucial to acknowledge that these form only one part of the broader narrative. Traditional

news outlets, financial analysts, and global events contribute to shaping investor sentiment.

Furthermore, the digital age has ushered in a new wave of influencers through platforms

like Twitter, LinkedIn, and various financial forums. These digital platforms can amplify

or even initiate market movements based on real-time discussions and sentiment shifts.

Engelberg and Parsons (2011) elucidated the profound impact of media on financial

markets, underlining how timely news stories can be pivotal in steering stock price

trajectories. Therefore, while governmental communications are undeniably influential,

the broader media landscape plays an equally, if not more, significant role in the financial

decision-making process.

• Caveats of Granger Causality:

While Granger causality offers a structured approach to discerning potential predictive

relationships in data, its application must be cautiously undertaken. One of its core
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assumptions is data stationarity, which, if violated, can lead to misleading conclusions.

Moreover, our analysis encountered instances of bidirectional causality, a phenomenon

where both time series appear to ’Granger-cause’ each other. This suggests a form of

feedback loop or circular influence between the variables, a scenario where changes in one

variable can influence changes in another and vice versa over time. Such bidirectional

relationships can be particularly challenging to decipher as they defy simplistic causal

interpretations. In real-world scenarios, especially in the complex domain of financial

markets, this might signify intricate interdependencies between variables, where events

or sentiments in one domain reciprocally influence and are influenced by another. As

highlighted by Ding et al. (1993), the presence of bidirectional causality often necessitates

a deeper investigation into the underlying mechanisms and potential confounding fac-

tors. Furthermore, Granger causality essentially captures linear relationships, potentially

overlooking intricate nonlinear dynamics in the data. Lütkepohl (2005) has underscored

these challenges, emphasizing the need for more advanced models to unravel such complex

relationships. In light of evolving financial ecosystems, a hybrid approach integrating

Granger causality with other methods might provide a more holistic understanding.

2.8.6 Future Directions

• Direct Sentiment Analysis as a Path Forward:

With the rapid advancements in Natural Language Processing (NLP) and machine

learning, there lies a promising avenue in directly harnessing sentiments from financial

news, investor forums, and even social media platforms. These platforms can serve

as a real-time barometer of investor sentiment, capturing subtle shifts in mood and

perception that might not be immediately evident in broader datasets. Tetlock (2007)

underscored the potential of such an approach, demonstrating its efficacy in predicting

market movements. Furthermore, the works of Sprenger et al. (2014) suggest that Twitter

data, when analysed with sophisticated NLP tools, can be particularly revealing of

both retail and institutional investor sentiments. Additionally, considering the rise of

platforms like Reddit’s r/wallstreetbets, there’s a burgeoning need to incorporate such

unconventional yet influential sources into sentiment models. As Bollen et al. (2011) found,

the mood variations discerned from Twitter can even predict the daily ups and downs

of the stock market. As we move forward, integrating these diverse data sources and

advanced analytical techniques can pave the way for more robust, dynamic, and real-time

financial prediction models.

• Cross-Country Comparative Studies:

Investigating the interplay between governmental communications and stock market

dynamics across various nations can offer invaluable insights into the global financial

ecosystem. Bekaert et al. (2005) underscored the richness of insights this approach can
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bring, especially in understanding how different regulatory environments, cultural nuances,

and economic structures can influence stock market behaviours. Such studies can also

illuminate how global events, like the COVID-19 pandemic, are perceived and addressed

differently across countries and how these variances impact investor sentiment and market

dynamics. For instance, CHIANG et al. (2011) demonstrated how international news

can profoundly affect local market returns and volatilities. By extending our analysis to

a cross-border perspective, we can also explore the synchronization of global markets,

understanding how events in one country might ripple across borders, affecting markets

far removed from the epicentre of the news. In the age of globalization, where markets

are intricately interconnected, such an approach is valuable and imperative to unravel

the complexities of the global financial tapestry.

• Sector-Specific Exploration:

The COVID-19 pandemic illuminated the varying vulnerabilities across different sectors.

For instance, sectors such as tourism and travel faced drastic downturns, while others like

pharmaceuticals and technology saw increased interest. Given these disparities, diving

deeper into sector-specific analyses becomes crucial to understanding the nuances and

unique challenges each faces. In line with this, Pástor and Pietro (2003) emphasized the

importance of understanding industries’ characteristics when evaluating their stock returns,

especially during uncertain times. Similarly, Gompers and Metrick (2001) highlighted

how external shocks could lead to varied reactions across sectors, reinforcing the need for

tailored analyses during global events.

• Diversified Causal Models:

Traditional causality tests, while foundational, sometimes fall short of capturing the multi-

faceted nature of financial data. Vector Autoregression (VAR) offers a more comprehensive

perspective, allowing for the analysis of multiple time series and their interdependencies

simultaneously. As Hyndman and Athanasopoulos (2018) have endorsed, such advanced

methods can bring forth intricate causal relationships. Furthermore, models like Structural

VAR (SVAR) provide the advantage of incorporating exogenous shocks, allowing analysts

to understand unexpected events’ impacts, as discussed by Blanchard and Quah (1988).

There’s also increasing traction in exploring non-linear causality tests Diks and Panchenko

(2006), which can cater to non-linear relationships often found in financial markets. As

research evolves, embracing this diverse suite of analytical tools will be essential for more

exhaustive insights.

The COVID-19 pandemic has underscored the intricate web of interconnectedness that defines

our globalized world. Beyond the immediate health implications, it has reverberated through

economies, influenced policy decisions, and shaped public sentiment on an unprecedented scale.

The intersection of health crises, economic turbulence, and rapid information dissemination
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has revealed the delicate balance upon which modern societies operate. This research, by

delving into the nuanced interplay between governmental communications, public sentiment,

and market dynamics, provides invaluable insights for a myriad of stakeholders. As highlighted

by Smales (2014), sentiment, whether derived from traditional news sources or newer platforms,

plays a pivotal role in financial markets; moreover, as Baker and Wurgler (2007) discuss,

sentiment-driven decisions can have long-standing effects on market outcomes. Navigating

this complex landscape, especially in a post-pandemic world, necessitates an understanding of

these multifaceted relationships. It is our hope that this study serves not only as an analytical

exploration but also as a foundation for future research, policy-making, and strategic decision-

making in the face of global challenges.
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2.9 Concluding Thoughts

The journey of this thesis began with an exploration into the quantitative realm of financial

markets, employing the Irrational Fractional Brownian Motion (IFBM) model to delve into asset

price dynamics of the S&P 500 and FTSE 100. The analysis highlighted the model’s potential

to provide a more nuanced understanding of market dynamics and its capacity to capture

leptokurtosis, an aspect observed in real-world financial return distributions. However, the

limitations inherent in the model’s assumptions, parameter estimation methods, and dependency

on historical data were acknowledged, paving the way for an array of future work aimed at

model extension, robustness checks, and alternative parameter estimation methodologies.

Transitioning into the behavioural facet, the narrative sailed into the realm of investor sentiment

in Chapter 2, with a specific lens on the COVID-19 pandemic era. The interplay between

governmental communications and stock market dynamics was dissected, illuminating the

nuanced influence of sentiment on market behaviours. The indirect nature of sentiment analysis

through governmental communications and the caveats associated with Granger causality was

recognized as limitations, urging a deeper dive into direct sentiment analysis and diversified

causal models in future explorations.

The synthesis of insights from both chapters underscores the intricate dance between quantita-

tive and behavioural dynamics in financial markets. The IFBM model’s quantitative lens and

the behavioural lens of investor sentiment analysis together paint a more holistic picture of

market dynamics. They unveil a landscape where asset prices are swayed by both empirical

statistical patterns and the capricious nature of human sentiment, oftentimes mirrored through

external communications and events.

Looking ahead, the path is laid out for a myriad of exploratory directions. The exploration of

alternative methodologies for parameter estimation in quantitative models, a broader robustness

check across various markets and economic conditions, and the harnessing of real-time sentiment

data are among the promising avenues. Cross-country comparative studies and sector-specific

explorations could further enrich the understanding, offering a more nuanced glimpse into the

global financial ecosystem.

The COVID-19 pandemic served as a catalyst for deeper examination, not only of market

dynamics but also of the broader informational ecosystem within which investors operate. The

delicate balance between quantitative models, investor sentiment, and real-world events was

spotlighted, emphasizing the multi-faceted nature of financial markets. This thesis, through its

dual exploration, strives to contribute to the evolving narrative of financial market analysis,

offering a foundation upon which further studies can build, explore, and innovate. The boundless
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potential of intertwining quantitative modelling with behavioural analysis beckons, promising

richer insights into the enigmatic behaviour of financial markets and the myriad factors that

steer their course.
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Appendix

A.1 UK stocks returns distributions throughout the

COVID-19 pandemic

Figure A.1: UK stocks returns distributions throughout the COVID-19 pandemic
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A.2 Sentiment Polarity scores— Methods comparison (BERT

vs TextBlob vs Vader)

Figure A.2: Sentiment Polarity (BERT vs TextBlob vs Vader)

168



A.3. BERT-BASED SENTIMENT POLARITY SCORES DISTRIBUTION

A.3 Bert-based Sentiment polarity scores distribution

Figure A.3: Bert-based Sentiment polarity scores distibution
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A.4 COVID-19 daily new deaths versus new cases lagged

Figure A.4: COVID-19 daily new deaths versus new cases. This figure shows how the number
of new deaths is correlated with the number of new cases when cases were announced 1 days
ago (lag=1), 5 days ago (lag=5), and 10 days ago (lag=10)
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A.5 Word frequency ”Vaccine” vs COVID-19 cases and deaths

- Period 2

Table A.1: Word frequency “Vaccine” vs COVID-19 cases and deaths - Period 2

Correlations Period Word frequency (keyword=Vaccine)

Pearson (ρp) Spearman (ρs) Kendall(τ)

Number of cases (lag=1) Period 1 0.01 -0.02 -0.03
Number of deaths (lag=1) Period 1 0.05 -0.01 -0.02
Number of cases (lag=1) Period 2 0.67*** 0.71*** 0.55***
Number of deaths (lag=1) Period 2 0.65*** 0.72*** 0.52***
Number of cases (lag=1) Period 3 0.23 0.08 0.14
Number of deaths (lag=1) Period 3 0.31 0.09 0.12

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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A.6 Correlation of sentiment polarity scores (VADER-based)

vs AstraZeneca plc overnight stock returns

Table A.2: Correlation of sentiment polarity (VADER) vs AstraZeneca plc overnight stock
returns

Correlations Period Sentiment Polarity (VADER)

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Next day Open price) Period 1 0.21** 0.20** 0.16**
AstraZeneca plc (Next day Close price) Period 1 0.23** 0.19** 0.14**
AstraZeneca plc (Next day Open price) Period 2 0.35** 0.40** 0.29***
AstraZeneca plc (Next day Close price) Period 2 0.32** 0.36** 0.26**

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

A.7 Correlations of Covid-19 cases vs FTSE250 prices - All

periods

Table A.3: Correlations of Covid-19 cases vs FTSE250 prices - All periods

Correlations Period Covid-19 New Daily Cases (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE250 (Open price) Period 1 -0.30*** -0.39*** -0.28***
FTSE250 (Close price) Period 1 -0.32*** -0.40*** -0.29***

FTSE250 (Open price) Period 2 0.82*** 0.76*** 0.56***
FTSE250 (Close price) Period 2 0.82*** 0.77*** 0.58***

FTSE250 (Open price) Period 3 -0.32*** -0.33*** -0.27***
FTSE250 (Close price) Period 3 -0.32*** -0.35*** -0.28***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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A.8 Correlations of Covid-19 deaths vs FTSE250 prices - All

periods

Table A.4: Correlations of Covid-19 deaths vs FTSE250 prices - All periods

Correlations Period Covid-19 New Daily Deaths (lag=1)

Pearson (ρp) Spearman (ρs) Kendall(τ)

FTSE250 (Open price) Period 1 -0.12 -0.23* -0.18**
FTSE250 (Close price) Period 1 -0.14 -0.24** -0.19**

FTSE250 (Open price) Period 2 0.89*** 0.75*** 0.54***
FTSE250 (Close price) Period 2 0.82*** 0.76*** 0.55***

FTSE250 (Open price) Period 3 -0.72*** -0.85*** -0.67***
FTSE250 (Close price) Period 3 -0.72*** -0.84*** -0.65***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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A.9 Correlations of Covid-19 cases vs AstraZeneca plc prices -

All periods

Table A.5: Correlations of Covid-19 cases vs AstraZeneca plc prices - All periods

Correlations Period Covid-19 New Daily Cases

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Close price) Period 1 -0.22* -0.23** -0.12
AstraZeneca plc (Close price) (Clag=1) Period 1 -0.14 -0.15 -0.06
AstraZeneca plc (Close price) (Clag=10) Period 1 0.56*** 0.48*** 0.35***

AstraZeneca plc (Close price) Period 2 -0.80*** -0.77*** -0.60***
AstraZeneca plc (Close price) (Clag=1) Period 2 -0.79*** -0.77*** -0.58***
AstraZeneca plc (Close price) (Clag=10) Period 2 -0.68*** -0.72*** -0.54***

AstraZeneca plc (Close price) Period 3 0.34*** 0.08 0.06
AstraZeneca plc (Close price) (Clag=1) Period 3 0.25** 0.03 0.03
AstraZeneca plc (Close price) (Clag=10) Period 3 -0.31*** -0.45*** -0.28***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

174



A.10. CORRELATIONS OF COVID-19 DEATHS VS ASTRAZENECA PLC PRICES - ALL

PERIODS

A.10 Correlations of Covid-19 deaths vs AstraZeneca plc

prices - All periods

Table A.6: Correlations of Covid-19 deaths vs AstraZeneca plc prices - All periods

Correlations Period Covid-19 New Daily Deaths

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Close price) Period 1 -0.12 -0.08 -0.04
AstraZeneca plc (Close price) (Dlag=1) Period 1 -0.03 0.00 0.11
AstraZeneca plc (Close price) (Dlag=10) Period 1 0.54*** 0.54*** 0.40***

AstraZeneca plc (Close price) Period 2 -0.69*** -0.71*** -0.51***
AstraZeneca plc (Close price) (Dlag=1) Period 2 -0.69*** -0.70*** -0.50***
AstraZeneca plc (Close price) (Dlag=10) Period 2 -0.66*** -0.67*** -0.46***

AstraZeneca plc (Close price) Period 3 -0.38*** -0.71*** -0.48***
AstraZeneca plc (Close price) (Dlag=1) Period 3 -0.39*** -0.71*** -0.49***
AstraZeneca plc (Close price) (Dlag=10) Period 3 -0.47*** -0.78*** -0.55***

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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A.11 Correlations of Covid-19 cases vs AstraZeneca plc daily

returns - All periods

Table A.7: Correlations of Covid-19 cases vs AstraZeneca plc daily returns - All periods

Correlations Period Covid-19 New Daily Cases

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Daily Rt) Period 3 0.05 0.09 0.06
AstraZeneca plc (Daily Rt) (Clag=1) Period 3 0.24* 0.12 0.08
AstraZeneca plc (Daily Rt) (Clag=10) Period 3 -0.31** 0.15 0.10

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01

A.12 Correlations of Covid-19 cases vs AstraZeneca plc daily

returns - All periods

Table A.8: Correlations of Covid-19 cases vs AstraZeneca plc daily returns - All periods

Correlations Period Covid-19 New Daily Deaths

Pearson (ρp) Spearman (ρs) Kendall(τ)

AstraZeneca plc (Daily Rt) Period 3 0.21** 0.23** 0.16**
AstraZeneca plc (Daily Rt) (Dlag=1) Period 3 0.21** 0.14 0.08
AstraZeneca plc (Daily Rt) (Dlag=10) Period 3 0.21** 0.15 0.09

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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Table A.9: Granger causality for Vaccine mentions vs AstraZeneca plc - Period 2

Null Hypothesis - Period 2 Lag Wald Test

Chi− squarep− valueDirection

”Vaccine” does not Granger − cause AstraZeneca (open) (lag=1) 4.6001** 0.03 ←
”Vaccine” does not Granger − cause AstraZeneca (close) (lag=1) 4.5667** 0.03 ←
”Vaccine” does not Granger − cause AstraZeneca (open) (lag=10) 27.9460*** 0.00 ⇄
”Vaccine” does not Granger − cause AstraZeneca (close) (lag=10) 24.7242 *** 0.00 ⇄

”Vaccine” does not Granger − cause AstraZeneca (Volume) (lag=1) 4.7372 ** 0.02 →
”Vaccine” does not Granger − cause AstraZeneca (Volume)(lag=10) 36.7324 *** 0.00 ⇄

* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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Table A.10: Granger causality for Vaccine mentions vs Sentiment polarity scores - All periods

Null Hypothesis - All periods - (lag=5) Period Wald Test

Chi− square p− value Direction

”Vaccine” does not Granger − cause Sentiment Period 1 11.7164** 0.03 →
”Vaccine” does not Granger − cause Sentiment Period 2 6.6907 0.24 −
”Vaccine” does not Granger − cause Sentiment Period 3 16.3603*** 0.00 →
* p− value < 0.1,** p− value ⩽ 0.05, *** p− value < 0.01
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Table A.11: Granger causality for Sentiment polarity vs Covid-19 death and cases - Period 1

Null Hypothesis - Period 1 Lag Wald Test

Chi− square p− value Direction

Nb deaths does not Granger − cause Sentiment (lag=1) 11.7287 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=2) 11.9569 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=3) 13.9670 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=4) 15.8184 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=5) 15.7543 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=6) 18.8931 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=7) 23.7781 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=8) 26.7464 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=9) 27.3277 0.00 →
Nb deaths does not Granger − cause Sentiment (lag=10) 31.1145 0.00 →

Nb cases does not Granger − cause Sentiment (lag=1) 10.5551 0.00 →
Nb cases does not Granger − cause Sentiment (lag=2) 13.6411 0.00 →
Nb cases does not Granger − cause Sentiment (lag=3) 13.9461 0.00 →
Nb cases does not Granger − cause Sentiment (lag=4) 13.5265 0.00 →
Nb cases does not Granger − cause Sentiment (lag=5) 13.1633 0.02 →
Nb cases does not Granger − cause Sentiment (lag=6) 16.5727 0.01 →
Nb cases does not Granger − cause Sentiment (lag=7) 18.9116 0.00 →
Nb cases does not Granger − cause Sentiment (lag=8) 21.4870 0.00 →
Nb cases does not Granger − cause Sentiment (lag=9) 22.8110 0.00 →
Nb cases does not Granger − cause Sentiment (lag=10) 28.2457 0.00 →
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Table A.12: Granger causality for Sentiment polarity vs Covid-19 death and cases - Period 2

Null Hypothesis - Period 2 Lag Wald Test

Chi− square p− value Direction

Nb deaths does not Granger − cause Sentiment (lag=1) 5.1042 0.02 ←
Nb deaths does not Granger − cause Sentiment (lag=2) 2.8197 0.24 −
Nb deaths does not Granger − cause Sentiment (lag=3) 4.5781 0.20 −
Nb deaths does not Granger − cause Sentiment (lag=4) 7.2432 0.12 −
Nb deaths does not Granger − cause Sentiment (lag=5) 3.5368 0.61 −
Nb deaths does not Granger − cause Sentiment (lag=6) 6.2156 0.39 ←
Nb deaths does not Granger − cause Sentiment (lag=7) 7.4649 0.38 ←
Nb deaths does not Granger − cause Sentiment (lag=8) 13.2562 0.10 ←
Nb deaths does not Granger − cause Sentiment (lag=9) 29.2533 0.00 ⇄
Nb deaths does not Granger − cause Sentiment (lag=10) 29.2515 0.00 ⇄

Nb cases does not Granger − cause Sentiment (lag=1) 4.3255 0.03 →
Nb cases does not Granger − cause Sentiment (lag=2) 5.2018 0.07 →
Nb cases does not Granger − cause Sentiment (lag=3) 6.8947 0.07 →
Nb cases does not Granger − cause Sentiment (lag=4) 19.5149 0.00 →
Nb cases does not Granger − cause Sentiment (lag=5) 12.3200 0.03 →
Nb cases does not Granger − cause Sentiment (lag=6) 11.2393 0.08 →
Nb cases does not Granger − cause Sentiment (lag=7) 11.4795 0.11 −
Nb cases does not Granger − cause Sentiment (lag=8) 14.5968 0.06 →
Nb cases does not Granger − cause Sentiment (lag=9) 22.3988 0.00 →
Nb cases does not Granger − cause Sentiment (lag=10) 23.0361 0.01 →
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Table A.13: Granger causality for Sentiment polarity vs Covid-19 death and cases - Period 3

Null Hypothesis - Period 3 Lag Wald Test

Chi− square p− value Direction

Nb deaths does not Granger − cause Sentiment (lag=1) 0.0145 0.90 −
Nb deaths does not Granger − cause Sentiment (lag=2) 5.6072 0.06 ←
Nb deaths does not Granger − cause Sentiment (lag=3) 8.4151 0.03 ⇄
Nb deaths does not Granger − cause Sentiment (lag=4) 11.6645 0.02 ⇄
Nb deaths does not Granger − cause Sentiment (lag=5) 11.2548 0.04 ⇄
Nb deaths does not Granger − cause Sentiment (lag=6) 22.2400 0.00 ⇄

Nb cases does not Granger − cause Sentiment (lag=1) 0.1967 0.65 −
Nb cases does not Granger − cause Sentiment (lag=2) 0.0045 0.99 −
Nb cases does not Granger − cause Sentiment (lag=3) 4.1608 0.24 −
Nb cases does not Granger − cause Sentiment (lag=4) 12.3233 0.01 →
Nb cases does not Granger − cause Sentiment (lag=5) 20.1144 0.00 →
Nb cases does not Granger − cause Sentiment (lag=6) 20.9968 0.00 ⇄
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L. Pástor and P. Veronesi.

Political uncertainty and risk premia.

Journal of financial Economics, 110(3):520–545, 2013.

R. W. Peeling, C. J. Wedderburn, P. J. Garcia, D. Boeras, N. Fongwen, J. Nkengasong, A. Sall,

A. Tanuri, and D. L. Heymann.

Serology testing in the covid-19 pandemic response.

The Lancet Infectious Diseases, 20(9):e245–e249, 2020.

S. M. Pincus.

Approximate entropy as a measure of system complexity.

Proceedings of the National Academy of Sciences, 88(6):2297–2301, 1991.
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