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Abstract 18 

 19 

Although multitasking has been the subject of a large number of papers and 20 

experiments, the term task is still not well defined. In this opinion paper, we adopt the 21 

ideomotor perspective to define the term task and distinguish it from the terms goal and 22 

“action”. In our opinion, actions are movements executed by an actor to achieve a concrete 23 

goal. Concrete goals are represented as anticipated sensory consequences that are associated 24 

with an action in an ideomotor manner. Concrete goals are nested in a hierarchy of more and 25 

more abstract goals, which form the context of the corresponding action. Finally tasks are 26 

depersonalized goals, i.e., goals that should be achieved by someone. However tasks can be 27 

assigned to a specific person or group of persons, either by a third party or by the person or 28 

the group of persons themselves. By accepting this assignment the depersonalized task 29 

becomes a personal goal. In our opinion, research on multitasking needs to confine its scope 30 

to the analysis of concrete tasks, which result in concrete goals as anticipated sensory 31 

consequences of the corresponding action. We further argue that the distinction between dual- 32 

and single-tasking is dependent on the subjective conception of the task assignment, the goal 33 

representation and previous experience. Finally, we conclude that it is not the tasks, but the 34 

performing of the tasks, i.e. the actions that cause costs in multi-tasking experiments.  35 
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What is a task? – An ideomotor perspective 36 

‘Task’ is an important concept in psychology and action science. However, despite a 37 

growing body of literature addressing opportunities and limits of human dual- or multi-38 

tasking, the term task is still poorly defined. More than 20 years ago, Rogers and Monsell 39 

(1995, p. 208) acknowledged “that it is difficult to define with precision, even in the restricted 40 

context of discrete reaction tasks, what constitutes a ‘task’”. More recently, Schneider and 41 

Logan (2014) stated that this plea for a definition has largely been ignored since then. In the 42 

following, we argue that a definition of the term task is required to constrain the scope of 43 

multitasking research, to clarify how many tasks a person performs, and to broaden our 44 

understanding of interference between tasks. 45 

In everyday language, tasks are usually understood as  demands that are  generally 46 

achievable by an action or a set of actions, e.g. bake a cake, be a good student, or switch on 47 

the light. However, the required actions may not be specified by the assignment of the task. 48 

Tasks may differ in their levels of abstractness and may consist of several less abstract 49 

subtasks, which can be completed sequentially or simultaneously (e.g. learning for the exam, 50 

attaining lessons, participating in an experiment, press a button).  51 

Conversely, in cognitive science papers, “the term task can be basically understood as 52 

‘what subjects have to do in an experiment’.” (Philipp & Koch, 2010, p. 383) or, in more 53 

formal terms, is defined as a “representation of the instructions required to achieve accurate 54 

performance of an activity” (Schneider & Logan, 2014, p. 29).  Kiesel et al. state that “tasks 55 

entail performing some specified mental operation or action in response to stimulus input” 56 

(2010, p. 850). Yet, these statements are descriptions rather than definitions of a task, and do 57 

not help to differentiate distinct tasks.  58 
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The vague definition of the term task leads to serious ambiguities in the understanding 59 

of multitasking behavior and its cognitive underpinnings. To give an example, it remains 60 

unclear if bimanual coordination tasks like playing piano should be regarded as a single task 61 

(Monno, Temprado, Zanone, & Laurent, 2002; Wolff & Cohen, 1980), or if playing with the 62 

right hand and the left hand must be seen as two independent tasks and thus as a case of dual-63 

task behavior (Franz, Swinnen, Zelaznik, & Walter, 2001; Swinnen & Wenderoth, 2004). 64 

According to the former assumption, professional pianists would simply accomplish a single 65 

task and there would be no reason to predict interference between actions of the left and the 66 

right hand at all. However, if the latter assumption holds, pianists would perform a dual-task 67 

but bypass interference or crosstalk. As a consequence, such dual-task skills would question 68 

theories postulating a bottleneck and arguing that tasks can only be processed sequentially 69 

(Pashler, 1994). Freedberg, Wagschal, and Hazeltine (2014) argue that the distinction between 70 

single and dual task is not determined by objective criteria but rather “depends on how the 71 

participants conceive of their task” (2014, p. 1698). This view is supported by experiments of 72 

Dreisbach and coworkers (Dreisbach, Goschke, & Haider, 2007; Dreisbach & Haider, 2008, 73 

2009), who observed that the way participants are instructed changes their perception about 74 

the task being a single or dual task. Recently, McIsaac, Lamberg, and Muratori (2015) 75 

suggested a taxonomy of dual tasks. They propose that “dual tasking is the concurrent 76 

performance of two tasks that can be performed independently, measured separately and have 77 

distinct goals” (McIsaac et al., 2015, p. 2). However, in their concept it remains unclear which 78 

performance exactly is considered as a task and what “distinctiveness” means with respect to 79 

goals.   80 

The goal of this paper is to bring more clarity to the blurred concept of a task. In 81 

agreement with McIsaac et al. (2015), we propose that a task relates to an action to be 82 
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executed and a goal to be achieved. In our opinion, it is helpful to adopt an ideomotor 83 

perspective that takes the mutual relationship between actions and goals into account. The 84 

ideomotor perspective surely narrows the scope of our task definition, however it serves to 85 

explicate tacit assumptions. Moreover it will help scientists from other theoretical fields to 86 

sharpen their understanding of the term task by accepting or rejecting parts of our 87 

assumptions.   88 

The ideomotor perspective 89 

Every action, from complex action sequences studied in sports and exercise sciences 90 

to simple button pressing used in cognitive psychology, elicits perceptual consequences. 91 

According to the ideomotor principle (Herbart, 1825; James, 1890; see Hommel, Müsseler, 92 

Aschersleben, & Prinz, 2001 for a more recent formulation) behavior is selected, initiated, and 93 

controlled by an anticipation of the sensory consequences that will follow from the respective 94 

action. The bidirectional associations between actions and their sensory consequences are 95 

acquired in two phases. In the first phase, associative links between cognitive representations 96 

of actions and effects are established. The associations are learned by producing movements, 97 

either randomly or reflexively, and observing the sensory consequences. Importantly, Elsner 98 

and Hommel (2004) revealed that this learning relies on predictability (i.e., contingency) and 99 

temporal proximity (i.e. contiguity).    100 

In the second step, these associations are used to intentionally re-produce previously 101 

learned effects (Elsner & Hommel, 2001; Jordan & Rumelhart, 1992). Thus, the 102 

representation of the intended effects directly trigger the corresponding action pattern (for 103 

reviews, see Hommel, 2013; Shin, Proctor, & Capaldi, 2010) and this close link of mental 104 

representations of goals, associated motor patterns and actually perceived effects provides the 105 

basis of action control.  106 
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Unfortunately, the term goal is ill defined as well. The definition of ‘goal’ has to take 107 

different levels of abstractness into account (Hommel, Brown, & Nattkemper, 2016; Monsell, 108 

2003). Abstract goals (like “be a good student”) can be achieved in multiple ways by a series 109 

of different actions, and the actual achievement of abstract goals may eventuate a 110 

considerable amount of time after the actions. Concrete goals (like “pressing a button as 111 

quickly as possible”) are achieved by ideomotor actions, whereas abstract goals will not be 112 

associated with sensory consequences and therefore will not lead to actions. Rather, “at best, 113 

they can be helpful when looking for a concrete, sensory action goal” (Hommel et al., 2016, 114 

p. 65). For example, the abstract task of being a good student will provide the basis for the 115 

compliance with a task, like pressing a button as quickly as possible (see Figure 1).  116 

insert Figure 1 about here 117 

Our narrow definition of concrete goals overcomes the problem that different nested 118 

abstract goals like being a good student, smarming over the professor, and earning course 119 

credit can be achieved by just a single action – pressing a button. Although in this example 120 

three nested abstract goals are achieved (and therefore three nested abstract tasks are 121 

performed) through the same single action, this behavior would not be considered as 122 

multitasking.  123 

Having defined actions and goals, we now turn to the definition of a task. Goals and 124 

tasks share central features, in that they represent future states that usually differ from the 125 

current state. Both, goals and tasks, can relate to relative abstract or concrete states. We 126 

suggest, that the difference between the two is that a goal is personal, meaning that it is bound 127 

to a specific person striving for this goal. On the contrary, a task is not bound to a specific 128 

person, because it describes “what has to be done” by any participant. However, the link 129 
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between a task and a goal is that a task can be assigned by a third party (a single person, a 130 

group of persons or an institution to a person or a group of persons (Of course, it is possible to 131 

assign a task to oneself, too). It is then the duty of every single person to decide whether he or 132 

she accepts the task assignment. If he or she does, the depersonalized task becomes a personal 133 

goal of that specific person.  134 

The abstractness of a goal and the associated sensory consequences may depend on the 135 

level of expertise and the amount of practice of action, however. This has direct implications 136 

for the conceptualization of a task. We tackle two questions, which need to be addressed when 137 

analyzing dual-tasking or multitasking behavior. a) What separates a task-driven motor 138 

behavior from behavior that would not be regarded as task-driven? b) When can behavior be 139 

considered as driven by a single task, and when do we speak of dual- or multi-tasking? In the 140 

following sections, we no longer focus on the difference between goal and task, but 141 

presuppose that a person, who was assigned a specific task, accepts this assignment as his or 142 

her personal goal.  143 

A task or not a task? 144 

As mentioned above, the abstractness and the representation of a goal may be 145 

dependent on the experience an individual has with the corresponding action. Learning 146 

research hass shown that practice does not only improve performance on that activity, but that 147 

it can also lead to a qualitatively different mode of processing. This change in processing 148 

mode is commonly referred to as automatization.  149 

Automatization is mostly regarded as a process that evolves continuously over time, 150 

without any discontinuities from a least automatic processing mode to a most automatic 151 

processing mode. Models and theories of automatization have been developed for different 152 
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domains of activities.  For motor activities, Fitts and Posner (1967) developed a three stage 153 

model of motor learning. In the cognitive phase, the learner has to identify the goals of the 154 

actions and develop strategies to reach these goals. In the associative phase, cognitive 155 

processes are not only focused on the control of the actuators, but movements are associated 156 

with situational constraints. In the automatic phase, the actor can achieve the action’s goals 157 

without conscious attentional processes being involved. Although Fitts and Posner define 158 

different stages, they conceptualize continuous transitions from stage to stage, rather than a 159 

clear-cut entry into a certain stage. For bimanual coordination tasks, Puttemans, Wenderoth, 160 

and Swinnen (2005) showed significant changes in brain activation in the course of learning 161 

from the cognitive stage to an advanced level of automatization. 162 

Similarly, Shiffrin and Schneider (1977) demonstrated a transition from conscious to 163 

automatic processing in the course of learning for perceptual tasks. For instance, they argued 164 

that children learning to read are required to process features, letters, words and their meaning 165 

but that parts of this learning process can be automatized, and so they concluded that 166 

conscious, or controlled, processing is limited but can be used for complex learning.  167 

In the present article we aim at discussing whether, from an ideomotor perspective, the 168 

transition from a non-automatic to an automatic activity equals the transition from a task to a 169 

non-task. Ideomotor theory conceptualizes motor cognition as a combination of automatic and 170 

non-automatic subcomponents (Thomaschke, Hopkins, & Miall, 2012a, 2012b). Non-171 

automatic motor components are typically associated with action planning. That is, for 172 

example, deciding which hand to use, which object to grasp, which object to avoid. Action 173 

planning operates on largely categorical representations, is relatively slow, and is mostly 174 

accompanied by conscious awareness (Glover, 2004; Thomaschke, 2012). These non-175 

automatic components are concerned with the selection of action options in an ideomotor 176 
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fashion (i.e. based on their goals). For automatic action components, there are two different 177 

concepts of how automatization can be explained, the directions-of-processing approach and 178 

the levels-of-control approach (Neumann, 1984). According to the directions-of-processing 179 

approach, automatic processing meets three main criteria: it operates without capacity, it is 180 

not demanding attention, and – most important in the context of this article – it is driven by 181 

bottom up processes and not by intention (Schneider & Shiffrin, 1977; but see Neumann, 182 

1984). The levels-of-control approach claims that action parameters are specified by three 183 

sources, skills, input information, and attentional processes. In the case of underspecification, 184 

skills and input information are lacking or not specific enough, so attentional processes are 185 

necessary to specify the action parameters. In the case of overspecification, input provides the 186 

information in several variants, e.g. multiple apples in a tree, each of which specifies the 187 

action of grasping (Neumann, 1989). Attentional processes are needed to specify the choice of 188 

the concrete goal.  How these choice problems relate to multitasking is discussed in Bröker et 189 

al. (under review) in this issue. If skills and input information specify action parameters there 190 

is no need for attentional processes (Neumann, 1984, 1989). Action is then controlled by an 191 

automatic “subroutine”, where the anticipated effects do not necessarily rise to awareness. 192 

Blakemore, Wolpert, and Frith (2002) presented an overview of empirical evidence in favor 193 

of the latter approach. They found that awareness of movement only happens when the 194 

discrepancy between intended and actual sensory consequences becomes large.  195 

With respect to a task definition, the question of whether automatic activities are goal 196 

directed, i.e. controlled by anticipated sensory consequences, becomes important. The two 197 

concepts of automatization would offer different answers to this question. Within the 198 

direction-of-processing approach, automatic activities are not under intentional control. As a 199 

consequence they are not directed towards an intended goal, not controlled by sensory 200 
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consequences and cannot be considered as driven by a task. Following the levels-of-control 201 

approach, automatic activities are goal-directed and thus must be seen as driven by a task. 202 

Blakemore et al. (2002) developed their approach to automatization from the theory of 203 

internal models, which is highly compatible with the ideomotor approach. Both approaches 204 

stress the importance of a goal as anticipated sensory consequences for controlling action, 205 

although ideomotor theory does not contain a forward signal. As such ideomotor theory is 206 

more focused on perception as controlling factor in action, whereas internal models 207 

emphasize motor control (Gentsch, Weber, Synofzik, Vosgerau, & Schütz-Bosbach, 2016).  208 

Consequently, with the ideomotor perspective, we regard highly learned automatic activities 209 

as goal directed actions and thus as driven by a task. 210 

One task or multiple tasks?  211 

The human cognitive system is adept at integrating related information. The 212 

consideration of task integration is important when analyzing multitasking behavior because 213 

task integration could turn a seeming dual task into a single task. In implicit learning, in 214 

particular task integration, refers to the concept of an old evolutionary system that binds 215 

information that covaries in the world, which has often been demonstrated in serial-reaction 216 

time studies with a covarying secondary task (Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; 217 

Schmidtke & Heuer, 1997). The integration of related information, or features, broadly 218 

equaling the understanding of task-integration, can be explained through approaching its 219 

influencing top-down and bottom-up factors. While the top-down factors impose features on 220 

the task based on individual processing habits or preferences, bottom-up factors explain how 221 

participants extract relevant co-occurring features from a task.   222 

If action is controlled by its sensory consequences then it is likely that the integration 223 

of related information also occurs on the level of these sensory consequences or effects. 224 
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Introducing distal effects into the experimental setting allows for dissociating the action (e.g. 225 

“press button”) from the action’s goal (e.g. “switch on the light”). As Hommel (1993) nicely 226 

demonstrated, the introduction of a goal has serious consequences for action control and – in 227 

his experiment –inverts the Simon effect. In a striking experiment, Mechsner, Kerzel, 228 

Knoblich, and Prinz (2001) had participants rotate two levers under a table. The lever’s 229 

rotation was transmitted to a rotation of flags visible above the table. For one lever, this 230 

transmission was done in a crooked ratio, e.g. 4:3. The participant’s goal was to produce an 231 

antiphase rotation of the two flags, which required a 4:3 ratio of lever rotations. This is strong 232 

evidence for information integration on the level of goals. Others also showed that even 233 

actions between two co-actors are coded in terms of one’s own effects (e.g. Pfister, Dignath, 234 

Hommel, & Kunde, 2013) or joint effects (e.g. Konvalinka, Vuust, Roepstorff, & Frith, 2010). 235 

Hence, two tasks, which can be coded in terms of their (joint) sensory consequences, can 236 

potentially be integrated into a single task (for an overview, see Mechsner, 2004). 237 

A further factor to be considered is combination specific learning. On the one hand, 238 

Hazeltine, Teague, and Ivry (2002) demonstrated no impact of combination-specific learning 239 

when they presented to their participants stimuli for a visual-manual and an auditory-vocal 240 

task. Unlike most dual-task experiments, they did not use the same set of stimuli for training 241 

and test sessions, but introduced some stimulus combinations in the test session only. Beyond 242 

the expectation that dual-task costs would be reduced because of the learning of stimulus 243 

pairs, they found equally elaborate performance for unpracticed stimulus combinations 244 

compared to practiced combinations and concluded that combination specific learning and 245 

integration had not occurred. On the other hand a chord task experiment by Hazeltine, 246 

Aparicio, Weinstein, and Ivry (2007) showed that a large portion of performance 247 

improvement could be explained by the learning of specific piano chords. In their task, 248 
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participants pressed either 3 out of 5 piano-like keys with one hand for an individual chord, or 249 

6 out of 10 piano-like keys (2 x 5) with both hands for a combined response. Results show 250 

that although both novel and practiced individually performed chords were similar in quality, 251 

slower performance for unpracticed chords occurred for combined responses, suggesting 252 

combination-specific learning for simultaneous task execution. The authors suggested that 253 

these contrasting results emerged from different use of modalities. Whereas the chord task 254 

required the same modalities, distinct modalities in the earlier study might have reduced the 255 

likelihood of forming associations between the two tasks. Also Hazeltine and collaborators 256 

(2007) hypothesized that the chord task, which in contrast to the earlier study forced 257 

participants to produce simultaneous responses, fostered an integrated representation and 258 

increased the likelihood of conceptualizing the experiment as one task. The significance of the 259 

diverging results is important for the aspect of “separating information” as highlighted above. 260 

If simultaneous, same-modality tasks lead to the integration of two tasks, then participants 261 

may either be unable to perform each task as a single-task after learning them as a dual-task or 262 

perform the secondary task comparatively deficient together with a different primary task 263 

(Wohldmann, Healy, & Bourne, 2010). 264 

Another top-down factor is the type of practice. Several experiments found dual-task 265 

performance to be better compared to single-task performance when the dual-task had been 266 

trained as such. Performance on a time production task for example was better when 267 

simultaneously performed with an alphabet-counting task because participants felt the 268 

secondary task aided the primary task e.g. in an arbitrary rhythm (Healy, Wohldmann, Parker, 269 

& Bourne, 2005). Researchers concluded that participants learned procedures that eased 270 

simultaneous performance and that primary and secondary task were treated as, and merged 271 

into, a fully integrated set of requirements of a single functional task (Waszak, Hommel, & 272 



Running head: WHAT IS A TASK?  13 

 

Allport, 2003). As elaborated earlier, performance changes could be also attributed to 273 

automatization of one or both tasks. However Ruthruff, van Selst, Johnston, and Remington 274 

(2006) argued that automatization is distinct from task-integration. According to a task-275 

integration hypothesis, dual-task practice would be more effective than single task practice 276 

and reduce or eliminate dual-task costs. An automatization hypothesis would predict 277 

successful dual-tasking independent of whether single or dual-task conditions have been 278 

practiced.  279 

Additionally, instructions may lead to task integration. In a task switching experiment 280 

(Dreisbach et al., 2007), participants had to react to eight different stimuli (words) with the 281 

respective key press. Participants received different instructions, yet defining the same 282 

actions. One group had to perform eight tasks with each task corresponding to an S-R 283 

mapping. Another group received instructions that integrated four S-R mappings to one 284 

distinct task with respect to the word color, resulting in two different integrated tasks. 285 

Although in this experiment task integration was highly disadvantageous and led to 286 

significantly higher reaction times, participants were unable to separate the integrated tasks. 287 

In another experiment Dreisbach and Haider (2008) also analyzed switch costs and were able 288 

to prove that it was also possible to integrate all eight SR-mapping into one single task with 289 

the appropriate instructions. 290 

In addition to top-down factors, there is some evidence about the influence of bottom-291 

up factors on task-integration. One basic idea is that mechanisms of covariation or statistical 292 

learning allow the extraction of structure (Chun & Jiang, 1999; Turk-Browne, Jungé, & 293 

Scholl, 2005) and that task integration will occur when covariations in one or more 294 

dimensions, such as time or space in the stimulus environment, exist (Schmidtke & Heuer, 295 

1997; Reber, 1989; Heuer & Schmidtke, 1996).  296 
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To illustrate the idea of covariation learning of specific stimulus-response 297 

contingencies, consider a typical serial reaction time (SRT) task (Nissen & Bullemer, 1987). 298 

Participants typically exhibit faster reaction times (RTs) in blocks of trials that follow a 299 

specific sequence and prolonged RTs in blocks with random sequence. This difference is 300 

taken as an indicator of covariation learning. Taking this further, Schmidtke and Heuer (1997) 301 

combined this SRT with an auditory go/no go task that required a pedal press upon hearing 302 

high-pitched tones. Tones were either random, in 5-element or in a 6-element sequence. When 303 

tone sequences of six elements were combined with visual sequences of six elements 304 

participants were able to reduce reaction times and the mean number of attempts to learn the 305 

sequence. Schmidtke and Heuer (1997) argued that the additional tone-counting task could be 306 

integrated into the sequence of alternating repeated visual cues. In another paper, Heuer and 307 

Schmidtke (1996) already claimed that primary-task stimuli and secondary-task stimuli are 308 

not processed separately but as an "integrated sequence of alternating visual and auditory 309 

stimuli" (p. 132). It has further been argued that the integration of two simultaneously 310 

presented tasks is likely to occur when there is consistency in the task requirements 311 

(Wohldmann et al., 2010), when it is perceived as resource-saving or at least as reducing the 312 

number of action goals  (Donk & Sanders, 1989; Lehle & Hübner, 2009) or when there is a 313 

large similarity between stimulus and response modalities and they are not perceived as 314 

distinct (Hazeltine et al., 2007). Theories of associative learning thus concluded that either the 315 

degree of similarity between individual stimuli properties or combined properties of stimuli 316 

define the strength of associations, and thus participants’ representations of the tasks and the 317 

propensity to integrate them (Freedberg et al., 2014; Philipp & Koch, 2010).  318 
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Conclusion  319 

We define a task as an abstract, depersonalized description of a future state. A task can 320 

be assigned to a person, and if that person accepts this assignment, it becomes their personal 321 

goal. According to the ideomotor perspective, concrete goals are coded as anticipated sensory 322 

consequences of the corresponding action, while abstract goals form the context that constrain 323 

the number of possible concrete goals. We confine our considerations regarding the definition 324 

a task to concrete goals. This restriction helps to clarify the scope of scientific investigations 325 

concerned with dual- or multitasking. Results obtained from concrete dual-task experiments, 326 

like button pressing and tone counting, may not transfer to abstract dual-tasks like being a 327 

good student and preparing for a lecture. With these specifications, we argue that actions that 328 

were automatized through extensive learning must be regarded as tasks, because they are 329 

initiated and controlled by intentional processes, albeit not necessarily associated with 330 

conscious awareness. Therefore, activities like walking or the control of posture must be 331 

treated as tasks. This is in line with the current opinion, where researchers use walking or 332 

postural control as one task in dual-task experiments (McIsaac & Benjapalakorn, 2015; 333 

Woollacott & Shumway-Cook, 2002; Yogev-Seligmann, Hausdorff, & Giladi, 2008).   334 

The conception of a task as one single integrated task or as two independent single 335 

tasks is highly dependent on top down processes and can be influenced by instructions or 336 

experience. There is experimental support that this integration occurs on the level of the 337 

sensory consequences of the respective actions (e.g. Mechsner et al., 2001). In addition, 338 

bottom-up processes serve to detect covariations in perception or action. Exploitation of these 339 

covariations also leads to task-integration (e.g. Schmidtke & Heuer, 1997). Consequently, it is 340 

not possible to define a distinction between dual- and single tasks independent of experience 341 

of the participants, presentation of the instructions or features of the situation. This subjective 342 
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characteristic demands the analysis of participants’ behavior on an individual level. Caution is 343 

needed to avoid circular explanations of dual-task behavior: Dual-task costs should not serve 344 

to prove the processing of two single tasks and at the same time be used as dependent variable 345 

to measure dual-task costs. 346 

Finally, we considered the difference between action and task. In our opinion, the 347 

main difference is the depersonalization of a task. A task can be undertaken by another person 348 

or can be delegated to another person. Moreover, a task can be assigned to a team or an 349 

institution. Additionally, a task is not necessarily associated with observable behavior. In 350 

contrast, an action is intrinsically tied to a specific actor, the person that is performing the task 351 

by achieving his or her goal, and always includes a motor behavior that can be observed. 352 

Therefore, there is no problem assigning multiple tasks to a participant - in an experiment or 353 

in real life. The problematic part is to achieve multiple goals and to execute multiple actions. 354 

Consequently, it is more appropriate to speak of “multi-action” instead of “multi-tasking”. 355 

356 
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 530 

Figure 1: Hierarchy of tasks, goals, and actions. Tasks are marked with a grey 531 

background, goals with a white background and the action with a black background. In this 532 

example, the dean formulates the task to acquire grants. He or she assigns this task to the 533 

researcher. By accepting this assignment the task becomes the researcher’s personal goal. 534 

Abstract goals and tasks are in clouds, concrete goals and tasks in rectangles. The empty 535 

clouds and rectangles indicate that abstract goals could have several (concrete or abstract) 536 

subgoals. Bold arrows indicate the assignment of a task to a specific person. The abstract 537 

goals form the context of the concrete goal, in this case to comply with the researcher’s task 538 

assignment. 539 


