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Abstract

This paper deals with a copula-based stochastic dependence problem in the context
of financial risks. We discuss the financial framework for assessing the theoretical
up-front value of government guarantees on bank liabilities. EU States widely use
these contracts to improve the financial system’s stability and manage the bank-
ing sector in crisis situations; in Italy, they have also been used to address the con-
sequences of the Covid-19 emergency. From a market viewpoint, we deal with a
defaultable guarantee contract where the State-guarantor and the bank-borrower are
both subject to default risk, and their risks are interconnected. We show that the
classical Gaussian copula is not satisfactory for modeling the dependence among the
considered risks. Indeed, using the benchmark market model for credit risk portfolio
management, we highlight some contradictory results observed for the up-front val-
ues of the guarantee when the default intensity of the guarantor is smaller than that
of the borrower. Then, we introduce a new family of modified Gaussian copulas that
overcomes the limitations of the standard approach, allowing to determine realistic
results in terms of the guarantees “mark-to-model” value when the benchmark mar-
ket model does not work. Numerical simulations validate the theoretical proposal.
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1 Introduction

After the global financial crisis that began in 2008, States has widely used govern-
ment guarantees to improve the stability of the financial system and to restore mar-
ket confidence in a systemic crisis situation (Allen et al. 2018; LaBrosse et al. 2013;
Levy and Zaghini 2010; Communication from the Commission 2008, 2011, 2013).

In Italy, these guarantees have also been used to address the consequences due
to the Covid-19 emergency (see, Italian government 2020a, b). In the EU frame-
work, the assessment of the theoretical up-front value of government guarantees
on bank liabilities are a relevant issue: government guarantees can be used as
“stability” financial instruments only if their values are “market consistent”; oth-
erwise, given the prohibition of State aids, they are not allowed (see Sect. 2 in
Bassan and Mottura 2015).

In particular, the EU Commission indicates the “ex-lege” methodology for
calculating the guarantee fee on a backwards-looking basis; but no indication is
given for an ex-ante fee valuation (i.e., on a forward-looking basis).

We examine here the problem of evaluating a guarantee contract where both the
guarantor and the borrower are subject to default risk, and these risks are correlated.
In particular, we tackle the problem of financial valuation of government guarantees
on bank liabilities in the broader context of the institutional measures used by the
EU States to improve the financial stability of markets and restore confidence in the
banking sector. The EU Commission has indicated the methodology for calculating
fees for banks that benefit from such guarantees, requiring that they should be “mar-
ket consistent” (Communication from the Commission 2008).

The issue of stochastic dependence arises from the connections between the
banks and the State. On the one hand, the bank plays the role of underwriter of
the securities issued by the State, so that such securities are assets on banks’
balance sheet. If the default risk of the State increases, then the value of banks’
investment reduces and the default risk of banks increases. On the other hand,
any bank’s failure generates an increase of the risk of refinancing the government
debt, thus the default risk of the State. This is the problem of dependence or cir-
cularity of default risk between State and bank.

The identification of the nature of the correlation among the involved risks
represents a challenging aspect of the problem and offers room for theoretical
additions to the related literature. We here deal with such a methodological theme
by introducing a suitably defined new family of copulas (for a survey on copulas,
see Joe 2014; Nelsen 2007).

Indeed, the classical Sklar’s Theorem (see Sklar 1959) assures that copulas
can capture the stochastic dependence among a set of random quantities. In this
respect, the large number of existing copulas provides rather complete cover-
age of the possible types of association, ranging from tail dependence (see, e.g.,
Dolati et al. 2014; Fernandez-Sanchez and Ubeda-Flores 2019) to generalized
concepts of positive dependence, like the multivariate total positivity of order
2 (see, e.g., Cerqueti and Lupi 2016; Wysocki 2015) and the positive quadrant
dependence (see, e.g., Gijbels et al. 2010; Saminger-Platz et al. 2021).
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In our context, for financial markets this defaultable guarantee can be interpreted
as defaultable single name Credit Default Swap (CDS, see Mottura and Passalacqua
2013a, b, 2014; Liang et al. 2014). It follows that in our financial valuation analy-
sis the reference defaultable guarantee has been valued under the standard Gaussian
copula model, which is the benchmark for such credit derivative (see, e.g., Brigo
and Chourdakis 2019; Chen et al. 2012; Morini 2011). One of the main reasons for
the widespread use in the industry of the Gaussian copula is the easy interpretation
of its linear correlation parameter. Moreover, the Gaussian copulas represent one of
the main relevant examples of association measures, being suitable for describing
either positive as well as negative dependence (see, e.g., Masarotto and Varin 2012;
Pitt et al. 2006). In this respect, it is important to notice that proper selections of
the correlation parameter let the Gaussian copula attain the Frechet upper and lower
bounds and the independence case of the product copula in the bivariate case (see
Joe 2014; Xue-Kun Song 2000).

This explains the popularity of such methodological tools and their extensions in
financial applications (see, e.g., Malevergne and Sornette 2003).

Nevertheless, the original version of the Gaussian copula exhibits crucial limita-
tions; hence they are sometimes inappropriate for modelling some special types of
financial dependence structures. Zimmer (2012) elaborates on such inconsistency by
presenting the paradigmatic case of the housing crisis as an extreme event. In Fang
and Madsen (2013), the authors offer a modified version of the Gaussian copula for
financial and insurance contexts. In the same line, Furman et al. (2016) encourage
“substitution of the Gaussian copula with other copulas”.

This paper contributes to this scientific debate. We take for us the attitude of the
Gaussian copulas to describe the dependence among financial risks, but we over-
come their limitations by presenting a novel family of copulas that is a modification
of the standard Gaussian ones.

To provide a model that allows determining “realistic” results in terms of the
guarantees “mark-to-model” value when the Gaussian model does not work, we sug-
gest a model that gives rise to values of the guarantee with the following three con-
ditions of consistency: (1) the up-front values of the guarantee must always decrease
with the increase of the dependence parameter between the default times of the par-
ties; (2) for any fixed level of the dependence parameter, the values of the guarantee
have to be decreasing with the intensity of default of the guarantor (4,), given the
intensity of default of the borrower (4,), and have to be increasing with 4,, given 4;;
(3) the up-front value of the guarantee has to be equal to O in the case of a perfect
positive correlation between the default times of the parties.

From a methodological perspective we follow a “best effort” principle, which
ensures the best compromise between the mathematical tractability and the mean-
ingfulness of the guarantee’s values. Specifically, we provide an exogenous adjust-
ment of the Gaussian copula (that we call Modified Gaussian (MG) copula/model)
by combining the standard Gaussian copula with the default time distributions of
the parties where the default intensities of the guarantor are appropriately modified
by an “adjustment function”. This adjustment function is defined as a deterministic
“S” shaped function of three parameters. Two of them can be set to produce val-
ues of the guarantee contract by the MG model as close as possible to those of the
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Gaussian model, when the level of the dependence parameter of the Gaussian copula
is smaller than a prefixed maximum acceptable correlation; the other adjustment
parameter is a strategic (exogenous) variable in the hand of the calculation agent.
Clearly, when the “adjustment function” approaches zero, the MG model collapses
on the Gaussian one.

We point out that the introduction of the adjustment function mitigates the sym-
metry derived by the employment of the Gaussian copula, in a context which is gen-
erally asymmetric. Indeed, the deviation between the behavior of the default prob-
abilities of State and banks is a stylized fact of several markets.

Extensive simulations based on real data validate the theoretical proposal.

The structure of this paper is as follows. Section 2 introduces the considered
financial setting, with some preliminary concepts on the reference guarantee con-
tract. The notations used in this section are also those employed in the methodologi-
cal part of the paper. Section 3 is devoted to the valuation of the reference guarantee
by using the standard Gaussian copula model; such a section provides also some
numerical results and a discussion of the main drawbacks of the standard Gauss-
ian approach. In Sect. 4, we propose a new model (the MG model) to overcome
the shortcomings of the Gaussian model. Finally, Sect. 5 contains some concluding
remarks and traces lines of future research.

2 General framework

In this section, we introduce the financial framework for assessing the theoretical
up-front value of government guarantees on bank liabilities. This financial valua-
tion will refer to a defaultable guarantee contract where the State-guarantor and the
bank-borrower are both subject to default risk, and their risks are interconnected
(reference guarantee contract).

For completeness, we recall some well-known financial concepts related to this
point.

All the operators in financial markets are risky, i.e., exposed to “default risk”,
which can be measured in terms of Credit Default Swaps (CDSs) prices.

The CDSs are derivative instruments in which a party, in return for payments to
the counterparty, protects itself against the risk of default associated with a particu-
lar debtor (reference entity). The debtor may be a company or a State issuing a bond.
CDSs are traded over-the-counter, and their prices indicate the cost of hedging the
underlying debtor’s default risk per notional value. In this sense, CDSs are normally
used as a “risk thermometer” to measure the level of debtors’ risks.

In the interbank credit derivatives market, a risky guarantee corresponds to a sin-
gle-name defaultable CDS: the reference entity is the bank debt; the protection seller
is the guarantor State; the protection buyer is the issuing bank, which pays the guar-
antee fee to the protection seller. In the event of default of the reference obligation,
the repayment to the bondholders by the protection seller is the default payment leg
of the CDS; the guarantee commission paid by the debtor is the premium payment
leg of the CDS. Typically, interbank CDSs are collateralized; in this sense, they can
be interpreted as market default-free guarantees.
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When embedded in the “market,” the analyzed defaultable guarantee con-
tract—between a single debtor and a single guarantor, in our case—is similar to
a defaultable CDS, and relevant evaluation problems occur. Indeed, the European
Central Bank has highlighted that when the creditworthiness of the reference
entity of the CDS is correlated to the payment capacity of the counterparty of the
CDS, a so-called wrong-way risk is produced, underlining the importance of con-
trolling this type of risk. Quoting European Central Bank (2009): “the increased
correlation in the CDS market between reference entities and sellers of CDS pro-
tection lessens the effectiveness of clean transfer of risk and amplifies the effect
of this interconnectedness. This risk, called wrong-way risk, occurs when a CDS
reference entity’s creditworthiness or credit quality is correlated with the CDS
counterpart’s ability or willingness to pay”.

We can now go on with the mathematical description of the general framework.

The notation introduced in this section will also be used for describing the
Gaussian copula approach, the drawbacks of such a standard setting and, finally,
for introducing the novel concept of modified Gaussian copula (see the next
sections).

We denote by 7; > 0 and 7, > 0 the times of default of the guarantor (party 1) and
of the borrower (party 2), respectively, and we assume they are correlated. The guar-
antor pays the payoff of the guarantee II to a guaranteed party at the time of default
of the borrower 7, (if 7, occurs before the maturity of the contract T), and is defined
as follows

T(2) = N[1 = RO 720y ey

where N is the nominal amount of the contract, R(%) is the stochastic recovery rate at
time 7, 7 = min{z,, T'}, and 1 is the indicator function. We assume a standard prob-
ability space (.Q, G.{G,} =05 @), where £ is the sample space, G is the o-algebra, G, is
the relevant filtration representing the flow of information up to time ¢, and Q is the
risk neutral measure. Under the no-arbitrage market condition, the theoretical up-
front value of the guarantee V() at the valuation time ¢ is given by

V(1) = E° [e— S rduyy | g,], )
where r(u) is the risk-free interest rate intensity (spot rate) prevailing on the market
at time u. We point out that to evaluate equation (1) we focus on the probability
that the guarantee is paid P[(r2 <7T)n(z; > 1-2)], namely, the probability that the

borrower’s default occurs both before the contract’s maturity and the default of the
guarantor.

3 The standard Gaussian copula and its drawbacks

We now present the Gaussian setting and the related methodological drawbacks for
modelling the stochastic dependence among the considered risks.
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3.1 The standard Gaussian copula model

In this section, we deal with the evaluation of the theoretical up-front value V(¢)
of a defaultable guarantee contract as in (1), using the standard Gaussian copula
model first introduced by Li (2001) to financial problems. Without loss of gener-
ality, we set t = 0 hereafter and denote V(0) = V.

To assess V, we need the joint distribution of the default times of the par-
ties (7,,7,) involved in the contract that, according to Sklar’s theorem can be
obtained by combining suitable marginal distributions with an appropriate cop-
ula function (see, e.g., Meucci 2011, 2011b).

In this analysis we assume constant default intensities for the parties (4, 4,).
Therefore, the default time 7; for the i — th party follows a negative exponential
marginal distribution. Specifically, the marginal cumulative distribution of the
default time z; for the i — th party at time 7 > 0, namely F,(7), is given by (see,
e.g., Lando 1998)

FH=Pr;<H=1-e* with i=1,2. )

On the other hand, to describe the dependence structure between default times of
the parties (7}, 7,), we use the Gaussian copula. Note that the Gaussian copula has
become a market reference for credit risk modelling due to its simplicity and trac-
tability. Indeed, the use of the Gaussian copula is particularly appreciated among
practitioners since this copula only needs the linear correlation parameter p as input.
Then, according to Sklar’s theorem, the joint distribution of the default times (7,
1)) € R? is obtained by

(1. 15) = (F7 (), F; ' (), 3)

where (u;, u,) € [0, 1]2 are two random vectors generated from a Gaussian copula,
and F 1‘1, F5 I'are the inverse functions of the marginal default times distributions of
the parties as in (2). Thus, we can write

—In(1 —uy) —In(1 — u,)
)«1 ’ 12 ’

(o1 7) = < )
In the following sections, we report numerical results on the theoretical up-front
value V as in (1), using the Gaussian model. As we shall see, on the one hand, we
can evaluate the up-front value V of a defaultable guarantee contract as a function
of the correlation parameter p, which can be easily viewed as the market correlation
between default intensities. On the other hand, for A, < 4,, which represents a typi-
cal situation, the Gaussian model determines up-front values V that are not mono-
tone with respect to the correlation parameter p, and, therefore, it does not satisfy
the so-called conditions of consistency described in the Introduction.
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3.2 Numerical results for the standard Gaussian model

We provide here numerical results on the theoretical up-front value V, as in equa-
tion (1), of a defaultable guarantee with maturity 7 = 3 years, guaranteed liability
N = 100 euros, and constant recovery rate R = 0.4. We assume that the depend-
ence structure is described by a Gaussian copula with correlation parameter p,
while the marginal distributions of the default times of the parties are represented
by exponential functions with intensities A, (guarantor), 4, (borrower). We evalu-
ate the up-front value V for different levels of the parties’ default intensities (4,
A,) and for various levels of the copula correlation parameter p by using 5 x 10°
Monte Carlo simulations. Furthermore, we assume a constant spot rate r = 0.01.
The reference levels of the borrower and of the guarantor intensities have been
fixed considering the sovereign and bank CDS market prices as follows: A, =
0.005, 0.01, 0.02, 0.04, 0.06, 0.2; 4, = 0.005, 0.01, 0.02, 0.04, 0.06, 0.2. As far
as financial market evidence is concerned, these levels correspond to single-name
CDS sovereign and bank implied default probabilities observed in the market
since 2005 (see Bassan and Mottura 2015). Indeed, empirical evidence shows that
credit default swaps spreads can be used as an explanatory variable to assess a
sovereign’s creditworthiness (Janus et al. 2013). Even in the banking sector, CDS
spreads are significantly related to the credit risk of bank corporations (Kanaga-
retnam et al. 2016).

In Table 1 and Fig. 1, we report and show the computational results obtained
from this empirical setup. As already pointed out, we expect that for a fixed bor-
rower’s creditworthiness A, and correlation level p, the value V of the guarantee
decreases with the weakness of the guarantor 4,. Conversely, for a fixed guarantor’s
creditworthiness 4, and correlation level p, V increases with the weakness of the
borrower 4,.

Looking at the computational results, we note that when the correlation parameter
p is equal to O, the up-front value V depends, by definition, only on the marginal risk
features of the parties. Accordingly, the values V decrease with the default risk of the
guarantor A, when fixing the risk of the borrower 4,, and clearly increase in the oppo-
site case. For intermediate levels of correlation, when the default risk of the guarantor
is higher than that of the borrower (i.e., A, > 4,), the value V always decreases when
the correlation parameter p increases. On the contrary, if the default risk of the guaran-
tor is lower than that of the borrower (i.e., 4, < 4,), the value V is not monotonically
decreasing w.r.t. the copula’s correlation parameter p. Indeed, V is first decreasing and
then, around some correlation levels, starts increasing. This contradictory behaviour
can be seen both in Fig. 1 (on the left) and in Table 1. More precisely, in Table 1 we
mark in italics the ’non-acceptable” cases where the up-front value V of the guarantee
increases when the parameter p increases. We call “maximum acceptable correlation”
P> the maximum level of the copula correlation parameter for which the Gaussian cop-
ula (G) model gives realistic results. In other words, the Gaussian model works appro-
priately for p < p;. Furthermore, when the correlation parameter p is equal to 1, if the
default risk of the guarantor is higher than that of the borrower, then V approaches 0.
Conversely, if the borrower has a default intensity higher than that of the guarantor
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Table 1 Up-front value V (in euros) of a three years guarantee with a guaranteed liability N = 100 and a
recovery rate R = 0.4

p 0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 10
}'2
A 0.005

0.005 0.88 0.88 0.85 0.84 0.83 0.81 0.80 0.76 0.70 0.63 0.00
0.01 0.87 0.86 0.85 0.82 0.81 0.77 0.75 0.66 0.58 0.44 0.00
0.02 0.87 0.84 0.80 0.78 0.75 0.71 0.63 0.53 0.42 0.23 0.00

0.04 0.82 0.81 0.76 0.71 0.68 0.60 0.51 0.39 0.26 0.08 0.00
0.06 0.79 0.78 0.73 0.67 0.62 0.53 0.43 0.31 0.17 0.04 0.00
0.2 0.65 0.61 0.53 0.45 0.36 0.28 0.18 0.10 0.03 0.00 0.00
0.01

0.005 1.77 1.70 1.73 1.67 1.69 1.65 1.62 1.56 1.54 1.49 1.69
0.01 1.72 1.72 1.68 1.66 1.65 1.57 1.54 1.44 1.36 1.22 0.00
0.02 1.68 1.66 1.62 1.59 1.52 1.44 1.37 1.23 1.07 0.80 0.00
0.04 1.64 1.59 1.54 1.45 1.36 1.28 1.14 0.96 0.74 0.37 0.00
0.06 1.60 1.54 1.45 1.36 1.26 1.14 0.97 0.79 0.52 0.19 0.00
0.2 1.31 1.20 1.08 0.95 0.78 0.61 0.46 0.26 0.11 0.01 0.00
0.02

0.005 3.40 3.40 3.37 3.34 3.34 3.31 3.29 3.26 3.25 3.28 3.47
0.01 3.42 3.37 3.34 3.32 3.22 3.14 3.12 3.06 2.99 2.98 3.38
0.02 3.35 3.29 3.26 3.16 3.11 3.00 2.86 2.73 2.58 2.33 0.00
0.04 3.23 3.15 3.09 297 2.85 2.69 2.50 2.29 1.95 1.38 0.00
0.06 3.16 3.06 2.94 2.71 2.61 2.44 2.19 1.89 1.48 0.86 0.00
0.2 2.59 2.42 221 1.99 1.72 1.42 1.11 0.75 0.38 0.08 0.00
0.04

0.005 6.67 6.59 6.58 6.54 6.55 6.48 6.48 6.47 6.55 6.59 6.66
0.01 6.56 6.54 6.52 6.42 6.40 6.36 6.28 6.24 6.28 6.45 6.68
0.02 6.51 6.44 6.33 6.29 6.17 6.06 5.96 5.82 5.71 5.78 6.61
0.04 6.29 6.20 6.06 5.90 571 5.56 5.29 5.07 4.76 4.37 0.00
0.06 6.10 5.96 5.81 5.59 537 5.18 4.84 4.48 4.00 3.15 0.00
0.2 5.11 4.79 4.42 4.05 3.65 321 2.68 2.06 1.31 0.44 0.00
0.06

0.005 9.70 9.67 9.64 9.63 9.58 9.56 9.54 9.57 9.67 9.77 9.74
0.01 9.57 9.53 9.58 9.44 9.44 9.36 9.36 9.30 9.39 9.56 9.74
0.02 9.42 9.36 9.35 9.23 9.14 9.03 8.92 8.82 8.89 9.11 9.82

0.04 9.17 9.04 8.91 8.71 8.53 8.40 8.16 7.96 7.75 7.70 9.05
0.06 8.93 8.77 8.52 8.35 8.04 7.78 7.46 7.16 6.76 6.19 0.00
0.2 7.38 7.01 6.59 6.15 5.65 5.12 4.48 3.67 2.60 1.22 0.00
0.2

0.005 26.56 26.48 26.53 26.40 26.46 26.46 26.55 26.58 26.64 26.76 26.68
0.01 26.38 26.34 26.22 26.19 26.34 26.35 26.36 26.54 26.62 26.68 26.61

0.02 26.00 25.94 25.87 25.74 25.79 25.81 25.98 26.23 26.38 26.62 26.68
0.04 25.40 25.22 25.08 24.98 24.87 24.94 24.97 25.15 25.57 26.34 26.73
0.06 24.69 24.41 24.24 24.12 24.08 23.92 24.03 24.18 24.67 25.62 26.70
0.2 20.75 20.26 19.75 19.33 18.75 18.24 17.66 17.13 16.39 15.49 0.00

Each value represents V as a function of the dependence parameter p, for different values of the default
intensity of the guarantor A, and of the borrower 4,, using the Gaussian model. We mark in italics the
cases where the value V of the guarantee increases as the parameter p increases
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G model: \y=0.2 G model: \;=0.2
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P P

Fig. 1 Up-front value V (in euros) of a three years guarantee for different values of the default intensity
of the guarantor 4, fixed 4, = 0.2 (left) and of the borrower 4, fixed 4, = 0.2 (right). G model stands for
Gaussian model

(that is the typical situation), then the guarantee’s value V reaches its maximum value.
This result is exactly the opposite of what one should expect.

3.3 The drawbacks of the standard Gaussian model

Considering the combination between the Gaussian copula and the marginal default
time distributions (F,, F,) with intensities (4, 4,) as in (2) gives rise to random default
times (z;, 7,) that can be chronologically distant when the copula’s correlation param-
eter p is equal to 1 (Morini 2011). This phenomenon appears in contradiction with the
financial meaning of perfect positive correlation. Indeed, for p = 1, the parties should
have the same behaviour in terms of default.

This aspect can be shown by using equation (4). We observe that when the copula’s
correlation parameter p is high (p — 1) the realisations of (u;, u,) tend to be equal, i.e.,
u, = u, = u. Thus, for p = 1, we have

—In(1 —u) —In(l —u)
(T]9T2) = < Al b ,12 >’ (5)
hence, the following relation between the default times (7, 7,) holds
A
T = 71 2- (6)

As a consequence of (6), the party that defaults first is always the one with the
higher default intensity. This implies that if the default intensity of the guarantor
is higher than that of the borrower (i.e., 4, > A,), for p = 1 the guarantee’s value V
approaches to 0, and V is always decreasing with respect to the correlation param-
eter p. Conversely, if the borrower is the party with the higher default intensity (i.e.,
A1 < 4,), when p = 1, then V reaches its maximum value, hence failing the condi-
tions of consistency.
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Fig.2 Maximum acceptable correlation p; as a function of the default intensities of the guarantor 4, and
of the borrower 4,, using the Gaussian model

In Fig. 2 we show the surface of the “maximum acceptable correlation” p; for
the Gaussian model, as a function of different values of the default intensities of
the guarantor A, and of the borrower 4,. We observe that the yellow region, where
A > 4,, represents values of p; equal to 1. This means that when the guarantor’s
default intensity is higher than that of the borrower, the Gaussian model works
appropriately for all p € [0, 1]. In this case, the up-front value of the guarantee V
is indeed monotonically decreasing with respect to the correlation parameter p and
approaches 0 when p =1 (see Fig. 1 on the right). This result is in line with the
conditions of consistency. Differently, the darker regions of Fig. 2 identify values
of p; less than 1. In particular, the dark blue area represents values of p; that are
close to 0. Therefore, in the typical situation where the guarantor is less risky than
the borrower (i.e., 4; < 4,), the Gaussian model is not able to give realistic results
in terms of V. In this case, the up-front value of the guarantee V is not monotoni-
cally decreasing on the copula’s correlation parameter p, as we should expect, but
for p > p; increases (see Fig. 1 on the left).

4 A modified Gaussian model

In this section, we investigate a model that gives rise to consistent values of the
guarantee, in the sense of the conditions of consistency listed in the Introduction.
For this aim, we propose an adjustment of the G model, called Modified Gauss-
ian (MG) model. It is obtained by combining the standard Gaussian copula with
marginal default time (negative exponential) distributions of the parties where, if
A < 4, (i.e., when the Gaussian model does not work consistently), the market
default intensities (4,, 4,) are appropriately reparametrized in (21, 12) by an “adjust-
ment function” applied to 4,.
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In the same framework of Sect. 3.1, for the i-th part we introduce the marginal
distribution of the default time 7;, F';(7), that is given by

F) =P <i=1-e kel =17, @)

where, differently from (2), when 4, < 4,, the “modified” default intensities
A;(ny,a,c)withi = 1,2 are

A(ny,a,0) =+ (A — Ay) g1, a,€) (8)

Ao, a,€) =2y, )

always being A, and A, the market default intensities. We assume that the function
g(n,,a,c) is an “S” shape curve which for #, € [0, 1] ranges from 0 and to 1 in a
sigmoidal manner (see the next subsection for an illustrative example of such a func-
tion). The constant a and ¢ determine the shape of g, while #, is an “adjustment
parameter” that is set to appropriately modify the original default intensity 4, to
avoid the drawback of the Gaussian model described in Sect. 3.3.

We point out that the failure of the Gaussian hypothesis can be appreciated only
if one takes the data-based calibration of the default intensities. In particular, if
Ay < 4, — which represents the standard market condition—and p — 1, then

T = j—?rz, so that P(7; > t,) = 1. By taking into account the maturity of the contract

T, one has P[(ﬂ:2 <T)n(z; > 12)] = 1. This fact contradicts the mechanism that
when p grows, the probability that the default of the borrower occurs both before the
maturity of the contract and the default of the guarantor P [(72 <7T)n(z > 12)]
should decrease. Since P [(12 <T)n(z > Tz)] plays a key role in evaluating the the-
oretical up-front value of the guarantee, this causes the failure of the standard Gauss-
ian model, which substantially does not succeed in modelling the joint default of
parties 1 and 2. The introduction of the S-shape adjustment function to the market-
based calibrated default intensities allows to model the joint default of the parties;
therefore, when p is very high, such an adjustment allows to obtain a decrease in the
probability that the default of party 2 (borrower) occurs before party 1 (guarantor).
In doing so, on the one hand, it is possible to use a benchmark market model—the
Gaussian one—and, on the other hand, to satisfy the conditions of consistency (1)
and (3) (being condition (2) always satisfied by both the standard and the modified
models).

Now, as in the Gaussian model, we define the bi-variate variables (7,7,) € Ri as
follows

(11, 7) = (F7 (), By (uy)), (10)

where (u;, u,) € [0, 1]2 are two random vectors generated by a Gaussian copula with
dependence parameter p, and F 1‘1, f’z‘ !are the inverse of the marginal distributions
of the default times of the parties, having default intensities as in (8) and (9). The
joint distribution that characterizes (z,,7,) is therefore obtained combining the “mod-
ified” marginal distributions (7) and a Gaussian copula. We call it the “modified”
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joint distribution of the default times of the parties, that in the MG model we use
for evaluating the up-front value V of a defaultable guarantee contract as a func-
tion of the dependence parameter p and the adjustment parameter #,, which is used
for obtaining consistent values of the guarantee, in the sense of the conditions of
consistency. The value of #, to be used for the specific valuation is a strategic (exog-
enous) variable in the hand of the calculation agent, which, to be consistent, has
to belong to the feasible range of #, that defines the set of consistent values of the
guarantee for any given p. Furthermore, for “calibration” purposes, the MG model
has to produce values of the guarantee as close as possible to those of the Gaussian
model, when the levels of p are smaller than the “maximum acceptable correlation”
(see Sect. 3.2). Clearly, when 4; < 4,, the “maximum acceptable correlation” can
be numerically computed using the Gaussian model, and 0 < p; < 1, as shown in
Fig. 2.

In the following section, we empirically analyze the surface of the defaultable
guarantee contract values V as a function of p and #,, highlighting for a fixed value
of p the corresponding range of admissible values of #, for which V is consistent.
Then, within the feasible range for #,, we discuss the particular case n, = p, where
n, becomes an “observable” variable. Clearly, if #, = 0, the results of the MG model
collapse on those of the Gaussian model.

4.1 The sigmoid adjustment function

We suppose that

A

e

Y

where A and B are appropriate constants so that g(0,a,c¢) =0 and g(1,a,c) = 1.
Employing some algebraic manipulations, it is straightforward to show that

(1 + e‘“(l“'))(l + e%)
e¥“(l —e™)

1 4 ¢~
T e(l—e)’

The constant ¢ represents the value of #, of the sigmoid’s midpoint, while a deter-
mines the steepness of the curve. To support intuition in Fig. 3, we show the graph
of the adjusted default intensity ﬁl(r] 44, ¢) as a function of the “adjustment param-
eter” n, for sever