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A B S T R A C T

I study a multi-stage all-pay auction in which the lowest bidder in each stage is eliminated. Elimination
continues until only two bidders remain, one of whom wins the auction. I analyse optimal bidding behaviour
and the seller’s expected revenue when bidders have independent and private values. In contrast to typical
bidding strategies, the optimal bid in each stage is strictly decreasing in the number of bidders. For a fixed
number of bidders, however, bids increase as bidders progress through the stages of the auction. Despite
independent values, this multi-stage auction yields less expected revenue to the seller than its single-stage
counterpart when there are more than three bidders.
1. Introduction

All-pay auctions are a common approach to modelling competitive
environments including lobbying (Baye et al., 1993), procurement (Fu
et al., 2014) and crowdsourcing (Chawla et al., 2019). In many of these
environments, the competition takes place over multiple stages and, in
each stage, a number of bidders are eliminated. Moreover, it is natural
to suppose that the value to a lobbyist from a bill being passed, or
to a firm from procuring a contract, is private information. Much of
the existing literature, however, has focused on settings in which these
values are common knowledge.

Assuming that bidders’ values are private and independent, I anal-
yse a multi-stage all-pay auction in which the lowest bidder is elimi-
nated in each stage. I first construct a model that is tractable, yet retains
the ability to provide novel theoretical insights. I then characterise
optimal bidding to understand how the number of bidders, and the
stage in which each bidder places her bid, affects behaviour. Lastly,
I calculate the seller’s expected revenue to determine whether this
multi-stage auction format outperforms its single-stage counterpart.

My results on optimal bidding show that, in contrast to several
standard auction formats, the optimal bid in each stage decreases in the
number of bidders. Intuitively, however, for a fixed number of bidders,
each bidder’s optimal bid increases as she progresses through the stages
of the auction. Turning to the seller’s expected revenue, there are three
competing predictions one might have about this auction format. First,
one might expect that, since there will be a larger number of bids in the
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I would also like to thank an anonymous referee for suggestions that improved the paper.
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1 With four bidders, there will be nine total bids; with ten bidders, fifty-four bids.

multi-stage auction, expected revenue will be higher than in a single-
stage all-pay auction.1 Alternatively, one might think that, because
bidders already shade their bids significantly in a single-stage all-
pay auction, the addition of multiple elimination stages may increase
the incentive to shade to an even greater degree. Therefore, expected
revenue will be lower. Lastly, one might predict that, because the
bidders’ values are independent, the revenue equivalence theorem will
hold. I show that, when there are more than three bidders, the second
intuition is correct even when the bidders’ values are independent. This
result implies that the revenue equivalence theorem does not generally
hold in this setting, and I discuss the mechanism that leads to this
decrease in expected revenue.

A large literature analyses multi-stage all-pay auctions (e.g. Barut
and Kovenock, 1998; Konrad and Kovenock, 2009; Sela, 2012; Hirata,
2014; Mendel et al., 2021). There are two main differences, however,
between these papers and my model. First, they typically analyse
the effects of multiple prizes. Second, and importantly, they assume
complete information, which implies mixed-strategy equilibria. In con-
trast, I consider a setting in which only the winner in the final stage
obtains the item and each bidder’s value is private information. All-
pay auctions with incomplete information have been investigated to a
high degree of generality by, for example, Amann and Leininger (1996)
and Krishna and Morgan (1997); however, these papers analyse single-
stage auctions. An exception is Moldovanu and Sela (2006), who study
a general two-stage all-pay auction under incomplete information. In
vailable online 25 June 2024
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their model, however, the players’ private information is related to
ability, rather than their value for the prize.

Another strand of literature examines multi-stage Tullock contests
with elimination (e.g. Clark and Riis, 1996; Yates and Heckelman,
2001; Arve and Chiappinelli, 2021). By employing the Tullock con-
test success function, these papers look at imperfectly discriminatory
contests. While I study an all-pay auction, which is a perfectly discrim-
inatory contest, I draw on this literature to support my assumptions
of eliminating one participant per stage, awarding a prize only to the
finalist, and concealing a bidder’s relative ranking (Fu and Lu, 2012;
Fu and Wu, 2022).

In Section 2, I lay out the details of the model. In Section 3, I analyse
optimal bidding behaviour and the seller’s expected revenue. I compare
this expected revenue with the standard all-pay auction in Section 4.
Proofs are in the Appendix.

2. Model

Consider a group  = {1, 2,… , 𝑁} of risk-neutral bidders who bid
for an item in an all-pay auction with multiple elimination stages. Each
bidder 𝑖 ∈  has an independent value 𝑣𝑖 ∼ 𝑈 [0, 1] for the item, which
is private information. There are 𝑁 − 1 stages and, in each stage, the
bidder with the lowest bid is eliminated. Consequently, in stage 1, all
𝑁 bidders take part in the auction whilst, in stage 𝑁 − 1, only two
bidders remain. The bids from previous stages do not carry over, nor
are they revealed. One can imagine bidders are simply informed they
have made it to the next stage, without observing their opponents’ bids
or their own relative standing.

Each bidder solves for her optimal bidding strategy in each stage by
backward induction. Therefore, in stage 𝑁 −1, each of the two remain-
ing bidders solve the standard all-pay auction maximisation problem:
max𝑏𝑖∈[0,1] Pr(𝑏𝑖 > 𝑏𝑗 )𝑣𝑖 − 𝑏𝑖. When each bidder uses the symmetric,
increasing and continuous bidding strategy 𝛽𝑁−1 ∶ [0, 1] → [0, 1], this
maximisation problem can be rewritten as max𝑏𝑖∈[0,1] 𝛽

−1
𝑁−1(𝑏𝑖)𝑣𝑖 − 𝑏𝑖.

The associated first-order condition is (𝑣𝑖∕𝛽′𝑁−1(𝛽
−1
𝑁−1(𝑏𝑖))) = 1. Using

𝛽−1𝑁−1(𝑏𝑖) = 𝑣𝑖 yields 𝛽𝑁−1(𝑣𝑖) = 𝑣2𝑖 ∕2.
In stage 𝑠 = 1,… , 𝑁 − 2, bidder 𝑖 solves

max
𝑏𝑖∈[0,1]

𝛽−1𝑠 (𝑏𝑖)
𝑣𝑁−(1+𝑠)
𝑖

𝑁 + (1 − 𝑠)
− 𝑏𝑖, (1)

here 𝛽𝑠 ∶ [0, 1] → [0, 1] is symmetric, increasing and continuous
n each stage 𝑠. The elements of (1) require some explanation. First,
ince bidder 𝑖 only needs to avoid having the lowest bid in each stage
o progress to the next, the term 𝛽−1𝑠 (𝑏𝑖) represents the probability of
idding higher than one other bidder in stage 𝑠. Second, given that the
idding strategy in stage 𝑁 −1 is known to be 𝛽𝑁−1(𝑣𝑖), the probability

of winning the auction in that stage depends only on the two remaining
bidders’ values. Therefore, the probability bidder 𝑖 wins in stage 𝑁−1 is
Pr(𝑣𝑖 > 𝑣𝑗 |𝑣𝑗 > 𝑣𝑘∀𝑘 ∈ ∕{𝑖, 𝑗}) = 1∕[𝑁+(1−𝑠)], which is increasing as
bidder 𝑖 progresses through the stages. Finally, using an order statistic
argument, the probability of bidder 𝑖 making it to stage 𝑁−1 is 𝑣𝑁−(2+𝑠)

𝑖 .
his term is the probability of bidder 𝑖 having a higher value than at

east one other bidder in all remaining stages, not including stage 𝑁−1.
Multiplying this probability by 𝑣𝑖, the value obtained from winning the
auction, yields the term 𝑣𝑁−(1+𝑠)

𝑖 in (1).

3. Optimal bidding and expected revenue

My first two results characterise the optimal bidding strategy in each
stage.

Lemma 1. The optimal bidding strategy in stage 𝑠 = 1,… , 𝑁 − 2 is

𝛽𝑠(𝑣) =
𝑣𝑁−𝑠

(𝑁 + 1 − 𝑠)(𝑁 − 𝑠)
.

Corollary 1. 𝛽 (𝑣) is decreasing in 𝑁 and increasing in 𝑠 for 𝑣 > 0.
2

𝑠 𝑣
Unlike the standard all-pay auction, each bidder’s bid strictly de-
reases as the number of bidders increases. To see this, note that in
he equivalent single-stage all-pay auction the optimal bid is 𝛽(𝑣,𝑁) ∶=
[(𝑁−1)∕𝑁]𝑣𝑁 . For arbitrary 𝑁 = 𝑘 and 𝑁 = 𝑘+1, this bid is decreasing
n the number of bidders if

𝛽(𝑣, 𝑘 + 1)
𝛽(𝑣, 𝑘)

=

( 𝑘
𝑘+1

)

𝑣𝑘+1
( 𝑘−1

𝑘

)

𝑣𝑘
=
[

𝑘2

(𝑘 + 1)(𝑘 − 1)

]

𝑣 < 1.

This expression simplifies to 𝑣 < �̄� ∶= 1 − (1∕𝑘2), which, for fixed
𝑘 ≥ 2, does not hold for all 𝑣. Therefore, bids in the single-stage all-
pay auction are increasing in the number of bidders if 𝑣 ∈ (�̄�, 1]. This
difference in bidding behaviour, as a function of the number of bidders,
is illustrated in Fig. 1.2

More intuitively however, for a fixed number of bidders, each bid-
der’s bid increases as she progresses through the stages of the auction.
In early stages, the probability of both making it to the final stage and
winning the auction are low. Therefore, bidders initially shade their
bids relatively severely. As they move through the stages, though, the
probability of winning increases, so the degree of shading decreases.

Using 𝛽(𝑣,𝑁), the optimal bid in the single-stage all pay auc-
tion, the seller’s expected revenue can be written as E𝑣[𝛱𝐴(𝑁)] ∶=
E𝑣[𝛽(𝑣,𝑁)] = 𝑁E𝑣

[

(𝑁 − 1)𝑣𝑁∕𝑁
]

=

𝑁 − 1)E𝑣
[

𝑣𝑁
]

= (𝑁 − 1)∫

1

0
𝑣𝑁𝑑𝑣 = (𝑁 − 1)∕(𝑁 + 1).

he expected revenue in the all-pay auction with elimination stages is

𝑣[𝛱𝐸 (𝑁)] ∶= 𝑁E𝑣[𝛽1(𝑣)] + (𝑁 − 1)E𝑣[𝛽2(𝑣)] +⋯ + 3E𝑣[𝛽𝑁−2(𝑣)]

+ 2E𝑣[𝛽𝑁−1(𝑣)],

hich, using Lemma 1, can be written as

𝑣[𝛱𝐸 (𝑁)] = 1
𝑁 − 1

E𝑣
[

𝑣𝑁−1] + 1
𝑁 − 2

E𝑣
[

𝑣𝑁−2] +⋯

+ 1
𝑁 − (𝑁 − 2)

E𝑣
[

𝑣𝑁−(𝑁−2)] + E𝑣
[

𝑣2
]

=
𝑁−(𝑁−2)

∑

𝑛=𝑁−1

1
𝑛
E𝑣

[

𝑣𝑛
]

+ E𝑣
[

𝑣2
]

=
𝑁−1
∑

𝑛=2

1
𝑛
E𝑣

[

𝑣𝑛
]

+ E𝑣
[

𝑣2
]

=
𝑁−1
∑

𝑛=2

1
𝑛 ∫

1

0
𝑣𝑛𝑑𝑣 + ∫

1

0
𝑣2𝑑𝑣

=
𝑁−1
∑

𝑛=2

1
𝑛(𝑛 + 1)

+ 1
3
.

he sum term in the expected revenue can be simplified as
𝑁−1
∑

𝑛=2

1
𝑛(𝑛 + 1)

=
𝑁−1
∑

𝑛=2

(

1
𝑛
− 1

𝑛 + 1

)

= 1
2
− 1

𝑁
. (2)

The first step comes from partial fraction decomposition and the second
comes from noting that (2) is a telescoping sum. Despite each bidder’s
bid decreasing in the number of bidders, my next result shows that the
seller’s expected revenue is still increasing as 𝑁 becomes larger.

Lemma 2. E𝑣[𝛱𝐸 (𝑁)] is increasing in 𝑁 .

Lemma 2 implies that the aggregate effect of a larger number of
bidders is relatively greater than the individual reduction in the bids
each bidder optimally submits.

2 Bidding behaviour in the multi-stage all-pay auction is also unlike the
irst-price auction, where the optimal bid is 𝑣1−𝑁𝛽(𝑣,𝑁) = [(𝑁 − 1)∕𝑁]𝑣. This
id is increasing in 𝑁 as 𝑣1−𝑁𝛽(𝑣, 𝑘+ 1) = [(𝑘+ 1− 1)∕(𝑘+ 1)]𝑣 > [(𝑘− 1)∕𝑘]𝑣 =
1−𝑁𝛽(𝑣, 𝑘) is equivalent to 𝑘2 > (𝑘 + 1)(𝑘 − 1) = 𝑘2 − 1.
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4. Expected revenue comparison

My main result demonstrates the effect that elimination stages have
on the seller’s expected revenue in comparison to a single-stage all-pay
auction.

Proposition 1. E𝑣[𝛱𝐴(𝑁)] > E𝑣[𝛱𝐸 (𝑁)] for 𝑁 > 3.

Perhaps surprisingly, the all-pay auction with elimination stages
an yield less expected revenue than the standard all-pay auction.
herefore, revenue equivalence does not hold when there are more
han three bidders, which implies more than two stages in the auction.
espite the bidders’ values being independently distributed, remaining

n multiple stages of the auction gives implicit information regarding
he other bidders’ values for the item. When a bidder makes it to stage
−1, for example, they know that their opponent has the highest value

f the other 𝑁−2 bidders, which is evidence that their opponent’s value
s large. Then, knowing that their opponent’s value is likely to be large,
he bidder’s conditional belief about their winning probability changes.
hese effects cause bidders to shade to such a degree that the overall
xpected revenue is less than in a standard all-pay auction with the
ame number of bidders.

When there are exactly three bidders, however, the all-pay auc-
ion with elimination stages yields the same expected revenue as the
tandard all-pay auction. Therefore, it also yields the same expected
evenue as the first-price, and second-price, auction with three bidders.

orollary 2. E𝑣[𝛱𝐴(3)] = E𝑣[𝛱𝐸 (3)].

When there are three bidders, the effects of the conditional probabil-
ity of winning in the final stage are small enough to not affect bidders’
behaviour. The result also arises because, with three bidders, there are
no intermediate stages. In particular, the seller’s expected revenue with
three bidders can be written as

E𝑣[𝛱𝐴(3)] = 2∫

1

0
𝑣3𝑑𝑣 = 3∫

1

0

𝑣2

6
𝑑𝑣 + 2∫

1

0

𝑣2

2
𝑑𝑣 = E𝑣[𝛱𝐸 (3)].

hen the number of bidders increases to four, for example, the ex-
ected revenue in the single-stage and multi-stage auction is
𝑣[𝛱𝐴(4)] = 3 ∫ 1

0 𝑣4𝑑𝑣 and

𝑣[𝛱𝐸 (4)] = 4∫

1

0

𝑣3

12
𝑑𝑣 + 3∫

1

0

𝑣2

6
𝑑𝑣 + 2∫

1

0

𝑣2

2
𝑑𝑣

= 1 1
𝑣3𝑑𝑣 + E𝑣[𝛱𝐸 (3)],
3

3 ∫0 i
respectively. The expected revenue in the single-stage all-pay auction
is greater as

E𝑣[𝛱𝐴(4)] − E𝑣[𝛱𝐴(3)] = 3∫

1

0
𝑣4𝑑𝑣 − 2∫

1

0
𝑣3𝑑𝑣 >

1
3 ∫

1

0
𝑣3𝑑𝑣 = E𝑣[𝛱𝐸 (4)] − E𝑣[𝛱𝐸 (3)].

When the number of bidders increases to four in the multi-stage auc-
tion, there are two effects. First, the total number of bids increases
from five to nine. Whilst this increase in total bids increases expected
revenue, there is an underlying trade-off: more bidders implies more
elimination stages. As the number of stages increase, each bidder’s
degree of shading in the first stage also increases. The second effect
is that the bids placed in the second stage decrease. These relatively
lower bids arise from the decrease in the probability of both making
it to the final stage and winning the auction. The degree of shading
in the first stage, and the adverse effect on bids placed in the second
stage, is sufficient for the sole extra bidder in the single-stage auction
to yield greater expected revenue. Moreover, both effects are amplified
as more bidders are added. With five bidders, bids placed in stages
two and three decrease. The combination of highly shaded bids in the
first stage, and the decrease in bids placed in intermediate stages when
the number of bidders increases, is what causes revenue equivalence to
break down when there are more than three bidders.

To generalise the above argument, define 𝛥E𝑣[𝛱𝐴−𝐸 (𝑁)] ∶=
𝑣[𝛱𝐴(𝑁)]−E𝑣[𝛱𝐸 (𝑁)] as the difference in expected revenue between

he two auction formats.

orollary 3. 𝛥E𝑣[𝛱𝐴−𝐸 (𝑁 + 1)] > 𝛥E𝑣[𝛱𝐴−𝐸 (𝑁)] for 𝑁 ≥ 3.

As the number of bidders increases, the difference in expected
evenue between the single-stage and multi-stage all-pay auction also
ncreases. For example, with four bidders, the gain in terms of expected
evenue from the standard all-pay auction is 1∕60, whilst for five
idders it is 1∕30. However, this pattern of doubling does not hold
enerally. The difference in expected revenue between the two auction
ormats comprises a Cauchy sequence with a limit of 1∕6.

eclaration of competing interest

The author declares that they have no known competing finan-
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Data availability
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Appendix. Proofs

Proof of Lemma 1. The first-order condition associated with (1) is

1
𝛽′𝑠(𝛽−1𝑠 (𝑏𝑖))

𝑣𝑁−(1+𝑠)
𝑖

𝑁 + (1 − 𝑠)
= 1.

Using 𝛽−1𝑠 (𝑏𝑖) = 𝑣𝑖 and integrating yields 𝛽𝑠(𝑣𝑖) = [1∕(𝑁 + 1 −
𝑠)] ∫ 𝑣𝑁−(1+𝑠)

𝑖 𝑑𝑣𝑖 = [1∕((𝑁 + 1 − 𝑠)(𝑁 − 𝑠))]𝑣𝑁−𝑠
𝑖 . □

Proof of Corollary 1. Fix 𝑣 > 0 and let

𝛽(𝑁, 𝑠) ∶= 𝑣𝑁−𝑠

(𝑁 + 1 − 𝑠)(𝑁 − 𝑠)
.

Since 𝑁 ∈ N∕{1, 2} and 𝑠 = 1,… , 𝑁 − 2, varying 𝑁 whilst keeping
fixed, and vice versa, yields the sequences {𝛽(3, 𝑠), 𝛽(4, 𝑠),…} and
𝛽(𝑁, 1), 𝛽(𝑁, 2),… , 𝛽(𝑁,𝑁 − 2)}, respectively. To show the former is
ecreasing in 𝑁 , take arbitrary 𝑁 = 𝑘 and 𝑁 = 𝑘 + 1 and note that

𝛽(𝑘 + 1, 𝑠)
𝛽(𝑘, 𝑠)

=
𝑣𝑘+1−𝑠

(𝑘+2−𝑠)(𝑘+1−𝑠)
𝑣𝑘−𝑠

(𝑘+1−𝑠)(𝑘−𝑠)

= 𝑣𝑘+1−𝑠

𝑣𝑘−𝑠
(𝑘 + 1 − 𝑠)(𝑘 − 𝑠)

(𝑘 + 2 − 𝑠)(𝑘 + 1 − 𝑠)

=
𝑣(𝑘 − 𝑠)
𝑘 + 2 − 𝑠

< 1.

o show the latter is increasing in 𝑠, take arbitrary 𝑠 = 𝑘 and 𝑠 = 𝑘 + 1
and note that

𝛽(𝑁, 𝑘 + 1)
𝛽(𝑁, 𝑘)

=
𝑣𝑁−𝑘−1

(𝑁−𝑘)(𝑁−𝑘−1)
𝑣𝑁−𝑘

(𝑁+1−𝑘)(𝑁−𝑘)

= 𝑣𝑁−𝑘−1

𝑣𝑁−𝑘
(𝑁 + 1 − 𝑘)(𝑁 − 𝑘)
(𝑁 − 𝑘)(𝑁 − 𝑘 − 1)

= 𝑁 + 1 − 𝑘
𝑣(𝑁 − 𝑘 − 1)

> 1. □

roof of Lemma 2. Using (2), the expected revenue in the all-pay
limination auction is

𝑣[𝛱𝐸 (𝑁)] = 5∕6 − 1∕𝑁,

hich is increasing in 𝑁 . □
4

Proof of Proposition 1. Define

𝛥E𝑣[𝛱𝐴−𝐸 (𝑁)] ∶=E𝑣[𝛱𝐴(𝑁)] − E𝑣[𝛱𝐸 (𝑁)] = 𝑁 − 1
𝑁 + 1

−
(

5
6
− 1

𝑁

)

=
(𝑁 − 2)(𝑁 − 3)
6𝑁(1 +𝑁)

,

and note that 𝛥E𝑣[𝛱𝐴−𝐸 (𝑁)] > 0 for all 𝑁 > 3. □

Proof of Corollary 2. When 𝑁 = 3, E𝑣[𝛱𝐴(3)] = 1∕2 = E𝑣[𝛱𝐸 (3)]. □

Proof of Corollary 3. To show that 𝛥E𝑣[𝛱𝐴−𝐸 (𝑁)] is increasing in 𝑁
for 𝑁 ≥ 3, take arbitrary 𝑁 = 𝑘 and 𝑁 = 𝑘 + 1 and note that

E𝑣[𝛱𝐴−𝐸 (𝑘 + 1)] − 𝛥E𝑣[𝛱𝐴−𝐸 (𝑘)] =
(𝑘 − 1)(𝑘 − 2)
6(𝑘 + 1)(𝑘 + 2)

−
(𝑘 − 2)(𝑘 − 3)
6𝑘(𝑘 + 1)

=
(𝑘 − 2)[𝑘(𝑘 − 1) − (𝑘 − 3)(𝑘 + 2)]

6𝑘(𝑘 + 1)(𝑘 + 2)

= 𝑘 − 2
𝑘(𝑘 + 1)(𝑘 + 2)

> 0. □
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