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Abstract: This paper combines Deep Reinforcement Learning (DRL) with Meta-learning and 

proposes a novel approach, named Meta Twin Delayed Deep Deterministic policy gradient (Meta-

TD3), to realize the control of Unmanned Aerial Vehicle (UAV), allowing a UAV to quickly track a 

target in an environment where the motion of a target is uncertain. This approach can be applied to 

a variety of scenarios, such as wildlife protection, emergency aid, and remote sensing. We consider 

multi-tasks experience replay buffer to provide data for multi-tasks learning of DRL algorithm, and 

we combine Meta-learning to develop a multi-task reinforcement learning update method to ensure 

the generalization capability of reinforcement learning. Compared with the state-of-the-art 

algorithms, Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic 

policy gradient (TD3), experimental results show that the Meta-TD3 algorithm has achieved a great 

improvement in terms of both convergence value and convergence rate. In a UAV target tracking 

problem, Meta-TD3 only requires a few steps to train to enable a UAV to adapt quickly to a new 

target movement mode more and maintain a better tracking effectiveness. 

Keywords: UAV; maneuvering target tracking; deep reinforcement learning; meta-learning; multi-

tasks 

 

1. Introduction 

With the development of technology, various types of UAVs have become available, such as 

fixed-wing and quadcopter. In particularly, quadcopters play an important role in a variety of 

scenarios. The advantages of using quadcopters include low-cost, low fault rates, light weight, fast 

response, high maneuverability, hovering capabilities, and vertical take-off and landing. In recent 

years, quadcopters have been extensively applied for different types of tasks, e.g., object tracking [1], 

wildlife protection [2], disaster rescue [3], 3D reconstruction [4] and maneuvering target tracking [5]. 

As an important application of UAV, maneuvering target tracking means that UAV observes a 

moving target through sensors, perceives the environment of the target, follows the target and 

maintains the tracking range with the target. However, when dealing with the uncertain environment 

and the movement mode of the uncertain target, UAVs do not have the ability to autonomously 

complete decision-making and planning, and cannot achieve high-precision tracking of maneuvering 

targets. Accurate maneuvering target tracking under uncertain environments is the requirement of 

future development UAV. 

Traditional methods of target tracking include genetic algorithms, Bayesian inference, and 

statistical theory, etc. These methods transform the target tracking problem into an optimization 
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problem. By solving the optimization model, the tracking path can be obtained. However, these 

traditional algorithms have a poor real-time performance for uncertain environment problems and 

cannot realize real-time tracking decision. 

In order to tackle these problems, researchers have employed artificial intelligence-based 

approaches, and one of such approaches is Reinforcement Learning (RL). RL is an effective approach 

to train an agent to make decisions in a complex and uncertain environment. Mnih [6] developed a 

novel artificial agent, named a deep Q-network (DQN), that can learn successful policies directly 

from high-dimensional sensory inputs using end-to-end reinforcement learning. Since then, deep 

reinforcement learning algorithms have been more widely used in UAV navigation and target 

tracking. Huang [7] combined DQN with UAV navigation to enable the agent to make decisions 

based on the received signal strength. Wu [8] proposed a search algorithm based on DQN, which can 

realize automatic search and path finding of UAV. Wang [9] developed a DRL framework for UAV 

navigation in large and complex environments for the partially observable Markov decision process 

(POMDP), and realized UAV navigation based on DDPG [10]. Wan proposed a novel DRL method 

to achieve robust control of UAV in dynamic uncertain environment [11]. Based on DQN, Bhagat 

proposed a deep reinforcement learning method for tracking targets in the presence of obstacles and 

target motion [12]. 

These researches have achieved good results in UAV navigation, but they all have some 

drawbacks. First of all, these researches have usually focused on the navigation of UAVs with fixed 

targets and the movement of targets is simple and single. UAV maneuvering target tracking is 

different to navigation, and it requires a UAV to make autonomous decision in real time. If the 

navigation of a stationary target is applied to the tracking of a moving target directly, the tracking 

effect will not be guaranteed; Secondly, most of the current researches only consider to train DRL 

model in a single environment, and as such a UAV can only perceive a specific scenario, leading to a 

poor generalization capability of a learned policy. UAV cannot adapt or achieve better effects in a 

new environment; Meanwhile, recent research has found the existing DRL methods brittle [13,14]. If 

a DRL model is only trained for a single particular environment or task, when faced with uncertain 

environments and stochastic tasks, the model may be inefficient and unable to achieve a desired 

performance due to the model’s limited applicability. 

In this paper, we have conducted research on UAV maneuvering target tracking with different 

target maneuvering methods. We have combined the DRL algorithm TD3 [15] with Meta-learning 

[16,17] to develop an improved TD3 algorithm, named Meta Twin Delayed Deep Deterministic policy 

gradient (Meta-TD3), to be used to realize the tracking of UAV to maneuvering targets in uncertain 

environments. 

The contributions of this paper are summarized as follows: 

1) A UAV motion model is constructed and the UAV maneuvering target tracking is defined as an 

MDP. Based on TD3 algorithm, a decision-making framework is established to control the course 

and velocity of UAV. Through the decision-making framework, autonomous real-time 

maneuvering target tracking can be realized. 

2) In order to make the UAV quickly adapt to the tracking of multiple uncertain target motion modes, 

a deep reinforcement learning algorithm, Meta-TD3, is developed by combining DRL and Meta-

learning. A multi-task experience replay buffer is proposed, which contains several replay buffers 

of different tasks. A multi-task meta-learning update method is developed which breaks the 

original DRL network update. In this way, DRL model can learn multiple tasks at the same time 

and perform meta-learning on weights obtained by training from multiple tasks. Through these, 

Meta-TD3 can overcome the shortcomings of DRL and enable UAV to quickly adapt to an 

uncertain environment and realize target tracking quickly and efficiently. 

3) Through a series of experiments, compared with the state-of-the-art algorithms DDPG and TD3, 

the performance, training efficiency and the generalization capability of Meta-TD3 have been 

verified. In the UAV target tracking problem, Meta-TD3 only requires a few steps to train to 

enable the UAV to adapt to the new target movement mode more quickly and maintain a better 

tracking effect. 
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The remainder of this paper is organized as follows. Section 2 introduces the UAV motion model 

and defines the UAV maneuvering target tracking as an MDP. In Section 3, we constructed a DRL 

framework for UAV maneuvering target tracking based on TD3 algorithm, and propose a 

reinforcement learning algorithm combined with Meta-learning. The experiments in Section 4 

demonstrate the effectiveness and adaptability of the proposed algorithm. Section 5 summarizes this 

paper and looks forward to future work. 

2. Problem Formulation 

In order to describe the UAV maneuvering target tracking, we construct the UAV motion model 

and target tracking model based on Markov Decision Process (MDP). 

2.1. UAV Motion Model 

The UAV motion model is the basis for completing navigation and target tracking missions. The 

UAV can be thought as a rigid body with forces and torques applied from the four rotors and gravity 

[16]. In navigation and target tracking scenario, we assume that UAV is flying at a fixed altitude. The 

experiments of this paper are set in a x-y plane of Cartesian inertial coordinates. 

The UAV motion model in Cartesian inertial coordinates is expressed as 
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where t
x , t

y denote the position coordinates of the center of mass of UAV in Cartesian inertial 

coordinates at time 𝑡. +1t
x , +1t

y denote the position coordinates of the center of mass of UAV in 

Cartesian inertial coordinates at time 1t + . t
v denotes the linear velocity of the UAV, t

n is the 

acceleration of the linear velocity of the UAV. t
 denotes the heading angle, t

 is the angular velocity 

of the heading angle and 𝑡 (𝑡 = 1, … , 𝑛) denotes each timestep, and dt is defined as the time interval 

between t and 1t + . 

The control of UAV is realized through the acceleration and the angular velocity of the heading 

angle, where acceleration represents the control of throttle and the angular velocity represents the 

control of steering. The UAV realizes the flight through the control of the throttle and the steering. 

The UAV motion model is shown as in Figure 1. t
 denotes the angle between the linear velocity of 

the UAV and the target line at time 𝑡, t
d is the distance between UAV and target at time 𝑡, target

t
x ,

target

t
y denote the position coordinates of the target in Cartesian inertial coordinates at time 𝑡. 
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Figure 1. UAV motion model. 

2.2. Target Tracking Model Based on Reinforcement Learning 

In order to realize the robust control of UAV in complex and uncertain environments, we focus 

on reinforcement learning. Reinforcement learning is a machine learning method wherein an 

autonomous agent learns to find a near-optimal behavior through trial-and-error interactions with 

its environment [2]. The specific implementation process is defined as the Markov decision process 

[22]. 

Markov decision process can be described by a five-tuple ( , , , , )S A P R  . State space S is the set 

of all states of the UAV. Action space A is the set of all the actions that the UAV can perform. is 

denoted as ( | , )P s s a , which indicates the transition probability of the agent taking action a A from 

state s S to the next state s S . R is denoted as ( , )R s a , indicating the reward that can be obtained by 

taking action a A in state s S .  represents the discount factor. The implementation process of 

reinforcement learning is as follows. 

(s) 1 1 1
( , ) [ ( , )| , ]

t t t t t
Q s a E R Q s a s s a a




+ + +
= + = =  (2) 

The agent’s policy (s)  provides the guideline on what is the optimal action to take in a certain 

state with the goal to maximize the total rewards. denotes the expected reward when performing 

actions in state and following policy (s) .The state value function of the judgement strategy is defined 

as: 

(s) ( | ) ( , )
a A

V a s Q s a
 




=  
(3) 

The reinforcement learning model framework of the UAV navigation and target tracking is 

shown in Figure 2. The state of the UAV and the state of the target are integrated into the Agent. 

During the interaction process, the agent outputs the action to the environment to change the state of 

the UAV, and the target changes the state according to its own movement mode. For the action taken 

by the UAV, the environment feedbacks the corresponding reward to the agent. The policy is 

dynamically updated in the process, so that the action tends to be optimal, thus realizing the target 

tracking. 
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Figure 2. UAV navigation and target tracking model based on reinforcement learning. 

2.2.1. State Space 

The state space describes the collection of information that the UAV can obtain from the 

environment. The position of the center of mass of the UAV relative to the inertial coordinate system 

and the motion variables of UAV are defined as state. In this paper, we assume that the UAV can get 

the position, attitude information and target distance through GPS and sensors. Therefore, the state 

space consists of the following variables, , , , , ,x y v d  . ,x y denote the coordinate of UAV,  denotes 

the heading angle, v  is the linear velocity of the UAV,  denotes the angle between the linear 

velocity of the UAV and the target line and d is the Euclidean distance between the UAV and the 

target. In order to unify the range of each state variable, eliminate errors caused by the variable scale 

and improve the efficiency of neural network training, normalization operation is carried out for each 

state variable. 

In addition, every state s is defined as: 

[ , , , , , ]Ts x y v d =  (4) 

2.2.2. Action Space 

In the Markov decision process, the agent selects actions from the Action space. Considering the 

actual situation, the speed of the UAV cannot be changed abruptly. We set the acceleration and the 

angular velocity of the heading angle as actions. In other words, with the acceleration and the angle 

change, the state of UAV will change simultaneously. 

Action of the model is defined as: 

[ , ]T

t t
a n=  (5) 

where t
n denotes the acceleration of the linear velocity of the UAV, t

 is the angular velocity of the 

heading angle. The action space is defined as a continuous interval min max
=[ , ]A a a from which the 

actions of the reinforcement learning are selected. 

2.2.3. Reward Shaping 

The reward function is the assessment of the agent’s actions by the environment. The reward 

function can determine the performance of the agent in the reinforcement learning. In this paper, the 

reward function is composed of three parts: distance reward, angle reward and extra distance penalty 

and reward. 

In order to improve the convergence speed and accuracy of the reinforcement learning model, 

this paper normalizes the distance reward function. The normalized distance reward function is 

defined as: 

Action

UAV 
State

Target 
State

State
Environment

Reward

Agent
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where is a positive constant, t
d denotes the distance between UAV’s current position and the target 

at timestep t . max
d is the max distance that UAV can detect. To ensure the UAV flying in the direction 

of the target at all times, UAV would obtain an angle reward. The normalized angle reward function
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-1t t
r


  = − −  (7) 

where  is a positive constant and t
 denotes the angle between the linear velocity of the UAV and the 

target line at timestep t . 

In order to achieve faster tracking of a target, we set extra distance penalty and reward. The extra 

distance penalty and reward is defined as: 
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where D denotes the optimal tracking distance, p is a negative constant and r  is a positive 

constant. To summarize, the final reward function can be formulated as: 

d e
r r r r


= + +  (9) 

3. Meta-TD3 for Target Tracking Model 

In this section, we introduce the UAV target tracking based on the actor-critic reinforcement 

learning framework and propose a reinforcement learning algorithm combined with Meta-learning. 

3.1. UAV Motion Model 

In Section 2.2, we define the target tracking model based on reinforcement learning, and action 

space is defined as the continuous space A . Because of the continuous space, some reinforcement 

learning algorithms such as Q-learning and DQN cannot be applied. These algorithms are more 

suitable for reinforcement learning in the discrete action space. For the target tracking problem to be 

solved in this paper, these algorithms require optimize all the values in the action space [10]. It’s 

difficult to effectively explore such a large action space and ensure the ideal effect of training. In this 

section, we introduce the model architecture based on TD3(Twin Delayed Deep Deterministic policy 

gradient). The reinforcement learning model architecture we created consists of an actor module, a 

critic module and an experience replay buffer. 

In order to increase the stability of training, actor module is composed of two neural networks 

and critic module is composed of four neural networks with the same structure. Actor module 

consists of an online policy neural network and a target policy network, critic module consists of two 

online Q-value neural networks and two target Q-value neural networks. 

The structure and implementation process of target tracking model is shown in Figure 3. At each 

step, the agent selects an action by ( )
t t t

a s N


= + , where t
N is exploration noise. Based on the 

reward function in Section 2.2.3, the environment returns the reward ( , )
t t

r s a to the UAV. The samples

1
( , , ( , ), )

t t t t t
s a r s a s

+  from the interaction between the agent and the environment are stored in the 

experience replay buffer. When training, a mini batch of samples 1
* ( , , , )

j j j j
N s a r s

+
are randomly 

selected to update the network parameters by gradient descent. This random sampling method 

greatly reduces the correlation between samples, thereby improving the stability of the training 

process. 
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Figure 3. UAV target tracking model based on TD3. 

The main purpose of actor module is to generate reasonable actions according to the current 

state of the UAV to approach the target and finally realize the target tracking. The input of the actor 

module is the state of the UAV, and the output is the action of the UAV. The training process of actor 

module is to find the optimal policy  . 

The loss function of actor module is defined as: 

1 , ( )[ ( , ) | ]
 = ==

j js s a sJ E Q s a  (10) 

where
1 denotes the neural networks parameters of the online Q-value Networks, is the neural 

networks parameters of online policy Networks. 
1 , ( )( , ) |

 = =j js s a sQ s a is the reward that the agent can 

obtain in state js by choosing action according to policy ( )s . During the training process, Adam 

gradient descent is performed on the network parameters . The online policy Networks parameters

 are updated to maximize the loss function J as much as possible. 

Through the actor module, the agent can get action according to the current state. In order to 

evaluate the agent’s decision, we introduce the critic module to guide the policy to be optimal. The 

input of the critic module is the state and the action of the UAV, the output is the Q-value. During 

the training process, the networks parameters of the critic module are updated along the direction of 

increasing the Q value. In order to obtain the maximum Q-value and reduce the over-estimation of 

the Q-value, according to the Bellman equations and [25], the target optimal Q-value function ty is 

defined as: 

ˆ ˆ1,2 1 1( , ) min ( , ( ))
 

 = + += +
i

j j j i j jy r s a Q s s  (11) 

where denotes the neural networks parameters of target policy network, ˆ   ( 1,2) =i i are the neural 

networks parameters of target Q-value Networks. ( , )j jr s a denotes the immediate reward the agent 

can receive in state js by taking action ja .  denotes the discounting factor of future reward. 

ˆ ˆ1 1( , ( ))
 

+ +
i

j jQ s s  is the future reward that the agent can receive in state 1+js according to policy
̂

 . 

The loss function of critic module is defined as (12). L is similar to the form of MSE (Mean Square 

Error) in supervised learning, where 𝜃𝑖 , 𝑖 = 1,2, . ., denotes the neural networks parameters of online 

Q-value Networks: 
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During training, the parameters of online policy neural networks are updated by maximizing 

the loss function J , the parameters of online Q-value neural networks are updated by minimizing 

the loss function L . The parameters of target neural networks are updated by soft update. The 

updating method is shown in (13), where is a constant coefficient, used to the regulate the update 

rate: 

ˆ ˆ+(1- )
 ( 1,2)

ˆ ˆ+(1- )     
i i i

i
   

   

 
=



 (13) 

3.1. Multi-Tasks Experience Replay Buffer and Meta-Learning Update 

In Section 3.1, we introduce the UAV target tracking model based TD3, which can realize the 

target tracking in a single motion form. However, the target movement mode may be more complex 

and changeable. Aiming at the problem of insufficient generalization ability of reinforcement 

learning, we consider a combination of reinforcement learning and meta-learning to improve the 

generalization ability of reinforcement learning. 

In order to find a more general tracking strategy, it is necessary to train for multi-tasks. In Section 

3.2.1, we introduce the setting of multi-tasks and the experience replay buffer for multi-tasks. In 

Section 3.2.2, we propose a new reinforcement learning updating method, which breaks the original 

TD3 update method through meta-learning, thereby obtaining a general tracking strategy. 

3.2.1. Multi-Tasks Setting 

Generalization ability refers to the predictive ability of the model learned by the method to 

unknown data, which is an essential and important property of the learning method. As for 

reinforcement learning, we expect a good reinforcement model capable of well adapting or 

generalizing to new tasks and new environments that have never been encountered during training 

time. In traditional reinforcement learning, the agent is usually trained in a specific environment. The 

exploration is usually employed to ensure the generalization of the policy. However, exploration is 

still to explore more implementation possibilities for a specific environment and task. In this way, the 

generalization capability of reinforcement learning has not improved much. Taking the target 

tracking problem as an example, the tracking policy trained for a specific target motion (speed and 

motion direction change in a specific way) is difficult to directly adapt to the task of tracking other 

target motion modes. 

In this section, we propose the multi-task setting. Agent needs to learn a variety of different tasks 

at the same time, and finally learn a policy that can adapt to many tasks well. We construct task 

experience replay buffer
jT

B for task ( 1,2,..., )
j

T j n= and combine all task experience replay buffers to 

form multi-task experience replay buffer B . The structure of multi-tasks experience replay buffer is 

shown in Figure 4. For target tracking, different motion modes of target, different initial relative 

positions of the UAV and target are defined as different target tracking tasks. In task j
T ,

1
( , , ( , ), )j j j jT T T T

t t t t t
s a r s a s

+
 generated by the agent interacting with the environment are stored in the 

corresponding task experience replay buffer
jT

B . During training, an equal amount of experience is 

randomly selected from each task experience replay buffer for training, thus realizing the learning of 

a variety of different tasks 
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Figure 4. The structure of Multi-tasks experience replay buffer. 

3.2.2. Meta-Learning Update Method 

In this section, based on meta-learning, we propose Meta-TD3 to learn a variety of different tasks 

and obtain a more generalized policy meta-policy. The meta-policy obtained through meta-learning 

can enable agent to use only a small number of learning steps to acquire excellent strategies for new 

tasks. 

During the training of reinforcement learning, agent only considers the current task and 

environment, trying to find a policy that can adapt to the current task and environment. Although 

the reinforcement learning algorithm adopts exploration to ensure that the policy has a certain 

generalization ability, the previous policy cannot be used directly when dealing with different tasks 

and environments. Aiming at the problem of insufficient generalization ability for different tasks in 

the implementation process of reinforcement learning, we introduce meta-learning into 

reinforcement learning (Meta-TD3) and optimize the initial parameters of reinforcement learning to 

improve generalization ability. 

The purpose of Meta-TD3 is to maximize the expected generalization ability of reinforcement 

learning algorithms in the all training task. Meta-TD3 is used to learn many different types of 

parameters to obtain the initial parameters of reinforcement learning for different type of tasks. Meta-

TD3 obtains prior knowledge from many related tasks as a guide to learning new tasks. When 

responding to a new task, based on the previous initial parameters learned through Meta-TD3, only 

a few steps of fine tuning are needed to meet the requirements of task. 

Meta-TD3 includes update processes: internal TD3 reinforcement learning for a single task and 

external meta learning update for multiple different tasks. These processes can be viewed from the 

perspective of feature learning as building an internal representation that is widely applicable to 

many tasks. In Meta-TD3, internal TD3 training and external meta-learning update are performed 

alternately, which meets a certain update frequency. TD3 model learns multiple tasks separately to 

obtain different parameters, Meta-TD3 obtains the initial parameters of reinforcement learning by 

optimizing different parameters. 

For the internal TD3 reinforcement learning update process, it can be described as a learning 

process for a specific task j
T . The agent will optimize the policy to achieve target tracking for the 
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where 
meta denotes the parameters of the policy network updated through Meta-TD3, 1

meta and 2

meta

denote the parameters of the Q-value network updated through Meta-TD3, ˆ jT
 denotes the 

parameters of the policy target network for internal TD3 update for task j
T ,

2
ˆ jT
 and

1
ˆ jT
 are the 

parameters of the Q-value target network for internal TD3 update for task j
T , and  is the meta step 

size of outer meta-learning. n denotes the number of tasks. 

The Meta-TD3 update process is shown in Figure 5. During training, we randomly select tasks 

from the multi-tasks experience replay buffer. Take the update of policy neural network parameters
meta as an example. When learning task j

T , the neural network parameters ˆ jT
 are obtained by the 

internal TD3 reinforcement learning update. When all tasks sampled have completed the internal 

TD3 reinforcement learning update, the neural network parameters are further optimized through 

external Meta-learning update. Internal and external updates are carried out constantly to obtain the 

neural network parameters as meta-policy. 

-1meta

ˆm

ˆn

-2meta

-3meta

ˆm

ˆm
Internal TD3 reinforcement 

learning for Task-n

  Internal TD3 reinforcement 
learning for Task-m

 Internal TD3 reinforcement 
learning for Task-q

Internal TD3 reinforcement 
learning for Task-p 

 

Figure 5. Meta-TD3 update process. 

Ultimately, we present Meta-TD3 by introducing the multi-tasks experience replay buffer, meta-

learning update described in Sections 3.2.1–3.2.2 into TD3. Meta-TD3 is summarized in Table 1. 
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Table 1. Meta-TD3 algorithm for target tracking model. 

Algorithm: Meta-TD3 

Require: distribution over tasks ( )p T  

Require: meta-learning steps size hyperparameters   

Initialize meta-critic networks
1
metaQ


,

2
metaQ


,and meta-actor network meta

 with random parameters 

1

meta , 2

meta ,
meta  

Initialize critic networks 
1

Q
 ,

2
Q

 ,and actor network 


  1 1

meta  , 2 2

meta  ,
meta   

Initialize target networks 1 1
̂  , 2 2

̂  , ̂    

Sample batch of tasks ~ ( )   1,2,...,
j

T p T j n=  

Initialize replay buffer
jT

B  

For meta_iteration 1,2,...= do 

    for t 1,2,...=  do  

       Select action ~ ( )
j jT T

a s


 + with exploration noise ~ (0, )N  and observe reward 
JT

r

and new state 
jT

s  

       Store transition ( , , , )
J J J jT T T T

s a r s  in
jT

B  

       Sample mini-batch of N transitions ( , , , )
J J J jT T T T

s a r s from
jT

B  

       ˆ ( )
j jT T

a s


  + , ˆ1,2
min ( , )

J j ji
T i T T

y r Q s a



=

 +  

       Update critics 
1

21
arg min ( ( , ))

i J Ji T T
y Q s a

N 
  −  

       if t mod update_policy_freq then 

         Update by the deterministic policy gradient: 

1 ( )

1
( ) ( , )| ( )

J J T JJ
a T T a s T

J Q s a s
N     

 
=

 =    

         Update the target networks: 

              
1 1 1
ˆ ˆ(1 )    + − ,

2 2 2
ˆ ˆ(1 )    + − , ˆ ˆ(1 )    + −  

       The neural network parameters of task j
T : ˆ ˆjT

 = ,
1 1
ˆ ˆ=jT
  ,

2 2
ˆ ˆ=jT
   

       if t mod meta_update_freq then 

1,
1 1

2,...
1 1

( )ˆ jTmeta meta meta
n

j

   
=

 + − ,
1,

2 2
2,...

2 2
( )ˆ jTmeta meta meta

n

j

   
=

 + −  

1,2,...

( )ˆ jTmeta meta met
n

a

j

  
=

− +   

       end for 

    1 1

meta  , 2 2

meta  ,
meta   

    1 1
̂  , 2 2

̂  , ̂   

    end for 

After completing the training of Meta-TD3, we will obtain the parameters of neural networks 

for tasks  
1 2

, ,meta meta meta and take them as prior knowledge. When dealing with new tasks, the model 

is trained on these parameters. New tasks can be achieved only through internal fine tune of Meta-

TD3 algorithm. 
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4. Results 

In this section, we set up comparative experiments to verify the implementation effect, training 

efficiency and generalization ability of Meta-TD3 algorithm. 

4.1. Experimental Platform and Environment Setting 

The experimental environment of this paper is defined as 5000 m×5000 m 2D plane in which the 

UAV can complete the target tracking task. Assuming that the UAV can the coordinates of the target 

through GPS in real time. The UAV is supposed to fly at a fixed altitude of 50 m and needs to 

approach the target as soon as possible and maintain the target within the distance range. Assuming 

that the target is moving on the ground, the motion mode of target will change in real time. At time

t , if the horizontal distance t
d between the UAV and the target exceeds =500L m , the UAV will get a 

penalty =-1p . At time t , if the horizontal distance t
d between the UAV and the target is less than

100D m= , it is considered that the UAV achieves the tracking at time t , the UAV will get a reward

=3r . 

The parameters of the UAV motion model are set up as follows. Since the research object of this 

paper is the Quadrotor UAV, it is considered that UAV can complete the hovering. Therefore, the 

maximum speed of UAV is =
max

20 /v m s , the minimum speed is =
min

0 /v m s . The maximum speed 

of target is 15 /m s , the minimum speed is 0. The acceleration of the UAV is  − 2 2[ 2 / ,2 / ]
t

n m s m s , 

the angular acceleration is   − 2 2[ 3 / ,3 / ]
t

s s . In order to unify the range of each variable and 

improve the efficiency of learning, each state variable is normalized into [ 1.0,1.0]− . The coefficients 

in reward shaping are instantiated as =
max

6000d m , =0.7 , =0.4 . 

According to the definition of the state space and the definition of the action space, it is clear that 

the Meta-TD3 model has 6-dimensional input and 2-dimensional output. In Meta-TD3, all the policy 

neural networks have the same structure, and all the Q-value neural networks have the same 

structure. The policy neural networks and the Q-value neural networks are shown in Figure 6. The 

policy neural networks are constructed as 6 256 256 2   and the Q-value neural networks are 

constructed as 8 256 256 1   . Except that the activation function of the last layer of the policy 

neural networks is tanh function and the last layer of the Q-value neural networks has no activation 

function, the remain layers are ReLU layers. Adam optimizer is employed to optimize the actor 

module and the critic module, the learning rate is both 0.0003. Other hyper-parameters are set with 

soft update rate =0.005 , the discounting factor =0.99 , the variance of gaussian noise =0.2 . When 

training, the parameters of actor module are updated as a frequency of 2. The maximum size of the 

task experience replay buffer R is set to 100000, and the size of Minibatch is set to 256. In the 

simulation, the decision period dt is set to 1 s, and an episode contains 400 decision steps. 

 

Figure 6. The structure of policy neural networks and the Q-value neural networks. 
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4.2. Model Training and Testing 

To verify the performance of Meta-TD3 in target tracking and the generalization in different 

environments, the experiment is divided into two parts: one is training in a series of tasks through 

Meta-TD3 algorithm to obtain a general tracking policy, and the other is to test the performance and 

the generalization of general policy in specific new tasks. 

When training, the initial position of UAV is (0 m, −100 m), the initial position of target is (100 

m,100 m). The acceleration of target obeys the normal distribution (0.06,0.1)N  with the value range 

of [−0.25,0.25], and the angular velocity of target obeys the value range of [–3,3] normal distribution

(0,3)N . Based on this, we generate 5 different target motion modes for training. The multi-task 

experience replay buffer contains 5 separate task experience replay buffer. The UAV is trained to 

track the target under the conditions of 5 different target motion modes, and stores the corresponding 

interactive data into the corresponding experience replay buffer. During training, for each task, 

samples of equal amount are randomly selected from the corresponding experience replay buffer for 

training. We train the Meta-TD3 algorithm for 1250 episodes and update the parameters of meta-

learning every 10 steps. 

In order to test the generalization performance of the parameters trained through Meta-TD3 

algorithm, we set up three groups of different tasks for experiments. To be specific, we resort to other 

two state-of-the-art DRLs, DDPG and TD3, as baselines and re-implement them with almost the same 

hyper-parameter settings to the fine tune of Meta-TD3. We set up 3 tracking tasks according to 

increasing difficulty, and all three tasks are trained (fine-tuned) for 1000 episodes. 

In Task 1, UAV is close to the target at the beginning, the initial speed direction of the UAV is 

basically consistent with the target’s initial speed direction. The specific settings of Task 1 are as 

follows. The target initial position is (1000 m,800 m), the initial speed is 3 m/s, the acceleration obeys 

the normal distribution (0.06,0.1)N  with the value range of [−0.25,0.25], and the angular velocity 

obeys the value range of [–3,3] normal distribution (0.2,3)N . The initial position of the UAV is (0 m, 

-300 m), and the initial speed of UAV is 4 m/s. After the start of the task, UAV will approach the target 

as soon as possible and achieve the distance to the target within the set range. Figure 7 shows the 

tracking trajectory with the Meta-TD3 weights for fine tune, TD3 and DDPG algorithms with 

randomly initialized network weights after 1000 episodes of training, and the distance between the 

UAV and the target at each decision step after 1000 episodes of training. 

 

Figure 7. The tracking trajectory and tracking distance in Task 1. 

In the of Figure 7(a), the red star indicates the initial position of the UAV and the blue star 

indicates the initial position of the target. At the beginning of the Task 1, Meta-TD3, TD3 and DDPG 

can make the UAV quickly approach the target. It can be seen from the Figure 7(a) that the tracking 

trajectory of the fine tune using Meta-TD3 weights can be closer to the target trajectory, and the 

tracking effect is significantly better than that of the randomly initialized TD3 algorithm and the 

DDPG algorithm. As can be seen from the Figure 7(b), both Meta-TD3 algorithm and TD3 algorithm 
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can basically reach the tracking range at 100 decision steps and achieve stable tracking of the target 

while the DDPG algorithm cannot achieve stable tracking. Fine tune tracking with Meta-TD3 weights 

can ensure that the distance between the target is stable near 0 m, and the tracking stability and 

tracking effect are higher than the TD3 algorithm and the DDPG algorithm. 

Figure 8 shows the average reward for Task 1. The average reward obtained by using Meta-TD3 

weights for fine tune has been much higher than the other two algorithms within 1000 episodes, and 

the average reward can basically reach the end around 400 episodes and maintain convergence. But 

the average reward of TD3 algorithm and DDPG algorithm increases slowly during training, and the 

maximum average reward can basically be reached in 1000 episodes. 

In Task 2, the target initial position is (1000 m,1000 m), the initial speed is 3 m/s, the acceleration 

obeys the normal distribution (0.06,0.2)N  with the value range of [−0.25,0.25], and the angular 

velocity obeys the value range of [–3,3] normal distribution (0.2,5)N . The initial position of the UAV 

is (500 m,1300 m), and the initial speed of UAV is 4 m/s. Figure 9 shows the tracking trajectory with 

the Meta-TD3 weights for fine tune, TD3 and DDPG algorithms with randomly initialized network 

weights after 1000 episodes of training, and the distance between the UAV and the target at each 

decision steps after 1000 episodes of training. 

 

Figure 8. Average reward trends with respect to training episodes in Task 1. 
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Figure 9. The tracking trajectory and tracking distance in Task 2. 

As shown in Figure 9, all the three algorithms have achieved a good performance on target 

tracking. In the whole tracking process, fine tune with the parameters of Meta-TD3 algorithm can 

ensure that the distance between UAV and the target is smaller than the TD3 algorithm and DDPG 

algorithm. The average reward during training of the three algorithms is shown in Figure 10. For 

Task 2, the average reward of fine tune rises rapidly, reaching the maximum average reward in 300 

episodes and maintaining convergence. The average reward obtained by TD3 and DDPG with 

randomly initialized training cannot reach the maximum value in 1000 episodes, and the average 

reward cannot converge. 

 

Figure 10. Average reward trends with respect to training episodes in Task 2. 

In Task 3, the target initial position is (1000 m,1000 m), the initial speed is 3 m/s, the acceleration 

obeys the normal distribution (0.06,0.2)N  with the value range of [−0.25,0.25], and the angular 

velocity obeys the value range of [–3,3] normal distribution (0.2,5)N . The initial position of the UAV 

is (−800 m,1300 m), and the initial speed of UAV is 4 m/s. Figure 11. shows the tracking trajectory 

with the Meta-TD3 weights for fine tune, TD3 and DDPG algorithms with randomly initialized 
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network weights after 1000 episodes of training, and the distance between the UAV and the target at 

each decision steps after 1000 episodes of training. 

 

Figure 11. The tracking trajectory and tracking distance in Task 3. 

In Figure 11, fine tune with the parameters of Meta-TD3 algorithm provides better effect to Task 

3. It can be seen from the tracking distance that fine tune with the parameters of Meta-TD3 algorithm 

keeps a small tracking distance from the target. The average reward of Task 3 during training of the 

three algorithms is shown in Figure 12. Among the three algorithms, the average reward convergence 

speed of Meta-TD3 algorithm is much faster than other algorithms, and the maximum average 

reward of Meta-TD3 is higher than other algorithms. 

 

Figure 12. Average reward trends with respect to training episodes in Task 3. 

5. Discussion 

To evaluate the proposed Meta-TD3 algorithm, we conducted a large number of experiments in 

three different tasks by comparing with the TD3 and DDPG algorithms to verify the implementation 

effect, training efficiency and generalization ability of the Meta-TD3 algorithm. 
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For the target tracking effect, we compared the average reward, the average minimum tracking 

distance and the average fluctuation range of the tracking distance (when UAV is close to the target) 

obtained by the three algorithms during target tracking in different environments. We conducted five 

comparative experiments under three different environments, and compared the average rewards 

obtained by different algorithms. The experimental results are shown in Table 2. It can be clearly seen 

that Meta-TD3 algorithm obtained the highest average reward in different environments, followed 

by TD3 algorithm, and DDPG algorithm obtained the lowest average reward. The results in Table 3 

are the average minimum tracking distance, and the results in Table 4 are the fluctuation range of the 

average tracking distance. According to Table 3 and Table 4, Meta-TD3 algorithm has the smallest 

average fluctuation range of the minimum tracking distance and the smallest average tracking 

distance under different tasks. Combined with Tables 2–4, the advantages of Meta-TD3 algorithm in 

tracking effect can be concluded. The great improvements come from the multi-tasks experience 

replay buffer and meta-learning update in Sections 3.2.1 and 3.2.3. The former ensures that multiple 

tasks data can be sampled during training, while the latter ensures that the algorithm learns multiple 

tasks during training. This enables the meta-TD3 algorithm to have better tracking effect in testing. 

Table 2. Average reward over 5 trials. 

Environment Meta-TD3 TD3 DDPG 

Task 1 847.24 717.66 95.04 

Task 2 1027.45 946.38 −20.42 

Task 3 715.84 154.12 275.26 

Table 3. Average minimum tracking distance at convergence over 5 trials. 

Environment Meta-TD3 TD3 DDPG 

Task 1 0.79 1.46 22.60 

Task 2 0.58 4.11 45.77 

Task 3 2.02 2.99 6.90 

Table 4. The average fluctuation range at convergence over 5 trials. 

Environment Meta-TD3 TD3 DDPG 

Task 1 40.91 334.75 660.72 

Task 2 85.63 150.80 274.12 

Task 3 88.77 321.42 160.01 

For the training efficiency and generalization ability, we set the average reward and the 

convergence speed of training as indicators, carried out three groups of experiments, and obtained 

the average reward change curve. Figure 8–12 shows the average reward changes of Meta-TD3, TD3, 

and DDPG algorithms during experiments. According to the results shown in the Figure 8–12, it can 

be clearly seen that the reward curve of Meta-TD3 can converge more quickly and the maximum 

reward is higher than TD3 and DDPG algorithms. The average rewards and convergence steps of 

different environments are shown in Tables 2 and 5. According to Table 2, it can be clearly seen that 

the average reward of Meta-TD3 is the highest in different environments. In Table 5, it can be found 

that Meta-TD3 algorithm has the fastest convergence speed in different environments, which is nearly 

50% faster than TD3, while DDPG algorithm can hardly converge in the three environments. 

Therefore, it can be determined that the training efficiency of Meta-TD3 is faster. Combining Tables 

3 and 4, we can determine that the tracking distance and tracking distance fluctuation range of the 

Meta-TD3 algorithm are the smallest when converging. The policy obtained by Meta-TD3 has 

stronger generalization ability, which can maintain the training efficiency while improving Tracking 

effect in different environments. Stronger generalization ability means that Meta-TD3 can be 

promoted in different environments. This is promoted by the two improvements proposed in this 



Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 20 

 

paper. Learning a variety of tasks during training can ensure that the obtained policy converges 

quickly in the new environment and maintains a better tracking effect. 

Table 5. The number of steps required for convergence of various algorithms over 5 trials. 

Environment Meta-TD3 TD3 DDPG 

Task 1 400 ± 50 950 ± 20 _ 

Task 2 350 ± 30 900 ± 50 _ 

Task 3 500 ± 20 _ _ 

In the implementation process, this paper assumes that the height of UAV is fixed, and the 

computer performs Meta-TD3 update on the simulation scene in advance to obtain the meta-policy. 

Based on the meta-policy, UAV can quickly adapt to specific tracking scenarios to obtain more 

adaptive Tracking policy. From the experimental results, it can be seen that Meta-TD3 has great 

advantages in tracking effect, training efficiency and generalization ability, and can provide support 

for target tracking of UAV in uncertain environment. Although we have done some work on tracking 

effects and generalization capabilities, there is still challenges to deploy the algorithm to a real UAV. 

In a real situation, the external air pressure change as time passes. It is difficult for a UAV to maintain 

maneuvering at a fixed altitude. No matter how well UAV is trained in a virtual environment, there 

is a big gap with reality. But we can continuously increase the reality of the scene and model in the 

virtual environment, and get closer to the reality. For future research, we will consider to realize more 

detailed UAV control, including controlling a UAV with motor speed, taking the image information 

obtained by a UAV’s vision sensor and the ranging information from Lidar as state information, so 

as to realize target tracking in a scenario closer to a real-life three-dimensional situation. 

6. Conclusions 

This paper discusses UAV maneuvering target tracking in uncertain environments. We 

construct UAV motion controlled by acceleration and angular acceleration on a two-dimensional 

plane and define the UAV maneuvering target tracking as MDP. To ensure that the UAV 

autonomously achieves target tracking in uncertain environments, this paper proposes Meta-TD3 

based on DRL and Meta-learning, which can realize the fast target tracking under the uncertain target 

motion. 

Based on actor-critic framework and TD3 algorithm, we construct UAV tracking model that can 

realize maneuvering target tracking in a single deterministic environment. Considering the tracing 

policy for a deterministic environment cannot be directly applied in the new environment, we design 

the method to learn more general tracking policy by Meta-learning from a variety of different 

environments. We propose multi-tasks experience replay buffer to provide data for multi-tasks 

learning of DRL algorithm; We combine Meta-learning to propose a multi-task reinforcement 

learning update method to ensure the generalization of the policy. Through a series of experiments, 

compared with the state-of-the-art algorithms DDPG and TD3, the performance and the 

generalization capability of Meta-TD3 have been verified. Experiments show that the Meta-TD3 is 

superior to the DDPG and TD3 algorithms in terms of convergence value and convergence speed. In 

the UAV target tracking problem, Meta-TD3 only requires a few steps to train to enable the UAV to 

adapt to the new target movement mode more quickly and maintain a better tracking effect. 

Some future work includes to realize more detailed UAV control to 3D space and achieve target 

tracking in more complex environments. 
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