
Abstract 9 

Dental topography has successfully predicted the diets of species in several extant and extinct 10 

mammalian clades. However, dental topographic dietary reconstructions have high success rates only 11 

when closely related taxa are compared.  Given the dietary breadth that exists among extant apes and 12 

likely existed among fossil hominins, dental topographic values from many species and subspecies of 13 

great apes are necessary for making dietary inferences about the hominin fossil record.  Here, we 14 

present the results of one metric of dental topography, Dirichlet normal energy (DNE), for seven groups 15 

of great apes (Pongo pygmaeus pygmaeus, Pan paniscus, Pan troglodytes troglodytes and 16 

schweinfurthii, Gorilla gorilla gorilla, Gorilla beringei graueri and beringei).  DNE was inadequate at 17 

differentiating folivores from frugivores, but was adequate at predicting which groups had more fibrous 18 

diets among sympatric African apes.  Character displacement analyses confirmed there is substantial 19 

dental topographic and relative molar size (M1:M2 ratio; length, width, and area) divergence in sympatric 20 

apes when compared to their allopatric counterparts, but character displacement is only present in 21 

relative molar size when DNE is also considered.  Presence of character displacement is likely due to 22 

indirect competition over similar food resources.   Assuming similar ecological conditions in the Plio-23 

Pleistocene, the derived masticatory apparatuses of the robust australopithecines and early Homo may 24 

be due to indirect competition over dietary resources between the taxa, causing dietary niche 25 

partitioning.  Our results imply that dental topography cannot be used to predict dietary categories in 26 

fossil hominins without consideration of ecological factors such as dietary and geographic overlap.  In 27 

addition, our results may open new avenues for understanding the community compositions of early 28 

hominins and the formation of specific ecological niches among hominin taxa.  29 

30 

Extant ape dental topography and its implications for reconstructing the emergence 
of early Homo



Introduction 31 

 Plio-Pleistocene hominin dietary ecology has been the focus of many studies over the past 32 

century (e.g. (Dart, 1934; Jolly, 1970; Teaford and Ungar, 2000; Smith et al., 2005, 2015; Ungar et al., 33 

2006a; Ungar, 2007; Strait et al., 2009, 2013; Berthaume et al., 2010; Grine et al., 2010, 2012; Ungar and 34 

Sponheimer, 2011; Daegling et al., 2013)).  Dietary ecology is inferred by determining the properties of 35 

the foods hominins consumed (e.g. isotropic (Sponheimer et al., 2013), microwear/microwear textural 36 

analyses (Ungar et al., 2008; Ungar, 2011; Ungar and Sponheimer, 2011), and dental calculus analysis 37 

(Henry et al., 2012)) or from aspects of morphology that suggest what the hominins may have been 38 

adapted to consume (e.g. morphological studies of the cranium, mandible, and/or the teeth (Spencer, 39 

2003; Ungar, 2004; Smith et al., 2005; Lucas et al., 2008; Berthaume et al., 2010; Constantino et al., 40 

2010; Skinner et al., 2015)).  As with many studies dealing with extinct taxa, having an appropriate 41 

comparative dataset of extant taxa helps interpret how mechanical properties and morphology might 42 

relate to dietary ecology (Wood and Schroer, 2012), but see (Michael A. Berthaume, 2016).  In the case 43 

of the hominins, a common extant reference is the great apes. 44 

 One recently developed method that has been successful in correlating dietary ecology to 45 

postcanine tooth shape is dental topography.  Dental topography is the quantification of occlusal tooth 46 

shape using geographic information system (GIS) software (Zuccotti et al., 1998).  Since its development, 47 

dental topography has broadened to include several other non-GIS specific metrics, such as Dirichlet 48 

normal energy (DNE; Bunn et al., 2011; Winchester et al., 2014) and ambient occlusion (portion de 49 

ciel visible or “portion of visible sky,” PCV; Berthaume, 2016b; Berthaume and Winchester, 50 

unpublished).  Several studies have been conducted using dental topography to reconstruct the diets of 51 

extinct primates (see Table 1), all of which have compared the extinct taxa to closely related extant taxa.  52 

This is important as the same dental topographic score can be correlated to different dietary categories 53 



in different extant samples (Winchester et al., 2014), meaning a distantly related extant sample can lead 54 

to erroneous results.  In the case of the hominins, this means using a sample that does not consist solely 55 

or partially of the great apes.  What remains consistent across clades, however, is that a higher dental 56 

topographic score indicates a more insectivorous/folivorous/fibrous diet, while a lower dental 57 

topographic score indicates a more omnivorous/frugivorous/harder diet (Boyer, 2008; Bunn et al., 2011; 58 

Godfrey et al., 2012; Winchester et al., 2014; Allen et al., 2015).  Two studies have used dental 59 

topography to better understand the dietary ecology of the hominins (Ungar, 2004, 2007), relying on the 60 

same extant sample (Gorilla gorilla gorilla and Pan troglodytes troglodytes).  These apes are highly 61 

frugivorous, and do not capture the dietary or morphological variability that exists across populations of 62 

extant apes.  Including a sample of apes that cover a larger dietary diversity may alter how we interpret 63 

the hominin record. 64 

Dietary Variability in the Great Apes 65 

 Great apes are primarily frugivorous, with the exception of two primarily folivorous subspecies 66 

of Gorilla beringei.  Gorilla beringei beringei is found in two populations: one in the Bwindi Impenetrable 67 

National Park (Uganda) and the other in the Virunga volcanoes (Uganda, Rwanda, and the Democratic 68 

Republic of Congo).  These high-altitude environments, particularly in the Virunga volcanos,  provide 69 

little to no fruit (Tutin and Fernandez, 1985; Hladik, 1988; Watts, 1990; Yamagiwa et al., 1992; Rogers et 70 

al., 2004), and as a consequence, G. b. beringei is highly folivorous (Robbins and McNeilage, 2003; 71 

Elgart-Berry, 2004; Ganas et al., 2004; Rothman et al., 2007).  Gorilla beringei graueri lives in eastern 72 

portions of the Democratic of Congo in an environment that provides G. b. graueri more fruit than G. b. 73 

beringei.  However, G. b. graueri still consumes more folivorous than frugivorous matter, and we classify 74 

G. b. graueri as a folivore (Yamagiwa et al., 1992, 1994, 1996, 2005). 75 



 The remaining species of great apes (i.e. Gorilla gorilla, Pan troglodytes, Pan paniscus, Pongo 76 

abelii and Pongo pygmaeus) are frugivores, though the pattern and degree of frugivory differs among 77 

these species. Gorilla gorilla is broken into two subspecies (G. g. gorilla and G. gorilla diehli) which are 78 

both primarily frugivorous, but also consume a significant amount of terrestrial and aquatic herbaceous 79 

vegetation.  Gorilla gorilla predictably consumes more herbaceous vegetation during times when fruit is 80 

less available (Rogers et al., 2004) and G. g. diehli is somewhat less frugivorous than G. g. gorilla, 81 

potentially because of reduced fruit availability in its habitat (McFarland, 2007). 82 

 There are four subspecies of chimpanzees (P. t. troglodytes, P. troglodytes schweinfurthii, P. 83 

troglodytes ellioti, and P. troglodytes verus) and one species of bonobos (P. paniscus).  Eastern 84 

chimpanzees (P. t. ellioti, P. t. troglodytes and P. t. schweinfurthii) are found across central Africa and are 85 

broadly sympatric with species of Gorilla. Pan troglodytes troglodytes is frugivorous, but differs from 86 

sympatric G. g. gorilla in that P. t. troglodytes is a fruit pursuer, consumes fruit year-round and prefers 87 

compliant, ripe fruit, only consuming mechanically challenging fruits like figs during fallback episodes 88 

(Kuroda et al., 1996).  Meanwhile G. g. gorilla is an opportunistic frugivore and falls back on more 89 

fibrous, folivorous matter (Tutin and Fernandez, 1985, 1993; Tutin et al., 1991; Wrangham et al., 2003; 90 

Head et al., 2011).  The range of P. t. schweinfurthii includes the range of G. b. graueri (Yamagiwa and 91 

Basabose, 2006; Yamagiwa et al., 2012) and one population of G. b. beringei in Bwindi Impenetrable 92 

Forest, Rwanda (Stanford and Nkurunungi, 2003) .  Unlike the gorillas it is sympatric with, P. t. 93 

schweinfurthii consumes the same amount of fruit year-round, regardless of fruit availability (Nishida 94 

and Uehara, 1983; Yamagiwa et al., 1996; Reynolds et al., 1998).  Pan troglodytes schweinfurthii differs 95 

from P. t. troglodytes in that it is more folivorous and consumes mechanically challenging figs year-96 

round (Yamagiwa and Basabose, 2006). Pan troglodytes ellioti occupies a range north of P. t. troglodytes, 97 

where it is sympatric with both subspecies of G. gorilla.  Although dietary data on P. t. ellioti is not as 98 

common as with the other subspecies of chimpanzees, it appears to have a diet similar to P. t. 99 



schweinfurthii, seasonally consuming non-fruit matter including insects, animal matter, and honey, and 100 

consuming large quantities of figs year-round (Dutton and Chapman, 2015). 101 

 The western savanna chimpanzee, P. t. verus, can be found in Senegal, Mali, Guinea-Bissau, 102 

Guinea, Sierra Leone, Liberia, Cote D’Ivore, and Ghana, while the bonobo (also called the pygmy 103 

chimpanzee), P. paniscus, is endemic to the Democratic Republic of Congo. These are the only two 104 

(sub)species of Pan that are completely allopatric to Gorilla, P. t. verus and P. paniscus.  Pan troglodytes 105 

verus appears to have a more restricted diet compared to P. t. troglodytes and P. t. schweinfurthii, 106 

consuming fewer types of foods, with animal matter making up a larger percentage of its diet (Mcgrew 107 

et al., 1988; Pruetz, 2006).  Like other chimpanzees, it is primarily frugivorous.  Pan paniscus is also 108 

primarily frugivorous, but consumes a large amount of terrestrial herbaceous vegetation and has been 109 

described as having a diet intermediate between gorillas and chimpanzees (Kano and Mulavwa, 1984; 110 

Malenky and Stiles, 1991).  Although bonobos have been described to consume less vertebrate matter 111 

than chimpanzees, they can be vicious hunters, searching out and consuming larger mammals such as 112 

duiker, often beginning to consume the animals before they are killed (Fruth and Hohmann, 2002). 113 

 There are three subspecies of Bornean and one species of Sumatran orangutan which are found 114 

in Indonesia and Malaysia.  All orangutans are primarily frugivorous, with diets sometimes consisting 115 

entirely of ripe fruit, particularly during times of extreme fruit abundance (i.e., masting events, Taylor, 116 

2006; Kanamori et al., 2010).  However, Sumatran orangutans (Pongo abelii) consume more ripe fruit 117 

and less mechanically challenging foods than Bornean orangutans (Vogel et al., 2014).  There is also 118 

dietary variation among the three subspecies of Bornean orangutans (P. pygmaeus morio, P. pygmaeus 119 

pygmaeus, and P. pygmaeus wurmbii), with P. p. morio consuming more leaves and bark than P. p. 120 

wurmbii (Kanamori et al., 2010).  Little is known about how the diet of P. p. pygmaeus compared to the 121 

other subspecies of P. pygmaeus (Vogel, personal communication). 122 



Dietary Overlap and Niche Partitioning in Sympatric Apes 123 

Great apes are valuable referents for studies of fossil hominins due to their genetic similarities, 124 

similar body size, and similar life histories. The propensity for populations of Gorilla and Pan to overlap 125 

and negotiate broadly overlapping diets also lends itself to the study of dietary ecologies among fossil 126 

hominins. Recent fossil discoveries suggest that overlap among hominin taxa is an increasingly likely 127 

ecological scenario (Swisher et al., 1996; Spoor et al., 2007; Pickering et al., 2011; Leakey et al., 2012) 128 

and that dietary divergence between hominin groups may have occurred near the origin of Homo 129 

(William M. Schaffer, 1968; Wood and Strait, 2004; Ungar et al., 2008; Cerling et al., 2011, 2013; Ungar, 130 

2011; Ungar and Sponheimer, 2011; Schroer and Wood, 2015; Spoor et al., 2015).  Dietary overlap is a 131 

selective force on many animal populations (Mayr, 1966; Schoener, 1971, 1982; Roughgarden, 1976; 132 

Goldberg and Barton, 1992; Webb et al., 2002; Johnson and Stinchcombe, 2007; Emerson and Gillespie, 133 

2008; Cavender-Bares et al., 2009), and determining eras of overlap is fundamental for reconstructing 134 

the emergence and maintenance of hominin dietary niches. Quantifying dental topography in 135 

subspecies of extant apes presents a unique opportunity to test for signals of dietary overlap and 136 

competition, and to determine whether similar signals may be recovered in the fossil record. 137 

Character displacement is an evolutionary phenomenon by which sympatric taxa (i.e. taxa that 138 

overlap geographically and temporally) indirectly or directly compete with each other, causing selective 139 

pressures and consequently inducing population-level evolutionary changes.  These changes can be 140 

detected through comparison with allopatric (i.e. isolated and non-overlapping) populations of the same 141 

taxa, which do not experience competition with one another and subsequently have different selection 142 

pressures.  Character displacement can be assessed at taxonomic levels higher than the species or 143 

subspecies level (73, 111, 113, 114), so long as the allopatric taxa share the same phylogenetic distance 144 

as the sympatric taxa. Character displacement encompasses a number of different ecological 145 



mechanisms, including both direct and indirect competition for dietary resources (Abrams and Cortez, 146 

2015).  Such a diversity of potential mechanisms can be seen in the living great apes, particularly among 147 

populations of Gorilla and Pan who have similar ecological needs and can have broadly overlapping 148 

ranges and diets (Figure 1; Tutin and Fernandez, 1993; Yamagiwa et al., 1996; Stanford and Nkurunungi, 149 

2003; Yamagiwa and Basabose, 2006, 2009; Head et al., 2011). 150 

Although gorillas and chimpanzees tend to avoid each other (Yamagiwa and Basabose, 2006), 151 

particularly during feeding, this is not always possible and can lead to both peaceful interactions such as 152 

co-feeding (Suzuki et al., 1995; Tutin, 1996; Stanford and Nkurunungi, 2003; Yamagiwa and Basabose, 153 

2006) and aggressive displays by chimpanzees toward gorillas (Kuroda et al., 1996; Yamagiwa et al., 154 

1996; Stanford and Nkurunungi, 2003).  Physical altercations have never been reported due to feeding 155 

competition between the species.  Encounters are also more likely to occur during times of fruit scarcity 156 

(i.e. during fallback episodes) (Stanford and Nkurunungi, 2003; Yamagiwa and Basabose, 2006). Though 157 

direct competition over resources is relatively sparse between gorillas and chimpanzees, indirect 158 

competition is relatively high. Sympatric gorillas and chimpanzees broadly consume the same food 159 

resources, each diminishing the availability of food for the other species (Tutin et al., 1991; Tutin and 160 

Fernandez, 1993; Kuroda et al., 1996; Tutin, 1996; Yamagiwa et al., 1996; Stanford and Nkurunungi, 161 

2003; Yamagiwa and Basabose, 2006). Such indirect resource competition has been hypothesized to act 162 

as a selective pressure that leads to adaptations in the masticatory apparatus and digestive system in 163 

gorillas (to allow them to have a higher fiber diet) and in the locomotor and social system in 164 

chimpanzees (that permits fission-fusion societies and increased home ranges) (Yamagiwa and 165 

Basabose, 2009).  Behavioral differences do not preclude the possibility that character displacement has 166 

occurred in the masticatory apparatuses of both species (Schoener, 1971; Yamagiwa and Basabose, 167 

2006).  It is possible that sustained dietary overlap has left a morphological signature in the jaws and 168 

teeth of both sympatric gorillas and chimpanzees that could manifest itself as character displacement.  169 



Character displacement analysis can detect these potential signatures by quantifying the 170 

differences in morphology between pairs of sympatric and allopatric taxa.  When the difference 171 

observed in sympatric taxa is greater than the difference observed in allopatric taxa, competition (direct 172 

or indirect) is implicated. Character displacement analysis can use behavioral characters (L. and O., 173 

1956; Husar, 1976; Gerhardt, 1994; Allen et al., 2014) or morphological characters (William M. Schaffer, 174 

1968; Malmquist, 1985; Schluter and McPhail, 1992; Dayan and Simberloff, 1994, 2005; Losos, 2000; 175 

Schluter, 2000; Simberloff et al., 2000; Collyer and Adams, 2007; Davies et al., 2007; Schroer and Wood, 176 

2015), provided these characters are ecologically-informed (Yom-Tov, 1991; Schluter and McPhail, 1992; 177 

Jones, 1997; Dayan and Simberloff, 2005; Grant and Grant, 2006; Albert et al., 2007). Gnathic and dental 178 

structures correlate with diet (Kay, 1975; Lucas and Luke, 1984; Maier, 1984; Lucas et al., 1986b; Lucas, 179 

2004; Berthaume, 2014; Schroer and Wood, 2015) and jaws and teeth are often the source of 180 

morphological data for character displacement analyses (Malmquist, 1985; Dayan et al., 1989, 1990; 181 

Schluter and McPhail, 1992; Jones, 1997; Adams and Rohlf, 2000; Schroer and Wood, 2015). Character 182 

displacement analysis can accommodate any taxonomic level, including different genera (Dayan et al., 183 

1990; Monroe, 2012; Schroer and Wood, 2015) and guild structures (Schluter, 1986), although the 184 

degree of evolutionary distance between the sympatric taxa and between the allopatric taxa must be 185 

the same. Character displacement has not been widely integrated with dental topography metrics (but 186 

see Boyer et al., 2012), and our study provides a test-case of its utility for understanding dental 187 

morphological variation among extant apes. 188 

In this study, we conduct two related analyses: a comparison of one metric of dental topography 189 

(DNE) among seven species and subspecies of great apes with varying diets, and a character 190 

displacement analysis of the resulting DNE scores.  In our dental topographic comparison, we test two 191 

hypotheses.  First, that more folivorous apes with more fibrous diets (G. b. beringei and G. b. graueri) 192 

will have higher DNE scores than the more frugivorous apes with less fibrous diets (P. t. schweinfurthii, 193 



P. t. troglodytes, P. paniscus, G. g. gorilla, and Pongo pygmaeus).  Second, the apes that consume the 194 

“hardest” foods (P. t. schweinfurthii and P. pygmaeus) will have the lowest DNE scores.  In the character 195 

displacement analysis, we test whether the overlapping subspecies of Gorilla and Pan have greater 196 

divergence in dental topographic scores.   If competition over food resources, indirect or otherwise, is 197 

occurring in populations of apes and affecting dental morphology, then character displacement analysis 198 

should uncover greater divergence in DNE scores among sympatric, but not allopatric, taxa.  199 

As previous character displacement analyses on the masticatory apparatus have frequently 200 

relied on linear and size measurements, data on M1 and M2 tooth size (width, length, and size) was 201 

gathered on the same specimens and submitted to a character displacement analysis.  Tooth size is 202 

roughly correlated with diet in primates, with more folivorous primates having larger teeth (e.g. (Lucas, 203 

2004; Boyer, 2008; Winchester et al., 2014)).  Given the high level of sexual dimorphism in great ape 204 

tooth size (Swindler, 2002), either sex must be kept constant or relative tooth size must be used.  There 205 

is some evidence suggesting a distally expanding tooth row may be correlated to the degree of folivory 206 

in some primates (e.g. (Lucas et al., 1986a; Teaford and Ungar, 2000)), but this is largely confined to  207 

M1:M3 ratio.  Given the difficulties in obtaining a single sex or a balanced mixed sex sample with minimal 208 

wear and well preserved, erupted M3’s, we used an unbalanced mixed sample and excluded the 209 

confounding effects of body by investigating relative molar size, which was quantified using M1:M2 ratio.  210 

Should the relative molar size analyses yield the same results, it would suggest that relative molar size 211 

can be reliably used in lieu of DNE in future studies.  This would be useful to researchers, as relative 212 

molar size is preserved in the fossil record and in museum specimens more frequently than tooth shape, 213 

quantified by DNE. 214 

 215 

Materials and Methods 216 



 A mixed sex sample of 44 frugivorous and 17 folivorous ape M2’s were chosen for analysis.  217 

Teeth with minimal wear were chosen (i.e. no or low levels of dentin exposure), as dental topographic 218 

measurements are known to be highly sensitive to tooth wear (Ungar and Williamson, 2000; M’Kirera 219 

and Ungar, 2003; Ungar and M’Kirera, 2003; Ungar, 2004; Klukkert et al., 2012; Venkataraman et al., 220 

2014). This resulted in a mixed sample of left and right molars, but no antimeres from the same 221 

individual were used in the study.  As the potential effects of sex or bilateral asymmetry on dental 222 

topographic measurements have yet not been investigated, we cannot say whether or not these 223 

assumptions will have an effect on our results.  In Pan troglodytes verus, small sex based differences 224 

have been observed hypocone sharpness (Stuhltraeger et al., 2016), but this could be due to allometry, 225 

as males tend to have larger teeth (Swindler, 2002) and cusp size is positively correlated with cusp 226 

sharpness (Berthaume, 2014).  While some studies have found small sexual differences in ape diet (e.g. 227 

differences in nut and meat consumption in Pan (Boesch and Boesch-Achermann, 2000)), other studies 228 

have found no systematic differences between male and female diet ( e.g. (Doran et al., 2002)).  There is 229 

also the possibility that, even if there are sex-based differences in diet, they will not manifest in dental 230 

morphology due to genetic similarities between males and females of the same species.  Here, our 231 

sample is too small to meaningfully analyze male and female data separately, and we thus pool sexes. 232 

Second molars were chosen because their structure is usually representative of the postcanine 233 

mandibular tooth row (Kay, 1975; Sheine and Kay, 1977), and they have been shown to contain a dietary 234 

signature in dental topographic studies on platyrrhines and prosimians(Godfrey et al., 2012; Ledogar et 235 

al., 2013; Winchester et al., 2014; Boyer et al., 2015).  This does not preclude other postcanine teeth 236 

from also carrying dietary signatures (Kay, 1975, 1981, Sheine and Kay, 1977, 1982; Berthaume, 2014; 237 

Allen et al., 2015; Boyer et al., 2015).  238 



Character displacement analysis is improved by an understanding of how long populations have 239 

been sympatric. Hypothetically, populations sympatric for a longer time will have a higher level of 240 

specialization than populations sympatric for a shorter time. However, length of sympatry is often 241 

unknown or poorly understood, and character displacement can be detected even in species 242 

phylogenetically close enough to hybridize (90). The effects of the so-called “ghost of competition past” 243 

imply that while the timing and duration of character displacement cannot easily be pinpointed, the 244 

contribution (or not) of sympatric pressures on morphological evolution can (Pritchard and Schluter, 245 

2001).  It is therefore possible to detect character displacement (in morphological characters) in taxa 246 

that have both sympatric and allopatric populations if gene flow has occurred from the sympatric to the 247 

allopatric populations.  This would make the exact location of the individuals used in the character 248 

displacement analysis irrelevant.  Exact location of individuals from the allopatric taxa is always 249 

irrelevant in the character displacement analysis.  Due to the difficulties in obtaining an ideal sample 250 

(due to variation in tooth wear, and year and site at which specimens were collected), we are assuming 251 

that, due to gene flow, tooth shape and size is relatively homogeneous within each subspecies.   252 

 The frugivorous apes included in this study were G. g. gorilla, P. t. troglodytes, P. t. 253 

schweinfurthii, P. paniscus, and P. p. pygmaeus, and the folivorous apes were G. b. beringei and G. b. 254 

graueri (Table 2).  Two pairs of sympatric apes (G. g. gorilla and P. t. troglodytes, and G. b. graueri and P. 255 

t. schweinfurthii), and one pair of allopatric apes (P. paniscus and G. b. beringei) were chosen for the 256 

character displacement analysis. While P. p. pgymaeus was included in the dental topographic analysis, 257 

it was excluded from the character displacement analysis because the genetic distance between Pongo 258 

and the African apes exceeds the genetic distance between Gorilla and Pan.  Exact locations and sexes 259 

for each specimen can be found in the supplementary material. 260 

 Digital representations of the teeth were produced by taking laser scans of casts of the teeth, 261 

which are housed at the Paleoanthropology Laboratory at the University of Arkansas and were supplied 262 



courtesy of Peter Ungar (Figure 2). Casts were produced by pouring translucent epoxy mixed with a pale 263 

pink pigment into high resolution negative molds of tooth rows of museum specimens (M’Kirera and 264 

Ungar, 2003; Ungar and M’Kirera, 2003; Klukkert et al., 2012).  Casts were coated with a thin layer of 265 

Magnaflux Spotcheck SKD-S2 Developer to aid the XSM multisensory scanner (Xystrum Corp., Turino, 266 

Italy) in picking up the surface of the tooth (Ungar, 2004; Berthaume, 2014).  2.5D scans of the teeth 267 

were taken, with teeth in anatomically correct position such that the y-axis ran in the mesiodistal 268 

direction, the x-axis ran in the buccolingual direction, and the z-axis ran in the superior-inferior 269 

direction, with the most distal molar closest to the origin of the scan. (2.5D scans are scans where a 270 

surface is a projection of a plane into the 3rd dimension.  In this case, this means there is one height 271 

coordinate for each pair of length and width coordinates.)  Scans were taken at a resolution of 50 µm, 272 

resulting in point cloud representations of the teeth that had a resolution of 400 data points per square 273 

millimeter. 274 

 Dental topographic analyses can be performed with the entire enamel crown (Boyer, 2008) or 275 

the superior portion of the occlusal surface (M’Kirera and Ungar, 2003; Ungar and M’Kirera, 2003). DNE 276 

is relatively insensitive to the cropping method (Bunn et al., 2011).  As it is not possible to capture the 277 

entire tooth crown with this laser scanner, we chose the latter cropping method, using just the superior 278 

portion of the occlusal surface. 279 

 DNE is a summative metric that measures the curviness of a 2.5D or 3D surface constructed by 280 

triangles, meaning it is sensitive to the number of triangles in a mesh.  Teeth meshed with more 281 

triangles have higher DNE scores than the same teeth meshed with fewer triangles, making it important 282 

to keep the number of triangles constant across all teeth.  Triangular surface meshes of the tooth rows 283 

were constructed from the point clouds using the Delaunay Triangulation command in AVIZO 6.1 and 284 

saved as *.ply files.  The 2.5D surfaces were imported into CloudCompare, where M2s were isolated and 285 



all triangles inferior to the lowest point on the occlusal surface were deleted.  Surfaces were again 286 

exported as *.ply files and reimported into AVIZO 6.1, where M2s were simplified down to 19,990-287 

20,000 triangles and smoothed using the Smooth Surface command (lambda=3, 100 iterations).  This 288 

protocol is similar to that set forth in Bunn et al. (2011) with one distinct change: the molars in Bunn et 289 

al. (2011) were simplified down to 9,990-10,000 instead of 19,990-20,000 triangles.  We chose to 290 

simplify our teeth to a larger number of triangles because we felt too much of the occlusal topography 291 

was lost at the lower resolution (i.e. crenulated teeth began to look like flat surfaces).  While a 292 

significant amount of detail was still lost at the resolution used in this study, we felt it was a high enough 293 

to capture the general shape of the tooth (see Figure 3).  This loss in resolution was not observed in 294 

crenulated platyrrhine teeth (i.e. the Pithecia teeth used in Winchester et al., 2014) and implies there 295 

may be a size effect that needs to be taken into account when performing DNE (Winchester, personal 296 

communication).  Furthermore, as two of the most commonly used dental topographic measurements 297 

(DNE and orientation patch count, OPC) are summative, measurements taken at different resolutions 298 

cannot be directly compared.  The numerical results from this study are therefore not comparable to 299 

previous DNE studies; the patterns of results, however, are.  To foster additional comparisons between 300 

studies, we have reported our results from lower resolution M2s in the electronic supplementary 301 

material (ESM 1).  302 

DNE was calculated in a beta version of MorphoTester, which is now available for download at 303 

http://morphotester.apotropa.com/ (Winchester, 2016), with 1% energy*area outlier removal.  It is also 304 

possible to calculate DNE using a recently released R package named molaR (Pampush et al., 2016).  305 

Some teeth encountered the CHOL error, which prevents DNE from being calculated.  For surfaces 306 

encountering this problem, it is recommended a 1 or 2-iteration Laplacian smooth be applied in Meshlab 307 

(Cignoni et al., 2008).  As this can decrease DNE scores by around 20-30%, all teeth were imported into 308 

Meshlab and had 2 iterations of Laplacian smooth applied to them.   309 

http://morphotester.apotropa.com/


Determining the Presence of a Dietary Signature 310 

 The importance of controlling for phylogeny when deriving dietary signatures from tooth shape 311 

is well documented (Kay and Ungar, 1997; Ungar, 2004; Winchester et al., 2014; Allen et al., 2015).  In 312 

order to control for phylogeny in our study, we used phylogenetically-corrected ANOVA with a 313 

Bonferroni correction to determine if DNE was correlated to diet.  This was done using the Geiger 314 

package (Harmon et al., 2008) in R (R Development Core Team and Team, 2015), and a published 315 

primate phylogeny created using a supermatrix (Springer et al., 2012). 316 

 As there is no published phylogeny that differentiates apes at the subspecies level, we ran our 317 

phylogenetically corrected ANOVAs using the same protocol as in Berthaume (2014).  Briefly, we created 318 

four trees, with each of the pair of subspecies splitting either 10,000 years after speciation (i.e. G. b. 319 

beringei and G. b. graueri split only 10,000 years after G. beringei and G. gorilla split) or only 10,000 320 

years ago (Figure 4).  This encompasses the full range of times in which subspecies may have divided.  321 

We then ran four phylogenetically-corrected ANOVAs, one with each tree.  If the P-values were 322 

significant (p < 0.05) for all trees, this implied that our results were significant and robust.  If the P-values 323 

were not significant (p > 0.05) for all trees, this implied that our results were robust but not significant.  324 

If the P-values were a mix of significant and not significant, we considered our results not robust.  All P-325 

values were adjusted using a Bonferroni correction for multiple comparisons.  326 

Character Displacement 327 

Character displacement analysis was used to test for significant differences between the DNE 328 

scores of sympatric and allopatric apes. Previous character displacement analyses on gnathic and dental 329 

morphologies have relied on linear and relative molar size measurements. Our study is among the first 330 

to use topographic measurements as input variables for character displacement analysis. In order to test 331 

the validity of our model and compare the results of our DNE analysis with previous character 332 



displacement analyses, we ran three versions of the analysis: one with only relative molar size variables, 333 

one with only DNE scores, and a combined analysis of relative molar size variables and DNE scores. We 334 

obtained three relative molar size variables from the M1s and M2s of our specimens: the mesiodistal 335 

(MD) diameter, the buccolingual (BL) diameter, and the occlusal area. To obtain these measurements, 336 

we rotated surface reconstructions of our xyz coordinates to obtain maximum occlusal area and 337 

imported a screenshot of the scaled tooth into TPSdig (Rohlf, 2009). Tooth diameters were maximum 338 

linear measurements and occlusal area was calculated from 20 semilandmarks equidistantly fitted 339 

around the occlusal margin. All measurements were log-transformed and, in order to reduce the 340 

number of variables in our model, we indexed our measurements by dividing the M1 measurement with 341 

the corresponding M2 measurement.  342 

Three pairs of sympatric populations were included in our character displacement analysis: P. t. 343 

troglodytes and G. g. gorilla, P. t. schweinfurthii and G. b. graueri, and a combined sample of all 344 

sympatric Pan and all sympatric Gorilla. Our allopatric comparison for all three comparisons was P. 345 

paniscus and a sample of G. b. beringei from the Virunga Mountains, where gorillas do not overlap with 346 

chimpanzees.  347 

General linear model 348 

Character displacement is quantified as the displacement statistic DS-DA, where Ds indicates 349 

divergence between sympatric taxa that may compete for resources and DA indicates divergence 350 

between allopatric taxa (Schluter and McPhail, 1992; Figure 5). When DS-DA > 0, competition is 351 

implicated, and significance can be determined by resampling the populations. To quantify divergence 352 

and perform resampling, we apply a general linear model derived from Collyer and Adams (2007).  353 

A general liner model follows the form Y = BX + U.  In our model, Y is the morphological matrix of 354 

relative molar size or dental topography variables, X is a matrix of general ecological conditions, and U is 355 



the residual error, which is assumed at zero.  By dividing each side by X, we can solve for B, a matrix that 356 

translates the two matrices. The model is described in more detail in Schroer and Wood (2015), which 357 

includes examples of the matrices and an R-based script for conducting the analysis. Here, we 358 

summarize the most important elements of the analysis. Our raw data is provided in the supplementary 359 

material accompanying this manuscript (ESM 2) and at [DOI @ PUBLICATION]. 360 

The X matrix uses dummy variables (i.e. Boolean indicators) to encode the ecological situation of 361 

individual specimens and reduce them to binary conditions.  Each specimen belongs to one of four 362 

categories: a sympatric population of the first taxon, an allopatric population of the first taxon, a 363 

sympatric population of the second taxon, or an allopatric population of the second taxon. We 364 

subsequently assign each specimen a series of dummy variables. For taxonomic designations, each 365 

specimen in the first taxon is encoded as 1 and each specimen in the second taxon is encoded as -1. For 366 

the presence or absence of overlap, sympatric taxa are encoded as 1 and allopatric taxa are encoded as -367 

1. The two values now given for each specimen are multiplied to give a third variable–the interaction of 368 

taxon and overlap.  369 

Using the X and Y matrices, B is solved. B is a matrix of partial regression coefficients and 370 

effectively translates between the ecological conditions and morphological outputs.  We can apply this 371 

matrix to the least squares mean of each of our four ecological groups (i.e. the two taxa in sympatry and 372 

the two taxa in allopatry).  This results in four phenotypic change vectors, one for each population. The 373 

difference between vectors of the sympatric taxa is DS, and the difference between vectors of the 374 

allopatric taxa is DA. Subtracting these vectors from one another yields DS-DA, the character 375 

displacement statistic. 376 

Using a probability distribution, we can determine whether the observed DS-DA value is 377 

significant. To generate this probability distribution, we remove the interaction variable from the design 378 

matrix so that individuals remain encoded by their taxon and the presence/absence of overlap, but the 379 



interaction between these variables no longer creates an effect in the model. We solve again for the B 380 

matrix and randomly assign the residual effects to the least squares means of our four populations. This 381 

results in four different phenotypic change vectors, and from these vectors we derive a new DS-DA value. 382 

We encode this value as 1 (greater than or equal to the observed DS-DA) or 0 (less than the observed DS-383 

DA). We iterate this procedure 999 times to obtain a distribution of possible DS-DA values from our 384 

randomized study sample and assume significance for our original, observed DS-DA if it appears less than 385 

5% of the time. 386 

 387 

Results 388 

 DNE scores broadly overlapped between frugivorous and folivorous apes, with P. p. pygmaeus 389 

having a range of DNE scores that encompassed nearly all other apes (Figure 6).  Phylogenetically-390 

corrected ANOVAs revealed that DNE scores could not group apes based on their dietary categories 391 

(Tree1 P=0.304, Tree2 P=0.381, Tree3 P=0.418, Tree4 P=0.319).  Non-phylogenetically corrected Mann-392 

Whitney U-tests indicated statistically significant differences existed between sympatric gorillas and 393 

chimpanzees, with sympatric gorillas having higher DNE scores than sympatric chimpanzees (Table 3, 394 

significance at P<0.0083).  Among Gorilla and Pan, G. b. graueri and P. t. troglodytes were found to have 395 

the highest and lowest DNE scores, respectively, suggesting that G. b. graueri has the most fibrous diet 396 

and P. t. troglodytes had the least fibrous diet among African apes.  Pan troglodytes troglodytes had 397 

significantly lower DNE scores than all other apes, and G. b. graueri had significantly higher DNE scores 398 

than all other apes save P. p. pygmaeus.  No other significant differences existed among the apes (Table 399 

3). 400 

 The results of character displacement analyses broadly indicate that sympatric populations of 401 

Gorilla and Pan diverge in their macromorphology and DNE scores compared to allopatric Gorilla and 402 



Pan (Table 4).  The two analyses that included DNE scores had significant results in all three sympatric 403 

populations of Gorilla and Pan (i.e. G. g. gorilla-P. t. troglodytes, G. b. graueri-P. t. schweinfurthii, and 404 

the combined Gorilla-Pan samples). When relative molar size variables are included in the analysis, 405 

results are more significant than when DNE scores are used alone (P<0.03 compared to P<0.05).  In the 406 

analysis that included only relative molar size variables, results were not significant in the comparisons 407 

containing P. t. troglodytes (P>0.05), and were only significant in the comparison between G. b. graueri 408 

and P. t. schweinfurthii (P<0.05).  Additional character displacement analyses, analyzing each relative 409 

molar size index independently, relative molar size variables, can be found in the ESM and generally 410 

upholds this result. 411 

Discussion 412 

 Dental topography, measured by DNE, was unsuccessful at predicting dietary categories for 413 

apes, yielding similar scores for folivores and frugivores (Figure 6).  G. b. beringei, an obligate folivore in 414 

the Virunga Mountains, had lower DNE scores than the more frugivorous G. b. graueri (p=0.0079), even 415 

though both are primarily folivorous.  Statistically significant differences between folivores and 416 

frugivores existed only between G. b. beringei and P. t. troglodytes, and G. b. graueri and all frugivores 417 

save P. p. pygmaeus (Table 3).  In previous DNE studies, primates with higher fiber diets tended to have 418 

higher DNE scores compared to primates with lower fiber diets (Bunn et al., 2011; Godfrey et al., 2012; 419 

Winchester et al., 2014).  In the apes, this distinction was significant in comparisons of sympatric apes 420 

(G. b. graueri and P. t. schweinfurthii, P=0.0030, G. g. gorilla and P. t. troglodytes, P=0.0003) but not 421 

allopatric apes (Table 3). 422 

Teeth with higher DNE scores have curvier surfaces, which are hypothesized to be more efficient 423 

at cutting and breaking down foods with low digestibility and high cell wall content, such as chitinous 424 

and fibrous foods (Sheine and Kay, 1977). Breaking down these foods increases digestibility by 425 



increasing the surface area to volume ratio, which in turn increases the caloric intake for the animal (Kay 426 

and Sheine, 1979).  Conversely, foods high in digestibility and low in cell wall content do not need to be 427 

broken down as thoroughly—breaking down these foods too efficiently is a waste of energy and can 428 

have adverse effects of bolus formation (Sheine and Kay, 1982; Lucas, 2004).  Within sympatric apes, 429 

gorillas consistently have a higher DNE scores.  As chitinous foods make up a small percentage of their 430 

diet, it is reasonable to assume the curvier teeth in gorillas is an adaptation to a higher fiber diet.  431 

These conclusions are consistent with the literature gathered on diet, where G. b. graueri has 432 

been observed eating leaves when fruit was readily available (Yamagiwa and Basabose, 2006), and P. t. 433 

troglodytes has been described as being a ripe fruit specialist, avoiding fibrous foods whenever possible 434 

(Tutin et al., 1991; Tutin and Fernandez, 1993; Kuroda et al., 1996).  The increase in fiber consumption in 435 

gorillas has been quantified in many studies.  For example, Yamagiwa and Basabose (2006) provided 436 

results following an 8 year study of sympatric populations of G. b. graueri’s and P. t. schweinfurthii.  437 

Based the analysis of 14,367 gorilla and 8,070 chimpanzee fecal samples, sieved using a 1 mm mesh, 438 

they found that the range for mean proportion of fibrous food remains per fecal sample was 42-100% 439 

for G. b. graueri’s diet and 7-78% for P. t. schweinfurthii’s diet.  This demonstrated that, while eastern 440 

chimpanzees can have seasonally high fiber diets, gorillas tend to, on average, have high fiber diets 441 

throughout the year.  Similar results have been found in western gorillas and chimpanzees (Tutin and 442 

Fernandez, 1985, 1993; Kuroda et al., 1996). This supports the hypothesis that the curvier teeth in 443 

gorillas may be an adaptation in this genus to a higher fiber diet (Berthaume, 2014). 444 

It was previously found that dental topography is sensitive to phylogeny (Winchester et al., 445 

2014), but was concluded that, when comparing closely related taxa, dental topography can still be used 446 

to predict dietary categories within primates.  The results from this study suggest that, while diet can be 447 

predicted with dental topographic measures in some groups of closely related primates, such as 448 



platyrrhines and strepsirrhines, it is not true for all primates, such as apes and possibly other 449 

catarrhines.  Additional studies are needed to determine when dental topography is a reliable indicator 450 

of dietary categories in fossil hominins. 451 

However, dental topography combined with character displacement analysis may provide useful 452 

interpretations for dietary distinctions between potentially overlapping populations.  Results from the 453 

character displacement analysis indicate that the difference in DNE scores between the sympatric apes 454 

of two genera was significantly greater than the difference in scores between allopatric apes of the 455 

same gerera (Table 4).  This suggests that sympatry in closely related taxa such as Gorilla and Pan may 456 

relate to divergence in postcanine tooth morphology and occlusal complexity, probably through dietary 457 

partitioning.  These results are likely generalizable to more aspects of the masticatory apparatus, not 458 

just tooth shape, although additional research is needed.  While sympatric taxa form natural testing 459 

grounds for hypotheses dealing with interactions between morphological and ecological variables (see 460 

also Janson, 2000), caution should be taken when using allopatric taxa to test these hypotheses, as 461 

allopatric taxa exist in different locations and will likely face different selection pressures.  462 

If character displacement has occurred between in the postcanine of gorillas and chimpanzees, 463 

it is more likely to relate to indirect competition between these two groups rather than direct 464 

competition. Gorillas and chimpanzees generally avoid each other during feeding, and any sustained 465 

direct competition between them over food resources is likely due to scramble competition.  However, 466 

ecological competition often occurs indirectly, such as when one taxon affects another taxon by 467 

consuming its dietary resources and limiting the amount of available food in its range. Dietary 468 

partitioning through adaptions of the masticatory apparatus is one way in which mammalian taxa can 469 

reduce indirect competition.  Differences in foraging strategies, social systems, and modes of 470 

locomotion may also lead to reduced competition.  Evidence of such behavioral differences exists in 471 



gorillas and chimpanzees.  For example, when chimpanzees find a tree full of ripe fruit, they spend a 472 

long time in the tree and consume large quantities of fruit (Kuroda et al., 1996).  Conversely, gorillas will 473 

only forage for a short period of time before moving on, leaving large quantities of ripe fruit behind 474 

(Kuroda et al., 1996). Chimpanzees are more likely to deplete most of the resources in a small location, 475 

while gorillas are more likely to deplete resources to a lesser extent, but over a larger range.  In addition, 476 

during fallback episodes, chimpanzees tend to forage further and in smaller groups, while gorillas tend 477 

to consume more herbaceous vegetation and bark.  This could lead to unequal pressures on the 478 

masticatory apparatuses, locomotor systems, and social systems of gorillas and chimpanzees diet 479 

(Yamagiwa and Basabose, 2006, 2009), which could result in changes in the general morphology and 480 

behavior of a population overtime.  While character displacement analysis cannot necessarily pinpoint 481 

the time of the origin of competition between sympatric Gorilla and Pan, nor separate the effects of 482 

direct and indirect competition between these taxa, it suggests that sustained and substantial resource 483 

competition has affected the masticatory features of these taxa.  484 

Implications for the Hominin Record and the Evolution of Early Homo 485 

During the Plio-Pleistocene, hominin taxa existed sympatrically and allopatrically throughout 486 

Africa (e.g. (Schroer and Wood, 2015)).  When sympatric, competition between taxa would have led to 487 

population extinction, reinforced and maintained allopatry, or sufficient niche separation to allow for 488 

continued sympatry (Swedlund, 1974).  The idea that character displacement was occurring in the 489 

hominins was first introduced in Brown, 1958.  Schaffer, 1968 built on this and tested for character 490 

displacement in the hominins using postcanine tooth size measurements.  They found evidence for 491 

character displacement in postcanine tooth area when comparing the robust australopithecines to early 492 

Homo; differences were exaggerated where the taxa were likely sympatric (Olduvai Gorge and 493 

Swartkrans) compared to where they were likely allopatric (Kromdraai, Sterkfontein, and Makapansgat) 494 



(Brown, 1958; William M. Schaffer, 1968).  Differences in tooth size were hypothesized to have occurred 495 

due to different dietary specializations in taxa.  Recent dietary reconstructions have confirmed large 496 

levels of overlap and specialization in sympatric Plio-Pleistocene hominins (e.g. (Grine et al., 2012; 497 

Sponheimer et al., 2013)), suggesting that character displacement may have occurred where taxa were 498 

sympatric.  More recent work on character displacement by Schroer and Wood (2015) has supported 499 

this idea by showing that character displacement likely occurred in hominin premolar tooth size (Schroer 500 

and Wood, 2015).   501 

As new sites are discovered and old sites are expanded, it has become increasingly apparent 502 

that there were several species of hominins living sympatrically or allopatrically around the time of 503 

emergence of early Homo.  Table 5 shows a pairwise comparison between the Plio-Pleistocene African 504 

hominins depicting which hominin taxa may have been sympatric or allopatric.  Species can be classified 505 

as likely sympatric (taxa likely have definite overlapping temporal and geographic ranges), probably 506 

sympatric (taxa have potentially overlapping temporal and geographic ranges), geographically separated 507 

(temporal, but not geographic, overlap), temporally separated (geographic, but not temporal, overlap) 508 

or none-of-the-above (neither temporal nor geographical overlap).  Dates were taken from Wood and 509 

Boyle (2016) and are inclusive of dating error (Wood and K Boyle, 2016).  Early Homo is inclusive of 510 

Homo erectus, H. ergaster, H. georgicus, H. habilis, H. rudolfensis, and the Ledi Geraru mandible.  H. 511 

naledi was excluded from this grouping due to lack of confirmed dates and because the Rising Star cave 512 

system is within the geographic range of early Homo.  513 

In East Africa, there were at least three species of hominins that were likely or probably 514 

sympatric with early Homo: Paranthropus boisei, Paranthropus aethiopicus, and Australopithecus garhi 515 

(Wood and Lonergan, 2008; Villmoare et al., 2015). Numerous fossils from both genera have been found 516 

in the same sites and date to similar periods, and the remains of these genera are more closely 517 



associated with one another than to other primate taxa at these sites (e.g. Shungura Formation, Lake 518 

Malawi, Olduvai, and Koobi Fora all have P. boisei and/or P. aethiopicus in the same layers as early 519 

Homo)(Bobe and Behrensmeyer, 2004).  Additionally, there is mounting evidence that multiple taxa of 520 

early Homo occupied these sites, potentially at the same time (Spoor et al., 2007; Leakey et al., 2012).  521 

Dietary overlap and resource competition – which occurs commonly in living primates such as the great 522 

apes – must be considered as a potential selection pressure on these fossil taxa.  Such selection 523 

pressures may have also led to niche specialization in the east African hominins, led to the derived 524 

morphologies observed in the masticatory features of Paranthropus (Wood and Strait, 2004; 525 

Constantino and Wood, 2007; Wood and Constantino, 2007; Berthaume et al., 2010; Dzialo et al., 2013; 526 

Schroer and Wood, 2013; Smith et al., 2015) and the dietary shifts observed in P. boisei (high C4 527 

consumption) .  Likewise, dietary overlap and resource competition may have caused a selective 528 

pressure that influenced the development of the gnathic and dental diversity observed in early Homo 529 

(Spoor et al., 2015).  530 

In South Africa, there is growing evidence that several species of australopithecines were living 531 

sympatrically with each other and early Homo (e.g. (Berger et al., 2010; Pickering et al., 2011)) with 532 

varying levels of dietary partitioning.  An immense number of Plio-Pleistocene hominin bearing sites can 533 

be found in South Africa, some yielding hominin specimens of a single species (e.g. Malapa, A. sediba; 534 

Gondolin, P. robustus), and some yielding several hominin species (e.g. Kromdraai, P. robustus and early 535 

Homo; Swartkrans, P. robustus and early Homo; Sterkfontein, P. robustus, A. africanus, and early Homo), 536 

making it likely and probable that early Homo was sympatric with P. robustus and A. africanus, 537 

respectively (e.g. (Brain, 1981; Braga and Thackeray, 2003; Moggi-Cecchi et al., 2006)).  Although A. 538 

sediba and early Homo have not yet been found in the same member at the same site, it is possible that 539 

the two were living sympatrically due to their overlapping temporal and close geographic ranges (Berger 540 

et al., 2010; Pickering et al., 2011).   541 



With diet, there is strong evidence that A. africanus and P. robustus had overlapping diets, likely 542 

in preferred foods, with some dietary partitioning in fallback foods (see Grine et al., 2012 and sources 543 

there within).  Similar dietary overlap likely existed between these species and the early Homo living in 544 

South Africa.  Competition over resources between early Homo and A. africanus, P. robustus, and early 545 

Homo could have provided a selective force that led to the niche specialization observed in the diets of 546 

A. sediba (high C3 consumption) (Cerling et al., 2011; Henry et al., 2012), P. robustus (derived 547 

masticatory apparatus, consumption of hard, brittle food items) (Scott et al., 2005), and South African 548 

Early Homo (derived masticatory apparatus, consumption of compliant foods) (Ungar et al., 2006a, 549 

2006b). 550 

 Although time-averaging can affect how we interpret occupation of a site, character 551 

displacement analysis using dental topographic variables may provide a framework for assessing the 552 

likelihood of overlap among fossil hominins based on the patterns observed in living apes.  That is to say, 553 

the results of our study indicate that character displacement may be useful for quantifying the potential 554 

of ecological overlap in fossil taxa.  In our study, DNE scores out outperformed relative molar size in 555 

detecting divergence between living populations and more closely reflected the observed overlap 556 

among populations of great apes.  This suggests that, when available, DNE may be a useful metric for 557 

quantifying character displacement in fossil hominins and determining their likelihood of overlap, 558 

although we caution the use of this method when comparing allopatric populations that may have 559 

different regional ecologies (i.e. comparing southern African to East African hominins). Character 560 

displacement may also be generalizable to other skeletal proxies of diet (e.g. mandibular cross-sectional 561 

geometry, skull shape), although this has not been rigorously tested in extant apes or fossil hominins. 562 

Conclusion 563 



 Contrary to findings among other primate groups, dental topography does not reliably 564 

predict broad dietary categories within apes. However, differences in dental topography can separate 565 

higher and lower fiber diets within sympatric groups of apes.  This divergence was significant in a 566 

character displacement analysis, suggesting that some degree of ecological competition may influence 567 

dental topography in extant apes. A combined character displacement and dental topographic analysis 568 

may be informative for reconstructing the dietary niches of fossil apes, including fossil hominins. 569 

Although this conclusion presupposes that fossil taxa are subject to similar selection pressures as 570 

modern taxa, including the presence of ecological overlap, it may open new avenues for understanding 571 

the community compositions of early hominins and the formation of specific ecological niches among 572 

hominin taxa.  573 

If natural selection via character displacement operated to produce contrasting tooth shapes in 574 

multiple groups of extant apes, as is suggested by our analyses, these results are likely applicable to 575 

extinct apes and the fossil hominins.  If this proves to be true, it is possible that competition between 576 

early Australopithecine lineages resulted in character displacement and divergent evolution leading to 577 

the evolution of both robust Australopithecines and early Homo. 578 

 579 
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Figure 1: Distribution of extant great apes in Africa.  Note there are no overlapping ranges between species and subspecies of 997 
Gorilla, or species and subspecies of Pan.  However, there are some overlapping ranges between Gorilla and Pan. 998 

Figure 2: Diversity in ape mandibular M2's. Each tooth has a DNE value close to the mean of the taxon, indicating it is the most 999 
“average” shaped tooth.  From top to bottom left for both views, moving clockwise: G. g. gorilla (CMNH B1845), G. b. graueri 1000 
(MRAC RG881), G. b. beringei (NMNH 396935), P. p. pygmaeus (SAPM 1981-30), P. paniscus (MRAC RG29057), P. t. 1001 
schweinfurthii (MRAC RG6043), and P. t. troglodytes (CMNH B1720).  Figures were created using CloudCompare v2.6.1 1002 
(http://www.danielgm.net/cc/). 1003 

Figure 3: Effects of reducing the number of triangles that represent the surface of a G. b. graueri tooth (MRAC RG881). 1004 

Figure 4: Four possible ape phylogenies encompassing the extremes in subspecies divergence.  Tree1 and Tree4 assume G. b. 1005 
beringei and G. b. graueri diverged 10,000 years after the split with G. g. gorilla, while Tree2 and Tree3 assume the split 1006 
occurred 10,000 years ago.  A similar pattern is seen in the Pan troglodytes clade. 1007 

Figure 5: Schematic of character displacement. A behavioral or morphological character is measured in two sympatric (i.e. 1008 
overlapping) taxa, and the difference between character expression in the two taxa is summarized as “DS.” When the same 1009 
character is measured in allopatric (i.e. isolated) populations of the same two taxa, the divergence is summarized as “DA.” When 1010 
DS is greater than DA, character displacement is indicated. A greater DS than DA is represented in this schematic by the thickness 1011 
of the lines, rather than their length. Solid circles represent one taxon and patterned circles represent another taxon. Although 1012 
described here for one character, character displacement analyses may include multiple characters. 1013 

Figure 6: DNE results.  Sympatric species are framed in dotted boxes, while allopatric species are framed in a solid box. Our 1014 
specimens  1015 

 1016 
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Table 1: Dental topographic studies on extinct primate taxa 

Genus Taxon Dental Topographic Measures Source 

Archaeoindris fontoynontii DNE, OPCR (Godfrey et al., 2012) 

Paleopropithecus Ingens, DNE, OPCR (Godfrey et al., 2012) 

Paleopropithecus maximus DNE, OPCR (Godfrey et al., 2012) 

Paleopropithecus kelyus DNE, OPCR (Godfrey et al., 2012) 

Babokita radofilai DNE, OPCR (Godfrey et al., 2012) 

Mesopropithecus globiceps DNE, OPCR (Godfrey et al., 2012) 

Mesopropithecus pithecoides DNE, OPCR (Godfrey et al., 2012) 

Mesopropithecus dolichobrachion DNE, OPCR (Godfrey et al., 2012) 

Archaeolemur majori DNE, OPCR (Godfrey et al., 2012) 

Archaeolemur sp. cf. edwardsi DNE, OPCR (Godfrey et al., 2012) 

Hadropithecus stenognathus DNE, OPCR (Godfrey et al., 2012) 

Pachylemur insignis DNE, OPCR (Godfrey et al., 2012) 

Pachylemur jullyi DNE, OPCR (Godfrey et al., 2012) 

Megaladapis edwardsi DNE, OPCR (Godfrey et al., 2012) 

Platychoerops antiquus OPC, RFI (Boyer et al., 2012) 

Platychoerops daubrei OPC, RFI (Boyer et al., 2010, 2012) 

Plesiadapis tricuspidens OPC, RFI (Boyer et al., 2010, 2012) 

Plesiadapis cookei DNE, OPCR, OPC, RFI 
(Boyer et al., 2010; 

Prufrock et al., 2016a; b) 

Chiromyoides spp. DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Nannodectes intermedius DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Nannodectes gazini DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Nannodectes simpsoni DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Plesiadapis praecursor DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Plesiadapis anceps DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Plesiadapis rex DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Plesiadapis churchilli DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Plesiadapis fodinatus DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Plesiadapis dubius DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Pronothodectes matthewi DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Pronothodectes jepi DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Pronothodectes gaoi DNE, OPCR, RFI (Prufrock et al., 2016a; b) 

Acidomomys hebeticus DNE, OPCR, RFI (López-Torres et al., 2017) 

Arcius fuscus DNE, OPCR, RFI (López-Torres et al., 2017) 

Arcius lapparenti DNE, OPCR, RFI (López-Torres et al., 2017) 

Arcius rougieri DNE, OPCR, RFI (López-Torres et al., 2017) 

Edworthia lerbekmoi DNE, OPCR, RFI (López-Torres et al., 2017) 

Elwynella oreas DNE, OPCR, RFI (López-Torres et al., 2017) 

Ignacius clarkforkensis DNE, OPCR, RFI (López-Torres et al., 2017) 

Ignacius fremontensis DNE, OPCR, RFI (López-Torres et al., 2017) 

Ignacius frugivorus DNE, OPCR, RFI (López-Torres et al., 2017) 
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Ignacius graybullianus DNE, OPCR, RFI (López-Torres et al., 2017) 

Paromomys farrandi DNE, OPCR, RFI (López-Torres et al., 2017) 

Paromomys maturus DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur archus DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur citatus DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur fortior DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur jepseni DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur pagei DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur praecox DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur praecox-fortior DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur simonsi DNE, OPCR, RFI (López-Torres et al., 2017) 

Phenacolemur willwoodensis DNE, OPCR, RFI (López-Torres et al., 2017) 

Premnoides douglassi DNE, OPCR, RFI (López-Torres et al., 2017) 

Purgatorius coracis DNE, OPCR, RFI (López-Torres et al., 2017) 

Purgatorius janisae DNE, OPCR, RFI (López-Torres et al., 2017) 

    Homo rudolfensis RFI*, slope Ungar, 2004 

Homo erectus RFI*, slope Ungar, 2004 

Homo habilis RFI*, slope Ungar, 2004 

Australopithecus afarensis RFI*, slope Ungar, 2004 

Australopithecus africanus Slope Ungar, 2007 

Paranthopus robustus Slope Ungar, 2007 

 



Table 1: Sample for this study.  Museum abbreviations are as follows: CMNH=Cleveland Museum of Natural History, 
AMNH=American Museum of Natural History, MRAC= Musée royal de l'Afrique centrale (Royal Museum for Central Africa) in 
Tervuren,  SAPM= Staatssammlung für Anthropologie und Paläoanatomie München (State Museum of Anthropology and 
Paleoanatomy in Munich), NMNH = National Museum of Natural History. 

Taxon Sample size Museums 

Frugivores 
  

  Pan troglodytes troglodytes 9 CMNH 

  Pan troglodytes schweinfurthii 8 AMNH, MRAC 

  Gorilla gorilla gorilla 8 AMNH, CMNH 

  Pongo pygmaeus pygmaeus 10 SAPM 

  Pan paniscus 9 MRAC 

Folivores 
  

  Gorilla beringei beringei 9 NHNH 

  Gorilla beringei graueri 8 MRAC 

 

Table2



Table 1: Mann-Whitney U-test comparing DNE values between species (not phylogenetically corrected). Test statistics are presented followed by the P-value in brackets.  Student 
t-tests had the same pattern of results. 

Mann-Whitney U-test 
(W [P-value]) G. b. beringi P. paniscus G. b. graueri P. t. schweinfurthii G. g. gorilla P. t. troglodytes 

P. p. pygmaeus 54 [0.4967] 70 [0.0435] 26 [0.237] 57 [0.1457] 56 [0.1728] 88 [<0.0001]* 

G. b. beringi   63 [0.0503] 9 [0.0079]* 50 [0.1996] 44 [0.4807] 81 [<0.0001]* 

P. paniscus     3 [0.0006]* 30 [0.6058] 28 [0.4807] 78 [0.0003]* 

G. b. graueri       59 [0.003]* 57 [0.007]* 72 [<0.0001]* 

P. t. schweinfurthii         22 [0.3282] 66 [0.0025]* 

G. g. gorilla           70 [0.0003]* 
 
*significant using a Bonferroni adjusted P-value of 0.0083 
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Table 4: Results of character displacement analysis. Two pairs of sympatric Gorilla and Pan populations were compared to one 
pair of allopatric Gorilla and Pan (i.e. G. b. beringei and P. paniscus) in three different versions of the analysis: 
macromorphological variables alone , DNE scores alone, and a combination of both. 

A. Macromorphological variables 
 
Comparison DS DA DS-DA P 

     
G. g. gorilla  and P. t. troglodytes 0.031 0.015 0.016 0.229 
G. b. graueri and P. t. schweinfurthii 0.042 0.011 0.031 0.046 
All sympatric Gorilla and sympatric Pan 0.017 0.024 -0.007 0.672 
 
 
B. DNE scores 
 
Comparison DS DA DS-DA P 

     
G. g. gorilla  and P. t. troglodytes 115.959 59.788 56.171 0.051 
G. b. graueri and P. t. schweinfurthii 142.993 21.822 121.170 0.006 
All sympatric Gorilla and sympatric Pan 115.791 35.053 80.739 0.033 
 
 
C. Combined analysis (macromorphological variables & DNE scores) 
 
Comparison DS DA DS-DA P 

     
G. g. gorilla  and P. t. troglodytes 109.425 18.331 91.093 0.014 
G. b. graueri and P. t. schweinfurthii 141.299 39.216 102.083 0.015 
All sympatric Gorilla and sympatric Pan 131.190 21.679 109.511 0.026 
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Table 5: Pairwise comparison of hominin taxa, depicting which were likely sympatric (Sym, likely), probably sympatric (Sym, prob), geographically separated (Geog sep), 
temporally separated (Temp sep), or geographically and temporally separated (none-of-the-above). 

 A. 
afarensis 

A. 
africanus 

A. 
anamensis 

A. 
bahrelghazali 

A. 
deyiremeda 

A. 
garhi 

A. 
sediba 

Homo 
sp. early  

K. 
platyops 

P. 
aethiopicus 

P. 
boisei 

P. 
robustus 

Australopithecus 
afarensis 

------ Geog sep 
(prob) 

Temp sep Geog sep Sym, likely Temp 
sep 

none-
of-the-
above 

Temp 
sep 

Sym, 
likely 

Temp sep Temp 
sep 

none-of-
the-
above 

Australopithecus 
africanus 

Geog sep 
(prob) 

------ Geog sep 
(prob) 

Geog sep 
(prob) 

Geog sep 
(prob) 

Geog 
sep 

Sym, 
prob 

Sym, 
prob 

Geog 
sep 
(prob) 

Geog sep Geog 
sep 

Sym, 
prob 

Australopithecus 
anamensis 

Temp 
sep 

Geog sep 
(prob) 

------ Geog sep 
(prob) 

Temp sep none-
of-
the-
above 

none-
of-the-
above 

Temp 
sep 

Temp 
sep 
(prob) 

Temp sep 
(prob) 

Temp 
sep 

none-of-
the-
above 

Australopithecus 
bahrelghazali 

Geog sep Geog sep 
(prob) 

Geog sep 
(prob) 

------ Geog sep 
(prob) 

none-
of-
the-
above 

none-
of-the-
above 

none-
of-the-
above 

Geog 
sep 
(prob) 

none-of-
the-above 

none-
of-
the-
above 

none-of-
the-
above 

Australopithecus 
deyiremeda 

Sym, 
likely 

Geog sep 
(prob) 

Temp sep Geog sep 
(prob) 

------ Temp 
sep 

none-
of-the-
above 

Temp 
sep 

Sym, 
prob 

Temp sep 
(prob) 

Temp 
sep 
(prob) 

none-of-
the-
above 

Australopithecus 
garhi 

Temp 
sep 

Geog sep none-of-
the-above 

none-of-the-
above 

Temp sep ------ none-
of-the-
above 

Sym, 
likely 

Temp 
sep 
(prob) 

Sym, prob Sym, 
prob 

none-of-
the-
above 

Australopithecus 
sediba 

none-of-
the-
above 

Sym, 
prob 

none-of-
the-above 

none-of-the-
above 

none-of-
the-above 

none-
of-
the-
above 

------ Sym, 
likely 

none-of-
the-
above 

none-of-
the-above 

Geog 
sep 

Sym, 
likely 

Homo sp. early  Temp 
sep 

Sym, 
prob 

Temp sep none-of-the-
above 

Temp sep Sym, 
likely 

Sym, 
likely 

------ Temp 
sep 

Sym, likely Sym, 
likely 

Sym, 
likely 

Kenyanthropus 
platyops 

Sym, 
likely 

Geog sep 
(prob) 

Temp sep 
(prob) 

Geog sep 
(prob) 

Sym, prob Temp 
sep 
(prob) 

none-
of-the-
above 

Temp 
sep 

------ Temp sep Temp 
sep 

none-of-
the-
above 

Paranthropus Temp Geog sep Temp sep none-of-the- Temp sep Sym, none- Sym, Temp ------ Sym, Geog 
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aethiopicus sep (prob) above (prob) prob of-the-
above 

likely sep likely sep 
(prob) 

Paranthropus 
boisei 

Temp 
sep 

Geog sep Temp sep none-of-the-
above 

Temp sep 
(prob) 

Sym, 
prob 

Geog 
sep 

Sym, 
likely 

Temp 
sep 

Sym, likely ------ Geog 
sep 

Paranthropus 
robustus 

none-of-
the-
above 

Sym, 
prob 

none-of-
the-above 

none-of-the-
above 

none-of-
the-above 

none-
of-
the-
above 

Sym, 
likely 

Sym, 
likely 

none-of-
the-
above 

Geog sep 
(prob) 

Geog 
sep 

------ 
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