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Abstract. Wastes generated from construction and demolition (C&D) activities 

account for a major proportion of urban solid wastes. The large amount of C&D 

waste generated are still being largely landfilled or downcycled worldwide. Ag-

ing built assets without proper C&D planning is a major cause of wastes not be-

ing efficiently diverted for circular use. How waste sorting could be properly 

planned in the early stages, not only for new construction, but also deconstruc-

tion projects is critical to minimizing C&D wastes. As there is a large amount 

of aging assets without digital files or even no drawings, developing a digital-

driven approach to effectively estimate and categorize C&D wastes would be 

essential for, not just early-stage deconstruction planning, but also the devel-

opment of a circular economy on C&D wastes. This study is first based on a 

thorough literature review of existing studies of applications of digital technol-

ogies to C&D waste diversion (WD). Limitations of existing studies are evalu-

ated, such as the lack of digital twin approach for deconstruction. Then a meth-

odological framework is established aiming to adopt digitalization for C&D 

WD, specifically for existing facilities under deconstruction planning. Based on 

the current work, future study would ap-ply the methodological framework with 

real-world case studies to validate and test its effectiveness with initiated proto-

types. Longer-term work can ex-tend from the current framework to Internet-of-

Things and Artificial Intelligence. 

Keywords: digitalization; building information modeling; construction waste 

management; deconstruction; circular economy. 

1 Introduction  

The rapid urbanization process worldwide especially in developing economies has 

caused global social and environmental issues, such as overwhelming urban solid 

wastes occupying limited land spaces, depleting natural resources, and increased car-

bon emissions. Circular economy (CE), as the concept of addressing circular use of 

resources and materials, is being integrated to the research and practice of construc-

tion and demolition (C&D) waste diversion (WD). C&D wastes accounts for 25% to 



2 

30% of all wastes generated in Europe and consists of various materials such as con-

crete, wood, glass, etc. [1]. CE principles urge construction and built environment 

professionals to consider the end-of-life (EoL) use of building materials or compo-

nents. Existing studies [2] focusing on C&D WD have targeted new construction or 

the early design for WD. Considering EoL C&D WD in the early project stages re-

flects the life cycle approach, which highlights the cradle-to-grave thinking. The CE 

principles address the circularity of building materials or components not only at dif-

ferent project stages but also in different life cycles. The concept of material passport 

is hence applied in describing the dynamic flow of materials crossing stages and cy-

cles. Timely captured information about existing materials/components (M/C) to be 

discarded is deemed important for a wide community or stakeholder groups [3] in 

planning for demolition or deconstruction.  Compared to demolition, deconstruction is 

considered a more effective manner to reduce C&D debris [4]. Compared to demoli-

tion, deconstruction could incur higher cost depending on multiple factors such as 

labor costs of sorting wastes, resale values of deconstructed components, tipping fee 

to landfill, etc [4]. Design for deconstruction (DfD) is emphasized as a critical way to 

unlock the benefits of CE [5].  

Adopting the emerging digital technologies or platforms, such as Building Infor-

mation Modeling (BIM) for C&D WD, is undergoing continuous progress in terms of 

the availability of digital technologies and the functionalities in C&D WD.  The tech-

nological innovation outside of construction industry is driving construction and built 

environment towards digitalization. Digitalization-driven C&D WD and deconstruc-

tion work is reaching more potentials, for example, from early stage waste generation 

estimate [6] to reconstructing digital models for deconstruction management [7]. De-

construction, as a more CE-prone approach differing from the conventional demoli-

tion for treating EoL built facilities, could be boosted along with wider adoption of 

digital technologies in CE implementation. This study aims to achieve two objectives 

related to digitalization for deconstruction planning, namely: 1) to provide an over-

view of existing research and development of adopting digital technologies or plat-

forms to assist C&D WD and deconstruction planning; and 2) to propose a methodo-

logical framework by addressing limitations and integrating digitalization into CE 

principles. The current study will lead to more future research and practice for en-

hancing the circularity of EoL building materials especially for deconstruction.   

2 Literature Review 

2.1 Digitalization for Circular Economy  

The majority of studies integrating digital technologies and CE have been published 

since 2014 [8]. Digital technologies, with connectivity through the Internet of Things 

(IoT) and the creation of intelligent assets representing the key features of Industrial 

Revolution 4,  can become the enabler of CE [9]. Numerous studies have viewed 

digitalization as the driver for CE. For example, Bressanelli et al. [10] mentioned IoT, 

Big Data and Analytics to overcome the challenges in implementing CE in the com-

pany level. Specifically, four digitally-enabled functionalities were proposed, named: 
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1) monitoring  users’  activities; 2) preventive  and  predictive maintenance or the 

optimization of the usage phase; 3)  digital  upgrade;  and  4)  estimation  of  products  

and  components residual life [10]. The estimation of material residual properties 

apply across industries, including construction materials or components at EoL. De-

spite of the challenges of CE practices, digitalization is also viewed with promising 

opportunities of driving CE business model by closing the loop of material flow, sav-

ing resources, and reducing costs through accurate data and virtualization [11]. Digi-

talization also needs the networking and collaboration among stakeholders [11].  

Applying digitalization in CE also needs the coordination of different layers or 

processes including data collection, data integration, and data analysis [8]. At the data 

collection stage, digital technologies such as Radio Frequency  Identification   (RFID) 

could be applied in identifying and tracking material flows and in providing products’ 

life cycle to all networked stakeholders [8,12]. IoT, achieved through sensors and 

actuators connected by networks, is also recognized of its importance to monitor con-

nected objects [13] in the CE context. Data integration involves heterogeneous data 

sources across material or product life cycles [8,14]. The large dataset collected and 

integrated from earlier steps can then be analyzed through Big Data analytics and 

machine learning approaches [15]. 

 

2.2 Digital-driven Construction & Demolition Waste Management  

CE is recommended to be applied as an emergent approach and new business model 

in C&D waste management (WM) [16]. Digital technologies in construction (e.g., 

BIM) has demonstrated its power in managing C&D WM. Table 1 summarizes sever-

al existing studies in adopting different digital technologies for C&D WM. For exam-

ple, Guerra et al. [6] embedded C&D waste estimate algorithms into BIM for auto-

matically quantifying C&D wastes such as concrete structure and drywall. The work 

[6] demonstrated how different digital methods could be adopted to save manual ef-

fort in estimating different categories of C&D wastes especially from the early project 

stages.    

Table 1. Summary of existing studies adopting digital technologies for C&D WM 

Study Digital technolo-

gies adopted 

Major focus in C&D WM Major contribution or findings  

Liu et 

al.[17]  
BIM 

Effective waste minimization 

evaluation in design stages, 

e.g., the virtual waste evalua-

tions of framework to enable 

further computer program as a 

percentage of C&D waste 

generation based on past pro-

ject data 

The study served as a first attempt 

to develop a design decision-

making framework for improving 

construction waste minimization 

performance through BIM in design 

stages. 

Paz and 

Lafayette 

[18] 

Coding of decision 

support system 

Acquiring existing data of 

C&D waste generation to 

study its relation to other fac-

A computerized tool (software) was 

initiated to facilitate the analysis of 

strategies for WM on construction 
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tors (e.g., construction area, 

number of floors, etc.) 

sites through the use of indicators 

of C&D waste generation. 

Won and 

Cheng 

[19] 

BIM 

 

Design review, 3D coordina-

tion, quantity take-off, phase 

planning, site utilization plan-

ning, construction system 

design, digital fabrication, and 

3D control and planning 

The study identified and evaluated 

in-depth of potentials of BIM to 

enhance C&D WM and minimiza-

tion. In a process-based approach, 

reductions in C&D wastes were 

recommended at the design phase. 

Insufficient studies had focused on 

BIM in the demolition phase.  

Lu et al. 

[20] 
BIM 

Computational BIM algo-

rithms for manipulating the 

information to facilitate deci-

sion-making for C&D WM, 

e.g., waste generation estimate 

associated with different de-

sign options  

A prototypical framework of a 

computational BIM for C&D WM 

was delineated, highlighting the 

two key prerequisites, namely 

information readiness (e.g., histori-

cal data) and computational algo-

rithms. 

Madi and 

Srour  

Geographic Infor-

mation System 

(GIS) 

Automatic siting of suitable 

land space for C&D waste 

recycling   

A framework incorporating GIS 

was developed to identify suitable 

land for C&D waste recycling by 

accounting for various attributes 

such as land topology, and trans-

portation costs, etc. 

Lu [21] Big data analytics  

Identifying illegal C&D waste 

dumping  

The big data analytics from public-

ly available data was performed to 

uncover patterns of illegal behav-

iors that were linked to illegal 

waste dumping. 

Zou et 

al.[22] 

Data analytics and 

sensor for monitor-

ing following the 

concept of IoT 

Monitoring of illegal behaviors 

in handling C&D wastes, e.g., 

illegal disposal  

A new informatization scheme, 

incorporating centralized and data 

sharing mechanism, was imple-

mented to manage illegal behaviors 

of treating C&D wastes. 

Kim et 

al.[23] 
BIM 

Estimation of demolition 

wastes (DW) based on waste 

type and volume using infor-

mation from BIM starting from 

the early design stages 

The study proposed a BIM-based 

framework to estimate DW aiming 

for early project stages using in-

formation from material classifica-

tion system and existing BIM li-

brary. 

Kunieda et 

al.[24] 

4D motion game 

engine enabled by 

simulation algo-

rithms  

The impact of demolition 

processes on waste recovery 

for studying the relationship 

between demolition strategy 

and waste sortability   

Simulating & modeling the demoli-

tion process associated with the 

outcomes of C&D waste recovery 

is a novel by including the time 

dimension.  

 



5 

Major focuses listed in Table 1 refer to key activities in the research to achieve de-

fined goals of C&D WM, such as reducing waste generation, minimizing transport 

impacts, maximizing re-use and recycling through improved quality of secondary 

materials, and optimizing the performance of treatment methods [25]. Several patterns 

could be uncovered from the review of these existing studies not limited to Table 1, 

namely: 1) BIM as one of the most widely adopted method to assist C&D WM; 2) 

recommendations of C&D WM starting from early project stages (e.g., design phas-

es); 3) C&D waste generation estimate as one of the main focuses. Several studies 

[23,24] have specifically targeted the demolition phase. The study in demolition strat-

egies [24,26] such as sequence, machine, and time planning, provide more practical 

considerations that handling C&D wastes are not only based on the early stage design 

and waste estimate, but also deconstruction planning.   

      

2.3 Deconstruction versus Demolition   

While demolition generally refers to the complete elimination of all parts of EoL built 

assets, deconstruction is opposed to demolition which is an undifferentiated process 

of compressing a building and landfilling all wastes [27]. Insufficient attention has 

been paid on EoL building components as compared to the research in design and 

construction stages [27]. Deconstruction, somehow understood as selective demoli-

tion, could incur more costs including labor inputs [28]. Despite of the higher costs 

involved, deconstruction, as the systematic disassembly of buildings to maximize 

recovered material reuse and recycling, is emerging as an alternative to demolition 

worldwide [29]. Depending on multiple influence factors such as tipping fee of land-

filling, deconstruction can outweigh demolition both economically and environmen-

tally [30].   

Demolition could still be considered as the baseline of deconstruction, or the refer-

ence strategy in deconstruction. The application of digital technologies (e.g., BIM) 

has been seen of its functionality in selecting deconstruction strategies. Information 

such as prices and energy embodiment of materials/components can be stored in BIM 

allowing comparisons of different deconstruction strategies based on economic and 

environmental indicators  [31]. Akanbi et al. [32] developed disassembly and decon-

struction system integrating BIM authoring tools for building element deconstruction 

analytics, and design for deconstruction (DfD) decision making. The system architec-

ture [32] was also designed to enable deconstruction visualization with virtual reality 

tools. Akbarieh et al.  [33] provided a holistic literature review of BIM for EoL built 

facilities for minimizing C&D wastes, and identified several main research directions 

including BIM-based DfD, BIM-based deconstruction, and Materials/Components 

(M/C) Banks. These directions are not separated from each other, the uncertainties in 

M/C Banks such as attributes of reusable elements in the “bank” could affect the de-

construction activities as indicated by Akbarieh et al. [33].  
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3 Research Trends of Digitalization for Deconstruction 

A thorough review of these existing studies including those showcased in Table 1 

indicates several limitations or trends in bridging digitalization for C&D WM espe-

cially deconstruction: 

 The digital applications have been limited to BIM, and more connected technol-

ogies are yet to be integrated, such as geographic information system, RFID, 

image analysis, big data, etc., as identified by Li et al. [34]. Interoperability 

among the software and hardware tools need to be addressed in a systematic 

approach. The system integrating different digital tools, such as the system ar-

chitecture described in Akanbi et al. [32] is an example by bridging four differ-

ent layers for data storage, semantic information, analytics and functional mod-

el, as well as the application respectively. The data storage includes information 

related to M/C specifications, design, and deconstruction/demolition [32]. The 

historic record of deconstructed buildings would be valuable data source for be-

ing “learned” in a machine learning approach for future deconstruction design 

and other uses. Data saved in certain files under a defined information exchange 

formats need to be interoperable for transferring among different tools in the 

system, such as BIM authoring tools, web platform, etc. Inadequate interopera-

bility or connectivity among these digital tools would cause significantly more 

resources in performing DfD or other CE practices, and lower productivity. The 

analytics layer is a key part of the system in supporting the main functions of 

the system, for instance, deconstruction visualization [32]. Finally, the applica-

tion layer or the end-user layer, typically with a user interface to enable user-

system interaction. It should be ideally enable smart decision-making of the op-

timal deconstruction option through simulation, comparison, and evaluation. 

The evaluation criteria could be pre-set in the system, for example, cost, car-

bon, energy, or a weighted and combined evaluation criteria to allow quantifia-

ble comparisons of different deconstruction strategies.   

 The connectedness of a variety of digital technologies starting from the system 

architecture would need to be tested and validated in a socio-technical approach 

by collecting and analyzing end-users’ feedback. The multi-disciplinary stake-

holder groups coming from different professions may have their individual per-

ceptions differing from others. There is a need to bridge different stakeholders 

in order to further standardize the digitalization process and products. The de-

velopment, trials, validation, and update form a cyclic loop of the digitalization 

system to implement CE and C&D WM. Collecting and evaluating user feed-

back for further updates in a developed digital system can be found in other 

studies [35] of built environment.     

 Highlighting early design stages for considering C&D WM is widely found in 

these existing studies [23] of applying digitalization. Life cycle approach from 

cradle to grave has been reflected in these existing research. However, the 

prominent issue of efficiently reconstituting the “bank” of building material 

coming from the “grave” (i.e., EoL buildings) back to “cradle” (i.e., new con-

struction) has not been fully investigated. Digitalization for C&D could be 
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more specifically targeting deconstruction following circular principles, such as 

remanufacturing, reuse, recycle, and recovery, etc.   

 These emerging philosophies, such as DfD, are undergoing the rising attention 

in implementing CE. However, the current DfD may be limited to new con-

struction projects, but not for aging built assets which were mostly without DfD 

when designed and built. Another issue with existing studies [20] adopting BIM 

for C&D WM is that BIM might not be available for most existing built facili-

ties. Many aging or existing facilities may be even without design drawings 

saved, necessitating site survey to gain the information of each built asset to 

implement deconstruction planning. This would again spark the need of integra-

tion of a variety of digital technologies, such as point cloud data to be registered 

from site surveying to BIM, or scan-to-BIM. As refurbishment or renovation is 

likely to be the dominating work in the built environment sector compared to 

new construction, acquiring high-quality raw data for those aging assets without 

BIM files would be the initial job for deconstruction or reconstruction. To some 

degree it is true that deconstruction would not exclude refurbishment, repair, or 

renovation, because deconstruction is a selective demolition for built assets, 

meaning that part of M/C could remain by being renewed according to its circu-

larity attributes. Further, more stakeholders could be engaged besides demoli-

tion-related players, but also those involved in the operation or maintenance 

stages and in the real estate markets, e.g., housing agents, tenants, and buyers, 

etc. The designed systematic architecture aforementioned would aim to engage 

various stakeholders at the maximum level. 

 Source and quality of raw data, such as the point cloud registered from site sur-

veying, or as simple as photos for image processing, is the fundamental part for 

the rest of the digital system in assisting deconstruction planning and decision 

making. The raw data for information retrieval of attributes regarding circulari-

ty, recyclability, or reusability is a key factoring affecting the practicality of the 

system architecture or prototype. Historical project database would be one of 

the sources for benchmarking the attributes of individual M/C and for improv-

ing the reliability of waste generation estimate. The study of Akanbi et al. [36] 

serves as a solid example of predicting the amount of salvage and waste materi-

als for EoL buildings based on the database of 2,280 building demolition rec-

ords. Deep learning-based machine learning approach [36] was adopted to 

achieve high reliability and accuracy of prediction based on historical project 

data.  

  From existing data sources, waste estimates can then be conducted in early pro-

ject stages assisted by digital tools (e.g., BIM). More C&D WM and decon-

struction related activities beyond waste generation estimate could be conduct-

ed. More functionalities could be developed in new digital prototypes, for ex-

ample, simulation of different demolition or deconstruction strategies [24] to al-

low comparisons and decision making. 

  Implementation of digitalization for C&D waste minimization including decon-

struction planning can be better set in the context of the latest practices of the 

built environment, for instance, OSC or modern method of construction. OSC 
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has been widely recognized of its inherent connection to digital technologies or 

platforms (e.g., BIM) [37,38]. OSC method, by reducing on-site work and pro-

moting modularity and standardization of M/C, makes it easier for digitalization 

(e.g., RFID) to capture, store, and track the flow of M/C. Digital approach such 

as IoT fits the need of the life cycle monitoring of OSC facilities, including the 

real-time attributes of individual M/C.  

4 Methodological Framework of Digitalization for 

Deconstruction 

It should be justified that digitalization is one approach to enhance C&D WM, but not 

as the purpose. The heterogenous materials/components (M/C) stored in “bank” (i.e., 

built assets) have their flows in a dynamic process across the building or infrastruc-

ture life cycle. The EoL built facilities to be deconstructed or reconstructed are com-

monly demolished with all sorts of M/C unseparated. Sorting or categorizing the het-

erogenous M/C is still an unsolved challenge under CE. Depending on the level of 

circularity defined in [39], such as recycle, repair, remanufacture, reuse, etc., sorting 

level of M/C at EoL built assets could vary. Digitalization, in  the forms of various 

information and communication technologies, could become the enabler targeting 

existing challenges such as the sorting of different categories of M/C. Emerging tech-

nologies platforms such as IoT fits the application of the bespoke material passport 

(MP), which describes the documentation of material composition [40] to allow eval-

uation of M/C circularity and tracing material flow. Following the principles of CE 

and MP, deconstruction, although at the EoL built facilities, may not be necessarily 

the EoL for individual M/C. Digitalization plays a key role in implementing MP in 

terms that: 1) it promotes DfD in the early project stages to engage multiple stake-

holders including architects, engineer, end-users, etc.; 2) it enables real-time tracking 

and monitoring of M/C at different life cycle stages for the up-to-date C&D WM; and 

3) it enhances the tracing and tracking of individual M/C to acquire the information of 

M/C properties. This would be critical in deciding-making of adopting deconstructed 

M/C because architects/engineers need to know the quality and property of M/C from 

their previous life cycle. For example, the source of recycled or reused M/C is defined 

as “parent” in several existing studies [41,42] adopting recycled aggregates from the 

demolished concrete. The information of this “parent” (i.e., source) is important to 

know the engineering properties or quality of the recovered M/C for circular use.  

  

The prior summary of literature review reveals several areas for continued research in 

adopting digitalization for C&D WM especially deconstruction, including the need of 

an integrated system to connect different digital software and hardware, multi-

stakeholder experience and feedback, extending CE philosophy and life cycle in a 

“grave”-to-“cradle” approach to promote deconstruction, the need to address aging or 

existing built facilities without BIM-based data source, the quality and source of raw 

data of M/C attributes, key activities or functionalities in the digital system for decon-

struction, and setting digital deconstruction in the emerging built environment prac-
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tices such as off-site construction (OSC). These areas for continued research and de-

velopment are inter-connected, for example: 

 The need of an integrated system should be tested and validated by a variety of 

stakeholders; 

 Deconstruction process would engage more stakeholders including but not lim-

ited to those involved in operation and maintenance of existing built assets; 

 The lack of BIM-formatted data source in those existing built assets determines 

that BIM would not be the only digital platform for implementing deconstruc-

tion, but to be integrated with other digital technologies, such as laser scanning 

to allow scan-to-BIM; 

 The different ways to obtain raw data lead to the discussion of raw data quality 

and the data source, such as historical data from archived projects at the com-

pany, organization, or industry levels; 

 The needs and functionalities in an interoperable digital system would enable a 

variety of key activities to be conducted for deconstruction beyond C&D waste 

generation estimate; 

 The practice of deconstruction or other C&D WM work should not be separated 

from the latest emerging trends of built environment, such as OSC which is ex-

pected to lower C&D wastes as compared to traditional site-based construction.  

 

Based on the limitations and trends of these inter-related research areas, a schemat-

ic diagram is initiated to demonstrate one example of methodological framework in 

adopting a digital prototype for deconstruction planning as seen in Fig.1.   
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Note: VR, AR, and MR stand for virtual reality, augmented reality, and mixed reality respectively.  

Fig.1. Schematic diagram of the Digital Prototype for Deconstruction Planning 

 

The methodological framework shown in Fig.1 consists of five layers:  

 The first layer named object layer is mainly for raw data collection in various 

ways, for example, site survey using laser scanning, existing 2D-based draw-

ings, and site images, etc.  

 The second layer named data processing layer is for processing of raw data, for 

example, image processing of photos taken on site.  

 The third layer named communication layer engages more technologies, includ-

ing registering point cloud from laser scanning to BIM, converting 2D CAD 

drawings into digital models, and further from BIM to VR, AR, MR aiming for 

multi-stakeholder engagement. 

 The fourth layer named analyzing layer with built-in rules would allow the sim-

ulations and comparisons for decision-making of different deconstruction strat-

egies. Pre-set criteria for comparisons are to be embedded into the system, e.g., 

cost, energy, and carbon associated with individual M/C. 

 The fifth layer named end-user layer is initially designed with two functionali-

ties. The first functionality is based on learning from past projects for educa-

tional purposes. Engaged stakeholders can learn the different deconstruction 

strategies beyond demolition, and the attributes of different M/C. The new de-

construction scenario allows stakeholders to compare different deconstruction 

strategies available to decide the optimal option. Final semantic reports will be 

generated related to each demolition strategy with simulation results according 

to the pre-set criteria in the fourth layer. Assisted by wearable technologies,  

end-users will also be able to experience an immersive environment of different 

deconstruction scenes.      

Besides the example of methodological framework displayed in Fig.1, furtherance 

of knowledge and practice for adopting digitalization in deconstruction following CE 

principles is recommended herein, specifically: (1) moving from framework to case 

studies to test the transferability of the initiated prototypes; (2) updating with project 

or benchmarked data to test the accuracy and performance of digitalization in decon-

struction; (3) extending digitalization for deconstruction of existing or aging assets; 

(4) increasing the robustness of existing digital platforms in being applied crossing 

project types (e.g., large-sized commercial projects); and (5) improving the automa-

tion level  from BIM to digital twin, IoT, and Artificial Intelligence for smart deci-

sion-making. 

5 Conclusion  

Aiming to uncovering the current research worldwide in adopting digitalization for 

construction and demolition (C&D) waste diversion following circular economy (CE) 

principles, this study firstly reviewed existing studies related to CE, digital application 



11 

in C&D waste management (WM), and deconstruction as alternative to the traditional 

demolition. Limitations and trends were summarized following the literature review, 

leading to an initiated methodological framework (MF). Specifically seven areas were 

identified for continuous work, including: the need of an integrated system to connect 

different digital or data technologies (e.g., imaging processing, machine learning, 

laser scanning, BIM, and VR, etc.), multi-stakeholder interaction to the digital system, 

a “grave”-to-“cradle” approach to promote deconstruction, the need to address aging 

or existing built assets without BIM-based data source, the quality and source of raw 

data of material or component attributes, key functionalities in the digital system for 

deconstruction beyond waste estimate, and setting digital deconstruction in the emerg-

ing built environment practices such as modern method of construction. Based on 

these interconnected areas of continued research, an initial MF was demonstrated to 

display five different layers from raw data collection, data processing, communica-

tion, analytics, to end-user adoption. The current MF will lead to future work in de-

veloping the digital prototype for deconstruction, test & trial through case studies, and 

updates. The current study will also lead to more work involving Internet-of-Things 

and Artificial Intelligence as emerging concepts for CE-based C&D WM, for exam-

ple, smart decision making for stakeholders to identify the optimal deconstruction 

strategy based on cost, carbon, and energy performance.     
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