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Abstract

The article develops a model laying a foundation for the idea that the relationships
between competitors in the knowledge diffusion market can be described by a Lotka-
Volterra system. The model can accommodate both the scenario of prey-predator and
that of competition between innovators and imitators. Analytic results and numerical
simulations show that a stable coexistence equilibrium is feasible under both scenarios.
The work also discusses the conditions under which these results are achievable.

Keywords: imitation; innovation; Lotka-Volterra system; knowledge diffusion; intel-
lectual property right.
JEL Classification: O31; O33; O34; C6

1 Introduction

The controversial issue of protection of intellectual property rights (IPR), or more gener-
ally innovation, has been long debated and actually it does not seem to come at an end.
The major reason of controversy emerges because of the presence of a trade-off faced by
authorities when deciding the IPR degree of protection. In turn, the trade-off emerges from
the public good nature of knowledge. At one extreme of the trade-off there are the alleged
benefits that IPR convey to society. In particular, IPR increase the incentives to invest
resources in the creation of new technological knowledge because of the positive effects in
terms of appropriability and tradability of the new knowledge. For this reason, in recent
years, many countries have put into place more effective or rigorous protection policies, such
as the establishment of the Court of Appeals of the Federal Circuit by US Congress and
the EU directive 2004/48 on the enforcement of intellectual property rights. At the other
extreme, strong protection brings about drawbacks by creating monopolies.

One of the way followed in the literature to model the degree of IPR protection is
to introduce imitation, via an exogenous imitation rate, competing with innovation, as
imitation is commonly considered as an inverse measure of IPR protection (Helpman 1993,
Lai 1998, Cysne and Turchick 2012). Among many, Furukawa (2007) finds that under some
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circumstances, the rate of innovation has an inverse-U shape as a function of imitation.
This theoretical finding is also supported by Aghion et al. (2005) who find strong evidence
of an inverted-U relationships between competition and innovation. At its very essence
this strand of the literature implies that relaxing IPR to a certain extent, i.e. allowing for
imitation, can be beneficial.

In the literature related to the broad field of knowledge diffusion, the Lotka-Volterra
system has been extensively used (Bharagava 1989; Morris and Pratt 2003; Watanabe et
al. 2003; Castiaux 2007; Lee et al. 2005; Kim et al 2006, just to cite a few). However, all
of these contributions assume a Lotka-Volterra type joint dynamics, none of them derive
it. Differently, our contribution aims at moving a first step to start filling this gap. In
agreement with the aforementioned literature we start out from the idea that imitation
plays an important role in speeding up the rate of innovation diffusion and is an inverse
measure of IPR protection, in other words imitation can accidentally mitigate the innovation
diffusion lag.1 In the model presented in this paper, innovators and imitators are regarded
as competing for the same asset and entry the market requires undergoing sunk costs.
Expanding the methodology proposed by Dixit and Pindyck (1994) we show that it is
possible to derive the long run joint dynamics of imitators and innovators as a Lotka-
Volterra system. To this extent, our theoretical contribution provides theoretical support
to the evolutionary view of knowledge diffusion.

More precisely, we derive the joint dynamics of imitators and innovators under two
scenarios which are obtained through an appropriate selection of the variation range of the
parameters of the system. The two scenarios are consistent with prey-predator interactions,
in which innovators are regarded as preys and imitators as predators, and competitive
interactions, occurring when both species suffer from each other’s existence.
Analytical results and numerical simulations show that among the three possible types of
equilibria (extinction, one-category and coexistence) the coexistence equilibrium -i.e.: the
equilibrium associated to the simultaneous existence of innovators and imitators in the
long run - can be achieved under both scenarios and it is a stable configuration. From
an economic point of view, the circumstances under which this result is achievable can be
read in the sense that in order to coexist, the relationship between the two species must be
thoroughly balanced. A certain amount of competition between the two sub-populations is
desirable, but there must be a limit to the extent to which one population can hamper the
others’ activity. This result is in line with the above cited literature claiming that stronger
IPR protection is not always the best possible choice.
The article proceeds as follows. Section 2 presents the set up of the model. The derivation
of innovators and imitators entry rates follow in Section 3 and the solutions of the system
is presented in Section 4. Section 5 offers an economic interpretation of the results of the
previous Section. Finally, Section 6 concludes.

2 The set up of the model

Consider an industry composed of a given number of firms. Each firm is risk neutral, acts
competitively and has rational expectations about the underlying stochastic process and
the decision rules of other firms. Moreover, each firm has the capacity to produce the flow

1Caballero and Jaffe (1993) estimate that the median lag between a cited patent and the citing patent is
9-10 years.
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of one unit of output, which it can activate by incurring a sunk cost. There are no variable
costs of production and the elasticity of demand is large enough to ensure that each firm
that has paid its sunk cost will want to produce at its capacity level. Uncertainty is firm-
specific or independent across firms and the inverse demand function for each firm is of the
type:

Pt = YtD(Qt), t > 0, (1)

where Pt is the price faced by the firm at time t, Qt is the current output flow at time t,
D(Qt) is a decreasing function, comprising the non-stochastic part of the inverse demand
function. As each firm produces one unit of output, the current output flow equals the
number of active firms, which, consistently with Dixit and Pindyck (1994 p. 251), we treat
as a continuous variable.2 Yt can be interpreted as an idiosyncratic demand shock reflecting
changes in relative tastes for the firms’ products, ultimately capturing a shift to profitability
at time t. As in Dixit and Pindyck (1994, pp. 250 and 267), these shocks can be the source
of a competitive advantage that allows firms to enter the industry acting either as innovators
or as imitators. By paying an entry cost R, any firm can get an initial draw Y0 of its demand
shock Yt from a known distribution. Thereafter {Yt}t>0 will follow a geometric Brownian
motion process that is firm-specific, or independent across firms:

dYt = αYtdt + σYtdzt t > 0, (2)

where {zt}t>0 is a standard Brownian motion while α ∈ R and σ > 0 represent the drift
and the diffusion coefficients of the stochastic process {Yt}t>0, respectively.
After the payment of the cost R, a firm observes the value Y0. Each firm can start actual
operation by paying a further sunk cost. Thus, some firms decide to invest in the develop-
ment of new products, and hence act as innovators, while other firms aim at reproducing
the innovations performed by the innovators, being so imitators.

If Y0 exceeds a critical threshold Y (N), a would-be innovator pays the investment cost I
and becomes an active producer. Otherwise, it lets {Yt}t>0 evolve and activates if and when
Y (N) is reached. Analogously, a would-be imitator pays a fixed investment cost K, with
K < I, to enter the market and appropriate a share of the innovators’ income if and when
{Yt}t>0 randomly fluctuating exceeds a critical threshold Y (M). Otherwise, it keeps waiting
and lets {Yt}t>0 evolve. Let us denote as Nt, Mt respectively, the number of innovators and
imitators at time t that will reach the activation decision. We assume in our model that
the activation thresholds Y (N) and Y (M) vary with the number of innovators and imitators
which are currently active in the market: substantially, at time t the activation thresholds
are Y (N) = Y (N)(Nt,Mt) and Y (M) = Y (M)(Nt,Mt).
We clarify the stylized points set out so far by means of a simple example.

Example 1. R can be representative of a situation where a pharmaceutical company can
develop a new drug by incurring the research cost. The would-be innovator patents the
drug, but unless the profit estimate is sufficiently high, i.e. whenever it reaches a threshold,
the firm will not incur the additional investment expenditure I that is necessary to begin
production. Such a profit threshold is affected by the number of firms currently working on
a very similar project, either as potential innovators or as potential imitators.

2A formal rigorous treatment of the resulting continuum of random variables and their law of large
numbers would be far too lengthy and out of the scope of this paper. For the basis of rigorous theory we
refer to Judd (1985).
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3 Derivation of the entry rates

This section derives the rates at which innovators and imitators activate. We adopt and
extend to our case the methodology proposed by Dixit and Pindyck (1994).
First of all, we state a balance flow assumption, i.e.: the number of active firms is constant
over time, namely in each instant of time the number of firms reaching the activation
decision is equal to the number of firms that become idle. In a long run equilibrium this
assumption is made possible thanks to the fact that uncertainty is firm-specific, namely
firms’ shocks are independent, and the operating of the law of large numbers ensures that
industry aggregates are non-random. Hence, a non-random total volume of output can be
produced by firms whose identities change through time but whose aggregate population
distribution remains stationary.
To formalize this condition, we introduce a Poisson death process3 at rate λ.
We will now deal with innovators’ activation rate. Let us define the process {wt}t>0 =
{log(Yt)}t>0 and the threshold w(N) = log(Y (N)), where {Yt}t>0 is a geometric Brownian
motion as in (2). Applying Ito’s lemma it can be easily verified that the dynamics of {wt}t>0

follows a Brownian motion of the type

dwt = θdt + σdz, t > 0,

with θ = α − σ2

2 . Let g(w) be the density function of the initial value w0 of {wt}t≥0 and
G(w) the corresponding distribution function, with w ∈ R.
The agents who are candidates for the innovation are distributed continuously between the
(log of the) minimum value of the expected gain -i.e.: log(0+) = −∞- and the (log of the)
innovation threshold value -i.e.: log(Y (N)) = w(N).
We define the instantaneous rate at time t at which innovators activate as N ′

t = dNt
dt , being

dNt and dt small variations of Nt and t, respectively. Now, let us introduce the function
φ : (−∞, w(N)) → (0, 1) such that N ′

tφ(w) is the density of these agents at location w. For
notational simplicity we will omit the index t hereafter.

For the density to be stable over time (under the balance flow assumption), we require the
agents leaving the location at w (having received shocks of the Brownian motion process or
Poisson death) to be exactly counterbalanced by the agents arriving in the location (having
received positive shocks from below or negative shocks from above). In order to formalize
this condition, we denote as dh = σ

√
dt a small variation in the net gain w. Some of the

firms located in dh will die by a proportion λdt. Among the survivors, a fraction p will move
to the right, i.e. will activate, and a fraction 1 − p will move to the left, i.e. will exit the
market. The parameter p can be found using the binomial approximation of the Brownian
motion, namely p = 1

2

(
1 + θ

√
dt

σ

)
. Therefore, the stability condition can be written as

follows:

N ′φ(w)dh = N ′dt g(w)dh+p(1−λdt) N ′φ(w−dh)dh+(1−p)(1−λdt)N ′φ(w+dh)dh. (3)

By deleting the common factor N ′dh, equation (3) becomes:

φ(w) = g(w)dt + p(1− λdt)φ(w − dh) + (1− p)(1− λdt)φ(w + dh). (4)
3By death or mortality rate it is meant the rate at which firms exit the market.
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A Taylor expansion gives:




φ(w − dh)
∣∣∣
dh=0

= φ(w)− φ′(w)dh + φ′′(w)dh2

2

φ(w + dh)
∣∣∣
dh=0

= φ(w) + φ′(w)dh + φ′′(w)dh2

2

(5)

By substituting (5) and the approximation p = 1
2

(
1 + θ

√
dt

σ

)
into equation (3) we obtain:

g(w)− λφ(w − dh)− θ(1− λdt)φ′(w) + (1− λdt)φ′′(w) · σ2

2
= 0. (6)

Taking the limit for dt → 0, expression (6) becomes a differential equation with constant
coefficients and variable term:

σ2

2
φ′′(w)− θφ′(w)− λφ(w) + g(w) = 0. (7)

The general solution of equation (7) is of the type:

φ(w) = C1 exp(b1w) + C2 exp(b2w) + φ0(w) (8)

where C1 and C2 will be pinned down, as we will see shortly, through the fulfilment of some
boundary conditions and b1 and b2 are the roots of the characteristic equation

σ2

2
b2 − θb− λ = 0, (9)

i.e.:

b1 =
θ +

√
θ2 + 2λσ2

σ2
> 0, b2 =

θ −√θ2 + 2λσ2

σ2
< 0

while φ0 is a particular solution to the differential equation in (7), and it vanishes as
w → −∞.
For analytical tractability, let us assume now that the initial payoff, Y0, is distributed
uniformly, with bounded support over the range (0, Y ∗). Analogously, the logarithm of the
initial payoff, w0, is distributed according to an exponential function: g(w) = exp(w−w∗) =
G(w), with w∗ = log(Y ∗), meaning that the initial draw of {wt}t>0 is taken from an
exponential random variable. In this case, it can be easily verified that a specific solution
φ0 is given by:

φ0(w) =
exp(w − w∗)
λ + θ − σ2

2

(10)

with σ2

2 < λ + θ to make economic sense. This condition implies the positive root of the
quadratic expression to be greater than unity, b1 > 1. The definition of φ provides us with
the boundary conditions, that are:





lim
w→−∞φ(w) = 0;

lim
w→w(N)−

φ(w) = 0,
(11)
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The second line in (11) is due to the fact that the mass of waiting firms is zero at the entry
threshold and it comes out from a simple computation (see Dixit and Pyndyck, 1994), while
the first line is a simple restatement of the fact that a probability distribution function takes
value zero at its lower limit. By exploiting the boundary conditions in (11) we can determine
the two constants as: 




C2 = 0;

C1 = − exp[w(N)(1−b1)−w∗]�
λ+θ−σ2

2

� .
(12)

By substituting (10) and (12) into (8) we finally obtain the solution of the differential
equation, i.e.:

φ(w) = −exp
[
w(N)(1− b1)− w∗ + b1w

]− exp(w − w∗)(
λ + θ − σ2

2

) . (13)

The innovators’ activation rate is the rate at which waiting firms hit w(N). This is given by
the fraction p(1− λdt) of the firms located just at the left of w(N).
Using a Taylor expansion on φ(w(N)− dh) for dh = 0, the approximation p = 1

2

(
1 + θ

√
dt

σ

)

and by taking the limit for dt → 0, then (10), (11) and (13) give:

lim
w→w(N)−

1
2
N ′ [φ(w)− φ′(w)dh

]
dh = − lim

w→w(N)−

1
2
N ′φ′(w)(dh)2 =

= − lim
w→w(N)−

σ2

2
N ′φ′(w)dt = N ′

σ2

2 (b1 − 1)(
λ + θ − σ2

2

) exp(w(N) − w∗), (14)

being the last term equal to the rate of activation, since these firms activate in the time
interval dt.
We now move on to the case of imitators. The procedure is analogous to that just described
for innovators, and consistently, we adopt a very similar notation.
We firstly define the threshold w(M) = log(Y (M)). The agents who are candidates for
imitating activity are distributed continuously in (−∞, w(M)). We define the instantaneous
rate at time t at which imitators activate as M ′

t = dMt
dt , being dMt and dt small variations

of Mt and t, respectively. We also introduce the function ψ : (−∞, w(M)) → (0, 1) such
that M ′

tψ(w) is the density of imitators at location w.
The balance flow assumption leads to:

M ′ψ(w)dh = M ′dt g(w)dh+p(1−λdt) M ′ψ(w−dh)dh+(1−p)(1−λdt) M ′ψ(w +dh) dh,
(15)

which becomes the following differential equation:

σ2

2
ψ′′(w)− θψ′(w)− λψ(w) + g(w) = 0. (16)

By assuming that Y0 follows a uniform distribution over (0, Y ∗), we obtain the general
solution of equation (16) as:

ψ(w) = −exp
[
w(M)(1− b1)− w∗ + b1w

]− exp(w − w∗)(
λ + θ − σ2

2

) . (17)
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where ψ satisfies the boundary conditions:




lim
w→−∞ψ(w) = 0;

lim
w→w(M)−

ψ(w) = 0.
(18)

The rate of activation of the imitators is the one at which the waiting firms hit w(M), and
it is given by:

lim
w→w(M)−

1
2
M ′ [ψ(w)− ψ′(w)dh

]
dh = − lim

w→w(M)−

1
2
M ′ψ′(w)(dh)2 =

= − lim
w→w(M)−

σ2

2
M ′ψ′(w)dt = M ′

σ2

2 (b1 − 1)(
λ + θ − σ2

2

) exp(w(M) − w∗). (19)

We recall that the balance flow assumption states that the number of activating firms equals
the number of firms exiting the market. This condition can be split into two assumptions,
one for innovators and the other for imitators. Let us first consider the case of innovators.
The number of activating firms is given by the sum of those firms who find their w0 greater
than the entry threshold plus the activation flow found in (14). Therefore, we must have:

λN = lim
w→w(N)−

N ′
[
1−G(w)− σ2

2
φ′(w)

]
=

= N ′


1− exp(w(N) − w∗)

λ + θ − σ2

2 b1(
λ + θ − σ2

2

)

 . (20)

Analogously, for imitators we can write:

λM = lim
w→w(M)−

M ′
[
1−G(w)− σ2

2
ψ′(w)

]
=

= M ′


1− exp(w(M) − w∗)

λ + θ − σ2

2 b1(
λ + θ − σ2

2

)

 . (21)

Remark 1. Notice that the joint fulfilment of (20) and (21) provides only a sufficient
condition for the balance flow assumption to be satisfied. However, this joint hypothesis is
reasonable, not too restrictive and makes the model mathematically tractable.

For notational convenience, we define ṅ ≡ N ′
N and ṁ ≡ M ′

M . Solving for ṅ yields:

ṅ =
λ

(
λ + θ − σ2

2

)
(
λ + θ − σ2

2

)
− e(w(N)−w∗)

(
λ + θ − σ2

2 b1

) =
λΓ

Γ− Y (N)

Y ∗
(22)

with

Γ ≡

(
λ + θ − σ2

2

)
(
λ + θ − σ2

2 b1

) > 1
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For ṁ we obtain:

ṁ =
λ

(
λ + θ − σ2

2

)
(
λ + θ − σ2

2

)
− Y (M)

Y ∗

(
λ + θ − σ2

2 b1

) =
λΓ

Γ− Y (M)

Y ∗
(23)

From (22) and (23) it appears clearly that the rates of entry are non-linear positive functions
of the thresholds Y (N) and Y (M), respectively of innovators and imitators, and dṅ

dY (N) > 0
and dṁ

dY (M) > 0.
Taking a first order Taylor expansion of ṅ and ṁ around an arbitrary point (N0,M0)
equations (22) and (23) can be rewritten as:





ṅ = ṅ |M=M0,N=N0 + dṅ
dN |M=M0,N=N0 (N −N0) + dṅ

dM |M=M0,N=N0 (M −M0)

ṁ = ṁ |M=M0,N=N0 +dṁ
dN |M=M0,N=N0 (N −N0) + dṁ

dM |M=M0,N=N0 (M −M0).
(24)

By applying the chain rule dṅ
dN = ∂ṅ

∂Y (N)
∂Y (N)

∂N , dṅ
dM = ∂ṅ

∂Y (N)
∂Y (N)

∂M into the Taylor expansion
for ṅ in (24), we obtain:

ṅ = ṅ0 +
∂ṅ

∂Y (N)

[
∂Y (N)

∂N
(N −N0) +

∂Y (N)

∂M
(M −M0)

]
=

= ṅ0 − ∂ṅ

∂Y (N)

(
∂Y (N)

∂N
N0 +

∂Y (N)

∂M
M0

)
+

∂ṅ

∂Y (N)

(
∂Y (N)

∂N
N +

∂Y (N)

∂M
M

)
, (25)

where ṅ0 ≡ ṅ |M=M0,N=N0 and recalling that both the partial and the total derivatives are
evaluated at the expansion point.
By rearranging the terms, system (25) can be rewritten as:





N ′
N = r − sN − fM

M ′
M = g + cN − eM

(26)

with r ≡ ṅ0 −
(

dṅ
dN N0 + dṅ

dM M0

)
; s ≡ − dṅ

dN ; f ≡ − dṅ
dM ; e ≡ − dṁ

dM ; c ≡ dṁ
dN and g ≡

ṁ0 −
(

dṁ
dN N0 + dṁ

dM M0

)
.

It is immediate to notice that in (26) the rates are function of both the number of innovators
and the number of imitators. Such a dependence shows how the evolution of one of the two
populations is intrinsically connected to the dynamics of the other. Therefore, in studying
the evolution of the two groups one must take into account how they interact.
At a closer look (26) resembles very much to the prey-predator model elaborated by Volterra
(1926) and popularized by Lotka (1956). In the literature related to innovation, and more
broadly to knowledge diffusion, the Lotka-Volterra system has been extensively used (Bhara-
gava 1989; Morris and Pratt 2003; Watanabe et al. 2003; Castiaux 2007; Lee et al 2005;
Kim et al. 2006, just to cite a few). However, all of these contributions start out by assum-
ing a Lotka-Volterra codynamics, none of them derive it. Differently, our contribution fills
this gap showing that a Lotka-Volterra system can be consistently obtained as the resulting
codynamics of two types of agents operating in a competitive industry. To this extent, our
theoretical contribution lends support to that part of the literature on knowledge diffusion.
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In the Lotka-Volterra system the type of interaction between innovators and imitators is
determined by the signs of the coefficients in (26) (Lee et al. 2005 and Kim et al. 2006). In
order to determine such signs we use economic rationale as a guidance. Indeed, we assume
the rate of entry of innovators to depend negatively on the total number of firms of any
type. Therefore, the following composite condition holds

{
dṅ
dN ≤ 0,
dṅ
dM ≤ 0.

(27)

Notice that the first condition in (27) rules out an implausible explosive growth rate of
innovators. In addition, from (22) we know that dṅ

dY (N) > 0 implying ∂Y (N)

∂N ≤ 0, and thus
we have found that the innovators’ entry threshold is negatively related to the total number
of active innovators. Put another way: the lower the threshold, the smaller the number
of firms waiting to enter. This is consistent with the fact that new entrants are willing to
accept a lower perspective profit when competition is more severe. Whereas, the second
condition, dṅ

dM ≤ 0, captures the fact that imitators are detrimental to innovators, recalling
again that dṅ

dY (N) > 0 it follows that ∂Y (N)

∂M ≤ 0.
By the same token, to avoid the imitators growth rate to go off dṁ

dM ≤ 0 is required, from
(23) we know that dṁ

dY (M) > 0 implying ∂Y (M)

∂M ≤ 0. As regard to the condition dṁ
dN , in

agreement with economic theory, two different instances are possible and we put forward
two proposals referred to as scenarios.
The first one, highlights that imitators entry rate must be a positive function of the num-
ber of active innovators as imitators thrive imitating. Hence, we consistently assume that
dṁ
dN ≥ 0 which implies ∂Y (M)

∂N ≥ 0. This first scenario can be labeled as prey-predator sce-
nario or prey-predator interactions.
In the second scenario, we take into account the cases in which innovators can somehow
kill imitators. In such cases (26) describes the evolution of two competing species. This
occurrence can be easily captured by the term dṁ

dN ≤ 0, which, in turn, implies that the
signs of some parameters change: g > 0 and c < 0. This situation can be representative of
economies in which innovators are endowed with effective private and/or public protection
of IPR, or whenever innovations make imitations obsolete. These conditions are more likely
to occur in advanced economies. In other words −c can be thought of as representing the
degree of IPR protection. Hence, the second scenario can be referred to as competitive
interactions.
To sum up, the two scenarios can be classified according to the signs of some parameters in
(26) as shown by Table 1. In particular, we can say that in general r, s, f, e > 0, and the

Table 1: Type of interactions according to the signs of c and f
sign of Type of interaction scenario explanation
c f

+ +/- prey-predator 1 occurs when one specie (innovators) cannot
effectively protect itself

- + competition 2 occurs when both species suffer from each
other’s existence

distinction between the two scenarios is given by the signs of c and f .4

4We deliberately omit the analysis of cases in which one group affects the other but not vice-versa, as
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At this point, the canonical Lotka-Volterra system in (26) can be read as stating that in
each period innovators increase by a proportion of r and, at the same time, die out by “nat-
ural death” by a quadratic proportion −sN2

t . The quadratic term, −sN2
t , captures both

the high riskiness inherent innovation activity and elbowing, namely competition among
members of the same species for a limited resource.5

The last term of the first equation of (26) quantifies the rate of death induced by the co-
existence of preys and predators, f , namely it points out that imitators kill innovators by
imitating, as a metaphor of the profit loss suffered by innovators because of imitators. The
greater the number of preys the higher the possibility of hunting for predators, and the
greater the number of predators the greater the number of victims. Symmetrically, the law
of evolution of the imitators, namely the imitators’ growth rate, is supposed to be driven by
an exogenous natural birth rate, g, and a natural quadratic death rate, −eMt. In the case of
imitators, the quadratic term can be thought of as capturing the double cause of mortality
induced by either market conditions (i.e. competition among imitators, profitability and
appropriability of profit produced by innovators), or by the effectiveness of IP protection
system punishing imitators, or by a combination of both. Finally, in the imitators’ evolution
law there appears an extra term, c, indicating that imitators may either thrive by haunting
innovators (prey-predator type of interaction) or compete with them (competition type of
interaction).
From a mathematical point of view, Leslie (1957) shows that the system (26) can be rewrit-
ten in a discrete version as:





N(t + 1) = α1N(t)
1+β1N(t)+γ1M(t)

M(t + 1) = α2M(t)
1+β2M(t)+γ2N(t)

(28)

where 



r = log(α1);
g = log(α2);
s = β1 log(α1)

α1−1 ;
e = β2 log(α2)

α2−1 ;
f = γ1 log(α1)

α1−1 ;
c = −γ2 log(α2)

α2−1 .

(29)

The relationships linking the continuous and the discrete version of the system stated in
(29), can be easily exploited to formalize the two scenarios in a new fashion as:

Scen-1 α1 > 1, α2 > 0, β1 > 0, β2 > 0, γ1 > 0, γ2 < 0;

Scen-2 α1 > 1, α2 > 1, β1 > 0, β2 > 0, γ1 > 0, γ2 > 0.

In what follows we will apply the result by Leslie (1957) as it allows to perform a more
exhaustive analysis of the dynamic system.

these cases are not suitable for the economic context we are analyzing. In particular, not taking into account
the other party’s action does not fulfill economic rationality. These cases, referred to as commensalism and
amensalism by biologists (see for instance Odum 1971 or Williamson 1972), are obtained by setting c = 0
or f = 0 and originate a system where a group evolves following a classic logistic growth and it drives the
other. For the same reason we are not interested here in the case of neutralism (c, f = 0) where both groups
evolve independently.

5Evidence about the high mortality rate among innovators can also be found in Christenses (1997),
Christensen and Raynor (2003).
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4 The solutions of the system

The dynamic system in (28) is characterized by three kinds of equilibria: the total extinction
equilibrium E0(0, 0), the one-category equilibria in which only one kind of agents survives,
and eventually the coexistence equilibrium. The one-category equilibria are characterized
by the following Cartesian coordinates in the (N ; M) plane:

EN

(
α1 − 1

β1
; 0

)
; EM

(
0;

α2 − 1
β2

)

where EN and EM represent the equilibrium in which innovators or imitators are the only
survivors, respectively. In particular EM makes sense only for α2 > 1, that is in Scen-2.

Remark 2. Although difficult to understand at a first instance, the EM equilibrium can
exist, provided that it has been reached after a period of coexistence, which is the case being
analyzed. Think of a situation characterized by weak IPR protection, in which a great
deal of innovators’ profit is captured by imitators. After a certain time period, innovators
will be driven out of the market, meaning that they no longer find profitable innovating
and either exit the market, or even become imitators themselves. After the extinction of
innovators the market will be populated only by imitators, who still carry on producing and
selling imitations. This stylized situation depicts many actual ones. Briefly speaking, this is
what happened in Mauritius, where big Western companies in the fashion industry left the
country, moving their production elsewhere and the local firms, having acquired the necessary
know how, produce and sell imitations of original brands. In some cases, Mauritian firms
have kept the ’cliché’ and produce imitations with perfectly imitated logos. Another example
can be provided by China, as a unique great market populated only by imitators. Yet, to
a smaller dimension, in many corner markets it is not possible to find original innovative
products, only imitations are sold, as they are typically cheaper.

The coexistence equilibrium is given by:

E∗ = (N∗; M∗) =
(

γ2(1− α1)− β1(1− α2)
β1β2 − γ1γ2

;
γ1(1− α2)− β2(1− α1)

β1β2 − γ1γ2

)
(30)

and it is meaningful when the two coordinates are strictly positive.
It is interesting to note the relative number of the two firms in the coexistence equilibrium,
i.e. which group is the most numerous. We have the following result:

N∗ R M∗ ⇐⇒ (1− α1)(γ2 + β2) R (1− α2)(γ1 + β1) (31)

In order to analyze the dynamic properties of the system we must study its Jacobian matrix:

J :




α1(1 + γ1M)
(1 + β1N + γ1M)2

− α1γ1N

(1 + β1N + γ1M)2

− α2γ2M

(1 + β2M + γ2N)2
α2(1 + γ2N)

(1 + β2M + γ2N)2




calculated at the different equilibrium points. Thus, for the extinction equilibrium the
Jacobian becomes:

J(E0) :
[
α1 0
0 α2

]
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the eigenvalues of which are λ0
1 = α1 and λ0

2 = α2. We have assumed that α1 > 1, so the
extinction equilibrium is never locally stable in our model.
The local stability properties of the one-category equilibria and of the coexistence equilib-
rium have been fully analyzed by Leslie and Gower (1958).6 In the following Proposition
we adapt their results to our parameters.

Proposition 1. (Leslie and Gower, 1958) System (28) admits four possible cases:

I. if
γ1γ2

β1β2
<

γ1 (α2 − 1)
β2 (α1 − 1)

< 1 then the coexistence equilibrium E∗ is stable;

II. if 1 <
γ1 (α2 − 1)
β2 (α1 − 1)

<
γ1γ2

β1β2
then the coexistence equilibrium E∗ is unstable, while the

two one-category equilibria are both locally stable and the system converges to one of them,
depending on the initial levels of innovators and imitators;

III. if
γ1 (α2 − 1)
β2 (α1 − 1)

< 1 and
γ1γ2

β1β2
>

γ1 (α2 − 1)
β2 (α1 − 1)

are jointly true, then the only stable

equilibrium is EN , where only innovators survive;

IV. if
γ1 (α2 − 1)
β2 (α1 − 1)

> 1 and
γ1γ2

β1β2
<

γ1 (α2 − 1)
β2 (α1 − 1)

are jointly true, then the only stable

equilibrium is EM , where only imitators survive.

It is important to note that whenever an equilibrium is (locally) stable, its coordinates
are not negative, so it is meaningful. In what follows, we will study the implications
stemming from Proposition 1 for each of the two scenarios.

4.1 First scenario (Scen-1): the prey-predator model

It is useful to break down this scenario into two subcases. The first one in which 0 < α2 < 1
and the other one in which α2 > 1.

First subcase

With α2 less than unity it is immediate to prove that cases II. and IV. described in Propo-
sition 1 are not feasible. In fact, we have that:

γ1 (α2 − 1)
β2 (α1 − 1)

< 0. (32)

Only the other two cases are feasible, so depending on the values of the parameters either
the coexistence equilibrium is stable (case I.) or only innovators survive in the market (case
III.). It is possible to identify a threshold value of β1 (let us denote it as β1) such that:

• if β1 < β1, then E∗ is stable;

• if β1 > β1, then EN is stable;

• when β1 = β1 then E∗ = EN . In the dynamical systems theory this particular
value of the parameter is called saddle-node bifurcation value. When a saddle-node
bifurcation occurs two equilibria invert their stability properties, i.g. if for values of
the parameter lower than the bifurcation one, an equilibrium is locally stable and the
other is unstable, for values above the bifurcation value the opposite applies.

6Actually they were interested only in the parameters configurations corresponding to our second scenario.
However, their results are more general and hold also for our first scenario.
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where
β1 =

γ2 (α1 − 1)
α2 − 1

. (33)

Figure 1a shows this situation in the (β1, β2) parameters plane. This result implies that in
order to guarantee the coexistence, low values of β1 (below the threshold β1) are required.
Higher values of α1 and γ2 and/or lower values of α2 make the threshold β1 increase,
favouring the convergence to E

∗
. By converse, if β1 is higher than β1, then imitators are

pushed out of the marker and only innovators survive. This case is easier to be achieved
whenever the threshold β1 is low, and this occurs for low values of α1 and γ2 and/or for
high values of α2. Notice that the parameter β2 plays no role in this subcase.

Second subcase

As far as the second subcase is concerned, i.e. α2 > 1, the situation definitely changes.
Now, under this restriction it is easy to show that cases II. and III. described in Proposition
1 are not feasible. In fact:

γ1γ2

β1β2
< 0 and

γ1 (α2 − 1)
β2 (α1 − 1)

> 0 ⇒ γ1 (α2 − 1)
β2 (α1 − 1)

>
γ1γ2

β1β2
(34)

So, either the coexistence equilibrium is stable (case I.) or innovators go out of the market
and only imitators survive (case IV.).
Similarly to the previous subcase, we can identify a threshold value of β2 (let us denote it
as β2) separating these two possibilities:

if β2 < β2 =⇒ EM is stable
if β2 > β2 =⇒ E∗ is stable

(35)

where
β2 =

γ1 (α2 − 1)
α1 − 1

(36)

Figure 1b represents the situation in the (β1, β2) parameters plane. Like for the previous
subcase we can look deeply at the role played by the parameters. In order to guarantee a
long-run coexistence of both kinds of firms, high values of β2 (above the threshold β2) are
required. This instance is easier to be achieved whenever β2 takes on low values and this
occurs for relatively high values of α1 or sufficiently low values of γ1 and/or α2. Otherwise,
innovators are doomed to leave the market. Symmetrically, now β1 does not play any role.

FIGURE 1 HERE

4.2 Second Scenario (Scen-2): competition

In the second scenario each of the two typologies of firms (innovators and imitators) inhibits
the growth of the other. For this reason, this scenario can be paralleled to the two competing
species analyzed by Leslie and Gower (1958). By varying the parameters values it is possible
to verify all the four cases described in Proposition 1.
In particular, we can solve the four conditions of Proposition 1 with respect to β1 or β2 to
obtain the following results:

β1 > β1 and β2 > β2 =⇒ E∗ is stable
β1 < β1 and β2 < β2 =⇒ EN and EM are both stable and coexist
β1 < β1 and β2 > β2 =⇒ EN is stable and it is the only attractor
β1 > β1 and β2 < β2 =⇒ EM is stable and it is the only attractor

(37)
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where β1 and β2 are defined as in (33) and (36), respectively. The four cases can also be
graphically identified in the (β1, β2) parameters plane (Fig. 2).

FIGURE 2 HERE

The main novelty of this scenario concerns the fact that case II of Proposition 1 is
now feasible. We note that this is the only case in which the initial levels of innovators
and imitators affect the final dynamic outcome. In the theory of dynamical systems, the
set of initial conditions leading to an attractor are said to form the basin of attraction of
the attractor. In our case we can numerically identify the two basins of attraction of the
coexisting one-category equilibria and one example is provided in Figure 3.

FIGURE 3 HERE

The set of blue points corresponds to the initial levels of innovators and imitators that
lead to EM , in which only imitators survive. Instead, the red points characterize the
initial conditions associated to the equilibrium with no imitators, EN . The coexistence
equilibrium E∗, even if locally unstable, has the property of being always located on the
boundary separating the two basins of attraction7. As a consequence, the relative number
of imitators and innovators in E∗ can be considered as a good proxy of the relative size of
the two basins of attraction.

5 Implications of our analysis

The analytical and numerical analysis carried out in the previous Section provides us with
the possibility to gain a better insight into the economic interpretation of system (28), espe-
cially with a particular focus on the coexistence equilibrium, which is the most interesting
in our case as it practically captures the actual situation of any country.
In particular, as far as the prey-predator scenario is concerned (scen-1), in the first subcase,
i.e. 0 < α2 < 1, we have claimed that higher values of α1 and γ2 and/or lower values of α2

make the threshold β1 increase, favoring the convergence to E∗. By virtue of the relation-
ships in (29) we know that the interval in which α2 lies implies g < 0, that is, a negative
imitators natural birth rate. In turn, for given α2, higher γ2 implies higher imitators growth
rate due to the interaction with innovators, c. Furthermore, higher α1 implies higher inno-
vators birth rate, r. Therefore, a stable coexistence equilibrium is more likely the higher
the innovators birth rate, the lower the imitators natural birth rate and the higher their
birth rate stemming from hunting innovators. This threefold condition is consistent with a
situation in which innovators grow at a substantial rate (high r), imitators are efficient in
imitating innovators (high c), but are a few (g < 0).
In the second subcase, i.e. α2 > 1, we have claimed that relatively high values of α1 or
sufficiently low values of γ1 and/or α2 make the threshold β2 decrease, making more likely
convergence to E∗. By virtue of (29) we know that higher α1 implies higher innovators
birth rate, r, low α2 implies low imitators birth rate (but still positive, given that α2 > 1)
and eventually, for given α1 a low value of γ1 implies a low innovators death rate induced by
imitators (low f). Roughly speaking, this threefold condition shares with the previous one
the high innovators birth rate and the low (but higher than the previous) imitators birth
rate, but differently, it is consistent with a situation in which imitators are relatively weak,

7Technically speaking, the basins’ boundary is the stable manifold of the unstable coexistence equilibrium.
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as they are not quite efficient in killing innovators (low f).
At this point the results may seem puzzling in that in the first subcase we have negative
imitators birth rate versus a positive birth in the second subcase, but both lead to a stable
coexistence equilibrium. The point is that in the first subcase, the negative birth rate is off-
set by efficiency in thriving with the chase (high c), while in the second subcase the positive
birth rate is offset by scant efficiency in the killing rate (low f). This last remark highlights
that innovation is the true engine of economic growth, imitation can help disseminating it,
but must not be excessive. Most importantly, both subcases share the non trivial point that
under certain circumstances E∗ is a feasible and stable configuration, namely innovators
and imitators can coexist, without generating instability, here as a metaphor of an economic
undesirable situation.
With reference to the second scenario (scen-2), characterized by competition between the
species, a stable E∗ can occur when the inequalities β1 > β1 and β2 > β2 jointly hold. In
order to provide an economic interpretation of this joint condition it is useful to comment
on each inequality at a time, and then to make up the jigsaw puzzle. As regard to the con-
dition on β1, to occur it requires low values of α1 and γ2 and/or high values of α2. In turn,
this implies low r, low c (which is negative) and high g. This combination of parameters
captures the case in which few innovators are born, many imitators are born, but a great
proportion of the latter are killed by the former (low c).
Whereas, β2 > β2 to occur requires relatively high values of α1 or sufficiently low values of
γ1 and/or α2. In turn, this implies high r, low f and low g. This combination of parameters
describes the case in which few imitators are born, many innovators are born and a little
proportion of the latter are killed by the former (low f). The joint reading of the conditions
on β1 and β2 is summarized in Table 2.

Table 2: Synthesis of the conditions for a stable E∗ in a competitive environment
condition on β1 condition on β2




r low N birth rate
c low N killing rate
g high M birth rate









r high N birth rate
f low M killing rate
g low M birth rate





The interpretation of Table 2 is quite easy. The birth rate of both species lies in an
interval, being not too high and not too low, and both populations must not interact too
aggressively, namely the killing rates must not be too high. The main message arising from
this detailed economic interpretation is that a certain amount of competition between the
two populations is desirable, but there must be a limit to the extent to which one population
can hamper the others’ activity. Put another way, a zero tolerance level towards imitation
is neither feasible nor desirable, as suggested by Becker (1968) in a broader context. In this
sense, the results are in line with that part of the literature postulating that the rate of
innovation has an inverse-U shape as a function of imitation. Although simple, this result
captures the actual situation of most of the countries in which innovations coexist with
imitations, both legal and illegal, thus showing the consistency of the evolutionary view of
knowledge diffusion.
In addition, we can claim an even more general result which puts together all the instances,
that is, a stable coexistence equilibrium can be achieved under any possible scenario: both
prey-predator and competition. The same result does not apply to the other equilibria.
As a very final remark, it is important to note that even if a stable coexistence equilibrium
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can exist, we do not know to what extent it can last. To the extent that a policy intervention
alters the parameters entering the thresholds, β1 and β2, the conditions for E∗ may no
longer apply. Roughly speaking, small changes in the parameters most likely will not alter
the inequalities, while large changes are likely to make the inequalities no longer apply.

6 Conclusions and further research

This work accounts for a first move towards the microfoundation of the Lotka-Volterra view
of the interplay between innovation and imitation. Starting from the model of Dixit and
Pindyck (1994) set in a context of dynamic uncertainty and irreversible investment, we have
derived the law of evolution of innovators and imitators in a competitive market. Thus, the
model lends theoretical support to the evolutionary view which assumes that competitive
relationships in the knowledge diffusion market can be analyzed by means of Lotka-Volterra
codynamics. Put another way, this work brings out that there are microeconomic rationales
to consistently assume a Lotka-Volterra evolution law. A thorough study of the equilibria
shows that a stable coexistence equilibrium can be reached under both the prey-predator
scenario and the pure competition. Gaining a better understanding of the dynamic in-
teractions between firms who specialize in innovation and those who mainly imitate is an
important topic and definitely needs additional investigation. As a further research, this
work can be extended in several directions, both theoretical and empirical. Concerning the
former, it would be worth investing in the endogenization of the entry thresholds, as well as
some assumptions would deserve to be relaxed, such as the constant exit rate. As far as the
empirical aspects are concerned, it would be worth attempting to estimate the parameters
of the system for different markets and countries and simulate the impact of different policy
interventions. A very similar exercise has been carried out by Lee et al. (2005) for two
competing markets at the Korean stock market and by Kim et al. (2006) concerning the
introduction of new mobile phones. Our future reseach efforts will focus on these issues.
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CAPTIONS FOR FIGURES
Figure 1: In (a) is represented the (β1, β2) parameter plane corresponding to Scen-1 with

0 < α2 < 1. The vertical line β1 = β1 subdivides the plane into two regions. For values of
β1 lower than β1 the system converges towards the coexistence equilibrium, otherwise only
innovators survive. In (b), with α2 > 1, the horizontal line β2 = β2 separates the region
corresponding to a convergence to the coexistence equilibrium (β2 > β2) from the region
where only imitators survive (β2 < β2).

Figure 2: The four regions that form the (β1, β2) parameter plane in Scen-2.

Figure 3: Basins of attraction of the two coexistent equilibria EN (red basin) and EM

(blue basin). The picture is obtained with this set of parameters: α1 = 2, α2 = 1.5, β1 = 1,
β2 = 0.25, γ1 = 1 and γ2 = 1.5.
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