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Highlights

Enhancing Transformer-based language models with Commonsense
Representations for Knowledge-driven Machine Comprehension

Ronghan Li, Zejun Jiang, Lifang Wang, Xinyu Lu, Meng Zhao, Daqing Chen

• To explicitly augment Transformer-based language models (TrLMs) for
knowledge-driven MRC task with fewer model structure changes, we
proposed three simple yet effective injection methods integrated into
pre-trained TrLMs to incorporate off-the-shelf commonsense represen-
tations directly in the fine-tuning stage.

• A token-level multi-hop mask mechanism was introduced to filter irrel-
evant knowledge and enabled the self-attention (SA) in Transformer to
identify the knowledge-aware tokens, which can improve the efficiency
of knowledge fusion.

• The performance of the incremental TrLMs on two prevalent knowledge-
driven datasets, DREAM and CosmosQA, has been evaluated showing
a 1%-4.1% improvement compared with the vanilla TrLMs. Compared
with existing methods, our model variants also achieve competitive re-
sults with the fewer computational cost. Further experimental analysis
has demonstrated the effectiveness of proposed methods and the robust-
ness of the incremental models in the case of an incomplete training
set.
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Abstract

Compared to the traditional machine reading comprehension (MRC) with
limitation to the information in a passage, knowledge-driven MRC tasks
aim to enable models to answer the question according to text and related
commonsense knowledge. Although pre-trained Transformer-based language
models (TrLMs) such as BERT and Roberta, have shown powerful perfor-
mance in MRC, external knowledge such as unspoken commonsense and
world knowledge still can not be used and explained explicitly. In this work,
we present three simple yet effective injection methods integrated into the
structure of TrLMs to fine-tune downstream knowledge-driven MRC tasks
with off-the-shelf commonsense representations. Moreover, we introduce a
mask mechanism for a token-level multi-hop relationship searching to fil-
ter external knowledge. Experimental results indicate that the incremental
TrLMs have significantly outperformed the baseline systems by 1%-4.1% on
DREAM and CosmosQA, two prevalent knowledge-driven datasets. Further
analysis shows the effectiveness of the proposed methods and the robustness
of the incremental model in the case of an incomplete training set.
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Knowledge, Pretrained Language Model

1. Introduction

Machine Reading Comprehension (MRC) is a challenging task in natural
language processing, which requires answering a question by comprehending
the relevant passages. Thanks to the release of large-scale datasets [1, 2, 3, 4],
related end-to-end neural networks have achieved promising results in various
scenarios [5, 6, 7, 8, 9]. Traditional MRC is limited to question answering
(QA) for given text content, ignoring the importance of external knowledge
for text understanding. Recently knowledge-driven MRC has attracted in-
creasing attention and raised new challenges. Several related datasets such as
ARC [10], DREAM [11], OpenBookQA [12], CommonsenseQA [13] and Cos-
mosQA [14] have been proposed, which are designed in a multi-choice form
and require models to answer the question by combining related common-
sense knowledge. Fig. 1 shows an example on DREAM, where the well-known
fact that “McDonald’s” is a restaurant is useful to find the correct option.

Dialog : 

M: Right. Where was it stolen?

W: In the city center, outside McDonalds, on Hope 

Avenue.

Question : Where was the woman's camera stolen?

A: Outside an ice cream place.

B: Outside a restaurant.

C: Outside her home.

Fig. 1. An example of DREAM dataset. M: Man. W: Woman. (F: the correct answer)

On the other hand, although Transformer [15]-based language models
(TrLMs) such as BERT [16] and Roberta [17] have shown powerful achieve-
ments with downstream tasks including MRC in the past year, their pre-
training methods have usually ignored the role of factual knowledge. Ex-
isting work can be roughly divided into two groups: global fusion during
pre-training and selective fusion in the fine-tuning stage. The first group
injects knowledge into TrLMs by auxiliary knowledge-driven objectives and
updating parameters in a multi-task learning manner [18, 19], which requires
expensive further pre-training even from scratch. Besides, global fusion lacks
interpretability for specific downstream tasks; that is, which commonsense is
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used cannot be explicitly evaluated. The second group leverages the language
model as an encoder, whose outputs are fed into the complicated knowledge-
text interaction layer for specific downstream tasks [20]. However, it has also
inevitably increased model complexity and computational cost.

To alleviate these problems, we consider explicitly incorporating off-the-
shelf commonsense representations into TrLMs’ internal structure to enhance
encoding during the fine-tuning phase for knowledge-driven MRC. Intuitively,
it is easier to get the correct answer by fusing any existing commonsense
relationships between a passage and options into the TrLMs for inference.
Instead of stacking interaction layers downstream, we introduce three simple
yet effective plug-in methods, named additive feature-based gating, multi-
level linear transformation, and multi-head attentional fusion, respectively, to
explicitly integrate token-level knowledge representations into TrLMs. Thus,
text can be encoded in TrLMs while considering commonsense information.
We directly leverage pre-computed ConceptNet embeddings [21] as external
knowledge representation. Moreover, since not all commonsense concepts
are necessary to the token and many commonsense relations are indirectly
between a passage and candidate answer (e.g., ConceptNet ISA knowledge
graph HAS commonsense knowledge), a mask mechanism is introduced for
token-level multi-hop relationship searching. Our goal is to enable the self-
attention (SA) in TrLMs to identify the knowledge-aware tokens without
additional knowledge-driven objectives or pre-training from scratch.

We have conducted extensive experiments on two prevalent knowledge-
driven datasets, DREAM and CosmosQA, to evaluate the proposed models.
Our model variants have obtained a 1%-4.1% improvement on average accu-
racy with fewer computational resources than baseline systems. For a fair
comparison, we have also evaluated our models on the RACE [3] dataset that
is one of the largest datasets in multi-choice MRC with few commonsense
questions. Experimental results show that incremental TrLMs do not lose
the textual information after heterogeneous knowledge fusion. The further
analysis illustrates that our fusion methods and mask mechanism effectively
help TrLMs form commonsense-aware token representations and maintain
the robustness of QA in the case of an incomplete training set.

The main contributions of this paper can be summarized as follows:

(1) To explicitly augment Transformer-based language models (TrLMs) for
knowledge-driven MRC task with fewer model structure changes, we pro-
posed three simple yet effective injection methods integrated into pre-
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trained TrLMs to incorporate off-the-shelf commonsense representations
directly in the fine-tuning stage.

(2) A token-level multi-hop mask mechanism was introduced to filter irrel-
evant knowledge and enabled the self-attention (SA) in Transformer to
identify the knowledge-aware tokens, which can improve the efficiency of
knowledge fusion.

(3) The performance of the incremental TrLMs on two prevalent knowledge-
driven datasets, DREAM and CosmosQA, has been evaluated showing
a 1%-4.1% improvement compared with the vanilla TrLMs. Compared
with existing methods, our model variants also achieve competitive re-
sults with the fewer computational cost. Further experimental analysis
has demonstrated the effectiveness of proposed methods and the robust-
ness of the incremental models in the case of an incomplete training set.

The remainder of this paper is organized as follows: Section 2 describes
the task and the related notations, followed by a concise introduction to
the Transformer-based LM for multi-choice MRC as the baseline system. In
Section 3, we propose our incremental language models with three variants
of injection methods. In Section 4, we present our token-level multi-hop
relationship filtering mechanism. Section 5 shows the experimental details
and the results. Section 6 gives further analysis to verify the effectiveness
of our methods. Section 7 introduces related work. Section 8 concludes and
looks forward to future work.

2. Background

2.1. Task Description

Given a question Q = {q1, q2, ..., qm} and optionally a supporting passage
C = {c1, c2, ..., cs}, a knowledge-driven MRC system is expected to select the
correct answer from multiple candidate answers A = {a1, a2, ...ak} through
the supporting passage and the related commonsense knowledge. A summary
of key notations is presented in Table 1.

2.2. Baseline

Recently, Transformer has become the backbone framework for most pre-
trained language models. In this paper, we directly use BERT and its en-
hanced variant Roberta as the baseline systems for knowledge-driven MRC
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Table 1. A summary of key notations used in this paper.

Notation Description

Q, qi The given question and its i-th token
C, ci The given passage and its i-th token

A, ai, aij The candidate answer set, the i-th candidate answer and its j-th token
BEi The pre-trained word embeddings of the i-th token in the input sequence
CEi The ConceptNet embeddings of the i-th token in the input sequence
MHA The function for computing the multi-head attention score

Attention The function for computing the single-head attention score
FFN The feed-forward network

WQ
j ,W

K
j ,W

V
j The query, key and value parameters of linear mapping layer for j-th head

H The number of heads at each layer of Transformer-based LM
T The maximum length of the input sequence
L The number of layer in Transformer-based LM

Φmask The mask function for masking out the context token
M The mask vector of length T

hl The hidden state at the l-th layer
ul

i The output representation of the i-th token from MHA at the l-th layer
ũl The fused output representation of the i-th token at the l-th layer
vL The fused output representation from MHA at the L-th layer
m The max length of the question Q
s The max length of the passage C
k The number of the candidate answers in the set A
d1 The hidden size for the attention function
d2 The dimension for the ConceptNet embeddings

tasks, which includes a multi-layer bidirectional Transformer encoder and a
linear classifier. Following [22] we concatenate the context C, question Q,
and answer option Ai as the input sequence:

[CLS]c1..s[SEP]q1..m[SEP]ai1..n[SEP]

where [SEP] is the separating token, and [CLS] is the token for classification.
For each token, the input representation is constructed as:

BEi = etok
i + epos

i + eseg
i , i = 1..T

where etok
i , epos

i , eseg
i , and T are the token embeddings, position embeddings,

segment embeddings, and maximum length of the input sequence, respec-
tively. Tokens in C share a same segment embedding pseg, and tokens in Q
and Ai share a same segment embedding qaseg.

Such input representations are then fed into a stack of Transformer en-
coder blocks, which contains two sub-layers. The first sub-layer is a multi-
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head self-attention MHA. For the input sequence X = {t1, t2, ..., tT}, the
self-attention is formally calculated as:

wi,j =
tqi t

k
j
>

√
d

(1)

αi,j =
exp(wi,j)∑T
k=1 exp(wi,k)

(2)

t̂i =
T∑

j=1

αi,jt
v
j (3)

where d is the hidden size, tq, tk, and tv are the query, key, and value vector
for the token, respectively. In practice, they are obtained by passing the same
token representation through three separate linear layers. In this way, each
token pays attention to other tokens for global information. For simplicity,
we denote the above processing progress (Eq. 1-Eq. 3) as a single function
Attention(Xq,Xk,Xv).

Given a matrix of T query vectors Q ∈ RT×d1 , keys K ∈ RT×d1 and
values V ∈ RT×d1 , the multi-head attention is computed as:

bp = Attentionp(QWQ
p ,KWK

p ,V W V
p ) (4)

B = Concat(b1, ..., bH) (5)

where d1 is the number of the hidden units, H denotes the number of heads
used to focus on different parts of channels of the value vectors, WQ

p ∈
RT×d1/H , WK

p ∈ RT×d1/H and W V
p ∈ RT×d1/H are the parameters of linear

mapping layer for p-th head. We denotes the above processing progress
(Eq. 4-Eq. 5) as:

B = MHA(Q,K,V ) (6)

The second sub-layer is a position-wise fully connected feed-forward network
(FFN), which consists of two dense linear layers with a GELU activation in
between.

ul = MHA(hl,hl,hl) (7)

hl+1 = FFN(ul) (8)

FFN(x) = W 2GELU(W 1x + b1) + b2 (9)

where hl ∈ RT×d1 denotes the hidden state at the l-th layer. We utilize the
input representations BE as the initial state h0. Note that we omit residual
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connection and layer normalization used in each sub-layer for simplicity, and
refer readers to [15] and [16] for more details.

The final hidden state of the token [CLS], hL
[CLS], is then projected into a

score pi ∈ R1 via a linear layer. For each question, we obtain the logit vector
p = [p1, p2, ..., pk] for all options. We choose the option with highest score p
as the answer.

3. Incremental TrLM with Plugged-in Knowledge Integration Mech-
anism

Pre-trained language models based on Transformer backbone network
have a powerful ability to represent the context of the given text, while
they ignore the effective integration of external commonsense and consen-
sus, which plays an important role in conversation comprehension. To this
end, we explore three token-level injection methods to extend BERT to allow
flexibility in incorporating external knowledge. Specifically, we integrate the
commonsense embeddings CE selected with a multi-hop co-occurrence mask
(We will describe the knowledge representations and selection in §4) into
BERT in three ways: additive feature-based gating, multi-level linear trans-
formation, and multi-head attentional fusion. We denote the three methods
as “gate”, “linear”, and “attention”, respectively.

Additive Feature-based Gating. The first approach, as illustrated in the “gate”
part of Fig. 2, learns a feature mask from the obtained commonsense embed-
dings, which is applied to each token that satisfies commonsense relationship
filtering. To be specific, for each token ti, we integrate the input representa-
tions BEi with external knowledge embeddings CEi ∈ Rd2 as:

Ini = BEi + σ(W gCEi + bg) (10)

where σ denotes the sigmoid activation function served as a gate mechanism
and W g ∈ Rd1×d2 is a trainable weight parameter. This gating mechanism
generates a mask-vector from each CEi with values between 0 and 1, incor-
porating information into salient dimensions of BEi.

Multi-level Linear Transformation. The “linear” part of Fig. 2 shows the
second method which integrates the information in every intermediate FFN

layer of BERT. For each Transformer encoder block, we replace the second
sub-layer with a knowledge fusion layer for the incorporation of the token
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Fig. 2. Overview of the incremental language model. Three proposed fusion methods are
abbreviated as “gate”, “linear”, and “attention”, respectively.

representations and their corresponding commonsense embeddings, which is
computed as:

ũl
i = GELU(W l

1u
l
i + W̃

l

1CEi + bl) (11)

hl+1
i = FFN(ũl

i) (12)

where W̃
l

1 ∈ Rd1×d2 is a trainable weight parameter. Note that this method
is in a similar spirit to the work of [18]. However, since our method focuses
on the role of commonsense invariance between related tokens in text-based
comprehension and their approach focuses on knowledge-driven tasks, we
do not apply multi-head self-attention and mutual projection to knowledge
embedding encoding. Instead, the knowledge embeddings are fixed for multi-
level Transformer encoder blocks, which is simpler and does not require pre-
training objective.
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Multi-head Attentional Fusion. The attention calculation in TrLMs during
pre-training contributes to multiple downstream tasks. Also, there are also
efforts proving that the attention mechanism also plays an important role in
multi-task learning [23]. We investigate using the attention mechanism to
integrate external knowledge representations during fine-tuning. The third
method, as depicted in the “attention” part of Fig. 2, is inspired by the work
of [24] and applies attention-based integration to the final hidden states hL.
Specifically, we add another multi-head attention sub-layers to the output of
Transformer encoder block of a certain layer. In this paper, the sub-layer is
a multi-head knowledge attention (KA) and placed on the last layer, which
is computed as:

vL = MHA(hL−1, C̃E, C̃E) (13)

where C̃E is a concatenation of CE and a knowledge sentinel s ∈ Rd2 .
Considering not all tokens are relevant to the background knowledge, we fol-
low [25] to employ the sentinel vector to control the tradeoff between back-
ground knowledge and information from the passage text. Thus, we get the
knowledge-aware context representations vL and feed them into the second
sub-layer, which consists of a multi-head self-attention and a FFN:

ṽL = MHA(vL,vL,vL) (14)

yL = FFN(ṽL) (15)

Note that we also employ residual connection and layer normalization around
each attention layer. We replace hL with yL to predict the correct answer.

4. Commonsense Representation and Filtering

In this work, we leverage off-the-shelf commonsense knowledge from Con-
ceptNet 5.51, which is a knowledge graph (KG) including lexical and world
knowledge from many different sources such as WordNet [26] and DBPe-
dia [27]. Commonsense in ConceptNet is represented in the form of a triple
(subject, relation, object). Below we first introduce the representations of
commonsense knowledge, and then present a token-level multi-hop knowl-
edge filtering method.

1https://github.com/commonsense/conceptnet5/wiki
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4.1. Knowledge Graph Embedding

Intuitively, the fusion method should be independent of how the knowl-
edge representation is obtained. Previous methods usually use their own com-
monsense embeddings (such as TransE) pre-trained on a large-scale knowl-
edge graph, which increases computational consumption and uncertainty. In-
stead, we directly leverage off-the-shelf ConceptNet embeddings as external
knowledge representation that can represent global commonsense relation-
ships. In addition, this can also provide better scalability and a convenient
interface for integrating other external knowledge representations. To be
specific, we retrieve tokens from the common vocabulary of BERT and Con-
ceptNet and extract the corresponding KG embeddings. For those BERT
tokens that are not found in ConceptNet, we set them to 0. We use three
types of representation for common tokens: ConceptNet-PPMI 2, Concept-
Net Numberbatch 3, and Randomly Initialized Embedding. We will discuss
the impact of knowledge representation on model performance in Section 6.1.

ConceptNet-PPMI. A matrix of word embeddings trained on a sparse, sym-
metric term-term matrix where each cell contains the sum of the weights of
all edges that connect the two corresponding terms. For each term in the
ConceptNet graph, its ConceptNet-PPMI representation reflects the context
containing the information of other nodes to which it is connected.

ConceptNet Numberbatch. A set of semantic vectors built with an ensemble
that combines data from ConceptNet, word2vec, GloVe, and OpenSubtitles
2016, using a variation on retrofitting. Word embeddings in ConceptNet
Numberbatch can represent both text-based context and structured knowl-
edge.

Randomly Initialized Embedding. Since the relations are not scored and rep-
resented explicitly, we also use randomly initialized embeddings for tokens
to analyze the indirect commonsense relation between words in the passage
and the effect of KG embeddings.

2https://conceptnet.s3.amazonaws.com/precomputed-data/2016/numberbatch/

16.09/conceptnet-55-ppmi.h5
3https://github.com/commonsense/conceptnet-numberbatch
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Dialog: 

W: Good morning, can I help you?

M: Yes, please. I'd like to cash two traveler's cheques.

W: Could you sign your name here please?

M: Sure.

W: Thank you. How would you like your money?

M: In hundreds and fifties, please.

W: Ok. It's 1,660 yuan, here you are.

M: Thanks. May I know the exchange rate?

W: Well, at the moment the exchange rate between US dollars 

and RMB is 1:8.3. You give me two $100 cheques; here is 1,660 

yuan. Is that right?

M: Yes, thanks

Question : Where is the conversation most probably taking place?

A: In a supermarket.

B: In a bank.

C: In an office.

bank

money cash

exchangesign_contract

dollars

RelatedTo

CausesDesire MannerOf 

Fig. 3. An example of multi-hop relation searching. In ConceptNet, “bank” is connected
to “money”, “cash” and “dollars” through the RelatedTo relationship. Further, “sign
contract” and “exchange” can be found.

4.2. Token-level Multi-hop Knowledge Filtering

These extracted and generated embeddings represent relevant and useful
information between tokens. Nevertheless, background knowledge also needs
to be used effectively, otherwise, it will become unnecessary noise. Moreover,
the model requires commonsense relation not directly stated in the context to
reach the correct option. For example, Fig. 3 shows that the model possibly
needs multi-hop commonsense to reason about where the conversation takes
place. Therefore, to improve the precision of useful information, we design
a mask vector M to filter commonsense representations. Specifically, the
length of M is the same as the sequence length T and we initialize the
mask values of all the tokens to 1. For each token t1 ∈ Ai that is neither
a stop word nor a padding token, we use it as a subject concept to search
for the object concept t2 ∈ C ∪ Q connected to t1 in ConceptNet, then set
set M index(t1) = 0 and M index(t2) = 0 and continue searching t3 ∈ C with
t2. For concepts consisting of multiple tokens (e.g., sign contract), we mask
subtokens in the passage and repeat the above operation. We present this
overall procedure in Algorithm 1.

Thus, we obtain the mask vector M , which only contains binary values.
We further define the mask operation as follow:

Φmask(CEi) =

{
CEi ,M i = 0

0 ,M i = 1
(16)
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Algorithm 1 Procedure of the token-level multi-hop knowledge
filtering mechanism

Input: The mask vector M ∈ RT , the context C, the question Q, the i-th
candidate answer ai, the ConceptNet triples (S,R,O), the number of hop K

Output: The filtered mask vector M
Initialize the values of M to 1
for k in K do

[]⇐ Listk
end for
k ⇐ 0
Listk.add(ai1, a

i
2, ..., a

i
m)

for lki in Listk do
if lki is neither a stop word nor a padding token and lki in S then

for tk in C ∪Q do

if tk in O′ ⊆ O
R← S(lki ) then

0⇐M index(tk)

0⇐M index(lki )

Listk+1.add(tk)
end if

end for
end if
k ⇐ k + 1
if k 6 K then

Continue
end if

end for

For tokens corresponding to multiple concepts in multi-hop alignment,
we use a single-layer feedforward network for weighted integration:

CEi =
K∑
k=1

αk ∗ ci,k (17)

αk =
ewci,k∑K
k=1 e

wci,k
(18)

where w ∈ Rd2 is a trainable weight parameter and K is the number of
concepts containing the token in multi-hop alignment.

The filtered commonsense embeddings CE will be taken as input to the
three fusion methods, as depicted in Fig. 2. It is obvious that the common-
sense filtering mechanism essentially improves the prediction of commonsense
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questions by integrating effective representations to change the token-level
attention weights within the language model.

5. Experiments

5.1. Dataset and Evaluation Metric

We report results on two well-known knowledge-driven datasets, Cos-
mosQA [14] and DREAM [11]. For a fair comparison, we also evaluate our
models on the RACE [3] dataset that is one of the largest datasets in multi-
choice MRC with few commonsense questions. The statistics of these three
datasets are summarized in Table 2, and a brief introduction to these datasets
is given below.

CosmosQA4 is a large-scale dataset that requires commonsense-based
reading comprehension, formulated as multiple-choice questions. In contrast
to the most existing MRC datasets where the questions focus on a factual and
literal understanding of the context paragraph, CosmosQA focuses on reading
between the lines over a diverse collection of people’s everyday narratives.

DREAM5 is collected from text material of listening comprehension ex-
aminations designed for evaluating the dialog understanding level of Chinese
learners of English. DREAM contains 34% questions with unspoken com-
monsense, which requires a model to answer these questions not only by
advanced reading skills but also with rich background knowledge.

RACE6 consists of two subsets: RACE-M and RACE-H, respectively,
corresponding to the English exams for middle and high school Chinese stu-
dents, which is recognized as one of the largest and most difficult datasets in
multi-choice reading comprehension.

For all datasets, we use the official train/dev/test splits. For multi-choice
MRC task, the evaluation metric is accuracy calculated as acc = N+/N ,
where N+ denotes the number of examples the model selects the correct
answer, and N denotes the total number of evaluation examples.

4Leaderboard: https://leaderboard.allenai.org/cosmosqa/submissions/public
5Leaderboard: https://dataset.org/dream/
6Leaderboard: http://www.qizhexie.com/data/RACE_leaderboard.html
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Table 2. Statistics of multi-choice machine reading comprehension datasets. ∗ denotes
the numbers are based on 500 samples.

CosmosQA DREAM RACE

# paragraphs 21,866 6,444 27,933
# questions 35,588 10,197 97,687
# options 4 3 4
Ave. # paragraph 70.3 85.9 321.9
Need commonsense (%) 93.8 33.7 8.8∗

Table 3. The best hyperparameters on different datasets (BERT-base/BERT-
large/Roberta-large). T denotes the max sequence length.

Dataset lr epoch batch size T

CosmosQA 2e−5/2e−5/1.5e−5 10/8/4 32/32/32 256
DREAM 2e−5/2e−5/1.5e−5 8/8/4 24/12/12 512
RACE 3e−5/2e−5/2e−5 3/3/3 16/8/8 512

5.2. Implementation Details

We implemented our experiments using Huggingface7. We used BERT-
base, BERT-large and Roberta-large as baseline systems. To keep the order
of magnitude close, we used L2 normalization to preprocess ConceptNet-
PPMI. We experimented with commonsense relation searching of up to three
hops. We set K = 3. The embeddings of commonsense were fixed during
the fine-tuning process and the parameters of TrLMs were trainable and
initialized from Huggingface checkpoint. For all fine-tuning experiments, we
used BertAdam as the optimizer. We experimented with 10 different random
seeds and computed the average results, whether it was base or large. For
the test set and the submitted version, we used the best performing model
on the dev set to predict.

For training, we run all experiments on two Nvidia Titan RTX 24GB
GPUs. For CosmosQA, we set the max sequence length T to be 256 and
select the hyperparameters from batch size: {16, 32, 64}, learning rate: {5e-
5, 2e-5, 1e-5, 8e-6}. It took about 8 hours to get the best result. For DREAM

7https://github.com/huggingface/transformers
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dataset, we run experiments for 8 epochs, set the max sequence length to be
512, and selected the hyperparameters from batch size: {8, 12, 24, 36},
learning rate: {2e-5, 1e-5, 8e-6}. It took about 4 hours to get the best result.
For RACE dataset, we run experiments for 3 epochs, set the max sequence
length to be 512, and selected the hyperparameters from batch size: {8, 16,
32}, learning rate: {3e-5, 2e-5, 1e-5}. It took about 12 hours to get the best
result. In Table 3, we present the best hyperparameters on the development
set and used them to verify on the test set.

5.3. Results

In addition to the three vanilla TrLMs on the leaderboards, we have also
compared our methods with the following published models.

(1) Fine-tuned GPT conducts generative pre-training of the Transformer
decoder on a diverse corpus of unlabeled text, followed by discriminative
fine-tuning on each specific task. It makes use of task-aware input trans-
formations during fine-tuning to achieve effective transfer while requiring
minimal changes to the model architecture.

(2) OCN compares options at word-level to better identify their correlations
to help reasoning. Each option is encoded into a vector sequence using
a skimmer to retain fine-grained information as much as possible. An
attention mechanism is leveraged to compare these sequences vector-by-
vector to identify more subtle correlations between options.

(3) MMM [28] is a multi-stage multi-task learning framework for multi-
choice reading comprehension. It mainly involves two sequential stages:
coarse-tuning stage using natural language inference (NLI) task datasets
and multitask learning stage using a larger in-domain dataset to help
model generalize better with limited data.

(4) DUMA [29] uses a dual multi-head co-attention to bidirectionally cap-
ture relationships among passage, question and answer options for multi-
choice MRC. The question-answer-aware passage representation simu-
lates human re-reading details in the passage with impression of ques-
tion and answer, and the passage-aware question-answer representation
simulates re-considering the question-answer with deeper understanding
of the passage.
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(5) DCMN+ [9] models the relationship among passage, question and an-
swer options bidirectionally. Besides, inspired by how humans solve
multi-choice questions, it integrates two reading strategies: (i) passage
sentence selection, (ii) answer option interaction.

(6) Multiway [14] is the official baseline model of CosmosQA, which com-
putes interactive attention to capture the relationship among the passage,
question and answer. Taking the context as an example, it computes
three types of attention weights to capture the passage’s correlation to
the question, the answer, and both the question and answer.

ConceptNet Numberbatch was used as commonsense representation (We will
discuss the role of knowledge embedding in §6), and we applied a two-hop
commonsense relationship to filter knowledge. The overall results are shown
in Table 4.

Internal Comparison. From Table 4, we can observe that our plug-in meth-
ods of incorporating commonsense have significantly improved performance
over the vanilla TrLMs, and in particular, (1) Multi-level linear transforma-
tion achieves the best results on CosmosQA (69.2% vs. 66.8% with BERT-
large and 80.1% vs. 81.9% with Roberta-large) and DREAM (65.3% vs.
62.8% with BERT-base, 69.3% vs.66.6% with BERT-large and 87.0% vs.
84.7% with Roberta-large). Compared with the other two methods, addi-
tive feature-based gating has improved less on CosmosQA and DREAM,
while multi-head attentional fusion has shown a negative impact on RACE;
(2) As the scale of the pre-training model increases, the effect of integrat-
ing external commonsense decreases. According to [32], we can hypothesize
that TrLMs with more sufficient pre-training (more data and longer pre-
training time) may contain more implicit commonsense relationships; (3)
In knowledge-driven tasks, variants of the incremental model have obtained
1%-4.1% improvement in average accuracy over the baselines of directly fine-
tuned TrLMs. In contrast, our increment TrLMs have also achieved com-
parable results on RACE. It is reasonable and expected for our models to
achieve limited improvement on RACE. Compared to DREAM and Cos-
mosQA, which contain a higher proportion of commonsense questions, it is
the experimental results on RACE that show that language models enhanced
by commonsense representation can be directly improved in the fine-tuning
stage. On the other hand, it illustrates our methods do not lose the textual
information after heterogeneous knowledge fusion.
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Table 4. Accuracy (%) on the test datasets including CosmosQA, DREAM and RACE.
ConceptNet Numberbatch is used as commonsense representation and two-hop relation
searching is applied. “-B” means the base model, “-L” means the large model and “-R”
means the Roberta-large model. ‡ indicates that there are better results than this on the
leaderboard, and we extract the result with public hyperparameters similar to ours. Due
to the submission limit of CosmosQA, we only evaluate the incremental BERT-large and
Roberta-large models and publish the best results.

Model
Knowledge-driven MRC Few-commonsense MRC

CosmosQA DREAM RACE

Leaderboard
BERT-B 62.9 63.2 65.0
BERT-L – 66.8 72.0
BERT-B+WAE – 64.7 –
BERT-L+WAE – 69.0 –
Roberta-L 79.2‡ – 83.2

Publication
Fine-tuned GPT-B [30] – – 59.0
OCN-B [31] – – 66.8
OCN-L [31] – – 71.7
MMM-B [28] – 72.2 68.0
MMM-L [28] – 76.0 72.5
MMM-R [28] – 88.9 85.0
DUMA-B [29] – 64.0 –
DCMN-B [9] – – 67.0
DCMN+-L [9] – – 75.8
Multiway-L [14] 68.4 – –

Ours (Concept Numb.+2hop)
BERT-B – 62.8 65.0
BERT-Bgate – 64.8 (+2.0) 64.9 (-0.1)
BERT-Blinear – 65.3 (+2.5) 65.3 (+0.3)
BERT-Battention – 64.5 (+1.7) 64.5 (-0.5)
BERT-L 66.8 66.6 72.1
BERT-Lgate 67.9 (+1.1) 67.8 (+1.2) 72.4 (+0.3)
BERT-Llinear 69.2 (+2.4) 69.3 (+2.7) 72.6 (+0.5)
BERT-Lattention 68.6 (+1.8) 68.3 (+1.7) 72.0 (-0.1)
Roberta-L 80.1 84.7 83.3
Roberta-Lgate 80.9 (+0.8) 85.7 (+1.0) 83.6 (+0.3)
Roberta-Llinear 81.9 (+1.8) 87.0 (+2.3) 83.7 (+0.4)
Roberta-Lattention 81.5 (+1.4) 86.6 (+1.9) 83.5 (+0.2)
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Comparison with Public Models. Compared to these public models, our in-
cremental TrLMs have also achieved competitive performance but need less
computational cost. Table 5 summarizes the computational resources of sev-
eral published models. MMM achieved the best results on DREAM by
first fine-tuning the sentence encoder with NLI task datasets MultiNLI [33]
and SNLI [34], and then fine-tuning on RACE together through multi-task
learning, which required more data and computing resources. DCMN+
and DUMA designed complicated matching network patterns among the
passage, the question and the candidate answer, increasing the scale of the
model and the number of parameters. Instead, the proposed methods have
two advantages: 1) the incremental TrLMs have improved the performance
requiring no expensive further pretraining on out-of-domain datasets; 2) only
a few mapping parameters and a single layer of parallel attention calculation
are added to fuse commonsense into TrLMs. In addition, prediction results
involving commonsense questions can not be clearly explained. On the con-
trary, we directly incorporate off-the-shelf commonsense representations into
the internal structure of Transformer through token-level pre-matching to
achieve the purpose of explicit use of external knowledge, obtaining inter-
pretable performance improvement with fewer parameters (See Section 6.3).
There also have been better models submitted on the leaderboard, they did
not publish their methods.

6. Discussion

6.1. Effectiveness of Knowledge Embedding

Table 6 shows the results of our incremental TrLMs obtained by adding
initialization with different commonsense representations. From this table,
we can see that the integration of Concept Numbatch can generally improve
the performance, which shows that the structured representations including
the multi-source semantics can effectively improve the performance of the
pre-training language models. Adding Concept-PPMI globally has a negative
impact on the performance of BERT and Roberta while fusing it according to
multi-hop commonsense relation improves the results. A reason for this could
be that Concept-PPMI only contains structured information based on the
knowledge graph, providing a lot of noise when integrated indiscriminately.
Hence, leveraging the multi-hop commonsense filtering algorithm can help
to effectively utilize the structured information, which is also demonstrated
in the experiment with random initialization. Moreover, the incremental
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Table 5. The computation cost comparison between our proposed methods and published
methods. Target refers to the target datasets including DREAM and CosmosQA. BERT-
base is taken as the baseline. ∗means the results are extracted from [29], where albert-base
is used as the baseline. The hidden size of BERT-base is the same as that of albert-base.

Model Pre-training Data Matching Network #Parameter (M)

MMM !
{MultiNLI, SNLI}
→ {RACE, Target} GRU(C,QA) -

DCMN+ % Target

Attention(Ai, Aj)
BiAttention(C,Q)
BiAttention(C,A)
BiAttention(Q,A)

19.4∗

DUMA % Target
MHA(C,QA,QA)
MHA(QA,C,C)

13.5∗

gate % Target % 0.23

linear % Target % 2.76

attetnion % Target % 1.05

model using random initialization commonsense has performed better than
using Concept-PPMI in global fusion, which means heterogeneous informa-
tion could be difficult to integrate directly without prior filtering since the
pre-training procedure for language representation is quite different from the
knowledge representation procedure.

We also experimented with other token attributes such as Part-Of-Speech
(POS) and entity type to further analyze the role of commonsense representa-
tion. For POS, we used Stanford CoreNLP toolkit8 to tag the input sequence,
obtaining noun, verb, adjective, etc. Besides, we used spaCy9 to recognize
the entity types including PERSON, ORG, LOC, and DATE. We set 50-
dimensional vectors for POS and entity types. For multiple features fusion,
we replaced CE with the concatenation of heterogeneous representations.
Since POS and entity type do not need to be determined by commonsense
relationships, we investigate the global integration. Table 7 shows the results
From the table, we can observe that: (1) Compared to ConceptNet Num-
berbatch, POS and entity type have little performance gains for TrLMs on

8https://stanfordnlp.github.io/CoreNLP/
9https://spacy.io/
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Table 6. Performance in accuracy (%) with different knowledge representation. We use
DREAM development set for analysis. “global” means common- sense representations are
integrated into all tokens.

KG Embeddings global one-hop two-hop three-hop

BERT-Blinear

Random 62.9 63.5 63.6 63.0
Concept-PPMI 62.3 63.9 64.2 63.9
Concept Numb. 64.4 64.7 65.1 64.2

Roberta-Lgate

Random 84.5 84.6 85.0 84.7
Concept-PPMI 84.4 84.9 85.7 85.1
Concept Numb. 85.6 85.2 86.2 85.7

knowledge-driven tasks, while they have a more significant impact on RACE.
We hypothesize that it is difficult to distinguish the correct answer to the
commonsense question based on linguistic and entity information alone; (2)
Entity type has a more significant impact on TrLMs performance for QA
than POS. A possible reason is that entity information can help TrLMs clar-
ify reasonable answer types (e.g., where → LOC ).

6.2. Effectiveness of Multi-hop Commonsense Selection

Table 8 illustrates the role of filtering commonsense, where we also inte-
grate commonsense representations for each token in C and ai for multi-hop
analysis (global in Table 8). From this table, we can see that: (1) All three
methods have achieved their own best results in the two-hop commonsense
relation search, which means that the indirect commonsense concept may
not always work; (2) Multi-head attentional fusion is less sensitive to the
hop number of commonsense relationship search than the other two meth-
ods (±0.6 points for attention vs. ±1.5 points for gate vs. ±1.1 points
for linear), which is probably attributed to the speculation that the atten-
tion mechanism can effectively distinguish excessive noise while the other
two methods are “hard fusion”; (3) Interestingly, additive feature-based gat-
ing with global commonsense has performed better than itself with one-hop
commonsense on DREAM and CosmosQA. We can hypothesize that the
ConceptNet Numberbatch contains text-based lexicon information since it
is obtained by jointly retrofitting from word2vec and GloVe; (4) Compared
with the two datasets, the performance of the three methods on RACE did
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Table 7. Performance in accuracy (%) with different token attributes. We use global
BERT-basegate and BERT-baseattention as the baseline systems. “C”, “P”, and “T” denote
the ConceptNet Numberbatch, POS, and Entity type representations, respectively.

Methods C P T CosmosQA DREAM RACE

gate

! % % 64.1 64.5 64.5

% ! % 62.9 63.1 64.1

% % ! 63.2 63.3 64.7

! ! % 63.6 64.5 64.6

! ! ! 63.9 64.7 65.1

attention

! % % 64.3 64.6 64.0

% ! % 62.6 63.1 64.0

% % ! 62.9 63.4 64.3

! ! % 63.8 64.3 64.2

! ! ! 64.4 64.5 64.6

not fluctuate much with the number of hops, which once again shows that
RACE hardly requires external commonsense to identify correct options.

6.3. Case Study for Self-attention

To verify our goal to enable the self-attention in TrLMs to identify the
knowledge-aware tokens, we consider the case depicted in Fig. 3. In this case,
the vanilla BERT has chosen the wrong candidate option (A) and our models
can make the right choice (B). We capture the correlation between tokens in
the BERT and two-hop BERT-baselinear respectively, which are visualized in
Fig. 4(a) and Fig. 4(b), obtained from the penultimate self-attention layer
of BERT and two-hop BERT-baselinear, respectively.10 For BERT, the token
“bank” has a low degree of similarity to all the tokens ti ∈ C except “trav-
eler” and “cheques”, and the focus of almost all the tokens in the dialog is
quite discrete. Moreover, part of the tokens has a relatively high degree of
similarity to “conversation” and the segment token, which is not enough to
support the model to choose the correct conversation place. By contrast, our
incremental model can learn more accurate representations to understand the
commonsense relation between the passage and the candidate option, and to

10During visualization, we use a row-wise softmax operation to normalize similarity
scores over all sequence tokens.
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Table 8. Accuracy (%) on the CosmosQA, DREAM and RACE dataset based on the
different number of hop commonsense relation searching, where “global” means common-
sense representations are integrated into all tokens.

Model
CosmosQA DREAM RACE

global 1h 2h 3h global 1h 2h 3h global 1h 2h 3h

BERT-Bgate 64.1 63.7 64.4 64.3 64.5 63.9 64.9 63.4 64.5 64.5 64.9 64.6
BERT-Blinear 64.9 64.6 65.3 64.8 64.4 64.7 65.1 64.2 64.8 65.1 65.4 64.6
BERT-Battention 64.3 64.5 64.9 64.6 64.6 64.5 64.8 64.5 64.0 64.4 64.4 64.1

Roberta-Lgate 80.5 80.4 81.1 80.8 85.6 85.2 86.2 85.7 83.4 83.4 83.6 83.1
Roberta-Llinear 80.8 81.5 81.8 81.4 86.3 86.5 87.3 86.2 83.7 83.8 84.1 83.6
Roberta-Lattention 80.9 81.1 81.5 81.4 86.2 86.4 86.8 86.3 83.7 83.6 83.9 83.7

infer the correct answer. From Fig. 4(b), we can observe that “bank” has
a high degree of relevance with “cash”, “sign”, “money”, “exchange” and
“dollars”, which perfectly reflects their commonsense relationships shown in
Fig. 3. In addition, the vanilla similarity between “bank” and “cheques” has
also been retained or even strengthened. It illustrates that the common-
sense fusion method preserves textual information while effectively utilizing
heterogeneous knowledge.

6.4. Robustness for Incomplete Training Set

TrLMs pre-trained on large-scale texts have appeared still deficient in
explicitly representing the relationship between commonsense concepts. The
smaller the text training set in the downstream knowledge-driven task, the
higher the requirement for the commonsense understanding ability of the
LM. We show the results of three methods in different incomplete training
set settings in Fig. 5, using BERT-base and Roberta-large. We can see that
the performance of all models has demonstrated a similar trend with the
decrease in training set size. Larger pre-trained models were more stable as
the training set decreased. Compared to the vanilla TrLMs, our incremental
models have maintained better robustness. It is worth mentioning that the
performance of the three-hop models have decreased more slowly than the
one-hop models when the training set size drops to 60% and 40%. We argue
that external commonsense would be more needed when the scale of text
training set decreases to a certain extent. Augmenting TrLMs with external
knowledge incorporation results in more robust performance in the settings
with an incomplete training set.

22



i ' d
lik

e to
ca

sh tw
o

tra
ve

le
r ' s

ch
e

##
qu

es . w :
co

ul
d

yo
u

sig
n

yo
ur

na
m

e
he

re
pl

ea
se ? m :

su
re . w :

th
an

k
yo

u .
ho

w
wo

ul
d

yo
u

lik
e

yo
ur

m
on

ey ? m : in
hu

nd
re

ds an
d

fif
tie

s ,
pl

ea
se . w :
ok

. it ' s 1 ,
66

0
yu

an
,

he
re yo
u

ar
e . m :

th
an

ks .
m

ay
i

kn
ow th

e
ex

ch
an

ge ra
te ? w :

we
ll , at th
e

m
om

en
t

th
e

ex
ch

an
ge ra
te

be
tw

ee
n us

do
lla

rs
an

d rm
##

b is 1 : 8 . 3

conversation
most

probably
take

place
?

[SEP]
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[SEP]
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Fig. 4. Case study. In this case, the BERT (a) chooses the wrong candidate option and
our models make the right choice. Two-hop BERT-baselinear (b) is used for comparison.
Heat maps present similarities between correct answer (row) and dialog (column) tokens.

6.5. Relation Ablations

We have also examined the effect of different relationships for common-
sense filtering. As shown in Table 9, we use two-hop BERT-Blinear and select
6 commonsense relations in ConceptNet and conduct an ablation study on
two knowledge-driven datasets. For CosmosQA, the relations RelatedTo,
IsA and HasContext have played a relatively important role in the perfor-
mance of the model, which is reasonable since CosmosQA includes quite a
proportion of assumption and pre-/post-condition type of questions (“What
may (or may not) be the plausible reason for...” or “What may (or may
not) happen before (or after, or during)...”). Correspondingly, the relations
FormOf, Synonym and AtLocation have less influence because CosmosQA
pays less attention to lexical commonsense and “where” question design. For
DREAM, it is worth mentioning that the relation AtLocation has a greater
impact on model performance although it occupies a small proportion. This
is because DREAM designs considerable questions about the conversation
scene (“Where might this conversation happen?”). Additionally, since there
are more temporal and spoken words involved in the conversations, the re-
lations FormOf and HasContext have more influence in DREAM than Cos-
mosQA. Note that these relationships are not mutually exclusive, hence, only
keeping/excluding a relationship does not affect performance linearly.
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(b) BERT-Blinear
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(c) BERT-Battention
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(e) Roberta-Llinear
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Fig. 5. Accuracy on DREAM development set with the decrease in training set size.
BERT-base and Roberta-large are used for comparison.

6.6. Investigation for Integration Layer

We have further investigated which layers the fusion methods are applied
to are more effective. To this end, we have conducted experiments on two
methods, multi-level linear transformation and multi-head attentional fusion.
Taking the BERT-base as the benchmark, we examined the effect of multi-
level linear transformation on the bottom six layers and the top six layers,
and the performance of multi-head attentional fusion on the top three lay-
ers, respectively. Table 10 shows the accuracy on DREAM. First, applying
multi-level linear transformation to only the top six layers has achieved bet-
ter results than applying only to the bottom six layers. This indicates that
commonsense knowledge is easier to capture and use explicitly on higher
layers during fine-tuning, which is consistent with the conclusion of Liu et
al. [35]. Second, multi-head attentional fusion has given the best perfor-
mance when the output on the top layer was used for prediction, and the
accuracy generally has decreased as the fusion layer moved to the bottom.
This demonstrates that the self-attention in the bottom Transformer block is
more inclined to focus on lexical and syntactic information, while the explicit
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Table 9. Relation ablation study on the development sets of CosmosQA and DREAM.
The column of “Proportion” reports the percentage of commonsense relation types in
ConceptNet. Two-hop BERT-Blinear is used for analysis.

Relation Proportion (%)
CosmosQA DREAM

Only Keep Remove Only Keep Remove

RelatedTo 52.3 64.0 (-1.3) 63.5 (-1.8) 64.0 (-1.1) 63.6 (-1.5)
FormOf 9.7 62.9 (-2.4) 65.5 (+0.2) 63.3 (-1.8) 64.7 (-0.4)
IsA 8.6 63.0 (-2.3) 64.8 (-0.5) 63.2 (-1.9) 64.5 (-0.6)
Synonym 8.5 63.3 (-2.0) 65.0 (-0.3) 62.9 (-2.2) 64.5 (-0.6)
HasContext 6.3 63.4 (-1.9) 64.2 (-1.1) 63.6 (-1.5) 63.9 (-1.2)
AtLocation 1.0 63.0 (-2.3) 65.1 (-0.2) 63.6 (-1.5) 64.2 (-0.9)

Table 10. Accuracy (%) on the DREAM dataset with variants of different commonsense
integration layer.

Model
Integration Layer

Layer 0-5 Layer 6-11 All layers

2-hop BERT-Blinear 64.6 (-0.5) 63.5 (-1.6) 65.1

The 9th layer The 10th layer The 11th layer

2-hop BERT-Battention 63.7 (-1.1) 64.4 (-0.4) 64.8

integration of external commonsense knowledge could play a greater role on
the higher layer.

6.7. Error Analysis

We have conducted the following error analysis to investigate problems
that our models are short of the ability to address. We randomly extracted
200 samples from the development set of DREAM, and then classified them
into several question types according to the annotation criterion consistent
with [11]. We compared two-hop BERT-baselinear with BERT-base on these
categories, as shown in Table 11. Both models performed worse than random
guessing (33.3%) on math problems since the Conceptnet does not contain
the commonsense of mathematical computing, especially time and currency,
which can be future work. Although superior to the vanilla BERT on the
implicit questions (e.g., under the categories logic and commonsense) which
require external knowledge, our incremental model was less capable of an-
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Table 11. Error analysis on DREAM. The column of “Proportion” reports the percent-
age of question types among 200 samples that are from the development set of DREAM
dataset.

Question Type BERT-B BERT-Blinear Proportion (%)

Matching 65.1 65.4 12.2
Reasoning 62.9 64.9 87.8

Summary 78.1 77.7 8.6
Logic 59.3 62.1 76.1
Arithmetic 31.7 32.3 2.5
Commonsense 57.9 62.2 32.5

swering these questions under the category summary. We can hypothesize
that integrating token-level commonsense may interfere with the reasoning
requiring the aggregation of information from multiple sentences.

7. Related Work

Machine Reading Comprehension. In recent years, many MRC datasets have
been released to solve different task scenarios, e.g., cloze-style [36, 37], ex-
tractive/abstractive answer [1, 2, 38, 39, 40], multi-choice [3], conversational
QA [41, 42], multi-hop [4, 43], and whether external knowledge is needed [44,
10, 12, 13, 14]. Most MRC datasets that require external knowledge are de-
signed in a multi-choice form. In this paper, we focus on the multi-choice
knowledge-driven MRC task. For knowledge-driven datasets, SemEval-2018
Task 11 [45] and ROCStories [46] are also challenging datasets for knowledge-
driven tasks. However, each question of both is only related to two candi-
date answers, potentially reducing the difficulty of multi-choice MRC. For
few-commonsense multi-choice datasets, MCTest was released earlier and
on a smaller scale compared with RACE. Hence, considering timeliness and
novelty, we choose CosmosQA, DREAM, and RACE in the experiments.
For multi-choice MRC, existing methods include designing the interaction
among the passage, question and option [47, 31, 48, 9, 29], or transfer learn-
ing through data augmentation [28]. Nevertheless, these methods do not rely
on commonsense knowledge for logical reasoning.

Integrating External Knowledge for MRC. Existing work has utilized struc-
tured knowledge from KBs/KGs to improve performance on MRC and QA.
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Yang and Mitchell [25] incorporated retrieved knowledge into LSTM by em-
ploying an attention mechanism with a sentinel. Bauer et al. [7] selected
grounded multi-hop relational commonsense information from ConceptNet
via pointwise mutual information and term-frequency based scoring function
and used a selectively gated attention mechanism to fuse the knowledge. Mi-
haylov and Frank [49] introduced a mixed attention to external knowledge
for cloze-style reading comprehension. Wang et al. [50] and Zhong et al. [51]
explored the effect of semantic relations from KGs such as WordNet and
ConceptNet on MRC. Sheng et al. [52] presented a sentence-level knowledge
interaction module to integrate commonsense knowledge with corresponding
sentence rather than the whole MRC instance. Wang and Jiang [53] proposed
a data enrichment method, which uses WordNet to extract inter-word seman-
tic connections as general knowledge from each given passage-question pair.
Xiong et al. [54] retrieved the corresponding entities and relation from text
to aggregate answer evidence from an incomplete KB. Yang et al. [20] took
BERT as encoder and employ an attention mechanism similar to [25] to fuse
globally pre-trained knowledge downstream. Compared to these methods,
we mainly focus on plug-in fusion methods and explore token-level multi-hop
commonsense representation integration instead of relation embeddings.

Injecting knowledge into Language Model. More recently, pre-trained Transformer-
based language models such as BERT have shown powerful achievements in
downstream tasks including MRC. The injection of external knowledge to
TrLMs can be generally divided into two groups. Methods in the first group
design auxiliary knowledge-driven objectives and updating parameters in a
multi-task learning manner [18, 19], which requires pre-training the TrLMs
even from scratch. The second group is to pre-train external modules to as-
sist TrLMs [51, 55]. In contrast, our fusion methods are to directly fine-tune
on the target MRC datasets. A similar work at the same time is [56], which
also focuses on injecting task-specific concept embeddings to BERT during
fine-tuning. However, it used aligned entity vectors by string concatenation
and replacement. Different from it, our alignment algorithm is based on
multi-hop token search and fusion methods are based on the vectors’ trans-
formation inside the TrLMs.

8. Conclusion

This paper has introduced increment Transformer-based language models
with three plug-in fusion methods, which can enhance vanilla TrLMs with
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commonsense representations from ConceptNet. We have used off-the-shelf
ConceptNet embeddings as external knowledge representation and introduce
a mask mechanism for token-level multi-hop relationship searching to filter
external knowledge, so as to enable the self-attention in TrLMs to identify the
knowledge-aware tokens effectively. Our models have achieved competitive
improvements over baselines on two knowledge-driven machine reading com-
prehension datasets with a fewer computational cost. Extensive experiments
have shown the effectiveness of the proposed methods and the robustness
of the incremental models in the case of an incomplete training set. This
work has demonstrated the role of commonsense incorporation into TrLMs
in knowledge-driven reading comprehension. As for future work, in addition
to addressing the problems mentioned in error analysis, we can start with
more granular relationships and more commonsense sources to integrate ex-
ternal knowledge.
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