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Abstract 

 

This study investigates the applicability of machine learning methods to the routing protocols 

for achieving rapid convergence in self-organized knowledge-defined networks. The research 

explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and 

beyond, aiming to design a routing protocol that complies with the SON requirements. Further, 

it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to 

extend the routing capability by calculating the “Most Reliable” path than the shortest one.  

 The research identifies the potential key areas and possible techniques to meet the 

objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, 

Hybrid SDN architectures, intelligent routing models, and service migration techniques. The 

design phase focuses primarily on the mathematical modelling of the routing problem and 

approaches the solution by optimizing at the structural level. The work contributes Stochastic 

Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost 

calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide 

constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural 

Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the 

research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a 

secure migration technique for containerized services in a Multi-access Edge Computing 

environment using Distributed Ledger Technology.  

 The research work now eyes the development of 6G standards and its compliance with 

Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep 

Reinforcement Learning and Quantum Computing.   
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Chapter 1: A Preamble to Network Intelligence   

 

 

1.1.Towards the Industry 5.0 paradigm  

The continuity in development has been a prominent feature of the history of mankind. 

Engineering, the purposeful implementation of science, perhaps is a perfect example of the 

preceding statement. Arguably, the most influencing driver for this substantial advancement is 

the effect of the Industrial Revolution. A tiny fraction of three centuries has inked monumental 

changes in our native instincts along a timeline of three hundred thousand years that humans 

have occupied the earth. During the early stages of industrialization in the year 1800, the world 

population was less than a billion; on the verge of the Fifth industrial revolution in 2021, it is 

reaching 8 billion, and expected to be 11 by the year 2100.  However, despite this exponential 

growth, the mean life expectancy has boosted from 35 years in 1800 to 72 years in 2021, 

falsifying the Malthusian growth model.  

The rapid digital transformation driven by the Internet came in three phases, often 

called The-Three-Waves. The first wave came from 1985 to 99 when companies like Microsoft, 

Apple, IBM, Cisco, Sun, etc., developed hardware and software for the Internet. During the 

second wave (2000-15), companies like Google, Amazon, Facebook, etc., built applications 

over the Internet infrastructure; App-Economy was born. The third wave (2015 onwards) has 

brought Internet Ubiquity. On the bright side, the consequences of digitization and 

globalization have significantly improved the socio-economic landscape worldwide. 
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Figure 1 summarizes the four iterations of industrial revolutions with their respective 

contributions to modernizing society and the promises of the fifth one. However, the timeline 

needs to be analyzed slightly differently to understand the key enablers of such futuristic claims. 

From the age of electrification, two parallel yet mutually exclusive development have taken 

place. These include telecommunication systems and machine intelligence. Presently, 

communication networks have become enough Softwarized that programming and automating 

them are now mainstream functions. Likewise, the rich ecosystem of machine learning and 

deep learning APIs has made their implementation seamless and agile.  Hence, the Software-

Defined Networking (SDN) model has paved the path for seamlessly integrating the power of 

machine learning in solving networking problems. Such a network is called a Knowledge 

Defined Network (KDN), which is self-aware and needs minimal human intervention to be 

managed, complying with the industry 5.0 needs. 

 

Figure 1 A summary of the evolution of modern industries and the convergence of Networking 
technologies and Machine Intelligence 
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1.2. Software-Defined Networking and SD-WAN  

The increasing complexity of contemporary mobile and application-centric networks is 

pushing traditional WAN architectures to their limit. Due to the rise of cloud services and edge 

computing, enterprise networks' inter-site data transfer volume rise rapidly. Moreover, 

enterprises tend to integrate several communication technologies such as Broadband, LTE, 

MPLS, etc., for a high-available dynamic WAN connectivity, which a traditional WAN doesn’t 

support natively. Additionally, its distributed computing model results in the Control-plane 

traffic consuming a significant amount of backhaul bandwidth. Software-Defined WAN (SD-

WAN) is a generation shift that adapts the centralized model of SDN to WAN that fills the 

bottlenecks of its predecessor. It provides over twice the bandwidth having the same backhaul 

with more manageability, autonomy, and network security. Chapter 3 of this thesis discusses a 

hybrid routing algorithm for multi-controller SD-WANs that computes all-possible routes 

proactively and serves them on-demand. It also presents a model that results in a rapid 

convergence across edge devices and the synchronization mechanism among several 

controllers and a test-bed implementation. 

1.2.1. Content Distributed Networking over SD-WAN, a use-case  

Telecommunication industries across the world are going through a massive transformation 

phase. The increasing demand for high-quality online content like streaming from "Over the 

Top" (OTT) platforms (e.g., Netflix, Amazon Prime, YouTube) is driving the telcos to optimize 

their existing network architectures. Content Distribution Network (CDN) that caches static 

contents into a proxy server, e.g., Point of Presence (PoP), enables various alternatives to 

reduce the delays. Content-caching is a clever and widely used method [9] that keeps the 

response of most frequently requested contents and serves them from local storage rather than 

redirecting from the origin. Studies have shown that using a predictive approach may reduce 

the overhead cache value per day up to a fraction (10% - 20%) of the cache size [10]. 
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 Multi-Access Edge Computing (MEC) [11] enhances the availability of cloud services 

by distributing them to the edge, bringing them closer to the mobile end users. MEC nodes host 

several virtualized services and attach them to a dedicated network called the backhaul network. 

SDN-based backhauling enables centralized control, which results in control-plane 

functionalities such as routing, policing, etc., to execute as services. Unlike traditional 

distributed computing models where network devices synchronize by exchanging control 

packets, SDN decouples the control plane from the forwarding plane [12].  A network device 

sends its local information to the controller to compute the forwarding logic. SDN results in 

greater autonomy and programmability in a network configuration, including rapid policy 

deployment that collectively reduces the CapEx and OpEx.[13]. A logically centralized cluster 

of remote servers (SDN-Controllers) hosts the control plane. The SDN controller interfaces 

with applications and hardware switches via the North-Bound (NBI) and South-Bound (SBI) 

interfaces. The communication method for NBI is typically RESTFul, whereas the SBI uses 

OpenFlow. Applications send generic RESTful configuration requests to the controller defined 

by a policy, which gets translated into device-specific configuration and injected into the 

devices. Therefore, SDN controllers play a principal role in abstracting the granularity of the 

network infrastructure and easing the device configuration for application developers. 

 With the introduction of Network Function Virtualization (NFV), it is possible to 

Virtualize Network Functions (VNF) and host them in a remote computing platform (e.g., 

Cloud, Remote servers, etc.). However, not all network functions, such as Radio transceivers, 

sensors, etc., can be virtualized. For instance, Virtualized appliances like routers (e.g., Cisco 

CSR, HP VSR, Juniper vEX, Quagga, etc.), switches (e.g., Cisco Nexus-9k, 10k, HP Flex-

Fabric, Cumulus, etc.), and firewalls (e.g., Cisco ASAv, PF-Sense, etc.) are a pretty common 

sight in production networks [14]. The orchestrator program manages the VNF associated with 

optimal placement, resource allocation, and provisioning [15]. A challenge in the SDN-MEC 
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based design of the CDN environment is to optimize the forwarding traffic. SDN offers a birds-

ey view of the network, which eases traffic control by taking forwarding decisions at the control 

plane. The high-level traffic management also leverages optimal connectivity under mobility 

conditions, using efficient ad-hoc routing techniques. Reactive routing is an ad-hoc routing 

process that discovers routes on-demand, whereas proactive routing finds Routes before 

applying them. SDN is also effective for hardware independence. For a mobile ad-hoc network, 

the SDN-NFV approach demonstrates better agility for high volume data than a non-SDN-

based one, which stands superior in large-signal load [16]. 

 Although SDN offers a wide range of benefits over traditional network models, it falls 

short in implementational acceptance. Giant-sized network infrastructure owners such as 

service providers, data centres, and telcos are reluctant to scrap all their existing non-SDN-

compliant forwarding hardware for the sake of enjoying the SDN benefits [17]. The primary 

reason is the cost of re-investment over the expected profit from service quality escalation, and 

second, the resource spending to retrain for a smooth operational transition. These results in 

the overlay-SDN model (initially introduced by VMWare through their NSX platform [18]), 

which cancels the need to replace the Data-plane devices instead of creating a virtual overlay 

network that connects it to the control plane. The overlay tunnels enable the edge devices, i.e., 

routers and layer-three switches, to communicate with the controller using the Internet as a 

fabric. The control plane gets segregated, as the global controls reside in the remote-

orchestrator, whereas the device-specific controls stay in the edge devices. The architecture is 

called Software-defined WAN or SD-WAN [19][20]. In SD-WAN architecture, the orchestrator 

hosts the application plane and interacts with the controller cluster. The application plane 

performs network operations like routing and sends generic results to the controller. The 

controller then translates it to device-specific commands and pushes it to the downstream edge 
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nodes. Cisco uses Overlay Management Protocol (OMP) [21], and Citrix uses Adaptive 

Transport Protocol [22] for this purpose. 

 SD-WAN architecture leverages the centralized routing model where edge devices do 

not exchange control information. Instead, they update the central controller. Routing as a part 

of the Layer-3 operations executes within the controller. This surfaces a fundamental problem 

in adapting traditional routing protocols such as OSPF [23] and EIGRP [24], inherently 

distributed in nature. This opens up a new dimension in the routing protocol design philosophy 

that aims to compute routes from a centralized perspective. This is not to be misinterpreted by 

drawing parallels to some centralized mechanisms in traditional routing such as Designated 

Routers in OSPF, Route-Reflector in BGP, Root-Bridge in Spanning Tree protocol, or Next-

Hop Server in DMVPN. In all these cases, the central node’s functionality is to collect and 

distribute network information. The ultimate computation is carried out on the nodes in a 

distributed fashion. SD-WAN Routing calculates routes on an aggregated topology built by 

fusing information from individual edge nodes and configuring the routing tables to the edge. 

Chapter 3 presents a centralized rapid-convergence routing algorithm (MRoute) for SD-WAN 

[25][26] that proactively finds all-possible paths for all pairs of nodes, ranks them, updates 

rank over time, and serves routes on-demand and a multi-controller implementation MRoute. 

Runtime performance is compared with OSPF and EIGRP emulating them on an SDN test-bed 

that comprises [27] IaaS Cloud, OpenDaylight [28] as the controller, and Mininet [21] as the 

forwarding plane. 
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1.2.2. Contribution to Knowledge  

Chapter 3 of this thesis describes a solution to some critical issues of SD-WAN with CDN as a 

test case scenario. 

1. A model of sharing routing information in a multi-controller SD-WAN. 

2. A hybrid routing algorithm proactively calculates all-possible paths between all pairs 

of nodes and reactively serves them on demand. 

3. An SD-WAN testbed to implement, experiment, and benchmark the proposed model. 

 

1.3. System-Level Simulation for 5G and Hybrid-SDN Integration 

Design and structural complexity are skyrocketing with the introduction of diverse technology 

paradigms in next-generation cellular and vehicular networks. The beyond- 5G use cases such 

as mobile broadband, URLLC, 5G-V2X, and UAV communications require ultra-low latency 

and high throughput and reliability with limited operational complexity and cost. These use 

cases are explored in 3GPP Releases 16 and 17. To facilitate end-to-end performance evaluation 

for these applications, SDN-Sim - integrating a System Level Simulator (SLS) with a Software 

Defined Network (SDN) infrastructure is proposed. While the SLS models the communication 

channel and evaluates system performance on the physical and data link layers, the SDN 

performs network and application tasks such as routing, load balancing, etc. Chapter 4 

discusses an architecture that replicates the SLS-defined topology into an SDN emulator for 

offloading control operations. It uses link and node information calculated by the SLS to 

compute routes in SDN and feeds the results back to the SLS. The chapter also proposes the 

data modelling and processing, replication, route calculation frameworks, and architecture. 
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1.3.1. SDN integration, a Vehicular Networking perspective  

Towards 5G/B5G, the third-generation partnership project (3GPP) is finalizing Release 16 and 

defining Release 171. In the area of vehicular networks, the 3GPP, in partnership with the Fifth 

Generation Automotive Association (5GAA), is driving the efforts on the 5G-based vehicle-to-

everything (V2X) paradigm, which adds advanced features to the LTE-V2X from Release 14, 

particularly in the areas of support for ultra-reliable and low-latency communication (URLLC) 

applications for the future intelligent transport systems (ITS) [29],[30], [31]. In the evolution 

path from LTE-V2X to 5G-V2X, the authors in [29] advocated the incorporation of software-

defined networking (SDN) in the architecture to enhance the system performance through 

SDN’s capabilities in facilitating intelligent multi-hop routing, dynamic resource allocation, 

and advanced mobility support, among others. 

 To evaluate the performance of proposed algorithms, techniques, and frameworks for 

any new era of communication networks, numerical simulations, mathematical analyses, and 

field trials are the three main approaches being employed. Though analytically tractable, 

mathematical methods (e.g., stochastic geometry tools) are often constrained by simplifying 

assumptions that potentially limit their use in modelling large-scale, highly complex, and 

dynamic networks. Realistic performance can be measured in live operating environments. 

However, the financial and operational requirements are costly and practically infeasible for 

the early design and development stages. Hence, in the past few decades, simulations have 

become essential tools for the assessment of network performance due to the apparent cost and 

implementation advantages [32]. 

 Depending on the performance metrics under investigation, simulators can be 

categorized into three: Link Level Simulator (LLS), System Level Simulator (SLS), and 

 
 

1 https://www.3gpp.org/news-events/2058-ran-rel-16-progress-and-rel-17-potential-work-areas  

https://www.3gpp.org/news-events/2058-ran-rel-16-progress-and-rel-17-potential-work-areas
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Network Level Simulator (NLS). The LLS examines detailed, bit-level physical (PHY) layer 

functionalities of a single link. The SLS evaluates the performance of links involving many 

base stations (BSs) and user equipment (UEs) at the medium access control (MAC) layer (with 

the PHY abstracted). It focuses on the radio access network/air interface and facilitates analyses 

of resource allocation, capacity, coverage, spectral and energy efficiencies, among others. The 

NLS, however, assesses the performance of protocols across all layers of the network, including 

control signalling and backhaul/fronthaul issues. Performance is characterized using metrics 

such as latency, packet loss, etc. [33]. 

 Besides metric-based classification, simulators can also be grouped based on radio 

access technologies supported (e.g. cellular, vehicular, Wi-Fi, etc.), programming languages 

(MATLAB, Python,  C++,  etc.), licensing option (open source, proprietary) or network 

scenario capabilities (LTE, 5G, B5G, etc.) [33]2. While the SLS does not simulate beyond the 

MAC layer, the NLS simulates networks up to the application layer. However, the 

implementation and computational complexity of NLS become very high when a large number 

of nodes are involved [34]. 

 Another significant paradigm shift in network design took place with the advent of SDN 

[34]. It decouples the control (signalling) plane from the data (forwarding) plane and runs 

applications in the application plane to manage the network. This brings transparency to 

network design and lets software developers write applications for managing the networks, 

keeping the internal structure in abstraction. Each layer uses several interfaces to communicate 

with each other. The control plane communicates with both application and data planes using 

 
 

2 Representative simulators include the Vienna LTE-A and 5G simulators for LLS and SLS 
(https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/ ), and the 5G-K Simulators for 
the NLS (http://5gopenplatform.org/main/index.php).  

https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/
http://5gopenplatform.org/main/index.php
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north and southbound interfaces, respectively. In the case of a cluster of controllers, east and 

westbound interfaces are used for communicating among them. 

 As the default southbound protocol for SDN, OpenFlow uses Flow Tables (FT) to 

perform packet forwarding. Each FT entry is a forwarding rule determined by the controller. A 

forwarding rule has mainly three significant fields, a “match,” an “action,” and a “priority.” A 

“match” is some criteria for an inbound packet to be checked. A packet that satisfies the criteria 

is termed a “table hit”; otherwise, it is a “table miss.” For each case, an action is defined such 

that the OpenFlow switch executes on the subjected packet. If a packet satisfies matches from 

multiple flow rules, priority breaks the tie. The SDN Controllers populate flow entries. The 

OpenFlow switch requests the controller for every table miss and the controller replies with a 

flow entry. If the controller cannot resolve an action, it is set as a “drop,” The switch does not 

process the packet. The decoupled control plane reduces computational cost on forwarding 

devices by offloading the control packet processing tasks to the controller. Therefore, SDN 

offers better modularity, programmability, agility, automation, and load balancing capability 

than traditional networks. Also, the SDN-based approach is becoming the norm in network 

design practices for cloud computing and 5G. 

 

1.3.2. Contribution to Knowledge  

Chapter 4 of this thesis presents a novel SDN-based System Level Simulator (SDN-Sim) 

platform where the SLS-Stage runs in MATLAB and the NLS stage using python3. The 

architecture uses the SDN design philosophy to reduce the overall computational complexity 

of the system considerably. The computationally demanding upper layer network functions 

(e.g., inter-cellular routing) are offloaded to the virtualized cloud infrastructure. Low-level 

network information (e.g., Channel model, topology, etc.) is mapped from SLS to SDN. The 

virtual infrastructure uses VMWare ESXi servers; OpenFlow and RESTConf are the south and 
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northbound protocols, OpenDaylight as the SDN controller, and GNS3 and Mininet-wifi as the 

data plane emulation.  

 

1.4. Efficient IP Routing for SDN  

The routing protocols play a vital role in saving energy, especially by minimizing the time a 

packet travels from source to destination. Energy-aware routing protocols aim to select a route 

that engages routers to minimum overall energy consumption. 

 

1.4.1. Energy-aware SDN Routing  

Energy awareness techniques in routing algorithms have been in the limelight of the research 

community for a while. For the last few decades, it has been evident that Moor’s law is broken, 

and devices are becoming more powerful. However, on the flip side, they are becoming more 

power-hungry, and the advancement in battery capacity is not coping with the rate. Therefore, 

designing energy-efficient software has become a trend in the research community to meet the 

green objective. Contribution from several fields has made it a prosperous domain. In [35], the 

authors present how energy savings can be optimized by using Microsoft’s MAUI framework 

by offloading the application. But when the local energy is saved by executing an intense part 

of the program remotely, communication cost is proportional to the routing time. The routing 

algorithm plays a vital role in the energy savings schemes. Routing protocols developed for 

homogeneous networks, such as Ad-hoc On-Demand Distance Vector (AODV), don’t work for 

the heterogeneous environment, as the resource utilization of network devices affects efficiency. 

Hence, Resource-Aware Routing for Low powered and Lossy Networks (RPL) was 

standardized (RFC 6550) [36], which also formulates the node cost calculation metric. Link 

cost calculation typically depends on the nature & type of the network; however, some 

generalized techniques are discussed in [37], [38].    
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 Software-Defined Networking (SDN) [39] is also becoming the de facto standard of 

modern networking. It decouples the control and data plane. The control plane (CP) is a 

logically centralized entity hosted by one or many devices called Controllers; it instructs the 

traffic forwarding rules to the Data Plane (DP), which constitutes switches, which only 

forwards. CP bridges with the DP with OpenFlow protocol and switches register the 

instructions in OpenFlow Tables.      

 

1.4.2. Contribution to the Knowledge 

Within the context of this research work, an energy-aware routing algorithm has been designed 

and developed that exploits application offloading. Furthermore, it proposes a resource-aware 

routing algorithm for SDN, which monitors the resource utilization of network devices (nodes) 

and channels (links), using a push agent and fetches topology and flow table information from 

the controller. Using Link Queue Modelling [40] and Stochastic Network Calculus [41] a route 

is guaranteed that avoids busy nodes and uses unutilized ones. Results show the validity of the 

algorithm.  

 

1.5. Cognitive Routing, an Industry 5.0 perspective 

Complex communication across interconnected devices poses a unique reliability challenge on 

the verge of the 4th industrial revolution and the beginning of Industry 5.0. Time-critical 

applications such as industrial and mission-critical communication systems demand stability 

in scale. Recent progress in SDN routing has shown significant improvement in various 5G 

KPIs but fulfilling the Ultra-Reliable Low-Latency Communication (URLLC) to achieve 

seamless Industrial-IoT communication stays inadequate. One of the significant challenges 

deals with dynamic network behaviour. The Knowledge-Defined Networks (KDN) bridges the 

gap by extending SDN architecture with Knowledge Plane (KP) on top, which learns the 
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network dynamics to avoid suboptimal decisions. Cognitive Routing is a relatively young 

discipline that uses Machine Learning (ML) algorithms to optimize routing decisions. Research 

shows that the majority working in this area focus on traffic prediction and route optimization; 

however, the reliability approximation exploration is limited. Cognitive Routing leverages the 

Sixth Generation (6G), SON, with the self-learning feature. 

 Chapter 3 of this thesis covers a self-organized cognitive routing framework to support 

URLLC. In this context, a bespoke KDN reduces end-to-end latency by choosing the most-

reliable path with minimal probability of route-flapping. The proposed framework pre-

calculates all possible paths between every pair of nodes and ensures Self-Healing with a 

constant-time convergence. Furthermore, it uses Sharpe-Ratio to measure volatility and 

forecasts its trends using RNN with LSTM. The framework uses online learning to tackle 

network dynamics. An experimental testbed benchmarks the proposed framework to compare 

the convergence parameters against SPF and DUAL. 

 

1.5.1. Self-Organized Knowledge-Defined Networking (SO-KDN) 

In 2013, the German Academy of Engineering Sciences presented a recommendation and 

research agenda for Industry 4.0 Its primary motivation was to achieve seamless integration 

between physical and virtual technologies to facilitate smart manufacturing, which results in 

significant inflation of the IoT technology in industrial automation. Between 2009 and 2019, 

the Industrial sector has contributed 20% to the EU’s GDP. Industry 5.0, as a natural successor, 

aims to build on top of the existing architectural frameworks of Industrial and Heterogenous 

IoT (I-IoT, H-IoT) and interoperability between cyber-physical systems. The Directorate-

General of Research and Innovation (EU) has identified a new set of concepts that Industry 5.0 

addresses. These are Human-centric solutions, Bio-inspired Technologies, Real-time digital-

twins technology, Network analytics, Machine-learning based automation, and Trustworthy 
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autonomy. A large-scale industry needs to have a scalable network fabric to interconnect all its 

devices. Software-Defined Networking (SDN) provides a programmable, vendor-agnostic 

communication platform. 5G leverages SDN at its core to virtualize network services (NFV), 

and ISPs use it in WAN deployment (SD-WAN). SDN provides a bird’s eye view of the network 

where the control plane accumulates global knowledge about the underlying topology and 

flows. Additionally, the data plane generates enough that the controller can mine for analytics. 

In SDN-based routing, the routing protocol uses the global view to calculate optimal paths 

without letting the routers exchange control packets. An efficient routing protocol aims to avoid 

sub-optimal paths and converge rapidly in a dynamic environment. However, highly time-

critical industrial communication systems, such as IoT infrastructure for manufacturing plants, 

cannot tolerate delays due to routing protocol convergence. Therefore, routing optimization 

using analyzing the network’s behaviour provides a better heuristic which eventually reduces 

the convergence probability. In SDN [42] Routing, the Shortest-Path calculation is the 

subjected Optimization problem where a controller calculates the optimal values of the free 

parameters subject to a set of communication constraints defined as a policy (Self-

Optimization). The controller then Configures the parameters into the underlying network 

devices (Self-Configuration) and serves alternate Routes On-Demand, if the primary one fails 

(Self-Healing); thus, supporting the SON [43]. However, the application of Machine Learning 

(ML) in Route-Optimization is a relatively new domain; at the time of writing this paper, there 

are a handful of works done in developing an Intelligent Routing Algorithm for SDN. The base 

model of fitting ML in SDN is referred to as Knowledge-Defined Networks (KDN)[44], where 

the primary objective is to accumulate holistic information from a supervising Control Plane 

(CP) of an underlying IP network, analyze them to extract knowledge that generalizes the 

network behaviour. This knowledge eventually helps to bypass the need for using costly 

heuristic Routing algorithms, having preserved the equal adaptation capabilities to network 
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dynamics[45]. Self-Organized Networking (SON) [46] in the fifth-generation cellular 

communication systems (5G) enhances the requirements of its predecessor. Some of the new 

requirements involve increasing traffic capacity, improving QoS/QoE, support of 

heterogeneous Radio Access Networks (RAN), 10Gbps pack data rate, sub-millisecond latency, 

support of ultra-high reliability, improved security, privacy and flexibility, and reduction of 

CAPEX and OPEX [47]  [48] [49]. SON constitutes the following three entities. 

• Self-Optimization provides several control-plane (CP) optimization strategies such as 

Caching, Routing, load balancing, etc. which are invoked autonomously. Relevant 

algorithms calculate the optimal values of several decision variables w.r.t., the set of 

constraints, called policies. 

• Self-Configuration automates the injection of the decision parameters (e.g., operational 

and radio config) to the underlying data-plane devices. 

• Self-Healing provides high availability to the overall network. A typical model uses 

detection, diagnostic and compensation sequences to automate the recovery process. 

Recent development in SON shows significant use of ML to accelerate the performance of its 

constituents [50]. 
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1.5.2. Contribution to Literature  

Chapter 3 of this thesis describes Most-Reliable-Route-First (MRRF), an Intelligent Routing 

algorithm for Self-Organized Knowledge-Defined Networks. The model initially calculates all 

possible paths for all pairs of nodes from the Networks’ topology using our proposed algorithm 

(MRoute) and aims to learn the reliability of individual links by their statistical measures of 

volatility over time. The algorithm maintains the routes’ ranks based on their cumulative 

reliability and serves them on-demand in constant time, assuring the most reliable Routes. A 

full-fledged implementation of the KDN model as a test-bed to conduct experiments, which 

benchmarks MRoute with Diffusion Update Algorithm (DUAL) [51] and Shortest Path First 

(SPF) [52] that powers EIGRP as OSPF, respectively. Result confirms the validity of a constant 

time switch-over of Routes guaranteeing the highest reliability.  
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1.6. Motivation and Problem Statement  

This section summarizes the motivation behind the research and presents a problem statement 

that it aims to address.  

1.6.1. Motivation  

As per the contemporary landscape of SDN and its applications are concerned, three broad 

elementary issues have contributed to the motivation of this research.  

1. Limitation of the SDN/SD-WAN solutions: At the time this thesis is being compiled, the 

existing SDN/SD-WAN solutions are limited in their usage in the infrastructure 

orchestration.  It offers more automation than control, i.e., SDN controllers are more often 

used to automate the underlying devices than offloading control plane functionalities.  

2. Centralized Routing Model: The classic implementation routing protocol families (i.e., 

Distance Vector, Link-State or Path-Vector) is based on a distributed computing model, 

where the speaker nodes advertise their local view of the topology with their neighbours 

and flood any topology change via link-local multicast. However, this introduces a 

propagation delay for a relatively large topology which affects the convergence speed. As 

the contemporary Software-Defined Network model provides a centralized view of the 

topology, thus, running a distributed algorithm does not take advantage of the centralized 

computing model of the SDN. This includes Routing as a Service and out-of-band control 

with zero control packet exchange at the data plane during convergence. Therefore, a 

routing model dedicated to the SDN is a need.  

3. uRLLC Compliance: The 5G specification introduces uRLLC as a KPI. Although several 

research in complying with the uRRLC has contributed to the data plane, there is a void 

for the same at the control plane. None of the existing routing models (to the best of our 

knowledge) consider statistical end-to-end reliability while calculating the routing metric.  

Also, routing as a reinforcement-learning problem is a novel concept.   
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1.6.2. Research Questions 

This section summarizes the research questions and methodologies in two sections the “Why?” 

And the “How?”, the former lists the legitimacy of the research problem and the latter outlines 

the key ideas for tackling them.   

The Why? – problems this research addresses: 

1. How to provide rapid convergence in a dynamic network to achieve end-to-end Low-

Latency communication. 

2. How to facilitate network automation & programmability as an integral part of the design. 

3. How to leverage Machine-Learning models to optimize routing decisions. 

4. How to use both the Link (Communication) and Node (Computation) costs together to 

influence the routing decision. 

5. How to use statistically evaluated end-to-end Reliability as a routing metric? 

The How? – Methodologies to solve the above problems. 

1.  Refactoring the Single-Source Shortest-Path-Problem.  

2. Running routing protocol as a pluggable application module, i.e., Routing-as-a-Service.   

3. A hybrid graph-search algorithm that pre-computes all possible paths between all pairs of 

nodes and maintains their order or preference in the runtime.  

4. A robust telemetry protocol that feeds the network state to the application plane. 

5. A Meta-Graph processing approach, that fuses multiple topology information (e.g., 

Neighborship, Flows, Utilization, etc.) into a single structure to perform centralized 

topology computation.  

6. Using Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) to 

model network state as an Auto-Regressive problem and compute anticipated reliability 

based on historical behaviour of the network.  

 



 35 

Chapter Summary  

This chapter introduces the concept of Network Intelligence in the view of the Industry 5.0 

compliance. In the context of this thesis, the chapter discusses four major concepts that 

contribute to the development of a cognitive routing framework. Each Section trails the 

“contribution to the knowledge” of the concept. The chapter first gives a closer look into the 

Software-Defined WAN (SD-WAN) architecture with a use case of Content Distribution 

Networking (CDN). The Section elaborates on the need and architectural migration that the 

contemporary networks are going through which would need the SD-WAN implementation. 

Additionally, it includes a brief market survey on various SD-WAN technologies from 

renowned vendors. The next section puts a use case on integrating an SDN platform with a 

System-Level Simulator, which extends the discussion on the former concept towards a hybrid 

implementation where part of the network is Softwarized and the rest remains traditional. The 

section briefly discusses various simulation platform that exists in the literature and presents a 

generic view in the context of vehicular networks. Further, a specific use case of routing in 

such an environment is explored in the context of this Thesis which the next section explains 

in detail. Further, it presents a more subjective discussion on SDN routing and its fundamental 

differences from a traditional distributed model. The chapter concludes with a discussion on 

the cognitive routing for a Self-Organized Knowledge Defined Network leveraging the 

concepts discussed in the previous sections.  It presents a detailed study on the same concept 

in the light of 5G and Industry 5.0 compliance. 

 In summary, this chapter sets the stage for discussion in the following chapters. It 

justifies the rationale, motivation and need for the research and its potential adaptability and 

compliance to the evolving networking technologies such as 5G, URLLC and Industry 5.0.   
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Chapter 2 Related work  

 

 

Cognitive routing is a breed of routing algorithms where ML algorithms enhance the optimal 

route computation. The domain of cognitive routing is a constructive blend of several 

developments that have been progressing for quite a time now. The contemporary form of 

cognitive routing aims to comply with several other objectives; these include meeting the QoS 

requirements, compatibility with a Hybrid SDN architecture, compatibility with the Segment 

Routing techniques, and indeed, the application of deep learning framework. The following 

sections will touch upon each of the said areas to explore the motivations for cognitive routing 

as a whole. 

 

2.1. QoS aware routing  

Quality of Service is a feature on Layer 2 to 4 on the OSI protocol stack to prioritize traffic 

flows for streamlining them in congestion. A QoS framework ingests a policy set that describes 

a list of constraints. The framework uses tools to enforce the policy on the network, e.g., 

Classification, Marking, Queuing, Shaping, and Policing. The PDU header carries the marking 

information to tag a flow for prioritization.  Table 1 depicts the marking field used in the PDU 

of each layer. 

Layers Marker Bits 
L3 (IP) Type of Service (TOS) byte 8 
L2.5 (MPLS) Experimental (EXP) bits 3 
L2 (Ethernet)  Class of Service (COS) bits 3 

 

Table 1 QoS Marker on each layer of OSI 
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A class of routing algorithms has come out as extensive research in this field to support the 

constraints defined by QoS policies natively. Traditionally, the QoS policies are more stringent 

towards the delay constrained; hence, it is often referred to as delay-constrained least-cost 

(DCLC) algorithms.   

 With the advent of the SDN, centralized QoS enforcement is becoming an alternative 

to the classical distributed options[53][54][55]. The centralized management diminishes the 

need for complex control packet exchange between routers to determine an optimal path (e.g., 

RSVP); also, it provides a mature admission control mechanism to determine the Path before 

admitting a flow than eventually dropping it during policing at an intermediate router (e.g., 

DSCP).   

2.1.1. The architecture of the QoS Routing framework  

A QoS Routing framework has four major components listed in Table 2 and depicted in Figure 

2[56]. The state model works as follows; the 

QoS routing algorithm receives a flow request. 

Now, the algorithm needs to decide if an 

optimal path exists at the current state of the 

network to accommodate the constraints. The 

network resource model supplies the expected 

delay based on the present network state. The 

cost function provides the boundary conditions 

as per the current network state. The Resource 

allocator examines the available resources 

(bandwidth, delay) and supplies the network 

state with the resource model.  Figure 2 QoS Routing Framework 
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Module Name Purpose  
The Cost 
Function 

The objective function that the QoS algorithm would optimize.  
 

The Resource 
allocator 

The module allocates bandwidth on different queues to maximize the 
flow accommodation. 
 

Network 
Resource Model 

A mathematical model that realizes the distribution function after 
analyzing the network traffic behaviour using stochastic network 
calculus. It monitors the traffic characteristics and updates the expected 
consumption.  
 

QoS Routing  The routing module runs the optimization function over the QoS cost 
function, meeting the resource allocator's constraints and complying 
with the distribution realized by the network resource model.  

 

Table 2 Component of a QoS routing framework 

2.1.2. Fundamental QoS Routing problem 

The mathematical formulation of the QoS Routing is a blend of Graph Theory, Queuing Theory, 

and Stochastic Network Calculus. Let's assume a Simple finite graph G(V, E) represents the 

network topology, where vertex set V = {vI}  represents the nodes, and the edge set E =

�eI,j � adj�vI, vj�}   represents the links between nodes. The cost-vector C = �cI,j� ∈ ℝ+
|E|  is a 

positive-real vector of the cost of each edge eI,j. Let there be m constraints defined, each with 

a boundary value dkforming a positive-real vector D ∈ ℝ+
m.  Let Psd denotes a set of feasible 

paths from a source s to a destination d. As every path is a member of the binary power set 

{0,1}|E|Where a 1 denotes the subjected edge to be a part of the path. Hence, with ￼|E|, all 

with ￼ ℝ+ and ￼ m ￼ ℝ+ constraints, the constraints matrix ￼ M ∈ ℝ+
|E|×m And the 

formulation of the optimization model looks in Equation (1). 

𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑃𝑃𝑠𝑠𝑠𝑠

𝐶𝐶𝑇𝑇𝑥𝑥 

         𝑠𝑠. 𝑡𝑡.𝑀𝑀𝑀𝑀 ≤ 𝐷𝐷  

Eq. 1 
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Figure 3 depicts the visual representation of the formulation; recall the state model in Figure 2, 

the QoS Routing module takes the cost, and the delay as input selects an optimal path.   

An optimization algorithm finds a solution 𝑧𝑧′ ; Equation (Eq. 2) measures the algorithms’ 

efficiency or CI (Cost Inefficiency) in finding an optimal solution. As the objective of QoS 

routing algorithms is to minimize cost thus, any sub-optimal solution surpluses zopt. 

𝐶𝐶𝐶𝐶 =
𝑧𝑧′ − 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜
𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜

 Eq. 2 

 

An optimization algorithm is said to be optimal if it always finds an optimal Path (Psd). A 

Complete algorithm always finds a feasible Path if it exists; a Heuristic algorithm might find a 

sub-optimal path. Table 3 summarizes the different types of optimality and their relationship 

with CI.  

Algorithm Type Cost Inefficiency  
Complete CI ∈ [0,1] 
Complete  CI = 0 
Heuristic  CI ∈ (0,1] 

Table 3 Summary of Optimization algorithm and their relationship with CI 

Figure 3 Mathematical framework of a QoS routing module. 
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2.1.3. Summary of QoS Routing algorithms 

 

A comprehensive survey by Guck et al. [57] has walked through all state-of-the-art QoS routing 

algorithms, evaluating their optimality completeness. Following is the list of algorithms that 

have been evaluated.  

 

Figure 4 Classification of QoS aware routing models 
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Mnemonic Class Optimal Complete Reference 
SPF PQ + SP   [52] 
A* PQ + SP   [58] 
CHA PQ + SP   [59] 
A* Prune PQ + CSP/MCSP Yes Yes [60] 
LDP PQ + CSP  Yes  
FB Elem + 

CSP/MCSP 
 Yes (CSP) [61] 

DBF DBF + SP Yes Yes [62] 
YNA DBF + SP Yes Yes [63] 
CBF DBF + CSP Yes Yes [64] 
DCBF DBF + CSP  Yes [65] 
DEB DBF + CSP  Yes [65] 
LARAC LR + CSP  Yes [65],[66],[67] 
LARACGC LR + CSP  Yes [68] 
SCRC LR + CSP Yes Yes [69] 
k-LARAC LR + CSP  Yes [65] 
NR_DCLC LR + CSP  Yes [70] 
DCCR LR + CSP  Yes [71] 
(k)H_MCOP LR + CSP/MCSP  Yes (CSP) [72] 
(E/MH)_MCOP LR + CSP/MCSP Yes (E) Yes (E/MH) (CSP) [73] 
DCUR LCLD + CSP  Yes [74], [75] 
DCR LCLD + CSP  Yes [76] 
IAK LCLD + CSP  Yes [77] 
SMS-
RDM/CDP/PBO 

LCLD + CSP  Yes [78] 

SF-DCLC LCLD + CSP  Yes [79] 
 

Table 4: Lists of the popular QoS routing algorithms, their Type (optimal or complete), and 
class. PQ: Priority Queue, DBF: Distributed Bellman-Ford, LR: Lagrange Relaxation, LCDC: 

Low-cost Low-Delay. 
 

Table 4 lists the popular QoS Routing algorithms along with their optimality. Notice that the 

Lagrange Relaxation-based algorithms are mostly not optimal but complete. We perform a 

qualitative comparison of the sub-optimal algorithms based on their Cost Inefficiency (CI) and 

Runtime Ratio (RR) based on the data available from the works of Guck et al.[80]. We fused 

the CI and RR factor to calculate an efficiency measure for ranking them using a simple rule 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 100− 𝑅𝑅𝑅𝑅
𝐶𝐶𝐶𝐶

 . As both CI and RR are measured in percentage and RR is proportional 

to the efficiency but lower is better, but CI is inverse. The result (Figure 5) shows that the k-

LARAC is the most efficient method. However, it is a computationally intensive solution.  
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Figure 5 Comparison of the efficiency of the QoS routing algorithms 

 

2.2. Hybrid SDN Architectures  

Hybrid SDN is an intermediate state of a traditional network while it is transforming to become 

an SDN. There could be various influences for an enterprise to opt for an intermediate state. 

Amin et al. [81], in their survey on the Hybrid SDNs, outline several such reasons; this includes 

optimizing the reusability of existing devices,  gradual training of technical staff for a stable 

migration, and cost optimization.  

 The domain of Hybrid SDN is vast; however, in the recent past, a considerable amount 

of research has shown the potential and relevance of the topic. Concerning this thesis, the 

hybrid SDN model has motivated me to design Software-Defined Self-Organization across an 

architecture-independent infrastructure plane. Several such influences have helped devise 

various configuration algorithms and fundamental design logic in the following chapters. The 

following subsections summarize the state-of-the-art of Hybrid-SDNs, relevant to the scope of 

the thesis (Figure 6).  
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Figure 6 Hybrid SDN networks and their classification [82] 

 

2.2.1. Deployment strategies 

While transiting from a traditional, fully distributed network architecture, when an enterprise 

initiates Softwarization, it might opt for several deployment strategies. The choice is purely 

subject to the scale and requirements.  

1. Custom Architectural Design: In this strategy, researchers propose bespoke flow 

management of a traditional network through an SDN controller. A virtual overlay network 

based on seminal panoptical design [83] suggests the incremental introduction of SDN 

switches among an existing legacy topology. All the packets must go through the SDN 

switches, where the switch builds a solitary confinement Tree to optimize the forwarding 

logic. However, topologies in a Datacenter (DC) environment need specialized treatment. 

Most of the DC topologies are of Spine-Leaf [84] in nature, where a cluster of spine 

switches acts as a single distributed switch, and each spine switch connects to all the leaf 

switches, resulting in a single hop traversal for any inter-leaf traffic. Softwarizing a DC 

network requires seamless scalability and load-balancing; thus, the migration strategy 

should not be abrupt but gradual. A common approach is to classify and segregate the 

programmable traffic (that flows through the SDN nodes) from the non-programmable 

traffic and apply traffic engineering to the programmable traffic to maximize the end-to-
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end throughput [85]. Several other Softwarization techniques exist in the present literature 

that concern optical networks [86] [87], wireless mesh networks [88], and Satellite 

overlays [89]; however, these techniques fall beyond the scope of the thesis.  

2. Hardware Shim: Unlike the previous model, the Hardware Shim [90] proposes a 

coexistence of SDN and legacy protocol processing modules within a switch kernel. A 

shim module resides within the switch that exchanges information between the SDN and 

Non-SDN networks. Both the CAM/TCAM and Flow-Table data structures share the 

switch memory and are used by the non-programmable and programmable traffics, 

respectively. However, this solution is proprietary to the vendors as, in general, they offer 

a monolithic or non-programmable kernel; thus, there are no commercial generic solutions 

exits as of the time of writing this thesis.  

3. Integer Linear Programming (ILP) based optimization:  The ILP optimization models 

the network into a graph and analytically finds the strategic migration. That said, these 

techniques are simulation-driven and hence do not always align with the economic 

feasibility. If performance upgrade is concerned, Softwarizing all nodes and applying a 

greedy algorithm-based traffic engineering would be the optimal choice [91]. However, it 

would also scrap a large amount of active hardware resulting in a significant CapEx. An 

alternative strategy is to calculate a Softwarized topology with minimum SDN hardware. 

An efficient dynamic programming-based algorithm [92] can process a topology of 

n  nodes in O(log n)  time, it minimizes the CapEx, but the end-to-end throughput stays 

sub-optimal.  A sweet spot between the previous two strategies is to partition the network 

based on their traffic characteristics to put a dense SDN topology for QoS aware network 

and a sparse SDN topology for the rest [93][94].     

4. Heuristics-based Optimization: Unlike the ILP optimization strategy, which optimizes 

the analytical model of the network, the Heuristic-based optimization is rather empirical 
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in nature. One might use this strategy when a network shows stochastic behaviour (i.e., the 

traffic characteristics are dynamic and not predetermined but realized by sampling). The 

controller accumulates telemetry from a large pool of network devices and decides a subset 

of the topology to Software preserving the configuration (e.g., translating forwarding 

logics of a legacy switch into flow entries in an OpenFlow switch). Hong et al. [95] use 

this strategy and show a 20% Softwarization reduces 32% control traffic. Xu et al. [96] 

apply the same method in combination with Depth First Search and Randomized Rounding 

techniques, which results in a 40% throughput gain.  

 

2.2.2. Classification of Hybrid SDN controllers 

SDN controller is the heart of SDN; it possesses a bird’s eye view of the underlying network 

topology and enables a central management point.  A cluster of SDN controllers uses so-called 

East-West APIs to establish an inter-controller fabric and offer scalability for large network 

topology. The controller cluster aggregates the topologies governed by each member controller 

and optimizes the unified graph collaboratively. The present literature shows several objectives 

that the controller might orient its optimality criteria. These criteria depend on the requirement 

and scale of the networks.  

1. Virtualized Controllers: Their utilization varies in a resource-constrained network where 

the compute and network resources often don’t change. In a hybrid-SDN, the controller 

unifies the resource management by translating configuration policies into data-plane-

specific instructions (e.g., Flow entries for OpenFlow, Route-Maps for Cisco IOS devices).  

HybNET [97] offers a solution for the OpenStack neutron controller as a central control 

plane for SDN and legacy switches. It puts an abstraction layer between legacy and SDN 

networks to achieve a data-plane agnostic control plane.  SYMPHONY [98] extends the 

scope of the control plane by integrating it into the legacy device. It uses the OSPF control 
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plane to communicate with the controller and maintains a global routing table unifying the 

SDN and legacy topologies; however, it lacks load-balancing. The SDN Hybrid Embedded 

Architecture (SHEAR) [99] deploys a small number of SDN nodes within the legacy 

topology. The SDN nodes become a programmable spine for the legacy leaf switches 

resulting in a high convergence.  Telekinesis [99] spits the control plane by sending Flow 

instructions to SDN nodes and special packets to legacy nodes to update their CAM entries. 

The CAM override forces all traffic to pass through the SDN nodes; however, it only offers 

Routing and does not include TCAM-specific modification (e.g., ACL Filtering, QoS 

policy enforcement). Cardigan et al. [100] implement OpenFlow-based distributed routing 

by replacing all legacy devices with SDN nodes.  

2. The controller as Middleware: In this strategy, the controller is a translator between SDN 

and Legacy configuration. ClosedFlow [101] offers SDN-like control on legacy networks 

with features like out-of-band management, topology discovery, ACL-based filtering, and 

event-driven packet processing; however, it lacks load balancing. Exodus [102] offers 

translation through an intermediate config format called pseudo-SDN rules and compiles 

them into OpenFlow and Cisco IOS instructions. LegacyFlow [103] bridges two non-SDN 

networks via an SDN fabric. The controller injects flow instructions to the SDN nodes, 

which connect the downstream non-SDN topology segment. The SDN nodes themselves 

are interconnected; thus, the Data-Place gets split into a Spine-Leaf topology with a central 

control plane on top.  

 

2.2.3. Network management strategies  

Network management is a closed-loop operation involving data accumulation from the 

infrastructure through a telemetry mechanism and injection of the configuration back to the 

infrastructure. The previous two sections describe the deployment strategies and the SDN 
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controller classification. The final bit of the story is network management, which describes 

how efficiently the network resources are managed. In the literature, several existing 

mechanisms are used by contemporary SDN controllers.  However, resource management and 

self-configuration are the two major strategies that are relevant to this thesis.  

1. Resource Management: Santosh et al. [104] propose a Weighted Fair Queue (WFQ) based 

programmable software-defined wireless LAN controller to provide load balancing, security 

policy enforcement, and QoS services. Unified Virtual Monitoring Function (SuVMF) [105] 

is proposed as a robust telemetry system for large hybrid SDNs. It offers conditional filtering, 

configuration transformation, and custom monitoring.  Katov et al. [106] focus on usage 

consolidation and power consumption minimization in enterprise networks. It monitors the 

usage patterns of network devices and suppresses unnecessary nodes when the mean usage 

comes down. The results show a 45% drop in energy consumption with a 47% drop in link 

utilization.  Seiber et al. propose a Network Service Abstraction Layer (NASL) [107] that 

unifies the control and data plane to optimize QoS policies for time-critical applications; 

additionally, vendor-agnostic programmability and monitoring [108].   

2. Configuration Automation: Configuration automation releases the human factor from 

configuring network devices in a scalable infrastructure. It also removes the burden of 

configuration review before pushing it into production. Katiyar et al. [109] propose an 

external configurator using the DHCP-SDN model for Hybrid-SDNs.  Martinez et al. [110] 

offer a semantic-based configuration of legacy devices called the Ontology-Based  

Information Extraction system. Mishra et al. [111] propose a decentralized approach, where 

each subnet of non-SDN nodes has at least one SDN node that collects the resource 

information periodically and injects forwarding logic as floating static routes. Amin et al. 

use a Graph Theory based incremental topology change detection mechanism [112] called 

Automatic Policy-violation Detection for topology Change (Auto-PDTC) [113] which 
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detects devices that need reconfiguration. Seiber et al. [114] use a Queuing theory-based 

analytical model for detecting devices that need reconfiguration in a partial SDN setup.    

 

2.2.4. Summary  

Figure 7 shows a comparative analysis of the hybrid SDNs discussed above. The evaluation 

counts the publications available in the literature leveraging the techniques and sums them 

based on six metrics: namely, traffic overhead, link utilization, number of SDN flows, number 

of path failures, deployment complexity and scalability. High traffic overhead and link 

utilization leave less bandwidth for the data traffic hence it acts adversely. Several SDN flows 

could be fixed as proactive flow entries or dynamic as reactive entries. The reactive flows 

provide dynamic manipulation based on altering network conditions, thus, it is a more robust 

fit. Path failures could be resilient which gives a quick failover or non-resilient where the 

network needs re-convergence. The deployment complexity measures the performance of a 

middlebox, i.e., an SDN box within a traditional network and the scalability measures the 

complexity in scaling the topology.  Scoring each category based on the positives and negatives 

that the existing publications suggest, the study finds the optimal design would be a hybrid 

SDN model that deploys SDN nodes within the traditional infrastructure using ILP 

optimization with a virtualized controller and leverages automation to program the 

infrastructure plane.   

  



 49 

 

 

 

Figure 7 Performace analysis of various hybrid SDN designs based on six attributes. Each design 
apprach is scored agaisnt the available works in the literature. The result shows the most efficient 

design uses an ILP optimizer with a virtual controller that perform automated configuration. 
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2.3. Application of Machine Learning in Routing  

The application of ML in solving contemporary SDN problems contributes to relaxing the 

computational complexity of traditional discrete optimization problems. Traditionally, discrete 

optimization methods such as Greedy, Dynamic, and Mixed Integer Programming are the de-

facto choice for network optimization problems. A heuristic function drives the efficiency of 

the algorithms’ convergence. However, formulating a heuristic is challenging in a dynamic 

network, where various characteristics vary over time. Moreover, the recent introduction of the 

Network-Slicing model requires specific treatment for selected traffic flows using Policies. 

Therefore, ML models have become quite popular to deal with network dynamics. A new layer 

called Knowledge-Plane (KP) sits on top of the classic three-layer SDN model that accumulates 

various network telemetry from the application plane, learns the behaviour from the historical 

dataset, and feeds the (near) optimal solution back to the application plane. The previous 

section describes the various controller functions in a hybrid SDN; ML-based optimization 

solves the issue of oscillation that otherwise be a common phenomenon in heuristic 

optimization. Oscillation happens when a slight change in the network state results in re-

convergence. Recall the EIGRP metric; although the Load and Reliability parameters are 

present in the formulation, they are not used in production. Their fluctuation could force the 

underlying DUAL algorithm to recalculate the paths, resulting in an unstable network state. 

ML algorithms instead provide a more stable sub-optimal solution curved for the specific 

network behaviour.  

 In the literature, the SDN use-cases of the ML-based solutions exist [115] for: (A) traffic 

classification for QoS [116], (B) Routing optimization [117],  (C) deep packet inspection, (D) 

resource management for QoS [118], and (E) malicious signature detection for security [119]. 

To be aligned with the theme of the discussion, we shall only concentrate on the aspect of 

Routing optimization and the respective development that exists in the literature.  
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 The domain of Cognitive Routing is still undergoing its infancy. Although ML 

frameworks have helped accelerate many networking problems, routing is one of its recent 

application domains. The state of the art of cognitive routing solves the route-optimization 

problem broadly in two ways, State-prediction, and Route-matrix prediction.  The following 

subsection presents the literature below.  

 

2.3.1. Optimizing routes using state-prediction  

The state prediction mechanism essentially sees the active Routes of network topology as states 

and tries to predict the optimal state given a source and destination using an RNN or RL or 

DRL.  The earliest attempt by Yanjun et al. [120] uses a meta-learning approach, where an 

ANN is trained using the input and output of a heuristic algorithm. Eventually, the ANN models 

the hidden distribution that results in a real-time outcome bypassing the otherwise complex 

heuristic method.  NeuRoute [121] uses RNN with LSTM to predict link utilization patterns to 

optimize the routes. A reinforcement learning approach by Sendra et al. [122] predicts the 

optimal path using the consequent network state variation as a penalty. For large-scale overlay 

deployment such as Datacenters, Francois et al. [123] leverage the Cognitive Routing Engine 

(CRE) [124]. The proposed model places the CRE within a logically central SDN controller 

that oversees the overlay fabric and runs a closed-loop control using RL. The QoS Aware 

Adaptive Routing (QAR) [125] uses RNN to predict QoS constraints compatibility of the links 

and determines the optimal paths for hierarchical SDNs. A more complex, however efficient 

Deep RL-based approach by Stampa et al. [126] finds the all-pair optimal path keeping the 

delay constrained checked.     
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2.3.2. Optimizing routes using traffic-matrix prediction    

In this approach, the machine learning model predicts a given topology's hidden distribution of 

a varying cost matrix; therefore, the only feasible model is an RNN.  Lopez et al. [127] propose 

a traffic prediction mechanism that forecasts the traffic pattern by estimating the trend. It 

creates proactive flow configuration for the data plane devices and injects them before 

congestion occurs. Alvizu et al. [128] propose a dynamic optical routing technique using 

metaheuristics. The algorithm has three phases, Offline Scheduling, Online training and Online 

Routing. Chen et al. [129] perform a multivariate evaluation for load-balancing that includes 

hop count, latency, packet loss, and bandwidth utilization. Azzouni et al. [130] propose NeuTM, 

which uses LSTM for the traffic matric prediction method.  

 

2.3.3. Lessons Learned  

After analyzing various ML methods applied in solving the SDN-Routing problem, we have 

concluded that RNN, Reinforcement Learning (RL), and Deep RL are the major techniques 

that suit the subjected problem class. The SDN Routing problem has primarily two categories, 

route prediction, and traffic prediction. Table 5 presents the applicability and efficiency of the 

three ML techniques in these categories.  

 RNN RL DRL 
Route Prediction Fair Fair High 
Traffic Prediction High X X 

Table 5 Usability of ML techniques in SDN routing 
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2.4. Self-Healing Technologies  

Network outage due to overload or unprecedented failures is the greatest adversary for any 

network service provider. Contemporary network infrastructure relies on automation 

technology to battle any outage situation, preferably anticipating them before they occur. On 

average, the cellular network operators spend 23% - 26% of their annual revenue on managing 

the operation outages [131]. In 2015, the network outage cost $20B to the mobile network 

operators and service providers (MNO-SP) worldwide, 7% of their total revenue [132]. 3GPP 

poses the Self Organized Network (SON) as a solution that solves the problem of network 

inconsistencies and anomalies more structurally by addressing architectural changes. SON 

constitutes Self-Optimization (SO) [133] which provides autonomous optimization of 

performance [134], Self-Configuration (SC), which automates configuration of network nodes; 

and, Self-Healing [135], which identifies degradation of KPIs and heals it autonomously.  

 Research shows that for an MNO-SP to sustain itself, it can spend at most 1.7% of its 

revenue on NetOps without compromising service quality [136]. Modern network 

infrastructure has shown promising improvement after adapting the 3GPP recommendations 

on SON. Despite increasing traffic volume and network architecture complexity, it has 

demonstrated a trend in affected cell coverage during an outage. A key player is the 

Heterogenous Networks (HetNets) [137] which reduces the network density but increases the 

network parameters resulting in a better QoE.[138]     

 

2.4.1. Self-Healing in Cellular Networks 

Mainstream adaptation of SON begins from the 4G era. Self-Healing technology brings four 

key features; First, Autonomy, which makes function invocation independent of human input; 

second, Availability, which allows the network to scale; third, Adaptability, which absorbs the 
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external Influences and learns from internal failures and, fourth, Intelligence, which learns the 

network behaviour from historical data [139].  

 Prominent research on Self-Healing shows the impact of automation in various use 

cases. EUREKA[140]   studies the wireless communication use-case, especially on UMTS and 

Wi-Fi networks, SOCRATES [141] studies LTE networks, QSON [142] studies SON 

coordination, and SEMAFOUR [143] studies self-management for heterogeneous RANs. The 

existing research outlines a Self-Healing framework that involves a network controller to 

automate network outage management. Further, the framework classifies any outage into either 

a full outage which results in a total network failure or a Partial-Outage, where the KPI 

degrades.  

A Self-Healing framework consists of three stages; first, an Outage Detection algorithm 

determines a full or partial outage and the nodes that need further action. Second, a diagnostic 

Algorithm that detects the exact cause of the failure; third, a Compensation algorithm that 

Figure 8 Closed-loop operation cycle of a generic Self-Healing framework 
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injects configuration changes based on the diagnostic information that the controller 

accumulates (Figure 8).  

Components Description and Classification 
Methodology  Techniques used to detect, diagnose and compensate for a failure. 

1. Analytical:  Breaks down the mathematical model and optimizes.  
1.1.Convex optimization  
1.2.Non-Convex optimization  
1.3.Genetic Algorithms  
1.4.Simulated Annealing  
1.5.Multi-objective optimization  
1.6.Game theory  

2. Heuristic: Predefined rules and prior knowledge  
2.1.Rule-Based: Uses if-else rule  
2.2.Framework based: consists of predefined guidelines  

3. Learning-Based: Uses ML algorithms  
3.1.Supervised (SL) 
3.2.Unsupervised (UL) 
3.3.Reinforcement (RL) 

Topology Defines the logical structure of the networks 
1. Homogenous:  One tier of macro-cells covering large areas.  
2. Heterogenous:  Multi-tier of macro and small cells or HetNet 

Performance 
metrics 

Benchmark measurements to evaluate network performance. 
1. Accessibility: the ability of the users to use the network resources   
2. Retainability: retain a session until it finishes without dropping it.  
3. Mobility: Seamless handover  
4. Others: RSRP, SINR, RSRQ  

Control Mechanism  Controlling the SON functions 
1. Centralized: CP is decoupled from the devices   
2. Distributed: CP resided in devices   
3. Hybrid: a combination of both   

Control Direction Optimization of service link 
1. Node to user 
2. User to node 
3. Both  

Table 6 Summary of the techniques used in Self-Healing techniques 

Asghar et al. [136] present a comprehensive survey on the recent development in Self-Healing 

technology; Figure 8 depicts the various stages of a generic Self-Healing framework and its 
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closed-loop control flow, and Table 6 lists a summary of the techniques and taxonomy used in 

a Self-Healing framework. The current literature shows several works on Self-Healing 

techniques for cellular networks; Figure 9 summarizes the methodologies applied to Self-

Healing techniques. Research shows the dominance of Supervised and Unsupervised learning 

algorithms for Failure detection and diagnostic problems, respectively. However, Analytical 

and Supervised learning show more usage in designing the compensation algorithms.   

 

Figure 9 Summary of methodologies used in Self-Healing techniques for Cellular networks 
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2.4.2. Service Migration based Self-Healing for MEC  

The previous subsection describes the various Self-Healing techniques and methodologies used 

in Cellular networks. However, 5G and beyond technologies significantly leverage the MEC 

framework to reduce the network OpEx and improve QoS/QoE. A primary driving force has 

been the massive cloudification of resources. Enterprise networking has shown a steady trend 

in migrating shared resources to the public or private clouds while keeping the essential 

resources on-premises. In a distributed system, long-distance communication between remote 

resources via a cloud breach latency constraint may occur, especially in time-critical 

applications. MEC lowers the complexity by offloading computational and data resources to a 

closer cloud infrastructure (MEC node). Self-Healing in MEC architectures needs special 

treatment. In the literature concerning MEC orchestration, Service Migration has been a well-

known technique that addresses the issue of autonomous healing of various failure scenarios.  

Factors  Migration Handover 
Volume of 
transaction 
 
 

Higher, as it transfers application 
runtime or memory images between 
edge servers. 

Lower, as it transfers control and data 
traffic between cells.   

Triggering 
factor 

It happens when a device wants to 
offload or transfer tasks due to load-
balancing or failover mitigation.  

It happens when a device loses 
connectivity from its current cell or 
finds a better-quality cell.  
 

Dependencies Topology and protocol independent  Topology and protocol-dependent 
Table 7 Difference between service migration and Cellular Handover 

Service migration involves replicating a running service across the MEC cluster by minimizing 

the transaction overhead and downtime. There are two service migration models for MEC; first, 

the Live-Migration which migrates a live application if the host node fails or gets overloaded, 

and second is the Cellular Handover, which happens when most of the consumer migrates to 

the vicinity of a remote MEC node. However, the handover and migration have subtle 

differences (Table 7), which results in definitive treatment. For the sake of the context, this 

thesis excludes the Cellular Handover mechanisms.    
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Service Migration Frameworks for MEC 

In the literature, there are two principal techniques  

 

for approaching the problem of service migration. The first is the simple Three-Layer 

Framework (TLF)[144][145], and the second is a relatively complex Payload Optimization 

Framework (POF) [144][146]. While TLF focuses on transferring a live service between edge 

nodes, POF aims to optimize the transfer volume.  

Figure 10 Holding state of an Edge server and the migration decision process  
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 In the TLF approach, the Edge server has a Base, the OS kernel, which hosts several 

applications and their corresponding runtime (e.g., Python virtual environment); each 

application can run multiple instances. When migration is triggered, the source node queries a  

given destination regarding its current holding state and transfers the minimum information to 

restart the process at the remote end. Figure 10[147] depicts the system layout of the decision 

algorithm.        

The POF approach is more complex than TLF; it uses a pipeline mechanism of several stages 

to optimize the payload size; hence, resulting in a compute-intensive but a space-efficient 

solution. Figure 11 [147] depicts the pipeline stages in POF; it enhances the TLF concept by 

inheriting the principle idea of three-layer segregation of a system but optimizes the traffic load. 

Unlike the TLF approach, where each application instance migrates sequentially, POF 

parallelizes them using the pipeline.  Additionally, POF adapts dynamic network behaviours in 

choosing various parameters for pipeline stages. There are two Dynamic-Adaptation strategies; 

a simple Bottleneck-finding strategy that chooses parameters based on end-to-end throughput 

availability and a more advanced Heuristic adaptation of the former approach.   

Figure 11 Pipeline stages of the Throughput Optimization framework  
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The bottleneck throughput on a migration path (𝑠𝑠,𝑑𝑑)  is the chocking point, where the 

forwarding cost is maximum. If 𝐵𝐵𝑊𝑊𝑖𝑖 is the Effective bandwidth,  pI is the processing time and 

𝑟𝑟𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 of a node i at the path (s, d) then the system throughput TPsys of the node 

are the minimum of the processing and network throughput expressed as equation Eq. 3 

The heuristic extension of the former method works on a sliding time window [1 − t] of t time 

instance, that enhances the system throughput by scaling its components.  

1. Let 𝑃𝑃𝑡𝑡 = {𝑝𝑝𝑖𝑖 | 𝑖𝑖 = [1 − 𝑡𝑡]},  𝑅𝑅𝑡𝑡 = {𝑟𝑟𝑖𝑖 | 𝑖𝑖 = [1 − 𝑡𝑡]} 

2. Measure Pt and Rt periodically  

3. Calculate average values Pm  and Rm  at which the migration probability is above a 

margin. 

4. Calculate scales 𝑆𝑆𝑝𝑝 = 𝑃𝑃𝑡𝑡
𝑃𝑃𝑚𝑚

 and 𝑆𝑆𝑟𝑟 = 𝑅𝑅𝑡𝑡
𝑅𝑅𝑚𝑚

 

5. Calculate a heuristic of the system throughput (HTP) (Eq. 4) 

                 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑡𝑡𝑇𝑇𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑆𝑆𝑟𝑟𝑇𝑇𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁�

= 𝑚𝑚𝑚𝑚𝑚𝑚 �
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,
𝑠𝑠𝑟𝑟 × 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
𝐵𝐵𝑊𝑊𝑖𝑖

∏ 𝑟𝑟𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
 � 

 

Eq. 4 

6. Select a node as the destination that maximizes the HTP. (Eq. 5) 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
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𝑠𝑠𝑡𝑡

∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
,
𝑠𝑠𝑟𝑟 × 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
𝐵𝐵𝑊𝑊𝑖𝑖

∏ 𝑟𝑟𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
 �� 

 

Eq. 5 

 

Migration Strategies  

The current literature solves the service migration problem in MEC using three major 

techniques. First, Follow Me Cloud (FMC), second, Markov Decision Process-based Migration 

(MDPM), and third, Time Window-based Migration (TWM).  

𝑇𝑇𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛� = 𝑚𝑚𝑚𝑚𝑚𝑚 �
1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
,
𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈(𝑠𝑠,𝑑𝑑)

𝐵𝐵𝑊𝑊𝑖𝑖

∏ 𝑟𝑟𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
 � 

 
Eq. 3 



 61 

 The FMC prototype and its variants [148][149][150][151] migrate services across 

federated DC nodes (Edge Servers), where the service gets replicated or migrated as the users 

move. In other words, the cloud service follows the user density, and when it drops below a 

cutoff, the service expires from its host. The QoS parameters such as Cost, and Delay governs 

the migration decision.  

 The MDPM models use stochastic analysis of the users' movement to decide on a 

migration. MDPM models come in two flavours. A unidimensional MDP (1D-MDP) 

[151][152] model considers the users’ movement along a straight line (e.g., a car on the road). 

The Edge server decides migration based on the distance of a user consuming a service from 

the Edge server which hosts the service. A more capable model is the two-dimensional MDP 

(2D-MDP) [148][153] models user mobility on a 2D surface (e.g., a drone) which is more 

suitable for Cellular networks.  

 The TWM strategy searches for an optimal placement sequence of multiple services 

that minimizes the average cost over a given time window [154][155]. Using time-series 

prediction methods such as Auto-Regression and Recurrent Neural Networks, an extension to 

the TWM calculates a Look-Ahead Window[154], which helps the Edge server to take 

proactive migration decisions based on historical data. Unlike MDPM, TWM can 

accommodate heterogeneous cost function, network topology, and mobility patterns. It also 

poses a less complex solution as, unlike MDPM, it suppresses the probability distribution 

function discovery.   

  

2.4.3. Contemporary Service Migration using Distributed Ledge Technologies 

The 5GPPP consortium discusses the potential usage of Softwarization and Orchestration for 

efficient 5G service management. The three enabling technologies for it are multi-Tenancy 

support, Cloud and virtualization, and network programmability. The same white paper 
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document also talks about Network Slicing that bundles the said technology enablers and 

applies them to the use cases with optimal configuration. Each slice gets its use case-specific 

Virtual Network Function (VNF) optimized for the service it carries out. Eventually, it offers 

greater manageability, abstraction, isolation, and throughput. Focus et al. [156] in their paper 

on challenges in Network Slicing in 5G, point out the lack of adaptivity in the present 

management and orchestration (MANO) framework. It suggests that introducing a slice 

management plane that analyses the current state and predicts the future State can perform 

better slice allocation in efficiency and scalability. Efficient architectural alternatives for the 

infrastructure layer of the network slice architecture exist in the literature. Two of the most 

efficient are software Defined Network (SDN) and Mobile Edge Computing (MEC). SDN 

decouples the control and data plane and establishes a centralized control mechanism. It offers 

better manageability and dynamic control. Haleplidis et al.[39] in the RFC 7426 discusses the 

layered architecture of SDN and its functionalities. MEC, unlike SDN, decentralizes the 

computational capabilities to the edge of the network, making them closer to the end IoT 

devices.  

 MEC significantly reduces the networking between end devices and the cloud, as the 

most frequently invoked edge nodes execute tasks. Eventually, it reduces response time and 

enhances efficiency. In his survey on MEC, Abbas et al. [157] discuss various components, 

application areas, and research challenges. The same article also highlights transparent 

application migration as one of the open issues. Yassin et al. [158], in their report on SDN and 

IoT, present several SDN enabling solutions for IoT, such as IoT protocols, IoT Operating 

systems, development platforms etc. This provides adequate information to build an SDN-

enabled IoT infrastructure. Virtualization plays a significant role in the network function layer 

of Network Slicing architecture. Although traditional virtualization offers an enormous benefit 
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in terms of resource utilization for the VNFs, it lacks when it comes to migration. Containers, 

on the other hand, for their lightness, show better performance on migration. 

 Tay et al. [159], in their article comparing VM (live migration) and Container 

(kill/Restart migration), concludes Containers lead the stateless migration and VMs lead the 

state-full. Also, the VM migration is more complex and requires specialized configuration such 

as Shared Storage (NAS) and a dedicated network interface, which makes it inapplicable for 

fully distributed IoT infrastructure. Addressing all the issues highlighted in this section, 

Chapter 5 presents an Intelligent IoT solution for accommodating heterogeneous IoT (H-IoT) 

under a multi-access mobile edge computing (MA-MEC) platform powered by SDN. A tool 

called Shell-Mon orchestrates Transparent Application Migration by running apps in Docker 

Containers. The proposed system is also resource-aware, i.e., it periodically records and 

distributes local resource state information across other nodes. Also, it decides the best suitable 

time and destination of migration. Here we state some of the works that are solving the same 

problem domain. Qiu et al.[160] in their works shows an LXE based container migration using 

a tool called Checkpoint and Restore (CRIU) [161] that records checkpoints of a running 

docker container and can be used to restore. The article uses multipath TCP communication to 

transfer the container. Dupont et al. [162], in their writing, also used LXE container migration 

in 2 dimensions, horizontal (roaming) and vertical (offloading), putting flexibility as one of 

their future aspects. Nadgowda et al. [161] introduce a migration system called Voyager that 

uses CRIU on Docker containers. It does In-Memory state migration and local file system 

migration through in-band (data federation) and out-of-band (lazy replication) transfer 

techniques. The IoT architecture presented in Chapter 5 stands out differently from the current 

literature's present solutions utilizing its intelligent nature. The proposed system does not need 

a shared memory architecture hence can be fully distributed. It uses CRIU for checkpointing 

local container state but also monitor other IoT nodes' resource utilization and maintains them 
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in a Resource Information Database (RIDB). Based on resource utilization trends, it can predict 

the future state. The behavioural analysis of resource utilization can automatically select the 

victim container to be migrated and destination too. This decision-making ability enhances 

self-reliance, scalability, and less pre-configuration overhead. SDN can also empower load-

based priority configuration for different V-Switch ports for better Quality of Service (QoS). 

 Blockchain has been in the limelight for a while as the backbone of one of the 

revolutionary concepts of the present era of Cryptocurrency. From its first inception [163], 

potential utilization and use cases have been famous in the research community [164] [165] 

[166]. One such area is Multi-Operator Network (MoN) and Small Cell (SC), which coincide 

with the interest of this paper. Backman [167] shows signalling enhancement on the traditional 

5G network stack to enable on-demand resource allocation. BC uses Slice Leasing Ledger and 

Smart contracts to append a trust layer brings two advantages. First, it reduces the coordination 

and transaction cost by negotiating with a trusted party to undergo an automatic agreement. 

Second, it diminishes the issue of Single Point of failure by offering distributed architecture 

hence, the case of DoS attack. The effective use of Smart Contracts for implementing Service 

Level Agreement (SLA) [168] [169] with various QoS parameters, implementing the 

decentralized application over the multi-admin domain [170] with three scenarios, software-

defined Wide Area Network (SD-WAN), NFV, IaaS, and Network Slicing. Network Slicing 

also leverages efficient spectrum micro licensing in an Ultra-dense Small-Cell Radio Aria 

Network (RAN) [171]. Also, a caching/offloading model for blockchain-based MEC by Liu et 

al.[172] that uses a caching algorithm with computational offloading. 

 

2.5. Self-Organization, a beyond 5G perspective  

Fifth Generation Mobile technology (5G) has evolved after several years of R&D focused on 

systems beyond 4G. Similarly, in a similar situation, the ICT industry faces challenges 
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regarding Systems beyond 5G and the innovation in sixth-generation (6G) technologies. 

Leading companies and research communities focus on evolving 5G and completely new 

technologies [173], capabilities, and solutions that will be unique to the market beyond 5G 

[173]. R&D considerations and the ICT ecosystem include new B5G market-driven business 

models and opportunities and societal factors, such as the United Nations Sustainable 

Development Goals. Additionally, the 6G market will also focus on filling 5G capability gaps. 

 Industry 5.0 requires a context-aware personalized interface between machines and 

humans with the so-called ’human touch.’ A prime enabler for such services is using on-the-fly 

contextual profiling and data analytics using Artificial Intelligence (AI) and Machine Learning 

(ML) techniques. We can anticipate that the number of generated data will grow exponentially 

over the following years. The vast volume of data can help improve the performance of AI, in 

particular deep learning. Improved AI drives deeper user engagement and will, in turn, generate 

even more valuable data. However, in the conventional cloud/client model, the link between 

the centralized cloud and the end-users has increasingly become a bottleneck, as the virtuous 

cycle continues to drive ever more data and increasingly lower latency services and 

applications. 

Moreover, the Edge-Cloud has provided offload and caching capabilities to devices 

connected to the co-located access point. To reduce the Total Cost of Ownership (TCO), AI is 

needed to push on the edge, allowing innovation and open edge services to partners and 

developers to create applications that support consumers, enterprises, and multiple verticals 

while adding significant value to their business. AI can handle many network functionalities 

such as managing interference, optimizing VNF placement on the edge, detecting DDoS, 

maintaining QoE of the applications, and making optimal local decisions. Therefore, 

distributed intelligence at the edge network can be a real differentiation in 6G. Additionally, AI 
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will be the key to automating/optimizing E2E application provisioning in such a complex 

network by taking inputs from end-to-end and across protocol layers. 

In Networking, Dynamic Routing Protocols are essentially distributed algorithms running 

across an IP-Network. Each instance runs an identical Shortest Path Algorithm and shares the 

locally available information with its peers. The process in which the local information gets 

propagated classifies the protocol family into two groups. In the Distance Vector Routing 

(DVR), often called "Routing by Rumors," routers only know what their neighbours tell. 

Therefore, routing protocols such as RIP [174], and EIGRP [24], although space-efficient but 

prone to have routing loops. 

On the contrary, in Link-State Routing (LSR), often called "Routing by Propaganda," 

each router is aware of the entire network topology, thus never falling into Routing Loops; 

however, maintaining a large topology table. Protocols like OSPF [23] manage this problem 

by segregating the network into multiple Areas; also, it defines various types of Link State 

Advertisement (LSA) types and limits them to get flooded within certain Areas. The recent 

time has evident a tremendous escalation in the network scale both in the structural and 

operational complexity [175]. Traditional routing protocols are not adequately capable of 

dealing with such complexity, which results in a slower convergence that eventually affects the 

network's end-to-end performance. One of the sole reasons is that routing protocols are 

inherently distributed; thus, they rely on the underlying communication systems to exchange 

information. As the communication speed is far inferior to modern processors, it becomes a 

bottleneck. To address this problem, Software-Defined Network [39] decouples the Control-

Plane (CP) and keeps it in a logically centralized location, keeping the Data Plane (DP) 

distributed. In this architecture, network devices only forward traffic, whereas all the control 

functionalities execute centrally at CP. The CP sees the underlying network from a Bird’s-eye-



 67 

view like the Link State Request (LSR) model but does not replicate them to individual routers, 

diminishing the communication bottleneck. 

 SDN’s new paradigm in networking has brought significant industry appreciation; 

various network models and protocols have been developed in recent times to leverage 

Softwarization into mainstream networking. Some of the instances are NG-SDN from Open 

Networking Foundation (ONF) [176], Cisco-Viptella SDWAN [19], SD-Access [177], 

VMWare NSX [178], 5G-PPP software networks [179], Disaggregated platforms like ONIE 

[180], ONL [181], SAI [182], SONiC [183] form Open Compute Project(OCP). It is prominent 

that traditional routing protocols are not a fit for these modern networking models, primarily 

because they appear to run a distributed algorithm in a centralized computing model, which 

has motivated the research community to develop SDN-specific routing algorithms. With a 

more flexible, programmable, and manageable networking model, two of the prominent use 

cases of SDN-Routing have surfaced in recent times, namely Segment Routing [184] and QoS 

Routing [57]. The former leverages Multi-Protocol Label Switching (MPLS) [185] based 

communication at the underlay and replaces Label Discovery Protocol (LDP) [186] and 

Resource Reservation Protocols (RSVP) [187] in CP. Quality of Service (QoS) Routing steers 

traffic to an optimal path preserving various communication constraints. 

 Self-Organized Networks (SON), an adaptive, autonomous, and scalable Network-

model is becoming the norm in designing massive network architectures [188] such as Data-

Centers (DC), Internet-Service Providers networks (ISP), and large-scale Enterprise Networks. 

The SON for beyond 5G networks offers Self-Learning ability, i.e., building self-awareness of 

the underlying network behaviours and characteristics, i.e., Self-Optimization, Self-

Configuration, and Self-Healing. In SDN Routing, the Shortest-Path calculation is the 

optimization subject where a controller calculates the optimal values of the free parameters 

subject to a set of communication constraints defined as a policy (Self-Optimization). The 
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controller then configures the parameters into the underlying network devices (Self-

Configuration) and serves alternate routes on-demand if the primary one fails (Self-Healing), 

thus supporting the SON. However, the application of ML in route-optimization is a relatively 

new domain; at the time of writing, a handful of works are available to develop an intelligent 

routing algorithm for SDN. The base model of fitting ML in SDN is known as Knowledge-

Defined Networks (KDN) [22]. The primary objective is to accumulate holistic information 

from a supervising CP of an underlying IP network and analyze them to extract knowledge 

generalizing network behaviour. This knowledge eventually helps bypass the need to use costly 

heuristic Routing algorithms, having preserved the equal adaptation capabilities to network 

dynamics [45]. 

 Routing in 6G is likely to use KDN, where the primary objective is to accumulate 

holistic information from a supervising CP of an underlying network to offer SON capabilities: 

analyze them to extract knowledge that generalizes the network behaviour. This knowledge 

eventually helps bypass the need to use costly heuristic routing algorithms, preserving equal 

adaptation capabilities to network dynamics. 

 6G will provide SON with the following characteristics: Self-Learning ability, i.e., 

building self-awareness of the underlying network behaviours and characteristics, i.e., Self-

Optimization, Self-Configuration, and Self-Healing. 

 Chapter 3 explains the mechanism of proposes the Most-Reliable-Route-First (MRRF), 

an Intelligent Routing algorithm for Self-Organized Knowledge-Defined Networks. The 

proposed model initially calculates all possible paths for all pairs of nodes from the Networks’ 

topology using our proposed algorithm (MRoute) and aims to learn the reliability of individual 

links by their statistical measures of volatility over time. The algorithm maintains the routes’ 

ranks based on their cumulative reliability and serves them on-demand in constant time, 

assuring the most reliable Routes. We further propose a full-fledged implementation of the 
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KDN model as a test-bed to conduct experiments, which benchmarks MRoute with Diffusion 

Update Algorithm (DUAL) [51] and Shortest Path First (SPF) [52] that powers EIGRP as OSPF, 

respectively. Result confirms the validity of a constant time switch-over of routes guaranteeing 

the highest reliability.  

 

2.5.1. Towards industry 5.0 architecture and beyond 5G compliance  

Architectural evolution & SO-KDN Protocol Stack  

5G beyond technology aims to design and develop a scalable architecture compliant with Open-

RAN [189] and ng-SDN [190] (Figure 12), handling a massive amount of data generated at the 

edge supporting different verticals (e.g., surveillance, public safety, autonomous vehicles, etc.). 

Ubiquitous connectivity at the Edge (edge cloud, backhauling), Big Data management, and 

AI/ML form a virtuous cycle for next-generation connected computing. The combination of AI 

and an optimized edge architecture can reduce cloud data and backhauling costs. The 

introduction of federated learning can reduce the complexity of AI/ML engines when they are 

deployed in a distributed environment. Additionally, cellular operators can provide a platform 

for innovation and open edge services to relevant partners, allowing them to develop and create 

Figure 12 Protocol stack of a self-organized knowledge-defined network 
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applications that support consumers, enterprises, and multiple verticals while adding 

significant value to their business. 6G architectures foresee facilitate the following 

characteristics: 

• Ultra-high data requirements at the edge using new radio architectures: Cell-free 

massive MIMO networking can potentially resolve many of the interference issues that 

plague current cellular networks. In cell-free mMIMO networks, cooperative signal 

processing is usually prohibitively costly due to the considerable amount of data, which 

may involve a high computational cost of joint processing. Full-scale cooperation also 

requires the estimation of channel coefficients from all devices to all radio units (RUs), or 

access points (APs), resulting in significant channel estimation overhead, thus 

fundamentally limiting the gain achieved through cooperation. 

• Automation: AI/ML is vital for making decisions across different layers, from physical to 

application. MEC can support AI processing, decomposing applications in processes that 

run in parallel at any location, including vehicles, drones, or machinery, and collect and 

process data from smart devices as they consume or generate data. Additionally, local AI 

may need to update ML models from the collected data. 

• Multi-Tier Edge Cloud Architecture: 6G aims to design a multi-tier edge cloud 

architecture allowing the establishment of collaboration among edge-cloud instances. Such 

tiers are essential to optimize the different types of caching within the multi-tier 

architecture (e.g., Video caching, Face recognition, Positioning) and apply different types 

of caching policing by considering the multi-tier level caching popularity prediction and 

backhauling costs, and capabilities.  

• Application Decomposition: Both academia and industry have focused on Edge 

Computing by providing software (e.g., Google Lite TensorFlow) and hardware (e.g., 

NVIDIA Jetson AGX Xavier, AWS DeepLens) solutions suitable for edge processing. The 
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latest trend is decomposing QoS demanding AI-based applications to be deployed across 

heterogeneous distributed edge cloud infrastructure. It aims to design and develop a 

decomposed model considering each decomposed service's computation requirements and 

QoS constraints. 

• Overlay Plane: To achieve transport-agnostic design, 6G communication provides 

dynamic end-to-end Tunnelling technologies (e.g., IPSec3 over DMVPN4 and OMP5). It 

allows Enterprise and service providers to use any transport mode of their choice (e.g., 

MPLS, LTE, 5G, and Internet), deploying a virtual network on top. The Overlay-plane 

provides a platform to virtualize, manage and orchestrate a physical network. Additionally, 

it abstracts the data-plane infrastructure to the control plane and presents a unified interface 

to automate and configure policies on it. 

• Big Data Management: The powerful data processing and analytics capabilities 

traditionally lived in the heart of the centralized data centre must be strategically placed 

closer and closer to the data generating and consuming endpoints. By expanding the 

powerful capabilities of the edge data centre, service and network providers can deliver 

more effective services, reduce application latency by processing more data closer to the 

edge, and optimize TCO. 

 

Knowledge -Defined Self-Organization in beyond 5G 

The 6G Self-Organized Network inherits the Self-Optimization, Self-Configuration, and Self-

Healing from its predecessor 5G, which also includes Self-Learning. It shows an apparent 

convergence of KDN and SON to achieve this. Centralized policy-based routing with SDN 

 
 

3 Security Architecture for the Internet Protocol RFC (https://bit.ly/3h6PTYA )  
4 Dynamic Multipoint VPN Configuration Guide (https://bit.ly/3ttN4Wv ) 
5 Cisco-Viptella Overlay Management Protocol (https://bit.ly/3yW5sZ3 ) 

https://bit.ly/3h6PTYA
https://bit.ly/3ttN4Wv
https://bit.ly/3yW5sZ3
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accomplishes the Self-Optimization, Self-Configuration is leveraged by Network automation 

and programmability and rapid convergence provides Self-Healing and route-reliability 

prediction using deep-Leaning make the self-learning possible. It results in an intelligent 

network architecture that inherits all benefits of SDN and extends its capability with centralized 

intelligence. In this research work, we have tried to exploit SDN-routing as an optimization 

problem. The KP accumulates the network behaviour and predicts the most reliable route, 

which the network can converge in a constant time. The rapid switch-over guarantees Self-

Healing, having met the URLLC criteria. 

 

2.5.2. State of the art in KDN  

The inception of the KDN comes from Clark et al. [44], who proposes a unified KP that takes 

decisions based on partial and conflicting information accumulated from a distributed cognitive 

framework. KP has been considered in solving the Optimal Route-Preference problem by 

learning network behaviour over time. However, the article lacks real-world network types 

such as ISP, Enterprise, Cellular, etc., and does not include working principles in a 

heterogeneous network. These issues are addressed by Strassner et. al.[191] by their extension 

of KDN with an Interface-Plane, which offers a clearer view of the implementation and 

necessary building blocks. Several surveys show the growing application of ML and Deep 

Learning (DL) on SDN architectures in recent times, aiming to achieve the KDN. Fadlullah et 

al. present a classification of various ML/DL algorithms and their application to intelligent 

network traffic control systems [50]. Chen et al. focus on the application of DL into several 

cognitive wireless communication systems such as the Internet of Things (IoT), Multi-Access 

Edge Computing (MEC), Unmanned Aerial Vehicle (UAV) networks, etc. [192]. Zhao et al. 

[193] review the specific applications of ML to SDN problems such as defence mechanisms 

against Distributed Denial of Service (DDoS) attacks, Anomaly Detection, Traffic 
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Classification, Routing Optimization, etc. To restrict our scope of the discussion, we now put 

the relevant state-of-the-art focusing on Routing Optimization only. 

 Shortest Path Algorithm (SPA) and Heuristic Algorithms (HA) are the two widely used 

approaches that solve routing-optimization problems [194]. Among several alternatives, 

Artificial Neural Networks (ANN), Reinforcement Learning (RL), Deep RL (DRL), and Lazy 

Learning (LL) are the four learning models primarily used to address Routing Optimization. 

Yanjun et al. [120] propose an ML-Meta later-based approach where an ML model is trained 

by the calculated traffic parameters of a heuristic algorithm and its corresponding network state 

as input. The proposed framework maps the input and output of the HA that reduces its 

exponential run-time to a constant one. NeoRoute [195] models traffic characteristics by 

forecasting future link consumption using the Recurrent Neural Network (RNN) with Long 

Short-Term Memory (LSTM). A similar problem is addressed by Álvaro López-Raventós, et. 

al. for high-density WANs [127]. The previous research papers use supervised-ML models for 

training, which assumes the network characteristics are likely to stay identical over time. 

Therefore, they are not suitable for dynamic networks, which in contrast need an Online-

Training model such as RL or DRL. Sandra et al. [196] propose a DRL framework, which trains 

an agent that weighs the delay, loss, and bandwidth for every possible link of a target network. 

The network feeds either reward or penalty back to the agent based on the change in end-to-

end throughput. The agent uses the feedback to tune its decision-making model. Francois [123] 

et al. apply DRL with a Random Neural Network in cognitive routing in SDN. The proposed 

architecture shows consistent performance even in a highly chaotic environment. Applications 

of DRL in SDN-specific problems include QoS Aware Adaptive Routing [125]. 
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2.6. Chapter Summary  

The goal of this chapter is to outline the state-of-the-art of the various disciplines in the 

current literature that actively motivates this research. The thesis represents the design 

development of a Routing Framework that is QoS aware, runs on hybrid SDN infrastructure, 

leverages Machine Learning to intelligently choose a route, and complies with the 5G self-

organized networking philosophy. Therefore, the chapter covers a comprehensive survey and 

summarization of five respective domains namely, QoS aware routing in SDN, Hybrid SDN 

architectures, Application of machine learning in Routing, Self-Healing technologies, and 5G-

SON. Each section explores the state-of-the-art algorithms and modelling techniques for the 

above topics.  

The study shows the following. For QoS aware routing algorithm we used a metric that 

gives a measure of efficiency leveraging the Cost Inefficiency and Runtime Ratio, which shows 

Lagrange Relaxation method is the most efficient complete but non-optimal algorithm. The 

optimal hybrid SDN design uses ILP optimization in SDN node deployment, virtualized 

controller, and config automation in managing data plane devices. For routing optimization, 

RNN and RL are efficient solutions in terms of computational complexity, however, if 

prediction efficiency is concerned, DRL techniques give optimal results with a higher 

computational cost. A basic framework of Self-Healing involves three stages namely, Failure 

detection, diagnostic and compensation. Detection algorithms dominate unsupervised 

algorithms, whereas Diagnostic algorithms leverage supervised ones. Compensation 

algorithms also use Supervised methods but with no exclusive dominance. This chapter also 

presents the adaptability of service migration as a tool to accomplish Self-Healing. Finally, the 

chapter presents the concept of KDN and its compliance with next-generation self-organized 

networking, especially in the context of beyond 5G networks and Industry 5.0.    
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Chapter 3:  Self Optimization 

 

 

The self-Optimization method aims to seamlessly execute the optimization functions (e.g., 

QoS, QoE, Routing convergence, etc.) in a network with minimum human intervention. In 

SDN, the controller is responsible for hosting the SO module. The controller receives several 

control inputs from the underlying network and computes the optimal configuration parameters, 

eventually programmed into the devices using remote configuration protocols such as 

NETCONF6, RESTCONF7, and SSH8. The latter part is called Self-Configuration if automated 

with a device automation tool such as Ansible, Puppet, Chef, Salt, etc. In the context of this 

chapter, the optimization problem is Routing, i.e., computing the best path between a pair of 

nodes in a network topology. 

The chapter discusses the concept of Policy Based Routing (PBR) first, which allows 

overriding a Router’s default routing behaviour by programming it with a set of custom rules, 

called Policy. Further, a novel cost-relaxation technique, Stochastic Temporal Edge 

Normalization (STEN), is introduced. STEN is a pre-processing algorithm that results in an 

isomorphic transformation of the network topology by fusing the node costs into the link cost. 

This is followed by a routing framework, Cognitive Routing as a Service (CoRoS) which 

leverages STEN and converges in constant time, providing the most reliable route.  

 
 

6 https://datatracker.ietf.org/doc/html/rfc6241  
7 https://datatracker.ietf.org/doc/html/rfc8040  
8 https://datatracker.ietf.org/doc/html/rfc4253  

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc4253
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3.1. Modeling a novel Policy-Based-Routing (PBR) model  

In the classic PBR, a policy is written in the form of route maps. A route map is a series of 

conditions and action pairs applied on ingress interfaces. When traffic appears on a PBR-

enabled interface, its header is examined and matched against the policy. If it matches a 

condition, the router’s control plane invokes the corresponding action (e.g., altering Next-Hop 

address, TTL value, egress interface ID, etc.). SDN uses the same concept through the South-

Bound protocol (SBI), e.g., OpenFlow, OMP, etc. ASICs of the DP devices maintain a match-

action table populated and altered by the Controller via OpenFlow.  However, the OpenFlow 

protocol is limited to controlling forwarding traffic only. It does not provide robustness as 

Route-Maps, and it does not configure devices. There are other protocols such as OVSDB, and 

SNMP that could collaborate with OpenFlow. However, it results in a complex design.  

The proposed hybrid PBR model leverages Route-Maps' robustness but has a central controller 

injecting the policy into the routers using remote configuration. The SO module computes the 

optimal parameters for the Policy, which is then plugged with the native PBR modules of the 

router. The following chapters discuss the methods used by the SO module.  

 

3.2. Stochastic Temporal Edge Normalization (STEN) 

In graph theory, Shortest Path Algorithm (SPA) is a class of optimization algorithms that find 

the best path between a pair of vertices. A fundamental criterion for a SPA is, that the graph 

must be simple (i.e., no self-loop and no parallel edges must exist in the Graph). In SDN routing, 

each underlying router informs the controller about its directly connected networks. The 

controller uses the link-state approach to build the topology and applies SPA to calculate the 

optimal path. The primary logic is, for 𝐺𝐺(𝑉𝑉,𝐸𝐸) the network topology that 𝑣𝑣𝑖𝑖 has an optimal 

path to a non-adjacent vertex 𝑣𝑣𝑗𝑗   via its neighbour 𝑣𝑣𝑘𝑘 . Then, the routing process installs 

reachability to all the networks 𝑣𝑣𝑗𝑗 with a 𝑣𝑣𝑘𝑘. The cost calculation for most of the SPA uses link 
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parameters only; however, with the rise of NFV and network Softwarization, a significant 

amount of heterogeneity in computing resource distribution can be evident. A virtual network 

appliance (e.g., Cisco CSR, Cumulus router, etc.) shares a shared pool of hardware resources 

through Hypervisors (e.g., VMWare ESXi, Citrix XEN, etc.), where the FIB is virtualized. All 

flows are processed by software.  

Therefore, the processor and memory utilization (node cost) affect the overall 

processing delay. For instance, a sub-optimal path with an inferior link-state could deliver a 

packet faster than an optimal path as it has a sufficiently higher processing delay. The 

traditional routing protocols can’t detect it, as node costs are not considered in SPA calculation. 

Hence, including node cost in path calculation is an obvious solution. However, there are two 

issues. Firstly, there exists no standard model for relaxing node costs into link costs. Secondly, 

the node costs appear in the graph as a finite-self loop if the problem is modelled as a Finite-

State Machine (FSM). In the latter option, the graph is not simple as it contains self-loops and 

is not compatible with SPA. The novel technique (STEN) leverages queuing theory-based 

approximation to relax the node cost into links, making the graph simple to be SPA compatible 

while preserving the node cost information.  

 

3.2.1. Problem Formulation 

This section formulates the STEN problem. Consider 𝐺𝐺(𝑉𝑉, 𝐸𝐸) is a directed connected graph 

that represents the network topology, where the vertex set 𝑉𝑉 = {𝑣𝑣𝑖𝑖|1 < 𝑖𝑖 < 𝑛𝑛}  contains a 

programmable forwarding device (e.g., Router, L3 Switch, etc.) and the edge set 𝐸𝐸 =

�𝑒𝑒𝑖𝑖,𝑗𝑗�𝑎𝑎𝑎𝑎𝑎𝑎�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�,∀𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} contains the WAN links (Figure 13). The magnitude of an 

edge �𝑒𝑒𝐼𝐼,𝑗𝑗� is calculated as Eq. 6, Ce and Cn are multivariate real functions calculating the edge 
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and node cost respectively using the node parameters Xn (CPU and memory utilization) and 

edge parameters Xe (bandwidth, delay, load, and reliability).  

�𝑒𝑒𝑖𝑖,𝑗𝑗� = �
𝑍𝑍𝑒𝑒|(𝑖𝑖𝑖𝑖) = 𝐶𝐶𝑒𝑒(𝑋𝑋𝑒𝑒) ∶ 𝑖𝑖 ≠ 𝑗𝑗
𝑍𝑍𝑛𝑛|𝑖𝑖 = 𝐶𝐶𝑛𝑛(𝑋𝑋𝑛𝑛)     ∶  𝑖𝑖 = 𝑗𝑗 

Eq. 6 

 

Each node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 points to a set of directly connected networks 𝐻𝐻𝑖𝑖, and a set of neighbours 

𝒩𝒩(𝑣𝑣𝑖𝑖) = �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉�. Therefore, the routing problem can be summarized as, if 𝑣𝑣𝑖𝑖 has the best 

path 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉 𝑣𝑣𝑗𝑗 ∈ 𝒩𝒩(𝑣𝑣𝑖𝑖) 𝑣𝑣𝑖𝑖 installs routes for all prefixes 𝐻𝐻𝑗𝑗 and 𝑣𝑣𝑘𝑘 as the next hop. The values 

of 𝑋𝑋𝑛𝑛 & 𝑋𝑋𝑒𝑒 varies over time, the calculated costs generate time series for both node and edge 

utilization as  𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡) ,𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡)  ∀𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 . The problem is to ℵ:𝐺𝐺(𝑉𝑉,𝐸𝐸) → 𝐺𝐺′(𝑉𝑉,𝐸𝐸′)  such that 

𝑍𝑍𝑒𝑒′|(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) ∈ 𝐸𝐸′(𝐺𝐺′), 𝑍𝑍𝑛𝑛|𝑖𝑖

(𝑡𝑡) ∈ 𝑉𝑉(𝐺𝐺), 𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) ∈ 𝐸𝐸(𝐺𝐺) for any 𝑡𝑡 instance. It diminishes the 𝑍𝑍𝑛𝑛|𝑖𝑖 of 𝐺𝐺′ 

which makes 𝐺𝐺′  a simple graph and thus it becomes compatible for SPA to run on it. The 

granularity of the transformation, i.e., node and link parameters used, and cost calculation 

function, is discussed later in this chapter. This section focuses on the STEN relaxation process.  

Figure 13: Reference Topology 
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3.2.2. Relationship between energy consumption and Routing  

Assume that an application requires a total of E amount of energy to run locally. Without loss 

of generality, it is assumed that part of the application runs locally, and the rest is offloaded to 

it remotely. Then, E can be expressed as a sum of the energy consumed for local execution (𝐸𝐸𝑙𝑙), 

remote execution (𝐸𝐸𝑟𝑟) ) and data transfer (𝐸𝐸𝑡𝑡). From the source’s perspective 𝐸𝐸𝑟𝑟 = 0 as it is 

not utilizing the source’s energy resources. Hence, the actual energy saved by offloading the 

application partially is 𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑡𝑡, as the energy spent for data transfer acts as a penalty for the 

saved energy. Initially proposed by Microsoft in their article on the MAUI framework[35], it 

formulates the optimal saved energy for a call graph in a distributed application with a 

constrained latency.  

The proposed solution is a 0 − 1 IIPP problem. The objective function maximizes the 

energy saved by executing a method remotely. The saved energy is the difference in the total 

energy cost of local execution (𝐸𝐸𝑣𝑣𝑙𝑙  | 𝑣𝑣 ∈ 𝑉𝑉)  and the total data transfer cost for executing the 

method, (𝐶𝐶𝑢𝑢,𝑣𝑣 � 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝑎𝑎𝑛𝑛𝑛𝑛 𝑒𝑒𝑢𝑢,𝑣𝑣 ∈ 𝐸𝐸� ). There are two constraints for the above objective 

function. First, the total time for the execution 𝑇𝑇𝑣𝑣𝑙𝑙 + 𝑇𝑇𝑣𝑣𝑟𝑟   must be within a certain latency. 

𝑇𝑇𝑣𝑣𝑙𝑙  & 𝑇𝑇𝑣𝑣𝑟𝑟 are referred to as the local and remote execution time of  𝑣𝑣 ∈ 𝑉𝑉. Second, only Remote 

methods can be offloaded for remote execution. The formal representation is given below (Eq. 

7): 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑣𝑣
𝑣𝑣∈𝑉𝑉

× 𝐸𝐸𝑣𝑣𝑙𝑙 −  � |𝐼𝐼𝑢𝑢 − 𝐼𝐼𝑣𝑣| × 𝐶𝐶𝑢𝑢,𝑣𝑣
𝑒𝑒𝑢𝑢,𝑣𝑣∈𝐸𝐸

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡,� �(1 − 𝐼𝐼𝑣𝑣)
𝑣𝑣∈𝑉𝑉

× 𝑇𝑇𝑣𝑣𝑙𝑙 + 𝐼𝐼𝑣𝑣 × 𝑇𝑇𝑣𝑣𝑟𝑟� +  � �|𝐼𝐼𝑢𝑢 − 𝐼𝐼𝑣𝑣| × 𝐵𝐵𝑢𝑢,𝑣𝑣� ≤  𝐿𝐿
𝑒𝑒𝑢𝑢,𝑣𝑣∈𝐸𝐸

 

𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝑣𝑣 ≤ 𝑟𝑟𝑣𝑣 ∀𝑣𝑣 ∈ 𝑉𝑉 
 

Eq. 7 

 

where, 𝐼𝐼𝑣𝑣 is an integer that is equal to 0 for local execution and 1 for the remote. 𝑅𝑅𝑣𝑣 represents 

methods marked as remote, and 𝐵𝐵𝑢𝑢,𝑣𝑣 is the state transfer time from 𝑢𝑢 to 𝑣𝑣. It can be inferred 

from equation Eq. 7  that the latency constraint is linearly dependent on the execution time 
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𝑇𝑇𝑣𝑣𝑙𝑙  & 𝑇𝑇𝑣𝑣𝑟𝑟  and state transfer time 𝐵𝐵𝑢𝑢,𝑣𝑣.  Further, remote execution and state transfer time are 

proportional to the network delay. Hence, a routing protocol that guarantees to choose a path 

reactively that costs the least latency, with every altering network condition, would meet the 

latency satisfiability constraint with the highest probability. Eventually optimizing the saved 

energy, defined as the equation Eq. 7.  The following section discusses our proposed algorithm's 

design cost and design, stating the relationship between the routing protocol and energy savings.  

3.2.2. The Queuing model of a Stochastic Network  

 

STEN uses Stochastic Network Calculus (SNC) theory, which renders a network as a collection 

of queues, i.e., each node and the edge are replaced by their queuing functions. Traffic flowing 

along a path a 𝑃𝑃𝑖𝑖,𝑗𝑗  migrates through a sequence of node and edge queues. Knowing the 

distribution of them could approximate the flow delivery time. Additionally, if each queue’s 

delay is computed, both node (with service and processing delay) and edge (with transmission 

and propagation delay) queues become operationally compatible. Therefore, an additive 

operation between all the Queues along 𝑃𝑃𝑖𝑖,𝑗𝑗  provides the end-to-end delay along the same path; 

Figure 14 Queuing model of the network with service queues at nodes  
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twice the RTT measured from either end.  If a packet appears to an ingress interface at the time 

t0 and leaves at tk from an egress interface9 , the queuing time = service time + processing 

time (Eq. 8) 

(𝑡𝑡𝑘𝑘 − 𝑡𝑡0) = 𝑡𝑡𝑞𝑞. Eq. 8 

 

As the system load increases, more packets gather in the service queue, resulting in a longer 

queue size which is proportional to  Tq; hence, 𝑍𝑍𝑛𝑛|𝑖𝑖 ∝ 𝑡𝑡𝑞𝑞. For the sake of simplicity, we do not 

consider the situation of link congestion, i.e., the egress interface pumping more packets into a 

link than its Bandwidth-Delay Product (BDP10). Part of the reason is that all modern network 

devices implement a QoS mechanism (RSVP or DSCP) that prevents this from happening.  

Figure 14 depicts the queuing model of the topology shown in Figure 13, where the weights of 

each edge and self-loop become the length of the corresponding queues. Each queue has a point 

of entry and exit called rear and front, denoted as hollow and solid circles respectively on the 

figure. For depiction simplicity, we assume that the links are simplex, i.e., eI,j can only carry 

data from vI to vj not vice versa. The queuing system can be heterogeneous, i.e., each queue 

may run a different scheduling mechanism. Therefore, it is obvious to generalize it. As 

mentioned earlier, the queue size is proportional to the processing load for the nodes and traffic 

load for the edges. The queue size is also proportional to the QT; the mean of QT is also called 

Average Waiting Time (AWT). Hence, choosing the least time-consuming path can also be a 

sequence of queues. The sum of AWT is the least among the possible alternatives, which 

inherently select nodes and edges comparatively underloaded.  

 
 

9 Due to the Split-Horizon rule used as a default loop-prevention technique in Distance Vector Routing, 
ingress and egress ports are generally non-identical, except special cases like NBMA or DMVPN 
networks.   
 
10 The BDP defines the maximum number of bits that can fit into a channel without having a collision.  



 82 

Average Waiting Time (AWT) of a Node (𝐖𝐖𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧) 

A queue is mathematically expressed as 𝐴𝐴/𝐵𝐵/𝑐𝑐/𝐾𝐾 where A is the distribution of inter-arrival 

time, B is the service time, c is the number of servers, and K is the capacity. Since the packets 

arrive from many sources and the service time depends on the system load, which depends on 

several random causes, A & B have been chosen as distribution agnostic. Also, we assume the 

problem as an unbounded buffer problem with a single server; hence k = ∞ and c = 1. This 

makes the queuing model 𝐺𝐺/𝐺𝐺/1. From Little’s theorem (Eq. 9) [197]. 

𝑊𝑊 = 𝑊𝑊𝑞𝑞 +
1
𝜇𝜇

= �
𝐿𝐿𝑞𝑞
𝜆𝜆

+
1
𝜇𝜇�

= 𝑂𝑂�𝐿𝐿𝑞𝑞� Eq. 9 

 

Where, 

𝑊𝑊 : AWT of the system  

𝑊𝑊𝑞𝑞: AWT of the queue  

𝐿𝐿𝑞𝑞 : mean number of requests in the queue  

𝜆𝜆 : mean rate of interval  

𝜇𝜇 : mean service rate   

From the approximated value of 𝐿𝐿𝑞𝑞 for 𝐺𝐺/𝐺𝐺/1  queues derived by Marchal (Eq. 11)[197],  

𝐿𝐿𝑞𝑞 = 𝑂𝑂(𝜌𝜌2,𝜎𝜎𝑠𝑠2,𝜎𝜎𝑎𝑎2, 𝜇𝜇2, 𝜆𝜆2) Eq. 10 

 

 

where ρ:  utilization of the server and 𝜎𝜎𝑠𝑠2 , 𝜎𝜎𝑎𝑎2  : variance of the service & inter-arrival time, 

respectively; Hence, from equations Eq. 9 & Eq. 10 Zn is the node utilization.  

𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑂𝑂�𝐿𝐿𝑞𝑞� = 𝑂𝑂(𝜌𝜌2) = 𝑂𝑂(𝑧𝑧𝑛𝑛2)  Eq. 11 
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Therefore, as the system goes busy Zn decreases and Wnode (AWT11)  increases quadratically 

(Eq. 11).  

 

Average Waiting Time of an Edge 𝐖𝐖𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 

The AWT of edges is relatively simpler to calculate since the channel is First In First Out 

(FIFO); we consider the mean round trip time (RTT) as AWT, which is inversely proportional 

to the edge cost. Therefore,   

𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂(𝑅𝑅𝑅𝑅𝑅𝑅) =  𝑂𝑂 �
1
𝑍𝑍𝑒𝑒
� Eq. 12 

 

 

Figure 15 shows the normalized version of Figure 14. All the loops |eii| are set to zero; 

instead, their values are distributed among the adjacent edges of the node vi. The coefficient αjI 

 
 

11 Average Waiting Time (AWT) is a measure of delay a process has to face before it is 
served. AWT is statistically calculated by averaging the individual waiting time of all processes in a 
queue.  

Figure 15 Queuing model after relaxation of the service queues from nodes to links 
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is a rational number between [0,1]  that denotes a fraction of |𝑒𝑒𝑖𝑖𝑖𝑖| , such that ∑ 𝛼𝛼𝑗𝑗𝑖𝑖 = 1𝑗𝑗  . It 

specifies the next-hop probability of a switch vI distributed over its incident edges. This edge 

normalization process is temporal as it changes time-to-time and stochastic because the fraction 

is probabilistic and distribution agnostic.   Once normalized, the graph realigns, the busy nodes 

move farther, and the free nodes come closer. Consequently, running any shortest path 

algorithm will choose a path with minimum path length, which comprises freer nodes than the 

busy ones. The normalization function ℵ transforms a graph with a self-loop into one with a 

normalized edge.  ℵ is defined formally below (Eq. 13), 

ℵ�𝐺𝐺(𝑉𝑉,𝐸𝐸)� → 𝐺𝐺′(𝑉𝑉,𝐸𝐸′) 
𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎,  |𝑒𝑒𝑖𝑖𝑖𝑖�→ |𝑒𝑒𝑖𝑖𝑖𝑖� + 𝛼𝛼𝑘𝑘𝑖𝑖 |𝑒𝑒𝑖𝑖𝑖𝑖| + 𝛼𝛼𝑘𝑘

𝑗𝑗�𝑒𝑒𝑗𝑗𝑗𝑗� 𝑎𝑎𝑎𝑎𝑎𝑎, |𝑒𝑒𝑖𝑖𝑖𝑖| = 0 ∀𝑒𝑒 ∈ 𝐸𝐸| 
Eq. 13 

 

3.2.4. Numerical Example of STEN  

Step 1: Building the Binary Adjacency Matrix: The controller receives HELLO messages 

from downstream routers and locally connected networks. Using Link-State logic (i.e., if two 

routers have a common local network, then they are neighbours), the controller builds the 

topology and stores it as a binary adjacency matrix Adjb. (Figure 16). 

 

 

⎝

⎜⎜
⎛

0 1 1 0 0 1
1 0 0 0 0 1
1 0 0 1 1 0
0 0 1 0 1 1
0 0 1 1 0 0
1 1 0 1 0 0⎠

⎟⎟
⎞

 

Figure 16 Building a Graph from the adjacency matrix of the topology 



 85 

  Step 2: Calculating Cost matrix: For each time instance, the controller fuses the node and 

edge costs 𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡) ,𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡)  to 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏 using the following transformation (Eq. 14), 

𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐
(𝑡𝑡) = �𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) �
𝑛𝑛×𝑛𝑛

∘ 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏 + ��𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡)�

1×𝑛𝑛
. 𝐼𝐼𝑛𝑛� Eq. 14 

 

Firstly, the Hadamard product �𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) �

𝑛𝑛×𝑛𝑛
∘ 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏  copies the edge costs 𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡)   at the (𝑖𝑖, 𝑗𝑗) 

position of the Adjc  matrix. Secondly, the dot product ��𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡)�

1×𝑛𝑛
. 𝐼𝐼𝑛𝑛�  is summed to place 

𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡)(𝑖𝑖, 𝑖𝑖) position along the diagonal of 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐 in 𝑂𝑂(1) with 𝑂𝑂(𝑛𝑛2) number of threads and keeps 

both the node and link costs within the same data structure 𝑂𝑂(𝑛𝑛) space. However, 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐 cannot 

be used for SPA as the diagonal needs to be zeroed out first. Adjc generates a times series of 

matrices. Its value can be any arbitrary 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐
(𝑡𝑡).  

 

Step 3: Relaxing the node costs into edges: The controller uses the mean load share of the 

interfaces to distribute the node cost into the edges. It measures the mean load share as the 

moving average of loads from the connected interfaces then normalizing into a [0,1] scale over 

a defined window. Therefore, it yields the probability of a packet being forwarded to an egress 

interface. The 𝐴𝐴𝐴𝐴𝑗𝑗𝑙𝑙￼ keeps a record of it, the row-wise sum is always 1 or 0. The 𝐴𝐴𝐴𝐴𝑗𝑗𝑙𝑙 matrix 

is not symmetric as the load at two ends could be different. The relaxation function is as follows 

(Eq. 15)  

𝐴𝐴𝐴𝐴𝑗𝑗𝑠𝑠
(𝑡𝑡)[𝑖𝑖, 𝑗𝑗] = 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐

(𝑡𝑡)[𝑖𝑖, 𝑖𝑖]2𝐴𝐴𝐴𝐴𝑗𝑗𝑙𝑙
(𝑡𝑡)[𝑖𝑖, 𝑗𝑗] + 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐

(𝑡𝑡)[𝑖𝑖, 𝑗𝑗] Eq. 15 

 

First, the node cost at 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐
(𝑡𝑡)[𝑖𝑖, 𝑖𝑖] is squared to calculate the 𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛 for the 𝑖𝑖𝑡𝑡ℎ node. The faction 

of the AWT corresponding to an edge 𝑒𝑒(𝑖𝑖,𝑗𝑗) is calculated by multiplying it with a load of edge 

𝑒𝑒(𝑖𝑖,𝑗𝑗) which then adds up to the corresponding edge cost got minimization. The node costs are 

negated for simplifying the following step.  The resultant matrix is the Affinity matrix 𝐴𝐴𝐴𝐴𝑗𝑗𝑎𝑎. 
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The sum 𝐴𝐴𝐴𝐴𝑗𝑗𝑎𝑎 + 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐 = 𝐴𝐴𝐴𝐴𝑗𝑗𝑠𝑠 (STENed matrix) relaxes the node costs into the edges making 

the resulting graph a simple graph, isomorphic to the one represented by 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏. (Figure 17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             𝑨𝑨𝑨𝑨𝒋𝒋𝒍𝒍 =

⎝

⎜⎜
⎛

0 0.268 0.325 0 0 0.407
0.458 0 0 0 0 0.542
0.109 0 0 0.188 0.703 0

0 0 0.211 0 0.326 0.463
0 0 0.364 0.636 0 0

0.297 0.293 0 0.428 0 0. ⎠

⎟⎟
⎞

 

             𝑨𝑨𝑨𝑨𝒋𝒋𝒂𝒂 + 𝑨𝑨𝑨𝑨𝒋𝒋𝒄𝒄  =  

⎝

⎜⎜
⎛

−0.649 0.248 0.322 0 0 0.079
0.254 −0.357 0 0 0 0.102
0.128 0 −0.713 0.584 0.703 0

0 0 0.306 −0.79 0.292 0.193
0 0 0.037 0.18 −0.216 0

0.157 0.396 0 0.308 0 −0.861.⎠

⎟⎟
⎞

+

                                              

⎝

⎜⎜
⎛

0.649 0.933 0.863 0 0 0.382
0.933 0.357 0 0 0 0.480
0.863 0 0.713 0.598 0.022 0

0 0 0.598 0.790 0.082 0.345
0 0 0.022 0.082 0.216 0

0.382 0.480 0 0.345 0 0.861⎠

⎟⎟
⎞

                          

           =

⎝

⎜⎜
⎛

0 1.182 1.185 0 0 0.462
0.519 0 0 0 0 0.582
0.171 0 0 1.183 0.221 0

0 0 0.874 0 0.374 0.538
0 0 0.115 0.31 0 0

0.235 1.218 0 1.092 0 0 ⎠

⎟⎟
⎞

= 𝑨𝑨𝑨𝑨𝒋𝒋𝒔𝒔 

      Isomorphic 

Figure 17 Transforming the topology graph to an isomorphic graph after STEN transformation 
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3.2.5. Experimental Validation    

We implemented a testbed (Figure 18) using the GNS3 network emulator and OVSs hosted 

using Docker containers, OpenDaylight (ODL) beryllium SR4 as the SDN Controller and 

MySQL Server is used for middleware & database management. Three bespoke apps 

(ShellMon, TopoBuild, TopoRoute, and TopoSense) run in the application layer to apply STEN 

to downstream IP flows. (Explained in Chapter 4).   

A. Experimental Setup: Each OVS runs the ShellMon client and sends event-driven resource 

updates to ShellMon Server. The TopoSense app retrieves topology and flow table 

information from ODL using RESTConf protocol from nodes/topology and nodes/inventory 

resources, respectively, and updates the database. Route-App fetches data from the database, 

runs Algorithm 1 generates a graph with resource information and the shortest path for 

eligible edges. Each shortest path then gets configured to the OVS using OpenFlow packet 

out messages from the controller. Figure 18 depicts the complete data flow.  

Figure 18 Experimental Setup and Dataflow Architecture 
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B. Methodology: Since the router OS is mostly monolithic, altering the code is a complex task. 

Therefore, the system has been tested using traditional routing, and OVSs with STEN flows 

with Quagga software routers. To emulate the routing behaviour, the controller pushes the 

flow instruction to the switch. The routers run both RIP and OSPF to generate a dataset for 

Distance-Vector and Link-State routing. Two nodes are selected as Client and Server and 

placed at the end along the network diameter to simulate traffic flow. After the routing 

protocol determines the optimal path, we choose an intermediate node as Victim. A Linux 

tool, Stress, progressively overload the victim, and the time to deliver a data burst using 

Iperf12 is observed to simulate the bottleneck behaviour. The rate of increasing time is the 

measurement of efficiency.  

 

C. Experimental Results & Discussion:  

 

 
 

12 Iperf is a link benchmarking tool that tests the utilization based on TCP and UDP flows. For 
more information visit https://iperf.fr/ .  

Figure 19 Effect of CPU utilization in Ent-to-End throughput 

https://iperf.fr/
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Algorithm  1: Stochastic Temporal Relaxation Routing Algorithm (STR-RA) 

Input:  Graph 𝐺𝐺(𝑉𝑉,𝐸𝐸)  - Topology from SDN Controller  
 𝑍𝑍𝑛𝑛|𝑣𝑣

(𝑡𝑡)  & 𝑍𝑍𝑒𝑒|𝑙𝑙
(𝑡𝑡)  - Utilization ∀𝑣𝑣 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑙𝑙 ∈ 𝐸𝐸 at the time, t. 

Output: Set of Routes 𝑅𝑅𝑖𝑖𝑖𝑖
(𝑡𝑡) 

Steps: 
1. While (true) { 
2.      Set 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝜙𝜙 
3.      Normalize 𝐺𝐺 : 𝐺𝐺′ = ℵ(𝐺𝐺) // Apply STEN. 
4.      For all vertex pair �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝑉𝑉(𝐺𝐺′) × 𝑉𝑉(𝐺𝐺′) { 
5.           If �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗  � ∈ 𝐸𝐸′{            
6.                If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒′𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒′𝑘𝑘𝑘𝑘� + 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸′′′

′
′) < |𝑒𝑒′𝑖𝑖𝑖𝑖| 

7.                       𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ 𝑒𝑒′𝑖𝑖𝑖𝑖   
8.                𝛥𝛥𝑒𝑒′𝑖𝑖𝑖𝑖  : change in edge weight.  
9.                If  𝛥𝛥𝑒𝑒′𝑖𝑖𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒𝑖𝑖𝑖𝑖′ ) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒′𝑘𝑘𝑘𝑘� 
10.                       𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ 𝑒𝑒′𝑖𝑖𝑖𝑖 

     } 

11.           Else 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 ∪ 𝑒𝑒′𝑖𝑖𝑖𝑖 
           }  

12.      If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≠ 𝜙𝜙 
13.            𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
14.      For all �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
15.           𝑅𝑅𝑖𝑖𝑖𝑖 ← 𝑅𝑅𝑖𝑖𝑖𝑖  𝑈𝑈 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�  
16.      For all 𝑟𝑟𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖𝑖𝑖 call Flow Modifier 
17.      Sleep (Timeout) 
      } 

The first set of experiments (Figure 19) measures the dropping end-to-end throughput over 

CPU load. With no change in link capacity, the experiment shows that the throughput falls from 

700 Mbps to 250 Mbps when additional threads increase from 0 to 128. A fitted polynomial 

comes as a quadratic one which further validates the claimed relationship between utilization 

and delay. 

In the following experiment (Figure 20), a bespoke application, TopoRoute, programs 

the ODL controller, which writes the flow entries to the downstream switches using OpenFlow.  
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Programming the switches simulates the routing behaviour. The TopoRoute application 

hosts a reactive algorithm named Stochastic Temporal Relaxation Routing Algorithm (STR-

RA) (Algorithm 1), which computes STEN on a given graph and generates routes. 

Running Dijkstra’s algorithm for all parts of vertices would cost O(|V|4) . To reduce it, 

Algorithm 1 chooses only those pairs of vertices which are eligible. This means that they have 

a possibility of replacement by an alternate path. The eligibility criteria are listed below,  

a. If  𝑒𝑒𝑖𝑖𝑖𝑖  is an edge between two adjacent vertices �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�  and the sum of minimum 

weighing incident edges of the subjected vertices and the minimum weighing edge of the 

entire graph is less than �𝑒𝑒𝑖𝑖𝑖𝑖�, i.e.  

𝑚𝑚𝑚𝑚𝑚𝑚
(𝑖𝑖,𝑘𝑘) ∈ 𝐸𝐸′(|𝑒𝑒′𝑖𝑖𝑖𝑖|) + 𝑚𝑚𝑚𝑚𝑚𝑚

(𝑘𝑘, 𝑗𝑗) ∈ 𝐸𝐸′��𝑒𝑒
′
𝑘𝑘𝑘𝑘�� + 𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒 ∈ 𝐸𝐸′(𝐸𝐸
′′′′′) < |𝑒𝑒′𝑖𝑖𝑖𝑖| Eq. 16 

 

 

 

Figure 20 Comparison between RIP, OSPF & proposed STR-RA in Utilization vs Delay characteristic 



 91 

b. If the change in the value of a direct edge 𝑒𝑒𝑖𝑖𝑖𝑖′  is denoted as  𝛥𝛥𝑒𝑒𝑖𝑖𝑖𝑖′  , exceeds the sum of 

minimum weighing incident edges of the subjected vertices.  

𝛥𝛥𝑒𝑒𝑖𝑖𝑖𝑖′ > 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖,𝑘𝑘 ∈ 𝐸𝐸′(|𝑒𝑒𝑖𝑖𝑖𝑖′ |) + 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗,𝑘𝑘 ∈ 𝐸𝐸′��𝑒𝑒𝑘𝑘𝑘𝑘
′ �� Eq. 17 

c. All indirect vertex pairs, i.e., �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� |𝑒𝑒𝑖𝑖𝑖𝑖 ∉ 𝐸𝐸  are eligible. 

This doesn’t reduce the asymptotic upper bound of the runtime but the lower bound 

significantly when the eligible edges are few. STR-RA calls the flow modifier program that 

encodes the flow rules using OpenFlow.  

Algorithm  2: Flow Modifier  

Input: Route 𝑟𝑟𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖𝑖𝑖 

Output: Flow entry 𝐹𝐹𝑖𝑖𝑖𝑖 

Steps: 

1. For all 𝑣𝑣𝑘𝑘 in 𝑟𝑟𝑖𝑖𝑖𝑖{  
2.      If 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑘𝑘) ≠ 𝜙𝜙{ 
3.            𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝑣𝑣𝑘𝑘 
4.            𝑠𝑠𝑠𝑠𝑠𝑠 ← 𝐻𝐻𝑖𝑖 = {ℎ𝑖𝑖} 
5.            𝑑𝑑𝑑𝑑𝑑𝑑 ← 𝐻𝐻𝑗𝑗 = �ℎ𝑗𝑗� 
6.            𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑘𝑘)�  
7.            𝑜𝑜𝑜𝑜𝑜𝑜.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(  

                          𝑛𝑛𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠   
                          𝑛𝑛𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑   
                          𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) 

 } 

      } 

 

When comparing the results of Experiment 1 and Experiment 2 by plotting the end-to-end delay, 

STR-RA shows to maintains a fixed delay bracket while RIP and OSPF climb quadratically. 

This is since when the intermediate node’s utilization exceeds a threshold, STEN virtually 

stretches all its incident edges. The shortest path algorithm reconverges, and an alternate path 

is discovered via a less stressed node, and the traffic gets steered through it. A small bump can 

be noticed during STR-RA’s convergence when the threshold was yet to be met. A slight rise 
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in the latter section is since the simulation was carried out on the same system. Thus, stressing 

one node also affects the physical processor load, hence other nodes.  

 

3.3. Rapid Convergence in Multi-Path Routing (MRoute)  

The key to achieving rapid convergence in a data network is to cache pre-computed forwarding 

information using some 𝑂𝑂�𝑓𝑓(𝑛𝑛)� time, where n is the number of nodes in the topology and 

used on-demand in 𝑂𝑂(1) time without needing to re-calculate. NetFlow or the Fast-Switching 

model is the earliest such approach which is debuted as an industry standard replacing its 

predecessor, the process-switching. Although the “Route once and switch many” philosophy 

gave an initial boost to the L2 and L3 operations by offloading the lookups from the 

route/switch processor to the hardware; however, it failed to keep up with the scalability. The 

switching processor eventually gets involved with a limited cache memory once a cache 

replacement is needed. Cisco solved this issue using their proprietary Cisco Express 

Forwarding (CEF) technique which dumps the entire Routing Information Base (RIB) into 

hardware Forward Information Base (FIB) and Adjacency Table. Any traffic which does not 

match any Access Control List (ACL) or QoS policy does not involve the control plane 

processing. 

Routing protocols support multipathing natively, OSPF provides equal path load-

balancing between multi-path routes using round-robin and EIGRP offers unequal cost load-

balancing using a variance multiplier 13  along a primary path or Successor route (S) and a 

backup path or Feasible Successor route (FS). If S fails, EIGRP switches to FS in constant time, 

 
 

13 EIGRP Load balances between 𝑆𝑆 ∪ 𝐹𝐹𝐹𝐹 routes if routes 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑖𝑖) ≤ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) ∀𝑟𝑟𝑖𝑖 ∈
𝐹𝐹𝐹𝐹 for each �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑖𝑖)
� packet sent along S route, 1 packet is sent along FS route.   
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proving rapid convergence with single-successor fault tolerance. However, if the FS route fails 

too, the router needs to defuse the convergence process across the network using the 

Query/Reply and SIA-Query/SIA-Reply control packets. During this phase, all routers put the 

lost routes in an active state, and all control processing freezes for the subjected routing 

protocol instance. This results in an 𝑂𝑂(𝑑𝑑) communication complexity, where d is the network 

diameter. OSPF is a Link-State routing protocol, that updates the rest of the peers within the 

same area about the lost route at an infinite cost. This triggers the SPF convergence on every 

node with 𝑂𝑂(𝑛𝑛2) time for pathfinding and 𝑂𝑂(𝑑𝑑) Time for control message propagation.  

For an SDN, the controller possesses a birds-ey view of the network, and thus, with 

link-state logic, it can realize the underlying topology in 𝑂𝑂(1) time. Every downstream router 

advertises its locally connected routes towards the controller, which is ideally one-hop away14.  

MRoute takes the topology graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) as input and generates all possible paths between 

every pair of nodes. The controller stores the result into a data structure called Route Forest 

(𝑅𝑅𝑅𝑅 = �RT𝑖𝑖,𝑗𝑗 � ), which is a collection of Route-Trees 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗 . Every 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅 | ∀(𝑖𝑖, 𝑗𝑗) ∈

𝑉𝑉2, 𝑖𝑖 ≠ 𝑗𝑗 is an n-ary tree that stores all paths between vI, vj ∈ V. A Route-Tree is finite with a 

maximum depth and width as the diameter of the network (𝑑𝑑)  and |𝑉𝑉| − 1,  respectively. 

Further discussion is provided by explaining that generating an 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗  It is computationally 

independent with only a read operation on the shared adjacency matrix. Therefore, the 

controller can simultaneously compute RTI,j  for each node pair (𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉2  using 

multithreading. Moreover, as the number of edges is fixed, and the edges are distributed across 

all the Route-Trees as branches; therefore, a dynamic programming approach with 

memorization would lower the computation complexity of several orders. That said, STEN 

 
 

14 In practice, an SDN controller establishes a secure tunnel (e.g., OMP on IPsec, OpenFlow on 
TLS/SSL) 
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periodically recalculates the updated link cost, a Hash-Map with 𝑂𝑂(|𝐸𝐸|)  space stores the 

updates and revises the route-forest in 𝑂𝑂(1) time with 𝑂𝑂(|𝐸𝐸|) Threads.     

3.3.1. System modelling  

 

To explain the MRoute algorithm, this section instantiates an SD-WAN[198] implementation 

as a use-case related to CDN provisioning. Figure 20  depicts the system architecture. The DP 

constitutes two groups of servers, first, that originates the traffic, such as a Point-of-Present 

(PoP) and a CDN infrastructure, and second the hosts the consumers. Controllers that manage 

the producer side optimize the egress traffic, whereas the consumer plane optimizes the ingress. 

An overlay network logically segregates the producer and consumer plane and maintains 

connectivity with respective edge devices. The edge devices manage any mobility management 

such as handovers of devices. The consumer side segments its user base into several zones to 

facilitate hierarchical routing. Interzonal communication takes place via the controller. 

However, a dynamic multi-point VPN (DMVPN phase-3) can provide site-to-site on-demand 

Figure 21 Reference Architecture of an SD-WAN with a CDN use case 
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connectivity with summarized routes. Each controller aggregates partial topology information 

from downstream edge routes in a link-state manner and generates a topology graph. Each 

controller shares complete topology information to its direct neighbours and summarizes any 

topology information while being a transit; this is a distance-vector approach. The process 

limits the size of the all-pair shortest path three by pruning those prefixes which are reachable 

via a neighbour. Generally, all routing protocols follow a four-step process in execution. First, 

neighbour discovery, secondly topology synchronization, followed by the shortest pathfinding 

and finally, when the routing table converges, it stays idle in the control plane until a primary 

route fails and a reconvergence is needed. We assume the controller and edge network topology 

is unvarying. The following steps describe the process in detail.  

 

Phase 1: Neighbor Discovery: 

Controllers create end-to-end tunnels to form adjacencies. Edge server registers themselves to 

a policy server and gets tunnel parameters for establishing two-way communication. However, 

for the sake of simplicity, we consider simple GRE tunnels among the controllers. In other 

words, the neighborship may be either static or dynamic. Every controller maintains a 

neighbour table to keep track of the neighbours’ activity. Figure 22 shows a sample topology 

of a controller network with flow vectors after the neighbour discovery. 

 

Phase 2: Initial controller advertisement:  

In traditional routing protocols like RIPv2, OSPFv2, and EIGRP, control packets are exchanged 

using both multicast and unicast methods. However, SD-WAN depends on overlay networking, 

where P2P or P2MP VPN tunnels connect the edge devices to the controllers. Each controller 

CONI generates a topology 𝐺𝐺𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖) for its underlying edge network, where 𝑉𝑉𝑖𝑖 and 𝐸𝐸𝑖𝑖 are the 

set of downstream edge routers and their corresponding links, respectively. 𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖 computes the 
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topology matrix 𝐶𝐶𝑖𝑖 = �𝑐𝑐𝑖𝑖,𝑗𝑗�𝑉𝑉×𝑉𝑉
 | ∀𝑒𝑒𝑖𝑖,𝑗𝑗 ∈ 𝐸𝐸 , members of which are a set of possible costs 

between the pair of nodes in 𝐺𝐺𝑖𝑖 . For static neighborship, the neighbour database populates 

entries with indefinite ageing time while adding neighbours. For dynamic neighbour discovery, 

a pair of neighbours connect on-demand and any tunnel that ages above a limit (typically 2 

hours) are removed. A 𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖 advertises only to its full 𝐶𝐶𝑖𝑖 to its direct neighbours 𝒩𝒩(CONi). 

When a controller acts as a transit node, it forwards its neighbour’s cost matrix to another 

neighbour, by sending a list of reachable network prefixes. 

 

Phase 3: Vertex set augmentation: 

After the neighbour discovery and initial advertisements, all controllers become aware of their 

neighbours’ topology and far-end networks accessible by the non-neighbour controllers. The 

Vertex-Set Augmentation (VSA) process augments the producer side, which comprises origin 

servers from the consumer and end-users. The segregation enables easy policy maintenance, 

Figure 22 A use-case model of CDN implemented over an SD-WAN 
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especially for QoS and PBR. Next, each controller also dynamically changes routes between 

networks based on the load profile of intermediate routers. A load profile of an edge-router 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑖𝑖)  measures its mean processing load (CPU and memory) and communication load 

(bandwidth utilization and congestion) using a moving average with a given window size. A 

heavily loaded router maintains a longer service queue, which results in a delay in packet 

processing. In this phase, the controller ranks routers based on their load. 

 

Phase 4: Route Calculation  

Every controller computes a full-mesh graph 𝒢𝒢𝑖𝑖(𝑉𝑉𝑖𝑖 ,ℰ𝑖𝑖) from the underlying topology 𝐺𝐺𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖) 

To maintain the database of all possible paths between all-pair of nodes. It tags the path with a 

unique Route_ID. The process starts with a controller CONI computing a Route Forest RFI, 

comprises a collection of Route Tree 𝑅𝑅𝑅𝑅𝑠𝑠,𝑑𝑑  | ∀(𝑠𝑠,𝑑𝑑) ∈ 𝑉𝑉2, 𝑠𝑠 ≠ 𝑑𝑑. An 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 keeps all possible 

paths souring from s towards d.  Each of its branches is a unique path connecting vs ∈ V and 

𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉. RT is a ternary tree of exponential, i.e., 𝑂𝑂(2𝑛𝑛) space complexity. Moreover, in case of 

no topology change, it serves no purpose but to occupy the space. Therefore, a compression 

method would solve the problem by transforming the 𝑅𝑅𝐹𝐹𝑖𝑖 into an optimal data structure with 

polynomial complexity. The proposed approach leverages the FSM that compresses the 𝑂𝑂(2𝑛𝑛) 

sized Route-Forest into a graph of size 𝑂𝑂(𝑛𝑛). Details of this compression are discussed in a 

later section.    

The FSM has |V| states and |E| bidirectional transition functions 𝛿𝛿(𝑖𝑖, 𝑗𝑗)  and the 

Route_ID is used as input symbols. All states in the FSM are set as final and initial, allowing 

the transition from any arbitrary state. With a given Route_ID and an initial state, the complete 

path can be realized by recursive transition on the SMF, keeping the ID the same at each 

iteration. 
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 Finally, the full-mesh graph 𝒢𝒢(V,ℰ) is generated by aggregating the Router_IDs of 𝑇𝑇𝑠𝑠,𝑑𝑑 

and mapped as 𝑒𝑒𝑠𝑠,𝑑𝑑 ∈ ℰ. Thus, the FSM stores the node sequence for every path and  stores 

Route ID mapping. This brings the storage complexity to 𝑂𝑂(|𝑉𝑉|2) as both the FSM and 𝒢𝒢 are 

graphs of |V| nodes, and it is trivial to represent graphs in their adjacency-matrix form with 

𝑂𝑂(𝑛𝑛2)  space or with 𝑂𝑂(𝑛𝑛)  Space if linked representation is used. The FSM matrices are 

exchanged during database synchronization between controllers. Immediate neighbours 

exchange the full matrix so each controller can aggregate its topology to its neighbours. 

However, being a transit controller suppresses most details and only advertises Router_IDs 

learned from a remote controller. The primary reason is efficient space management. Figure 22 

depicts the complete process of the controller generating the full mesh graph from their 

underlying topology.  

 

3.3.2. Computing all-possible paths  

The MRoute Algorithm 

Controllers run MRoute (Algorithm 3) for their underlying network topology to compute all-

possible paths between all pairs of vertices. The algorithm takes a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), a pair of 

vertices 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉   and returns a Route-Tree 𝑇𝑇𝑠𝑠,𝑑𝑑 . Every leaf-to-root traversal of 𝑡𝑡𝑠𝑠,𝑑𝑑  is a 

possible path between 𝑣𝑣𝑠𝑠  and 𝑣𝑣𝑑𝑑  Figure 18 RouteTree generated by MRoute w.r.t. for 

r1,3depicts the generation of Route-Tree 𝑇𝑇1.3 regarding the topology shown in Figure 22. 

 Figure 24 shows the route tree corresponding to R1,3 . The algorithm uses the 

backtracking principle to enumerate all possible routes between source and destination vertices, 

in this context, (𝑣𝑣1, 𝑣𝑣3). The following paragraph explains the working principle of MRoute. 

MRoute has two phases; during the Grow Phase the route tree grows by recursively expanding 

its branches, the Shrink Phase runs intermittently with the Grow phase, where invalid paths are 

pruned out from the tree. 
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Figure 23 Complete process of computing all-paths for all-pair of nodes. First MRoute generates route trees 𝑇𝑇𝑠𝑠,𝑑𝑑 for all 
pair of vertices that results route forest 𝑅𝑅𝐹𝐹𝑖𝑖 for every controller 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖. Next, FSM compresses 𝑅𝑅𝐹𝐹𝑖𝑖 preserving the path 
information using Route_ID and finally full mesh graph 𝒢𝒢(𝑉𝑉,ℰ) is generated that maps RouteIDs into edge-set ℰ 
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• Initialization: MRoute initiates the process by creating an n-ary tree with vd as root. 

• Recursion: The 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) the function returns the adjacent vertices of a node 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉, and 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) returns the list of ancestors that have already been visited along the branch 

where the intermediate node 𝑣𝑣𝑘𝑘  belongs. That said, the recursive function could be 

described as follows (Eq. 18).  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑣𝑣𝑘𝑘,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = �
𝜙𝜙 ∶  𝑣𝑣𝑘𝑘 = 𝑣𝑣𝑠𝑠                                                                             
𝜙𝜙 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) = 𝜙𝜙                                          
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∪ {𝑣𝑣𝑘𝑘})  ∀𝑥𝑥 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘)

 

 

Eq. 18 

Condition 1: Terminate with success if the source vertex is visited. 

Condition 2: Terminate with failure if no neighbour is left to visit. 

Condition 3: Recursively visit all the neighbours that are not visited, keeping the current 

node as an ancestor along the trail.  

• Termination: The recursion terminates if one of the following cases is valid.  

o If the source vertex 𝑣𝑣𝑠𝑠 is found on any of the branches, the branch satisfies the criteria 

of a path that starts with 𝑣𝑣𝑠𝑠 and ends with 𝑣𝑣𝑑𝑑. As 𝑣𝑣𝑑𝑑 is the root, backtracking the branch 

gives a unique path. Thus, the recursion is terminated.   

o If all adjacent vertices appear as ancestors, this means no more un-visited neighbours 

have left along with the subjected recursion. This condition terminates the recursion to 

prevent any loop or duplicate path discovery.  

• Optimization: All descendent nodes leading to a non-source leaf are pruned out to 

optimize the space of the tree. This recursive removal is called Shrink-Phase.   

• Result: Backtracking each branch of the route tree returns a set of paths between 𝑣𝑣𝑠𝑠 and 

𝑣𝑣𝑑𝑑, which MRoute (Algorithm  3) returns.  
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3.3.3 Route Tree 

The Route tree 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 is an m-way search tree that represents all paths between 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉 

with the following properties. 

1. The destination vertex 𝑣𝑣𝑑𝑑 is the root.  

2. All leaves are the source vertex 𝑣𝑣𝑠𝑠 

3. Every branch has a positive weight (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) assigned as a sum of individual edge 

costs along the branch. STEN periodically calculates the edge cost.  

4. For any intermediate vertex vk, the function 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) and 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) return the 

ancestors along the branch and the adjacent nodes, respectively, for 𝑣𝑣𝑘𝑘. The base case 

for the recursion is 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) ∩ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) = 𝜙𝜙. 

 

 

 

 

Figure 24 RouteTree generated by MRoute w.r.t. for 𝑟𝑟1,3 
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Algorithm  3: MRoute   

Purpose: Finds all possible paths between (𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑) ∈ 𝑉𝑉2 
Local Input: 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ,𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉 
Global Input: 𝐴𝐴𝐴𝐴𝐴𝐴,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
Output: 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 
Data Structure: n-ary tree 
Implementation: Dynamic Array, Implicit Stack  
Strategy: Recursion, Backtracking  
Begin 
 if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜙𝜙 then 
  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑣𝑣𝑘𝑘 
  if 𝑣𝑣𝑘𝑘 = 𝑣𝑣𝑠𝑠 then 
   //Successful termination  
   Return ST  
  else 
   // Unvisited children  
   𝐶𝐶𝑘𝑘 ← {𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘)} 
   if 𝐶𝐶𝑘𝑘 = 𝜙𝜙 then 
    // Unsuccessful Termination  
    Return UT 
   else 
    for 𝑣𝑣𝑖𝑖 ∈ 𝐶𝐶𝑘𝑘 do 
     Call Update_Ancestors() 
     // Recur  
     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑣𝑣𝑘𝑘, 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑) 
    end loop 
   end if  
  end if  
 end if 
end 
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3.3.4. Topology Synchronization 

The previous section discusses the principles of MRoute that generates all possible parts 

between all pairs of vertices. The source and destination vertices belong to the source and 

destination classes, respectively. An SDN controller does this calculation for its local network. 

Controllers then share this information with their neighbours. In large distributed SDNs, this 

process may cause an overflow of controllers’ memory. However, routes learned from remote 

controllers are only significant to routers with proximity. Therefore, we propose that the 

advertisement of locally known routes is restricted to the neighbouring controllers, and only 

the best path is advertised further. This results in limited flooding in the controller network and 

prevents overflow from the controllers’ routing table. 

Figure 25 depicts the controlled advertising of local routes across a distributed SDN. The user 

belongs to a consumer network managed by the controller by 𝐶𝐶𝐶𝐶𝑁𝑁1 . Thus, 𝐶𝐶𝐶𝐶𝑁𝑁1 ￼’s 

neighbors𝐶𝐶𝐶𝐶𝑁𝑁2 ￼𝐶𝐶𝐶𝐶𝑁𝑁3 ￼. T𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘 the SDN is partitioned into adjacent areas based on 

proximity. In General, ￼𝑟𝑟𝑟𝑟𝑎𝑎𝑘𝑘−1,𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘+1A￼ and 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘−1 only the best route learned from 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘+1 to ￼ and vice-versa. 

Figure 25 Controller network of distributed SDN 
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3.3.5. Benchmarking 

 

Figure 26 depicts the architecture and workflow using various open-source tools to develop the 

testbed. Table 8 lists them with their purpose and brief usage description. The workflow of the 

testbed is as follows. The testbed runs a Python script that uses Mininet API to interact and 

build topology in the Mininet-Server. A series of test cases of four topology configurations (i.e., 

Linear, Regular, Tree, and Mesh) with an increasing number of nodes [0 –  100] is fed into the 

emulator. Mininet ‘talks’ with a controller-cluster using OpenFlow. The controllers discover 

their downstream topology and feedback OpenFlow rules to the respective switches. OpenFlow 

rules are generated by translating the routes calculated by the routing engine. The script then 

starts disconnecting random links [0 –  10000], from the topology, which invokes network re-

convergence. Eventually, switches contact their upstream controller for a new rule. The 

controller contacts the routing engine for a new route. In the case of the proposed model, routes 

are pre-computed and ranked. This diminishes the need to enter the convergence process 

instead; it gives the following best Route on demand. The rapid-convergence feature of MRoute 

gives it an edge over its competitors. Several parameters (listed in the next section) are collected 

during this process, and further used for comparison and benchmarking. 

Figure 26 Workflow of the testbed 
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Tool Purpose Description 
Mininet Open-source SDN 

simulator 
• Simulates SDN 
• Python API to automate network creation node 

and link state manipulation 
OpenDaylight Opensource SDN 

Controller 
• It Interfaces with an SDN network, simulated in 

Mininet using OpenFlow 1.3.  
• It Provides the topology and flow table 

information using RESTful API. 
MySQL Opensource Database • Stores Node and link states varying over time 

Table 8 Lists of open-source tools used to develop the testbed 

3.3.6. Comparative Parameters 

The experiment compares MRoute against OSPF and EIGRP, considering their wide 

acceptance in the enterprise networks with their respective routing classes, i.e., Link-state and 

Advanced Distance Vector routing. The experiment simulates OSPF and EIGRP at the control 

plane by using their underlying algorithms, i.e., SPF and DUAL, respectively and it compares 

with the proposed algorithm. The comparison benchmarks MRoute uses six parameters, namely, 

1. Discovery Time: The average time the algorithm takes to calculate all routes for all pairs. 

Analytically MRoute is an NP-Hard problem; therefore, the time complexity is exponential, 

however for SPF and DUAL, it is 𝑂𝑂(𝑛𝑛2). 

2. Convergence Time: The average time the algorithm takes to calculate an alternative path 

if the primary path fails. Since MRoute proactively pre-calculates all possible routes and 

maintains their dynamic rank, it is always guaranteed that the controller will reinforce it to 

the network instantly until there is at least one valid route. As a result, the network will 

converge in a constant order of time. 

3. Communication cost for Discovery: Routing protocols use distributed computing models. 

To discover and monitor neighbours, they use the "Hello" protocol over Multicast. The 

number of control packets in MRoute is constant as all edge devices send their local 

information to the controller using a tunnel. Therefore, it is independent of the network 

diameter. 
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4. Communication cost for Convergence: MRoute is free from re-routing, as any time a re-

routing request comes, the controller returns the following best active route. Thus, no 

control messaging is needed. 

5. Space Consumption: The amount of memory needed to maintain the topology 

information, including the data structures and look-up tables. 

6. Route Tree size: The algorithm is inherent, exponential, yet deterministic. During the 

growing phase, the tree adds children and removes the invalid paths during the shrinking 

phase. The tree size growth is also tested to examine the temporal space complexity of the 

n-ary tree data structure. 

3.3.6. Experimental Setup  

Figure 27 depicts the detailed setup of the experiment and implementation of the testbed; the 

numbered events denote the workflow. The testbed comprises several virtual machines 

Figure 27 Deployment diagram of the experiment 



 107 

designated for the Mininet and OpenDaylight instances. They share a common network 

segment provided by the hypervisor. A set of network topology configurations is listed in the 

test-case database pushed into the Mininet instance. One iteration comprises five phases that 

terminate with a report summarizing parameters listed in the previous section. Each topology 

configuration creates 3 OpenFlow LAN networks; each represents an edge segment and is 

designated to a specific controller from the Controller-Cluster. OpenDaylight (ODL) 

controllers listen to their respective TCP port 6633, with which the Open V-Switches (OVS) 

correspond to their downstream topologies established with the OpenFlow datalink. Each 

controller maintains its downstream topology map and flow tables and exposes them using 

RESTConf API to the northbound using TCP port 8181. The data-collector module 

accumulates topologies flow tables from individual controllers in the application plane, which 

are then fused into a global topology (as described in Figure 27). The routing algorithm module 

executes SPF, DUAL and MRoute on the topology and returns benchmark information to the 

data-analyzer, which finally formats the comparison information in a CSV file and streams it 

to the Reporting module. We limit the benchmarking with a 3-Controller (each with 4-vCPUs 

& 8GB RAM) configuration. However, the same process is scalable to a larger configuration 

with adequate resources given. A clarification for the readers’ comprehension of Controller-

Cluster, The cluster configuration does not yield a controller aggregation (e.g., Akka 15 

clustering) but rather a collection of multiple autonomous controllers. 

 

 
 

15 For more information about Akka clustering, visit https://bit.ly/3qshdWK  

https://bit.ly/3qshdWK
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3.3.7. Experimental Results 

The comparative analysis between MRoute, DUAL, and SPF (Figure 28) benchmarks 

algorithms using six parameters as discussed in section 3.3.5.  Subplot (A) compares the time 

complexity concerning the size of the network. These results are plotted on a log scale. 

Therefore, MRoute shows exponential growth in comparison with DUAL and SPF, which are 

bounded above by 𝑂𝑂(𝑛𝑛2) . Due to the diffusion-computation model and the presence of a 

feasible successor. DUAL goes less deep into the convergence state than SPF. We tuned the 

SPF to run on each downstream topology in parallel, simulating a multi-area OSPF network. 

Although it seems initially that DUAL is the optimum than its competitors, these algorithms’ 

work in SD-WAN flips the perception. MRoute calculates all possible paths in advance. 

therefore, in the long run, if the topology remains unaltered, it will never enter a re-convergence 

process, which is not the case with DUAL and SPF. This is shown in the subplot (B), where the 

random link failure causes SPF to re-converge every time. DUAL shows a better result as, in 

some cases, a feasible successor exists or a neighbour replies with a route much before the 

Figure 28 Experimental Results and Comparison MRoute against SPF and DUAL using the following 
parameters (A)Time Consumption to computing paths, (B) Time consumption to converge, (C) Control 
traffic for topology synchronization, (D) Space consumption for topology maintenance (E) Control traffic 
for convergence, (F) Route-Tree size.  
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query reaches the network boundary. However, MRoute shows a constant reading, as it is a 

𝑂𝑂(1) that requiring a fixed number of operations that involve querying and getting a reply for 

the following best route. The process can be thought of as a generalized case of DUAL, where 

all backup routes are ranked and listed. The communication complexity measures the number 

of packets exchanged between the nodes while discovering or converging into the network. In 

the case of SPF and DUAL, the algorithms are inherently distributed. Therefore, the local 

routes are advertised, queried during re-convergence, and polled for their liveliness using 

reliable updates and ‘HELLO’ messages. Since OSPF uses a link-state model, the total number 

of packets exchanged is higher than that of distance-vector-based EIGRP. MRoute is designed 

as a centralized routing algorithm; therefore, it does not exchange any discovery or update 

messages with other nodes. Instead, it updates only the controller, which is logically one hop 

away. This is justified by the subplot (C, E). 

The state-model representation of the Route-forest reduces the space consumption of MRoute 

drastically by tagging routes as a fixed-length binary vector of edges with RouteID. However, 

while generating the Route-Tree, it consumes memory exponentially. Although the pruning 

phase releases some memory, the overall growth remains exponential. The state model is built 

after the complete forest is generated, which compresses them into tables and relinquishes the 

memory (subplot (F)). The space complexity of MRoute sits between SPF and DUAL as OSPF 

maintains an identical link-state database for all nodes and EIGRP topology tables list the 

successor and feasible successors for each destination prefix depicted in subplot (F). 
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3.4. Most Reliable Route First (MRRF)  

3.4.1. Problem formulation of Cognitive Routing  

The controller sees the topology of the SDN as a simple, finite, and connected graph. The 

network consists of programmable routers and switches connected to the Controller via a secure 

and reliable SBI. The controller treats both the router and switch as a generic EN having a well-

defined set of Communication (L1) and MAC (L2) protocols configured. Additionally, the 

Routing (L3) and Transport (L4) protocols must ensure the following properties.  

1. EN doesn’t exchange SP traffic among each other but only with the controller over the 

SBI. 

2. There exists no Neighbor Discovery mechanism. EN shares their local information and 

keep-alive packets with the controller only. 

Figure 29 Reference topology with route-policies 
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3. The controller can monitor information about various resource utilization of the EN 

such as Memory, CPU, Network interface, etc. 

4. The network topology does not change frequently.  

Each  𝐸𝐸𝑁𝑁𝑖𝑖 maintains a local Routing Table (𝑅𝑅𝑇𝑇𝑖𝑖) comprising three disjoint sets of entries, The 

Connected Routes (𝐶𝐶𝑅𝑅𝑖𝑖) are networks connected directly to the device interfaces, The Static 

Routes (𝑆𝑆𝑅𝑅𝑖𝑖) are configured statically on the device and Remote Routes (𝑅𝑅𝑅𝑅𝑖𝑖) are not learned 

from the controller. These sets partition the routing table, i.e., 𝐶𝐶𝑅𝑅𝑖𝑖  ∩  𝑆𝑆𝑅𝑅𝑖𝑖  ∩  𝑅𝑅𝑅𝑅𝑖𝑖  = 𝜙𝜙 and 

𝐶𝐶𝑅𝑅𝑖𝑖  ∪  𝑆𝑆𝑅𝑅𝑖𝑖  ∪  𝑅𝑅𝑅𝑅𝑖𝑖  =  𝑅𝑅𝑇𝑇𝑖𝑖. The controller uniquely identifies each EN by their Node ID like 

Router ID in OSPF and EIGRP and maps it with their corresponding CR set. When an EN 

receives a packet with an unknown destination address, it forwards it to the controller. The 

controller then resolves the destination node’s ID from a map, finds a route between the source 

and destination router, and replies to it back to the source node.  

 Figure 29 depicts a reference topology of 6 routers with Node ID R1 − R6 , the 

corresponding CRis are further segregated into the LAN (𝐿𝐿𝑖𝑖) and WAN (𝑊𝑊𝑖𝑖) links (𝐿𝐿𝑖𝑖 ∩  𝑊𝑊𝑖𝑖  =

𝜙𝜙), following RFC-1918 [199]. The controller uses the Link-State Routing (LSR) approach to 

build a topology from this information, i.e., nodes with a shared WAN network are adjacent. 

However, for the sake of simplicity, we did not include topology with Broadcast segments as 

it requires additional Designated node placement. Hence, we assume all the links are Point-to-

Point in nature. 

The network has a set of node-specific parameters (𝑋𝑋𝑁𝑁 ) such as CPU and memory 

utilization, and a set of Edge-specific parameters (𝑋𝑋𝐸𝐸 ) such as bandwidth, delay, load, 

reliability, etc. The WAN links are constrained and heterogeneous, i.e., their attributes are 

bounded above by some pre-defined values specific to that link. These values generally depend 

on the network policy or the media type; hence we leave it user-defined. We propose the 

formulation of link-cost as a set of linear programming Problems, for individual edges, with a 
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linear cost-function 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 :𝑋𝑋𝐸𝐸 → ℝ+ , between 𝑅𝑅𝑖𝑖  and 𝑅𝑅𝑗𝑗 , such that its linear constraints 

𝑔𝑔𝑖𝑖,𝑗𝑗 (𝑋𝑋𝐸𝐸) ≤ 𝐾𝐾𝑖𝑖,𝑗𝑗  are met. This is to overcome the limitation of OSPF’s sub-optimal routing 

issue due to its simplistic metric and EIGRP’s route-flapping problem caused by its dynamic 

metric parameters. The proposed method uses link attributes defined by RFC-7868[24]. 

However, as the metrics are calculated locally to the controller, it diminishes the need to 

exchange update packets between edge nodes, thus eliminating the cause of route-flapping. 

Like the edge cost, the node cost also contributes to the calculation of the final metric. The 

node-cost function 𝑓𝑓𝑖𝑖𝑁𝑁 ∶ 𝑋𝑋𝑁𝑁 → ℝ+ computes a cost based on the node attributes (𝑋𝑋𝑁𝑁).  

The controller generates a Graph structure isomorphic to the network topology and 

weighs its edges by relaxing the 𝑓𝑓𝑖𝑖𝑁𝑁 and 𝑓𝑓𝑗𝑗𝑁𝑁 into 𝑓𝑓𝑖𝑖,𝑗𝑗 
𝐸𝐸 for all adjacent for all 𝑅𝑅𝑖𝑖 ,𝑅𝑅𝑗𝑗 using STEN. 

As the 𝑋𝑋𝐸𝐸 and 𝑋𝑋𝑁𝑁 varies over time, but the topology remains the same; hence the subjected 

Graph is a dynamic isomorphic Graph, which we refer to as Meta-Graph. 

The proposed algorithm performs the following steps to meet the rapid-convergence 

criteria. 

1. Efficiently computes all possible paths between all pairs of nodes from the meta-graph 

using MRoute. This step is invoked whenever the topology changes. 

2. Computes the reliability of the links by profiling their cost variation over time using an 

RNN using LSTM; This is a periodic step. As the LSTM estimates a time series by 

autoregression.   

3. Ranks the computed paths obtained from step 1 based on their cumulative reliability 

obtained from step 2. This step is invoked every time an update happens. 

4. Returns the most reliable routes on-demand as the primary route keeping the rest in a 

backup. In case the primary Route fails, the following best Route is served instantly. Hence 

rapid convergence is achieved. 
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The Simple, undirected and connected graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) represents the topology of the underlying 

network; where, 𝑉𝑉 = {𝑣𝑣𝑖𝑖}  and 𝐸𝐸 =  �𝑒𝑒𝑖𝑖.𝑗𝑗  �𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗  ��   be the Vertex and Edge set, 

respectively. 𝑉𝑉 and 𝐸𝐸 are finite and non-empty, 𝑎𝑎𝑎𝑎𝑎𝑎�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�  =  1 if 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 are adjacent, and 0 

otherwise. The graph is simple (No self-loop, no parallel edge) to fit the SPA criteria. It is 

undirected as we assume that the links are full-duplex in nature, and the connected property 

ensures a path between any pair of vertices. The following measures are computed from 𝐺𝐺: 

1. Adjacency Matrix: 𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = [𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑗𝑗) ∈ {0,1}]𝑛𝑛×𝑛𝑛  is a symmetric binary matric 

represents the adjacency of the graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) and |𝑉𝑉| = 𝑛𝑛.  

2. Policy Set: A finite non-empty set of policy tuples that includes 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸  and �𝑔𝑔𝑖𝑖,𝑗𝑗 ≤ 𝐾𝐾�. The 

policy set (Eq. 19) 

𝑃𝑃𝑃𝑃𝑃𝑃 = �< 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 (𝑋𝑋𝐸𝐸), �𝑔𝑔𝑖𝑖,𝑗𝑗(𝑋𝑋𝐸𝐸) ≤ 𝐾𝐾𝑖𝑖,𝑗𝑗� > ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉2 � Eq. 19 

 

3. Variable Cost Matrix (VCOST): 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) = �𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) ∈ ℝ+�
𝑛𝑛×𝑛𝑛×𝑡𝑡

  is a tensor 

representing the cost matrix at time instance t. All the 𝑛𝑛 diagonal values  𝑐𝑐𝑖𝑖,𝑖𝑖 represents 

corresponding node-costs 𝑓𝑓𝑖𝑖𝑁𝑁 and the non-diagonal ones represent the edge-cost 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸  for 

all valid edges i.e. (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸.(Eq. 20)  

  

�𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)� = �
𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑖𝑖,𝑗𝑗 

𝐸𝐸 (𝑋𝑋𝐸𝐸 , 𝑡𝑡) , 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸
𝑓𝑓𝑖𝑖𝑁𝑁(𝑋𝑋𝑛𝑛, 𝑡𝑡),  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   

 

   

 
Eq. 20 

 

 

4. Normalized Cost Matrix (NCOST): As the diagonal elements of 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝑡𝑡) represent 

weighted self-loops, it violates the "simple-graph" criteria. Therefore, a normalization 

is needed that relaxes the self-loops but preserves their effects on the resultant "Simple-
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Graph." We use the Stochastic Temporal Edge Normalization (STEN) technique to do 

so, which results. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡) = ��𝑐𝑐𝑖𝑖,𝑗𝑗′ (𝑡𝑡)� ∈ [0,1]�.  

5. Route Tree: The MRoute algorithm generates the tree and is discussed in section 3.3. 

Figure 29 depicts the Route-Tree 𝑅𝑅𝑇𝑇1,2 w.r.t. the reference topology Figure 29 shows 

the hop counts and cumulative costs for each valid route (terminating at source vertex 

𝑣𝑣1 ). At ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 5 , 𝑅𝑅3  has two children, 𝑅𝑅1  and 𝑅𝑅5  and𝑅𝑅1  is the source, it 

terminates the search successfully. However, 𝑅𝑅5  has no adjacency left that has not 

appeared in its ancestor set. Therefore 𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅5) –  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅5) = 𝜙𝜙  , and the search 

registers an unsuccessful termination. The MRoute algorithm has two phases: Phase-1 

(Grow Phase), where the tree grows recursively, registers several unsuccessful 

terminations, and Phase-2 (Shrink Phase) eliminates all such branches.  

6. Route Forest: For an n -node graph, there exists �𝑛𝑛2�  possible pairs (from the 

Handshaking theorem in Graph Theory) of nodes. Each node produces a Route Tree. A 

collection of such trees forms a Route-Forest. It is generated by invoking MRoute 

Figure 30 RouteTree of 𝑅𝑅𝑇𝑇1,2, rooted at 𝑅𝑅2 all the reachable paths terminate with 𝑅𝑅1 and 
unreachable node 𝑅𝑅5. 



 115 

parallelly �𝑛𝑛2� times for each pair of nodes. The concurrency in execution is possible as 

the procedures are computationally independent, and only the shared data structures are 

read. 

 

3.4.2. Metric formulation 

The proposed composite metric for MRoute constitutes the node cost 𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡) and edge costs 

𝐶𝐶𝑖𝑖,𝑗𝑗𝑁𝑁 (𝑡𝑡). The node and edge parameters are listed in Table 9, followed by the formulation of 

costs. 

Node 
Parameters 
(𝐗𝐗𝐍𝐍) 

CPU Parameter Core Count (nc) frequency (fc)  Utilization (uc) 
Units Integer MHz [0,1] 

Memory Parameters Volume (vm)  Frequency (fm) Utilization (um) 
Units MB MHz [0,1] 

Link 
Parameters 
(𝐗𝐗𝐄𝐄) 

Parameters  Bandwidth 
(BW) 

Delay   
(DLY) 

Load 
(LD) 

Reliability 
(RLY) 

MTU 

Units  Mbps ms [0,1] [0,1] [0,1500] 
Table 9: Link and Node Parameters, Monitored By CP 

Formulation of the Node Cost: The node cost uses CPU and memory utilization as parameters. 

However, CPU & memory utilization can solely determine performance (i.e., a 20% utilized 8-

core CPU processes more operations than an 80% single-core CPU, which applies to the 

context of DDR4 vs. DDR2 memory). Moreover, with recent adaptation to network 

virtualization (e.g., Cisco IOU, CSRv), CPU and memory allocation is more flexible, yielding 

more heterogeneity in the network. Therefore, we propose a more robust metric formulation. 

The weight parameters αc and αm are left to the user to regulate (e.g., EIGRP K-Values), the 

default value is set to 0.5. (Eq.  21) 

𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡) = 𝑓𝑓𝑖𝑖𝑁𝑁(𝑋𝑋𝑖𝑖𝑁𝑁, 𝑡𝑡) 
             = �𝛼𝛼𝑐𝑐 �𝑓𝑓𝑐𝑐𝑖𝑖(𝑡𝑡) ∗ 𝑛𝑛𝑐𝑐𝑖𝑖(𝑡𝑡) ∗ 𝑢𝑢𝑐𝑐𝑖𝑖(𝑡𝑡)� + 𝛼𝛼𝑚𝑚 �𝑓𝑓𝑚𝑚𝑖𝑖

(𝑡𝑡) ∗ 𝑣𝑣𝑚𝑚𝑖𝑖
(𝑡𝑡) ∗ 𝑢𝑢𝑚𝑚𝑖𝑖

(𝑡𝑡)� � 
 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎,𝛼𝛼𝑐𝑐 + 𝛼𝛼𝑚𝑚 = 1;  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝛼𝛼𝑐𝑐 = 𝛼𝛼𝑑𝑑 = 1 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝛼𝛼𝑐𝑐 ,𝛼𝛼𝑚𝑚 ∈ [0,1] 

Eq.  21 
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Formulation of the Link Cost: The link cost function uses the same parameters as EIGRP. 

All the control traffic is targeted to the controller. This not only reduces the diameter of control 

flow from O(n) (linear) to O(1) constant but also results in fast convergence. The topology is 

built inside the controllers’ memory, and no control packets are flooded to make a neighborship. 

The SDN paradigm unifies the benefits of OSPF and EIGRP as it creates a complete topology 

view like OSPF, uses all parameters of a more robust composite metric and supports unequal-

cost load balancing like EIGRP. 

The formulation in Eq. 22 has three components. 

1. BDP: The Bandwidth Delay Product 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝐵𝐵𝐵𝐵(𝑡𝑡) × 𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)  measures the 

instantaneous end-to-end throughput. 

2. Load: The BDP is scaled by the mean load �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) × 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)� and 

measures the amount of occupancy in the link. 

3. Reliability: The occupied capacity is scaled with the additive inverse of reliability 

�𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × �1 − 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)�� to measure the unreliability of the occupied capacity. 

 

𝐶𝐶𝑖𝑖,𝑗𝑗𝐸𝐸 (𝑡𝑡) = 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 �𝑋𝑋𝑖𝑖,𝑗𝑗𝐸𝐸 , 𝑡𝑡�

= �𝛽𝛽𝐿𝐿𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖,𝑗𝑗(𝑡𝑡)

× �𝛽𝛽𝐵𝐵𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑖𝑖,𝑗𝑗)�𝐵𝐵𝑊𝑊𝑖𝑖(𝑡𝑡)� × 𝛽𝛽𝐷𝐷 � 𝐷𝐷𝐷𝐷𝑌𝑌𝑖𝑖(𝑡𝑡)
𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑖𝑖,𝑗𝑗)

�

× 𝛽𝛽𝑟𝑟 �1 − 𝑅𝑅𝑅𝑅𝑌𝑌𝑖𝑖,𝑗𝑗(𝑡𝑡)�� 

Such that,  
∑𝛽𝛽𝑘𝑘 = 1;𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝛽𝛽𝑘𝑘 = 0.25 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝑘𝑘 ∈ {𝐵𝐵,𝐷𝐷,𝑅𝑅, 𝐿𝐿} 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝛽𝛽𝑘𝑘 ∈ [0,1]  
𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖,𝑗𝑗 = 𝑇𝑇𝑇𝑇𝐷𝐷𝑖𝑖,𝑗𝑗+𝑅𝑅𝑅𝑅𝐿𝐿𝑖𝑖,𝑗𝑗

2
 is the mean load across the end-to-end link 

𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑠𝑠,𝑑𝑑)�𝐵𝐵𝑊𝑊𝑖𝑖(𝑡𝑡)� is the effective throughput of the bottleneck link  
∑ 𝐷𝐷𝐷𝐷𝑌𝑌𝑖𝑖(𝑡𝑡)𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑠𝑠,𝑑𝑑)  is the cumulative delay along the path. 

 
 

Eq. 22 
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Formulation of Normalized Metric: Concerning equations Eq.  20 and Eq. 21, the cumulative 

metric for a link cI,j′ (t) is obtained by relaxing the node costs of both endpoints �𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡),𝐶𝐶𝑗𝑗𝑁𝑁(𝑡𝑡)� 

and scaling them by their 

corresponding load-share 

�𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡),𝑃𝑃𝑗𝑗,𝑖𝑖(𝑡𝑡)� into the link cost 

𝐶𝐶𝑖𝑖,𝑗𝑗𝐸𝐸 (𝑡𝑡) as shown in Figure 31 The 

parameters γN, γE  are the 

weighing factors set by the user. 

The load-share of an interface is a 

proportion of the number of 

packets passed through that 

interface over the total Packet exchanged. The value is expressed in  [0,1]. (Eq. 23) 

𝑐𝑐𝑖𝑖,𝑗𝑗′ (𝑡𝑡) = �𝛾𝛾𝑁𝑁 �𝑃𝑃𝑖𝑖,𝑗𝑗𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡) + 𝑃𝑃𝑗𝑗,𝑖𝑖 𝐶𝐶𝑗𝑗𝑁𝑁(𝑡𝑡)� + 𝛾𝛾𝐸𝐸 �𝐶𝐶𝑖𝑖,𝑗𝑗 
𝐸𝐸 (𝑡𝑡)�� 

𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎, 𝛾𝛾𝑁𝑁 + 𝛾𝛾𝐸𝐸 = 1; 
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛾𝛾𝑁𝑁 = 𝛾𝛾𝐸𝐸 = 0.5 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝛾𝛾𝑁𝑁, 𝛾𝛾𝐸𝐸 ∈ [0,1] 

Eq. 23 

                   

Figure 31 depicts the relaxation process to calculate the variable cost metric 𝑐𝑐𝑖𝑖,𝑗𝑗′ (𝑡𝑡) ∈ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

at time t. 

3.4.3. Analysis and Optimization of MRoute algorithm 

MRoute takes to source and destination vertex (𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑) as input, looks up to global structures 

𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 during its recursive run-time and returns a route tree 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑. The n-ary tree is 

stored in a hashed-dynamic array structure. It finds all possible paths between a pair of vertices 

using the Backtracking strategy. The problem is inherently brute-force in nature, and the state-

space complexity is NP-hard. Therefore, we introduce optimization and relaxation, which are 

further explained in the later section of this chapter. 

 

Figure 31 Relaxation of Node costs into Edge using STEN 
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Optimizing the Route-Tree Data structure 

 MRoute adds nodes recursively into the Route-Tree, the algorithm assumes 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉) is 

of 𝑂𝑂(1). Generally, an n-ary tree can be stored using either a linked (non-contiguous) or array 

(contagious) structure. Since the data structure is unordered, each node must maintain 

(|𝑉𝑉| − 1)  pointers it consumes in 𝑂𝑂(𝑛𝑛2) space. However, not every time is the network mesh. 

Additionally, the recurrence decreases monotonically as more neighbours are visited. They 

would not appear as children. Therefore, the number of children decreases as the tree gets 

deeper and choosing an n-ary tree structure is not space-optimal.  

 We propose an optimal data structure to accommodate such a sparse array. Furthermore, 

when a graph is converted into a tree, there will be multiple instances where the same node 

appears in various spaces. To eliminate any confusion during insertion, pointing, and displaying 

a node (Figure 32).  

Figure 32 Dynamic Array-list with hash-table organization for fast searching. 𝐿𝐿𝐿𝐿𝑐𝑐𝑖𝑖 is the virtual 
memory location, that holds the router object 𝑅𝑅𝑗𝑗 with ID k. Hash table maps an ID to its location 
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An efficient and light index generation method is needed. For an n-ary tree, the following Eq. 

24 generalized heap-indexing rule is adapted for this purpose. 

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣𝑘𝑘) = 𝑖𝑖) ⇒ �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑣𝑣𝑘𝑘) = �

𝑖𝑖
𝑛𝑛
� 

𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑑𝑑𝑗𝑗�𝑣𝑣𝑗𝑗� = 𝑛𝑛𝑛𝑛 + 𝑗𝑗
 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉| = 𝑛𝑛 

Eq. 24 

                 

A non-contiguous data structure stores the nodes for better scalability to avoid any 

segmentation error while using large topologies. Nodes are kept in random memory location 

𝐿𝐿𝐿𝐿𝑐𝑐𝑘𝑘. The ID is calculated using rules in Eq. 24 and is kept along with the nodes' data. A hash 

table maps the index to location; thus, the search time is reduced to 𝑂𝑂(1); Figure 24 depicts 

the process.  

Optimizing Route-Forest Formation  

MRoute is a costly algorithm in terms of space consumption while generating a Route-Forest. 

The algorithm is invoked 𝑂𝑂(𝑛𝑛2) Times. The calculation of the route tree for any arbitrary pair 

of nodes is computationally independent since they share a common data structure 𝐴𝐴𝐴𝐴𝐴𝐴 and 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. This satisfies the criteria to execute them in parallel without any race condition (as no 

write operation on global structures occurs). Therefore, each 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉2  is computed 

parallelly in their threads. Also, 𝑇𝑇𝑖𝑖,𝑗𝑗 can also be realized by reversing 𝑇𝑇𝑗𝑗,𝑖𝑖 with 𝑂𝑂(𝑛𝑛2).  
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FSM model and Route-tagging 

As the Route Tree grows exponentially, a compression algorithm is necessary to keep it scalable. 

We propose a novel approach to achieve such by using a Finite State Machine (FSM) or Type-

3 automata, which eventually generates regular expressions to identify a route uniquely. That 

said, an n-node FSM consumes O(n) space for storage using a matrix format; thus, it also leads 

to an 𝑂𝑂(1) access tine. Hence, we chose to leverage the FSM model for compressing Route-

Trees.  

Let, ℳ(𝒬𝒬,𝒯𝒯, 𝛿𝛿, 𝑞𝑞0,ℱ) be a pentuple describing an FSM such that, 

o 𝒬𝒬 is a finite, non-empty set of states (𝒬𝒬 = V) 

o 𝒯𝒯 is a finite, non-empty set of unique route identifiers (Route-Tags), (𝒬𝒬 ∩ 𝒯𝒯 = ϕ) 

o δ is a transition function, such that.? δ:𝒬𝒬 × 𝒯𝒯 → 𝒬𝒬 

o q0 is the initial state, q0 ∈ Q = vs ∈ V 

o ℱ is a finite, non-empty set of Final stets(s), ℱ = {vd} ⊆ Q 

Any Route Tree has unique paths between roots and leaves. An identifier called Route-Tag tags 

each Path uniquely. This compresses the exponentially large Route-Tree into a state machine 

of size 𝑂𝑂(|𝑉𝑉|). We term this transformation ℱ:𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 → ℳ𝑠𝑠,𝑑𝑑 as Route State-Transformation 

Function (RSTF) and ℳ𝑠𝑠,𝑑𝑑  as Route State Graph (RSG), depicts the transformation with 

changes in the data structures. Table 10 shows the transition function from the state machine 

(Figure 33). 
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𝓠𝓠 × 𝓣𝓣 1 2 2 4 

𝑅𝑅1 ϕ ϕ ϕ ϕ 

𝑅𝑅2 R1 R6 R6 R6 

𝑅𝑅3 ϕ ϕ R1 R1 

𝑅𝑅4 ϕ ϕ R3 R5 

𝑅𝑅5 ϕ ϕ ϕ R3 

𝑅𝑅6 ϕ R1 R4 R4 

Figure 33 Implementation of Route-Tag and generating FSM form route tree. The process depicts the 
transformation of data-structures from the Route-Tree to Route State Graph 

Table 10: Transition table of  
ℳ1,2  rows represent routers 
receiving packets with route-tag 
represented by columns, cells 
represent the corresponding next 
hop and 𝜙𝜙 means empty set.  
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Path Matrix  

A path-matrix 𝑃𝑃 = 𝑉𝑉2  is defined as �𝑝𝑝𝑖𝑖,𝑗𝑗 ∈ 𝑃𝑃� = ℳ𝑖𝑖,𝑗𝑗 .  Every valid traversal in ℳ𝑠𝑠,𝑑𝑑 

corresponds to a feasible route between 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉. We propose two methods to encode the 

RSG. 

1. Encoding as Grammar: In this approach, the state machine is encoded into a set of 

production rules called grammar 𝒢𝒢(𝒱𝒱,𝒯𝒯,𝒫𝒫, s). This mode of encoding is useful when the 

routes are generated either as patterns or regular expressions. A grammar 𝒢𝒢 is expressed as 

a quadruple were, 

• 𝒱𝒱 is it a set of non-terminals?  

• 𝒯𝒯 is a set of the terminal (Route-Tags) 

• 𝒫𝒫 is a set of Regular production rules. 

•  s is the start symbol. 

As an example, 𝒢𝒢1,2, be the grammar corresponding to ℳ1,2which is expressed in Eq. 25 . 

𝒫𝒫 = {R1 → ϵ, 
           R2 → τ1,2R1 � τ2,6R6 � τ1,2, 
           R3 → τ1,3R1| τ1,3, 
           R4 → τ3,4R3 |  τ4,5R5 , 
           R5 → τ3,5R3, 
           R6 → τ1,6R1| τ4,6R4 |τ1,6, 
           τ1,2 → 1, 
           τ1,3 → 3|4, 
           τ1,6 → 2, 
           τ2,6 → 2|3|4, 
           τ3,4 → 3, 
           τ3,5 → 4, 
           τ4,5 → 4, 
           τ4,6 → 3|4 } 

Eq. 25 

 

 

Encoding RSG into its grammar summarizes the routes, and parsing-ability is enforced using 

regular expressions. 
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2.  Encoding as The-Cost table: The Tag-Cost-table 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝒯𝒯 × 𝐸𝐸 is a binary matrix. Each 

row identifies one route tag (𝑡𝑡𝑘𝑘 ∈ 𝒯𝒯) and it is the corresponding edge set. The column-sum 

tells how many route tags are sharing a given edge (typically used for load-balancing). The 

Tag-Cost function is formulated in Eq. 26 and the Tag-Cost table in Table 11.  A Min-heap 

implementation of storing the tag-costs takes 𝑂𝑂(1)  time to return the best route and 

𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏�|𝑉𝑉|) time to reorder them. 

𝑐𝑐𝑠𝑠,𝑑𝑑
(𝑡𝑡𝑘𝑘∈𝒯𝒯)(𝑡𝑡) = � �𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) × 𝑇𝑇𝑇𝑇𝑇𝑇[𝑡𝑡𝑘𝑘]�

(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 Eq. 26 

 

Encoding RSG into TCT does leverage the reactive route-response mechanism due to 

its constant search for the best route. Also, the tabular structure makes it easy to program and 

alter with varying edge costs. 

Tags e1,2 e1,3 e1,6 e2,6 e3,4 e3,5 e4,5 e4,6 Cost 
1 1 0 0 0 0 0 0 0 c1,2

(1)(t) 
2 0 0 1 1 0 0 0 0 c1,2

(2)(t) 
3 0 1 0 1 1 0 0 1 c1,2

(3)(t) 
4 0 1 0 1 1 1 1 0 c1,2

(4)(t) 
Share 1 2 1 3 2 1 1 1  

Table 11 tag-cost-table for ℳ1,2 

 

3.4.4. Estimation of the Reliability using Recurrent Neural Networks (RNN) 

As the normalized costs matrix (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) varies over time (due to node or link cost), it creates 

a time series matrix. However, the matrix comprises individual normalized links which vary 

independently and does not provide performance analytics directly. Therefore, first, we 

segregate each link and treat them as separate time series. Then, unlike predicting the traffic 

pattern or load, we focus more on predicting the trend. One of the challenges regards online 

training in a dynamic environment. A trained neural network often rejects to adapt to sudden 
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changes as the outlier. Therefore, we aim to model the network dynamics by the degree of 

volatility of individual links. 

 

A. Sharpe-Ratio based approximation  

In finance, the Sharpe ratio [200] is a widely used metric in portfolio management that 

measures the volatility of a stock and estimates the risk associated with it[201]. It is defined as 

the ratio of the sample-mean and the sample-standard-deviation of a set and is proportional to 

the volatility. The approximation steps are as follows, 

1. Calculate volatility 𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡) of each 𝐶𝐶𝑖𝑖,𝑗𝑗(𝑡𝑡) with a user-defined window size 𝑊𝑊 rolling 

over time t (Eq. 27). 

𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡) =
𝐶𝐶𝚤𝚤,𝚥𝚥′ ([𝑡𝑡 − 𝑤𝑤 ∶ 𝑡𝑡])��������������������  

𝑆𝑆𝑆𝑆�𝐶𝐶𝑖𝑖,𝑗𝑗([𝑡𝑡 − 𝑤𝑤: 𝑡𝑡]) �
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 

Eq. 27 

 
 

2. Estimate the edgewise hypothesis functions hI,j ∈ ℋ  as an auto-regressive function 

using an RNN with a period  W16. (Eq. 28) 

𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = ℎ𝑖𝑖,𝑗𝑗�𝒱𝒱𝑖𝑖,𝑗𝑗[𝑡𝑡 − 𝑤𝑤: 𝑡𝑡]� Eq. 28 

 

3. Use 𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) as a metric to choose the best path. The proposed model uses offline 

training to build the initial model and then uses online training to update it. We define 

a cutoff value 𝜖𝜖 > 30%.  

 

 

 
 

16 In the theory of time series analysis, the optimal window size is when the Partial Auto 
Correlation Function (PACF) intersects the lag axis; after which the data at the time series does not 
contribute to the approximation.  
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3.4.5. Implementation  

Figure 34 depicts the deployment diagram of our testbed. A multi-tier approach is conceived 

for operational and functional segregation. The SDN philosophy of decoupling control and data 

plane has been the proposed architecture's core design principle. However, the Knowledge 

plane has been integrated on top to support SON capabilities. 

 

 

 

 

 

 

Figure 34 Deployment diagram of the Testbed. Infrastructure plane holds routers, overlay server receives 
monitoring information and spawns VNFs per Router. Control planes discover topology and application 
plane operates on it. Knowledge plane is for self-learning however beyond the scope of the context. 
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A. Self-Organized Knowledge Defined Network (SO-KDN) testbed  

The architecture supports network automation and SON. It finds the optimal route using 

MRoute (Self-Optimization), then installs them to the underlying nodes by pushing device-

specific configuration into the edge devices (self-configuration) and guarantees a most-reliable 

Route by keeping updating them over time (Self-Healing). Thus, it meets all three criteria of 

SON. The following explains the working of the layers. Please refer to the implementation 

details, including connection API and algorithm code, for further information [46].  

1. Infrastructure Plane: This layer hosts physical and emulated network nodes (e.g., routers, 

L2/L3 switches, etc.). In this experiment, Cisco IOU-L3 routers are simulated on GNS3. 

Routers are also connected to Overlay-plane securely using IPsec-DMVPN to exchange 

control traffic, like the OpenFlow channel. 

2. Overlay Plane: This layer interfaces between the infrastructure and control plane. A VNF 

process (agent) is spawned for each router underneath, which maintains a secure link 

(using SSH) to monitor the resource utilization. Additionally, it also injects configuration 

commands. We use Napalm17, library to automate the routes. Remote routes are injected 

as floating-static routes, and their priorities are controlled with respective administrative 

distances. 

3. Control Plane: Resource and topology information are fused to generate the meta-graph 

in the control plane. REST-Conf is used to interface with the overlay plane below and the 

application plane above. 

4. Application Plane: The application plane brings modularity to the architecture, hosting 

various apps that govern the use-cases' functional characteristics. MRoute is one such 

 
 

17 For more information on Napalm visit https://napalm.readthedocs.io/en/latest/  

https://napalm.readthedocs.io/en/latest/
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application. However, there are other functions such as migration and monitoring beyond 

the scope of the context of this chapter.  

5. Knowledge Plane: The knowledge plane leverages the KDN paradigm. This component 

takes care of all data pre-processing, and offline and online training. It returns a trained 

model initially as an outcome of offline training. However, the model gets updates during 

online training whenever the trend changes. KDN functionalists can be divided into four 

main units. 

a. Pre-processing: This acts as a staging area for the model of the training units. It 

performs data acquisition, data quality checks, and validations, imputing and 

standardization. Typically, 70% of the overall process time is spent on this phase. 

b. Offline training: After the pre-processing tasks, the offline activity starts by dividing 

the data into training, validation, and testing for the machine learning (ML) model. It 

utilizes the historical data from the repository to train the model and predicts the 

networking characteristics to produce decisions such as VNF placement and state 

prediction. 

c. Online Training: It is used when the data is generated in a sequence (such as time 

series). Network resource utilization is a form of a time series. The Topology is 

represented as a matrix. Each element of the matrix represents a normalized link cost 

between a pair of nodes. Over time, a sequence of such matrices is received, making 

it a 𝑛𝑛 ×  𝑛𝑛 ×  𝑡𝑡 tensor. Where n be the number of nodes and t be the time. 

d. Modelling: The learning algorithm learns from the fed dataset and generates a 

prediction model. Since the problem can be classified as a time series prediction type, 

RNN is chosen as the base architecture. 
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B. RNN Architecture  

In this section, the design of the machine learning function is presented. We also introduce a 

few techniques used, like hyper-parameters, fine-tuning, and choosing the best optimization 

algorithm. 

 

1. Hyper-Parameter Tuning: In this phase, the Hyper-parameters such as Batch-size and 

number of neurons are tuned from experimental data. Figure 35 depicts testing Mean 

Squared Error (MSE) cross-validation for three layers on a Deep RNN using 200 epochs. 

The reason for this was to choose the appropriate number of neurons and the batch size 

for the training and validation datasets; the error rate is measured using Mean Squared 

Error (MSE). As highlighted in bold, the optimum hyper-parameters have been 128 

neurons and 512 batch sizes at 0.08 MSE. 

 

2. Optimization Algorithm: Figure 33 compares the various optimizers. For the LSTM 

model, different sets of window sizes are tested. Three principal variants of Gradient 

Descent (SGD, ADAM & RMSPROP) are compared. As a proof of concept, results 

Figure 35 (A) Comparison of accuracy (by mean squared error) with four network setups (128, 256,512 & 
1024), the Global optima is reached with 128 Neuron at a batch size of 512. (B) compares three optimizer 
algorithms (SGD, Adam & RMSPROP), over a varying window size of [20 − 200], on which Adam gives 
best result on average 
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show that predicting a 200ms window size using Adam can achieve a mean error rate 

of 10%. 

3. Scoring: The proposed technique performs traffic prediction on the normalized 

reliability of the links. The result shows that reliability can be estimated with the 

appropriate hyper-parameters with a mean of 90% accuracy. 

 

C. Online Learning  

 

The online learning phase receives constant feedback from the network. If the predicted 

reliability deviates from the actual one within a given threshold, the RNN needs to re-learn to 

adjust its weights. The re-learning process takes place for multiple edges simultaneously. 

Figure 36 Evaluation of the Online-Learning, (a) Learning time with 200 epochs, (b) Accelerated 
learning with Early-Stopping enabled (c) Comparing time-series prediction of reliability in Best, 
Average and Worst-case scenario (d) compares the deviation in log-scale, also shows the comparison is 
distinctive when there is less fluctuation 



 130 

Hence, the tuning needs to be optimized. We use TensorFlow’s Early Stopping feature to 

accelerate the learning process by monitoring the loss function’s value and breaking the 

iteration whenever the loss converges to a value. Therefore, the learning process doesn’t need 

to run for all the epochs. Figure 36(a) shows the loss function’s characteristics spanning 200 

epochs which took 27.6 Seconds to complete learning. The function settles around 55’th epoch 

and has stayed constant since then. Figure 36(b) depicts the effect of the Early Stopping that 

brings the training time to just 0.53 seconds. Thus, it exponentially reduces the time 

consumption of re-training the RNN, making it feasible for online training. 

With several trials of online training, a more comprehensive comparison between the actual 

and predicted reliability is shown in Figure 36(c, d). The first compares the best, worst and 

average cases, sampling them down to a set of 20 instances, collected over 20 minutes of 

online learning. The results show discrimination is prominent when there is less fluctuation in 

the data sets; it’s more comprehensive when the deviation is plotted on a log scale (Figure 36 

(d)).  

 

D. Rapid Convergence and Co-relation to Sharpe Ratio 

Figure 37 depicts the varying reliability of five edge nodes over a period of 350 stamps each 

of 10 seconds. The log scale is used to magnify the variation. Over time, three nodes have 

come up as the most reliable in the order of None2, Node4, Node5 and again Node2. During 

the experiment, we emulated these dynamics by randomly altering various node and edge 

attributes. This causes the network to be highly chaotic and the routing protocols to re-

converge frequently. An effect that appears in Figure 24(A, E). MRoute has shown an 𝑂𝑂(1) 

time convergence as routes are not only chosen in constant time. Additionally, the most reliable 

node is switched instantly. The relative dotted boxes also draw a clear correlation between the 

learned reliability and the Sharpe ratio. As the Sharpe ratio measures the degree of volatility 
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every time, it meets a rapid depression. The corresponding router is chosen as the most reliable. 

During the training, the RNN captures this trend and predicts accordingly. We set the window 

size of 100 timestamps; thus, an offset of 100 can be seen on the time axis of the two plots.  

 

 

 

 

Figure 37  Demonstration of Self-Healing through rapid-convergence: At timestamp [0 − 100] 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2 is 
most reliable as the corresponding rolling Sharpe-Ratio has maximum descending gradient calculated on 
100 timestamps. Similar pattern can be noticed for 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒4 during [100-240], 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒5 during [240 − 270] 
and 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2 during [270 − 350]. The correlation is analytical however the RNN learns it. 
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Chapter Summary  

 

This chapter summarizes the contributions to the Self-Optimization problem of 5G and beyond. 

The optimization problem it addresses is the Routing as-a-service for a knowledge-defined 

network (KDN). It covers a three-part discussion, first, the STEN method takes both the link 

and node utilization into account for costing the communication cost, which makes the routing 

decision more robust as it can include convergence scenarios based on service overload. Second, 

the pathfinding algorithm MRoute which proactively finds all possible paths between all pairs 

of nodes and stores them efficiently to the controller for a reactive constant time convergence. 

Third, the MRRF technique uses RNN to estimate the reliability as uses it for metric calculation, 

which is then used by MRoute to update the cost matrix periodically.  

 The experiments benchmark the optimization process in each of its aforementioned 

stages against both distance vector and link-state routing algorithms. Test results validate the 

claims of constant time convergence in dynamic network situations by verifying several stress 

scenarios.   

 In summary, the chapter discusses the compliance of the Cognitive Routing model to 

the Self-Optimization feature in 5G and beyond architectures. It also explains the role of 

cognitive routing in pursuing the URLLC by choosing a more reliable path to transport than 

the cheapest one.   
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Chapter 4: Self Configuration  

 

The self-configuration property leverages the Softwarization property of Software 

Defined Networking (SDN). Chapter 3 discusses the Self-optimization property, where it 

describes how the optimization problem calculated the optimal decision variables subjected to 

the given constraints. The self-configuration property is responsible to inject them into an 

underlying Control Plane (CP) using North-Bound Interfaces (NBI) which the CP exposes as 

Application Programming Interfaces (APIs).  

This chapter introduces the elementary self-configuration concept from a software 

engineering perspective with a historical coverage of several SDN programming paradigms. 

Later, it presents a list of contributions that leverages the self-configuration framework in the 

scope of this thesis.     

 

4.1. Introduction 

Over the stretch of several decades, Internet architecture has evolved enormously. The core 

philosophy that gave birth to the Internet was to provide a generic fabric that connects several 

vendor-specific and platform-dependent networks, hence the term ‘Inter-Network’. Therefore, 

the design philosophy of the Internet is more skewed towards stability than dynamics, e.g., the 

working principle of Exterior Border Gateway Protocol (eBGP) deviates significantly from the 

rest of Interior Gateway Routing Protocols (IGPs) in that very context. Eventually, the Internet 

architecture has become static and hard to change as the core design prefers stability and 

accuracy over dynamics. This phenomenon is called Internet Ossification [202], which 

elongates the innovation lifecycle in network engineering compared to its software counterpart. 
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The SDN architecture results in a paradigm shift in dealing with the stringent 

requirements by segregating the network’s functional constituents. It offers rapid 

programmability on the overlay network keeping the underlaying networking untouched. 

Arguably, this has been the key factor behind the decoupling of the Control and Data planes 

which outstand SDN over its likely predecessors such as Open Signaling (OpenSig) [203], 

Active Networks (AN) [204], and Ethane [205].     

Although AN is not similar to what SDN offers, before exploring deep into SDN 

programmability, it is essential to address two questions, first, why did OpenSig fail? and why 

did SDN win?. The OpenSig model addressed the issues faced by AN by segregating the CP 

and DP, but its static programming interface results in a tight couple between the programming 

language and programmable hardware. The SDN model blends the best of both the 

aforementioned models.  First, it removes the platform dependence using flow modification 

and loosens the coupling between the programming language and the programable hardware 

using standard APIs. Second, it applies CP-DP segregation by isolating the forwarding logic 

from the forwarding hardware (e.g., switch, router, firewall) and placing it in the central 

controller. This results in the forwarding hardware autonomously controlling its forwarding 

circuits (i.e., Application Specific Integrated Circuit or ASIC) using a local software; where the 

forwarding rules reside in a local data structure called Flow Table (FT) which the controller 

populates.    

Currently, three major organizations namely: The Open Networking Foundation (ONF), 

Internet Engineering Task Force (IETF) and Open Networking Research Center (ONRC) are 

responsible for SDN standardization. However, it is legit to mention, that there have been 

several flow management protocols developed like OpenFlow [206], NetOpen [207], OpFlex 

[208], POF [209], ForCES [210]; but OpenFlow has become the de facto protocol for SDN due 

to its robustness and wider industry acceptance. 
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The remainder of this section will delve deep into the SDN programmability to cement 

the rationale behind modelling the contributions to knowledge made by this thesis.  

4.1.1. SDN use cases  

A study of the recent literature [211][212] suggests seven use case scenarios that leverage SDN 

programmability. Table 12 lists the suggested use cases and their objectives.  

Use Case Objective  
Routing  Migrating from the traditional decentralized routing model to a logically 

centralized mechanism that accommodates Virtualization, Orchestration, 
Automation and Programmability on networks.    
 

Cloudification It is the most important use case in SDN [213]. Manages interconnection 
and interaction between Datacenter and transport networks (e.g., bandwidth 
allocation, policy enforcement, traffic engineering and network telemetry). 
Cloud platforms offer network orchestration as a part of their code modules, 
e.g., Neutron in OpenStack, Network-Node in Open Nebula, Network 
manager in Cloud Stack, etc.  
 

Load 
Balancing  

SDN provides load-balancing as a part of its control logic. There are claims 
that SDN could replace dedicated load balancers due to its native support 
[211]. 

  
Network 
Management  

Centralized control eases the implementation policy-based network. Several 
automation frameworks such as Ansible, Puppet, Chef, Salt etc. enable the 
controller to automate the policy injection. Cisco’s Intent-Based 
Networking [214] is a great example. The Cisco DNA centre and Campus 
Fabric for Cisco SD-Access (SD-LAN) and in SD-WAN with VManage 
(management plane), VBond (Orchestration), VSmart (Control Plane) and 
VEdge (Data-Plane).  
 

Application-
Centric 
Networking  

SDN controller exposes Northbound-APIs for exchanging valuable 
information between the CP and AP and East/Westbound-APIs for inter-
controller information exchange. External applications can leverage these 
APIs to inject application-specific policies such as Security policies, 
QoS/QoE policies etc. This reduces the deployment complexity 
significantly [215] 
 

Security The Authentication, Authorization, and accounting (AAA) architecture is 
the de-facto standard for enterprise networking. However, there has been 
several evidence of attacks in the AAA model, especially through Man in 
the Middle (MITM) and Distributed Denial of Service (DDoS) attacks.  

Table 12 SDN use cases 
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4.1.2. The programming language taxonomy and SDN adaptability   

Attribute Classification Description Ref 
Pr

og
ra

m
m

in
g 

Pa
ra

di
gm

 

Declarative 
programming  

• Formal language expresses the intent primarily using 
logic rather than arithmetic  

• The developer focuses on ‘What’ than ‘How’ 
• The interpreter translates the ‘What’ clauses into 

‘How’ methods using Frenetic Notation [216] 
 

[216] 
[217] 
[218] 

Functional 
Reactive 
Programming 
(FRP) 

• Suitable for event-driven programming  
• Method invocations depend on event occurrence 

(Signals) hence reactive 
 
 

[219] 
[220] 

L
an

gu
ag

e 
Sp

ec
ifi

ca
tio

n Formal 

• Uses mathematical notation to express instruction  
• suitable for SDN programming  

[221] 
[222] 
[223] 

Informal  

Uses graphical modelling language such as UML to 
express the instructions 

[224] 

N
et

w
or

k 
Pr

og
ra

m
m

ab
ili

ty
 

Domain-
Specific 
Language 
(DSL) 

• Tailored to cater to a specific domain of application  
• Suitable for SDN programming  
• Abstracts the development complexity of common 

network procedures (e.g., Sockets, Tunnel, Flow-
Injections etc.) 

• There are two classes of DSL, Textual and Visual aka 
Domain-Specific Modelling Language (DSML) 

• DSML uses the concept of Model-Driven Engineering 
(MDE) to speed up the deployment process by hiding 
the implementation details and reducing the 
complexity of programming mundane tasks.   

• The MDE framework achieves the above by 
segregating its specifications into MD-Architecture 
(MDA) which uses UML to define the overall 
deployment architecture and MD-Development 
which leverages the model defined in MDA and 
Interoperability to translate into target-specific 
instructions. The Object Management Group (OMG) 
defines the translation standards for MDE using a 
concept called Meta-modelling.  
 

[225] 
[226] 
[227] 
[228] 
[229] 
[230] 
[231] 
[228] 
 

General 
Purpose (GPL) 

• Domain agnostic (e.g., C, C++, Java Python etc.)  
• Suitable for developing generic Network applications 

(Traditional and SDN)   

 

Table 13 Language Taxonomy of SDN programming languages 
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Table 13 summarizes the several industry-standard programming languages based on their class 

as prescribed in the standards [222][216]. These apply to implementing the controller logic and 

higher-level ones can express policies better. From the above table, we can conclude that a 

model SDN programming language should be Declarative or Functional reactive, Formal and 

Domain-Specific. Table 14 compares the benefits and demerits of each programming language 

paradigm defined above.  

Paradigm Pros Cons 
FRP • Efficient event-driven programming. 

• Enable modelling of delays and state, 
• Implicit caching and multicast  

• Performance 
• Complexity in creating data 

structures, memory, and space 
leaks  
 

DSL • High abstraction level  
• Fewer lines of code  
• Flexible  
• Enables verification and validation of 

application  
• Higher productivity in the specific 

problem domain  
• Layering that can lead to language-

independent from the underlying 
infrastructure   
 

• Performance  
• Language design is hard 
• Useless for application outside 

the domain  
 

Imperative • Flexibility 
• A high degree of abstraction  
• The developer defines ‘how’ he 

wants a network to behave  
 

• Complexity in creating 
structures 

• Low abstraction level 

Declarative  • High abstraction level  
• Fewer lines of code  
• Simplicity, in focusing on ‘what’ a 

developer wants a network to behave 
 

• Inflexibility  
• Hard to express conditions  

Logic 
programming 

• Flexibility and reliability  
• The network architecture of protocol 

(e.g., OpenFlow) can be changed 
without changing the program or their 
underlying code 

• Performance  
• Lack of arithmetic, event, and 

datatype support 
• Complexity in creating 

structures  
Table 14 Comparison of different programming paradigms 
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4.1.3 State of the Art in SDN programming languages  

The initial SDN language developments could be traced back to 2009 when the standard was 

incepted. Lopes et al. in their survey [232] present a comprehensive comparison of the state-

of-the-art initial SDN programming languages given in Table 15.  

Language Paradigm  Objective Year Limitation 
FML  
[233] 

Declarative  
+ DSL 

High-level abstraction 
of network behaviour 
to replace specific 
configuration 
 

2009 No arithmetic operation, 
No dynamic policy, No 
rule conflict resolution, No 
explicit negation rule 
  

Nettle  
[234] 

Declarative  
+ FRP + 
DSL 

Declarative 
programming of 
OpenFlow 
 

2011 No rule conflict resolution  

Procera  
[227] 

Declarative 
+ FRP + 
DSL 

Express reactive 
dynamic policies in a 
declarative way 
 

2012 No direct support for 
events or external queries 

Flog  
[235] 

Declarative 
 + DSL 

Event driven and 
forward-chaining 
language  
 

2012 No explicit negation rule 

NetCore 
[236] 

Declarative  
+ FRP + 
DSL 

Intent-based network 
programming, the 
programmer defines 
the ‘what’ clauses and 
the interpreter 
translates them into 
‘How’.  
 

2012 No support for stateful 
control 

Frenetic 
[216] 

Declarative 
 + DSL 

High level of 
abstraction for 
programming state 
and forwarding policy 
to the controller 
 

2013 Consistency only to single 
switch per flow. 

FatTire  
[217] 

Declarative 
 + FRP + 
DSL  

Write a program in 
terms of paths through 
the network and 
explicit fault tolerance 
requirements 
 

2013 No inbuild Fault detection 
and recovery, and no QoS 
support  

Pyretic  
[237] 

Declarative  
+ DSL 

Specify network 
policies with a high 
level of abstraction  
 

2013 Consistency only to single 
switch per flow. 
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Language Paradigm  Objective Year Limitation 
Nlog  
[238] 

Declarative 
 + DSL 

Compute the network 
forwarding state 
separating the logic 
specification at the 
controller 
 

2013 No flow verification 
method, no explicit 
negation rule 

Flowlog  
[239] 

Declarative  
+ DSL 

Abstract DP and CP 
behaviour  
 

2014 No abstraction for queries 

Merlin  
[240] 

Declarative Express high-level 
policies that provision 
network resources 
 

2014 Does not provide 
consistency between 
policies  

Kinetic 
[241] 

DSL Provide abstraction 
for automating 
changes in network 
policies  

2015 Does not provide 
consistent updates by itself  

Table 15 Comparison of SDN programming languages [232] 

The above summary shows the various SDN programming languages developed during the 

period of 2009 – 15 with their corresponding merits and limitations. The study shows that there 

isn’t any language for “one size fits all”, due to some inherited limitations such as static policies, 

no configuration conflict resolution, no explicit rule generation, lack of event-driven 

programming support, lack of external query support, lack of simultaneous configuration of 

multiple switches with consistent configuration, lack of fault tolerance and high availability, 

and lack of rule verification. Therefore, after 2015 when SDN standardization was stated by 

ONF, the number of languages started to converge into more API driven implementation. The 

SDN controller exposes a standard RESTful API such as RESTCONF to allow applications to 

leverage it. This addresses all the limitations mentioned above to be resolved by the controller 

itself before it pushes the translate forwarding entry to the data plane. Recently ONF has 

launched a new programming language called P4[242] that provides the ease of declarative 

programming and Stratum[243] a switch operating system that unifies several platform-

specific deployments. The following sections list the contributions to the self-configuration 

domain primarily using the API manipulation using a GPL (Python3.x).     
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4.2.  System-Level Simulator integration with SDN (SDN-SIM) 

Design and structural complexity are skyrocketing with the introduction of diverse technology 

paradigms in next-generation cellular and vehicular networks. The beyond- 5G use cases such 

as time-critical application, 5G-V2X, and UAV communications require ultra-low latency and 

high throughput and reliability with limited operational complexity and cost. These use cases 

are being explored in 3GPP Releases 16 and 17. To facilitate end-to-end performance 

evaluation for these applications, we propose SDN-Sim-integration of a System Level 

Simulator (SLS) with a Software Defined Network (SDN) infrastructure. While the SLS 

models the communication channel and evaluates system performance on the physical and data 

link layers, the SDN performs network and application tasks such as routing, load balancing, 

etc. The proposed architecture replicates the SLS-defined topology into an SDN emulator for 

offloading control operations. It uses link and node information calculated by the SLS to 

compute routes in SDN and feeds the results back to the SLS. Along with the architecture, data 

modelling and processing, replication, and route calculation frameworks are proposed. 

 

4.2.1. Preliminaries  

Towards 5G/B5G, the third-generation partnership project (3GPP) finalizes release and defines 

Release 171. In the area of vehicular networks, the 3GPP, in partnership with the Fifth 

Generation Automotive Association (5GAA), is driving the efforts on the 5G-based vehicle-to-

everything (V2X) paradigm, which adds advanced features to the LTE-V2X from Release 14, 

particularly in the areas of support for ultra-reliable and low-latency communication (URLLC) 

applications for the future intelligent transport systems (ITS) [29],[30], [31]. In the evolution 

path from LTE-V2X to 5G-V2X, the authors in [29] advocated the incorporation of SDN in the 

architecture to enhance the system performance through SDN’s capabilities in facilitating 
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intelligent multi-hop routing, dynamic resource allocation, and advanced mobility support, 

among others. 

To evaluate the performance of proposed algorithms, techniques, and frameworks for 

any new era of communication networks, numerical simulations, mathematical analyses, and 

field trials are the three main approaches being employed. Though analytically tractable, 

mathematical methods (e.g., stochastic geometry tools) are often constrained by simplifying 

assumptions that potentially limit their use in modelling large-scale, highly complex, and 

dynamic networks. Realistic performance can be measured in live operating environments. 

However, the financial and operational requirements are costly and practically infeasible for 

the early design and development stages. Hence, in the past few decades, simulations have 

become essential tools for the assessment of network performance due to the apparent cost and 

implementation advantages [32]. 

Depending on the performance metrics under investigation, simulators can be 

categorized into three: Link Level Simulator (LLS), System Level Simulator (SLS), and 

Network Level Simulator (NLS). The LLS examines detailed, bit-level physical (PHY) layer 

functionalities of a single link. The SLS evaluates the performance of links involving many 

Base Stations (BSs) and User Equipment (UEs) at the Medium Access Control (MAC) layer 

(with the PHY abstracted). It focuses on the radio access network/air interface and facilitates 

analyses of resource allocation, capacity, coverage, spectral and energy efficiencies, amongst 

others. The NLS, however, assesses the performance of protocols across all layers of the 

network, including control signalling and backhaul/fronthaul issues. Performance is 

characterized using metrics such as latency, packet loss, etc. [33]. 

Besides metric-based classification, simulators can also be grouped based on radio 

access technologies supported (cellular, vehicular, Wi-Fi, etc.), programming language 

environment (MATLAB, Python, C++, etc.), licensing option (open source, proprietary, free of 
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charge for academic use) or network scenario capabilities (LTE, 5G, B5G, etc.) [33]18. While 

the SLS does not simulate beyond the MAC layer, the NLS simulates networks up to the 

application layer. However, the implementation and computational complexity of NLS become 

very high when many nodes are involved [32]. 

Another significant paradigm shift in network design takes place with the advent of 

SDN [34]. It decouples the control (signalling) plane from the data (forwarding) plane and runs 

applications in the AP to manage the network. This brings transparency to network design and 

lets software developers write applications for managing the networks, keeping the internal 

design in abstraction. Each layer uses several interfaces to communicate with each other. The 

CP communicates with both AP and DP using North and Southbound interfaces, respectively. 

In the case of a cluster of controllers, East and Westbound interfaces are used for 

communicating among them. 

The default southbound protocol for SDN, OpenFlow uses FT to perform packet 

forwarding. Each FT entry is a forwarding rule determined by the controller. A forwarding rule 

has mainly three significant fields, a “match,” an “action,” and a “priority.” A “match” is some 

criteria for an inbound packet to be checked. A packet that satisfies the criteria is termed a 

“table hit”; otherwise, it is a “table miss.” For each case, an action is defined such that the 

OpenFlow switch executes on the subjected packet. If a packet satisfies matches from multiple 

flow rules, priority is used to break the tie. The SDN Controllers populate flow entries. The 

OpenFlow switch requests the controller for every table miss and the controller replies with a 

flow entry. If the controller cannot resolve an action, it is set as a “drop,” The switch does not 

process the packet. The decoupled control plane reduces computational cost on forwarding 

 
 

18 Representative simulators include the Vienna LTE-A and 5G simulators for LLS and SLS 
(https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/), and the 5G-K Simulators for 
the NLS (http://5gopenplatform.org/main/index.php).  

http://5gopenplatform.org/main/index.php
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devices by offloading the control packet processing tasks to the controller. Therefore, SDN 

offers better modularity, programmability, agility, automation, and load balancing capability 

than traditional networks. Also, the SDN-based approach is used in network design practices 

for cloud computing and 5G. 

This section presents a novel SDN-based System Level Simulator (SDN-Sim) platform 

where the SLS-Stage runs in MATLAB, and the NLS stage is based on python3. By inheriting 

all the benefits of SDN, the architecture considerably reduces the overall computational 

complexity of the system. The computationally demanding upper layer network functions (e.g., 

inter-cellular routing) are offloaded to the virtualized cloud infrastructure. The controller maps 

Low-level network information (e.g., Channel model, topology, etc.) from SLS to SDN. 

Python-based application development and virtual infrastructure using Type-1 hypervisor 

(VMWare ESXi) servers. OpenFlow and RESTCONF are the south and northbound protocols, 

respectively. OpenDaylight is used as the SDN controller, while GNS3 and Mininet-wifi 

emulate the data plane emulation. 

 

4.2.2. System Architecture and Implementation  

Figure 38 depicts the system architecture of SDN-Sim, with the SLS at the bottom and the SDN 

infrastructure running on the top. When the SLS does the channel modelling and scheduling, 

the SDN takes care of the upper layer functionalists such as IP routing and traffic control, 

described as follows. 

A. System Level Simulator 

The tasks of the SLS  run in loops of transmission time intervals (TTIs), and the results are 

averaged over several simulation runs or channel realizations [244]. 

• Scenario Setting: The layout depicts a Vehicular Network of BSs/Roadside Units (RSU) 

and vehicle-mounted radio/UEs configured with 3D locations of the nodes. UEs or 
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vehicles are mobile and attached to their serving RSU, which further interfaces with the 

cellular networks through BSs with parameters such as line-of-sight probability, distance, 

and Signal-to-Noise Ratio (SNR). 

• Channel Modeling: For all links, the path loss (PL), shadow fading (SF), transmit and 

receive, and antenna gains and fast fading are calculated to estimate the channel of each 

user for both desired and interfering links. 

• Scheduling: Radio resources are allocated to users based on the scheduling algorithm. 

Resource blocks (bandwidth) and power are allocated either in a quasi-random fashion (for 

open Loop configuration) or based on feedback from the users in closed-loop systems. The 

channel state information (CSI) feedback and other factors such as the traffic type of users, 

link adaptation strategy employed, and quality of service (QoS) demands are used as 

decision determinants at the scheduling stage. 

• Link Quality and Performance Estimation: The links' signal-to-noise and interference 

ratio (SINR) are then estimated. The users ‘throughput and the cells’ capacities are 

calculated using the SINRs and the link abstraction model (for the block error rate (BLER)). 

Recent developments in SLSs are mainly focused on solving problems on channel modelling 

[245], high-frequency communication [246], [247], coexistence and performance optimization 

[248], energy efficiency, latency, scheduling, and load balancing over a heterogeneous network 

[249], among others. The 5G public-private partnership project (5GPPP) has described several 

aspects of Softwarization, service management, and orchestration in their architectural 

reference [250], including SDN, cloud computing, virtualization, etc. Therefore, cloud 

computing is being employed to enhance the scalability and computational efficiency of 5G 

SLSs by offloading the computational load [251]. 
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B. Software-Defined Network 

The task of the SDN extension is described as follows.  

•  Channel State Monitoring: The SLS running in a MATLAB server with Open Database 

Connector (ODBC) driver updates the topology and channel modelling parameters to a 

centralized Database. 

Figure 38 Schematic system architecture of SDN-Sim with Full stack setup along with their core functions 
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• SDN Emulation: The topology information is reactively fetched and emulates using the 

TopoBuild module in the SDN DP through GNS3 (wired core networks) and Mininet-wifi 

(wireless edge network). The CP starts communicating with Open-Flow. 

• Route Calculation: The application plane fetches topology from the control plane, 

translates it into a graph using the TopoSense module and finds the shortest paths between 

node pairs using the TopoRoute module. These paths are fed back to the database and the 

controllers. 

The workflow and communication sequence taking place between the various elements of the 

architecture are as given in Figure 39 

1. Update communication parameters: The SLS performs channel modelling, radio 

resource allocation, and system performance evaluation. After optimizing the model for a 

given scenario generates several channel parameters (bandwidth, distance, path-loss, 

The picture can't be displayed.

Figure 39 Sequence diagram for various message exchange between components of SDN-Sim 
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latency, and delay) and BS parameters (position, range, RSSI, transmission power, etc.). 

Since parameters are calculated per BS, each BS updates its local dataset to the centralized 

database. 

 

2. Fetch node and link parameters: TopoBuild is a bespoke program to fetch SLS 

parameters from the central database and relay them to the SDN Data plane to replicate 

the topology. BSs are placed as wireless access points, running OpenFlow protocol. Links, 

depending on types (i.e., fronthaul or backhaul), are assigned to BSs. Wireless fronthaul 

connection carries several radio parameters such as path loss, frequency band, RSSI, etc. 

 

3. Topology replication: TopoBuild translates parameters obtained from the central DB into 

a series of commands. There are two possible infrastructures (GNS3 and Mininet-Wifi) in 

the proposed architecture with three possible deployment options (full GNS3, full Mininet-

wifi, and hybrid). TopoBuild generates a script to replicate the topology and injects it into 

the specific engines (GNS3 and/or Mininet-Wifi) based on the deployment type and 

connection specifications. A feature comparison between GNS3 and Mininet-Wifi is given 

in Table 16 and briefly described as follows. 
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 GNS3 Mininet-Wifi 
Si

m
ila

rit
ie

s • Both are open source and offer GUI-based network design. 
• Both support API based Interfacing with the external environment 
• Both have methods to access the physical interface 
• Both can host OVSs and dummy workstations for data plane 

Pr
os

 

• It is not Limited to SDNs only. 
• Use of actual OVS images.  
• Better Test-result accuracy 
• Realistic test cases.  
• Supports scalability via Clustering. 
• Native Docker Support. 
• Extensibility with apps from the 

GNS3 market- place 

• Rapid Implementation, no SDN / 
OpenFlow configuration needed link 
configuration 

• wireless support 
• native SDN support 
• Inbuild mobility & propagation models 

C
on

s 

• No wireless support 
• Manual configuration for SDN / 

OpenFlow and other supporting 
devices No link configuration 

• Requires more physical resources to 
set up the test environment 

• Limited to SDNs 
• Test-result accuracy 
• Scalability via multi-threading 
• No clustering supports 
• No paravirtualization 
• No app-based functional extensibility 

Table 16 A comparative study of GNS3 and Mininet Wi-Fi as Data Plane Engine 

 

a. GNS3 Infrastructure: GNS3 is an open-source network emulation software. It 

comprises the controller VNF that interfaces through RESTful APIs, manages 

topology, etc., and a cluster of para-virtualized compute nodes that host VNFs such 

as routers, switches, firewalls as containers, or VMs. In SDN-Sim, TopoBuild 

communicates with GNS3-Controller using RESTful API, and the Open-V-

Switches (OVS) run as a docker container within the GNS3-Compute cluster. 

Therefore, GNS3 offers realistic test cases with a testbed and produces more 

authentic results than a simulation. On a downside, it lacks support for wireless 

networking emulation; however, it allows access to a physical wireless card. 

 

b. Mininet-Wifi Infrastructure: With a Wi-Fi extension, inheriting all the features 

of Mininet, it can now emulate wireless SDNs. With the support of its python API, 

programming and configuring Mininet-Wifi is more user-friendly. Mininet-Wifi 
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runs in a single sandbox with its interactive command line. Thus, TopoBuild uses 

raw sockets to inject the Mininet-wifi commands for deployment and parameters 

updates. It also offers four mobility and five propagation models. Since Mininet-

Wifi uses HWSIM drivers to simulate wireless networking, emulating an extensive 

network is constrained. Also, it does not support clustering, 

 

4. Accessing Control Plane with OpenFlow: Both GNS3 and Mininet-Wifi host OVSs; thus, 

they communicate with the controller using OpenFlow v1.3 (OF1.3) as southbound 

protocol. OF1.3 uses bidirectional messaging to communicate with the switches. A switch 

requests a controller with a Packet-In message, and the controller replies with a Packet-

Out. SDN-Sim uses Open-Daylight-Beryllium SR4 (ODL) as a controller that runs as VM. 

Both GNS3 and Mininet-Wifi use TCP ports 6633 and 6635 for communication. The CP 

supports the binding of several controller nodes with clustering to maintain scalability, 

high availability, and persistence in the data plane. ODL supports ’Akka’ clustering for this 

purpose. 

 

5. Interfacing with Application Plane with RESTCONF: SDN-Controller interacts with 

the application plane using Northbound APIs. ODL uses RESTCONF (RFC-8040). It is a 

RESTful version of NETCONF (RFC- 6241) protocol and uses JSON (RFC-7159) format 

to transfer data among REST-enabled devices. In SDN-Sim, we use two RESTCONF 

resources (Inventory and Topology). “Operational” resources are to read, and “Config” are 

to write. The inventory resource provides node-wise OpenFlow tables, and the Topology 

resource provides the topology of the network. The App TopoSense makes use of the 

resources to model a graph by fusing topology and flow-table information. TopoSense 

invokes TopoRoute to calculate the route for a given topology. 
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6. Route Calculation: TopoRoute uses Stochastic Temporal Edge Normalization (STEN) [1] 

technique (Discussed in Chapter 3) to find routes. It receives the topology and flows tables 

from TopoSense. The link parameters are already present in the database. By fusing them, 

a single source shortest path algorithm is run over every pair of vertices. A set of all 

possible routes are generated. In a traditional network, local routes are shared among 

neighbours to form routing tables. With the size of the network, due to propagation delay, 

the routing becomes significantly slow. However, in an SDN paradigm, discovery is made 

by the controller; hence the topology graph is mapped proactively. Therefore, the shortest 

paths between every pair can be calculated in parallel. This results in speeding up the 

routing process and allows scalability in the network. 

 

7. OpenFlow Tables Update: TopoRoute does event-driven updates of the flow tables in the 

Central DB. The calculated routes are fed back to the TopoSense, which eventually replies 

to the routes back to the controller using RESTCONF Inventory-Config API. 

 

After the central DB gets updated, the SLS picks the information, and an inter-cellular route is 

discovered to leverage the lower (physical and data link) layer operations. The complete 

operational sequence diagram is given in Figure 39. 

 

C. Data Modelling & Design of Central Database   

The central database plays the role of middleware between the SLS and the SDN. Table 

17 shows the related entities and their corresponding attributes for the data model. There 

are three main entities: Node, Flow Table, and Channel. A node can be of either Access 

Point (AP) or Host. One host is associated with one AP, and one AP can associate with 

many hosts. Each AP is an OVS; thus, it contains a flow table(s) and a unique Data Path  
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Table 17 Descriptions of attributes of the data model 

Identifier (DPID). A pair of nodes makes a channel with a unique channel ID (mapping is 

recorded at the Node Channel Map table). A channel between a Host and an AP is called 

fronthaul (Wireless), and between a pair of APs is a backhaul (Wired). No channel exists 

between two hosts. Since TopoSense reads information from the APs, the route calculation by 

TopoRoute takes place over the backhaul network. 

Node Attributes 
Node ID Primary key, Unique ID for each node 
Type Type of the node (AP or Host) 
Range Communication Range of the node 
Position Location of node (3D cartesian coordinate) 
Channel  Operating Channel Number 
Frequency  Operating Frequency (In Hz) 
Mode Operating Mode (B/G/N/AC/AX) 
Tx power Transmit Power in mW 
IP Address Nodes IP Address 
MAC Address Nodes MAC Address 

Access Point Attributes 
Station Association List of Host the AP is associated 

Host Attributes 
AP Association The ID of the AP to which the host is associated 
RSSI Relative Received Signal Strength (at host end) 

Flow Table Attribute 
DPID Unique Data path ID of the AP 
Source IP Match field for source IP in ingress packet 
Destination IP Match field for Destination IP in ingress packet 
Source MAC Match field for source MAC in ingress Frame 
Destination MAC Match field for source MAC in ingress Frame 
Action OpenFlow Action opcode 
Timeout Timeout (Dead) timer 
Packet Count Total packet count statistics 
Byte Count Total bytes count statistics 
Duration Hold time for OpenFlow Entry 

Node Channel Map Attributes 
Channel ID Foreign key to Unique Channel ID in Table 
Node_1 Foreign key to the first Node ID 
Node_2 Foreign key to the second Node ID 
 Channel Attributes 
Channel ID Primary key, Channel Identifier 
Bandwidth Channel Bandwidth in Mbps 
Distance Distance between incident nodes in meters 
Pathloss Pathloss of the channel in dB 
Latency Average latency (in ms) 
Delay  Average RTT (in ms) 
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D. Design of Application Plane 

Three major apps TopoBuild (Algorithm 4), TopoSense (Algorithm  5), and TopoRoute 

(Algorithm  6) run in the Application Plane. In the previous sections, their usage has been 

mentioned, the working principles are given below.  

Algorithm  4: TopoBuild 

Name  : TopoBuild 

Purpose  : Initiate topology replication from the SLS to the SDN platform  

Input  : Topology Information  

Output : Configuration command for the Emulation 

Data structure: Di-Graph  

Steps: 

Do  
𝑁𝑁 = {𝑛𝑛𝑖𝑖}                // read Node information  
𝐸𝐸 = {(𝑖𝑖, 𝑗𝑗)| ∀ 𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗 ∈ 𝑁𝑁 ,𝐴𝐴𝐴𝐴𝐴𝐴�𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗�}      // read Edge information  
𝐶𝐶 = �𝑐𝑐𝑖𝑖,𝑗𝑗�           // read Channel Information   
If Not (TOPO_INIT) then 
 CMD_NODE = { add_node(𝑛𝑛𝑖𝑖) ∀𝑛𝑛𝑖𝑖 ∈ 𝑁𝑁}     //add node config 
 CMD_EDGE = { add_edge(𝐼𝐼, 𝑗𝑗) ∀(𝐼𝐼, 𝑗𝑗) ∈ 𝐸𝐸 } // add edge config 
 Sim = INIT_DP()                               // initialize Data Plane simulation  
[end if] 
 
// Configuring DP  
For ni ∈ N Do 
              Perbegin( Sim.Exec( CMD_NODE ) ) // concurrent injection of node config   
[end loop] 
 
For (I, j) ∈ E Do 
              Perbegin( Sim.Exec( CMD_EDDE ) ) // concurrent injection of edge config   
[end loop] 

While( TOPO_CHANGE)     //recompute, if a topology change is detected; else spinlock  
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Algorithm  5 : Topo Sense 

Name  : TopoBuild 

Purpose  : Interact with SDN Controller to update topology information   

Input  : Controller Information ( RESTCONF client object )  

Output : Flow instruction for Shortest Path injection 

Data structure: Di-Graph  

Steps: 

Do 
 Try      // read the OpenFlow Table and Topology using RESTCONF 

            OFT    = RestConf.Operational.request( GET, Inventory ) 
  TOPO = RestConf.Operational.request( GET, Topology ) 
 [ throws COMM_EXCP ]   
 
 Try      // get the graph 𝐺𝐺  built using TopoBuild algorithm  

            G = Call( TopoBuild( TOPO ) ) 
 [ throws CONFIG_EXCP ] 
  
 Try       // Create the Shortest Path vector created using TopoRoute algorithm   
  SP = Call ( TopoRoute ( G ) )   
 [ throws GRAPH_EXCP ] 
  

For (I, j) ∈ G€ do  //Serialize SP configurations into JSON for transport   
 CONF(I,j) = JSON.Encode( SP(I,j) )  // for all edge  

 [end loop] 
 
 Try  // Concurrent configuration of nodes, update OFT and TOPO 
  Perbegin( RestConf.Config.request(POST, CONF(I,j), Inventory) ) 

            OFT  = RestConf.Operational.request( GET, Inventory ) 
             TOPO = RestConf.Operational.request( GET, Topology ) 
 [ throws COMM_EXCP ] 
 
 Catch ( COMM_EXCP )   
  Reconnect( TIME_OUT )  // retry until TIME_OUT timer expires  
 [ end catch] 
 Catch ( GRAPH_EXCP ) 
  Exit( Code = 100 )    // exit with code 100  
 [ end catch ] 
 Catch ( CONFIG_EXCP ) 
  Exit ( Code = 200 )  // exit with code 200 
 [ end catch ] 
While( TOPO_CHANGE )   // repeat if topology changes; otherwise spinlock  
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Algorithm  6: TopoRoute  

Name   : TopoBuild 
Purpose   : Interact with SDN Controller to update topology information   
Input   : Controller Information (RESTCONF client object )  
Output    : Flow instruction for Shortest Path injection 
Data structure: Digraph  
Steps 
Do 
 If ( INIT == False ) Then   // If forest is not initialized  
  𝑡𝑡 = 0 , LEARN = False   // initialize timestamp and Flags  
  𝑅𝑅 = �𝑅𝑅(𝑡𝑡)�, 𝐶𝐶 = �𝐶𝐶(𝑡𝑡)�   // initialize Cost and Reliability Vector  

              𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐺𝐺.Adj()    // Read adjacency matrix of 𝐺𝐺 
  𝐹𝐹 = Call ( MRout( Adj) )  // Create Route Forest F using MRoute  
  IINIT = True    // set the init flag  
 Else 
  RET = 𝜙𝜙    // initialize return Vector  
  While |𝐶𝐶| ≤ 𝑊𝑊 Do   // accumulate costs until window expires   
   𝐴𝐴𝐴𝐴𝑗𝑗𝑛𝑛

(𝑡𝑡) = Call( STEN(Adj) )  // Normalize using STEN  

   𝐶𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡−1) ∪ �𝑐𝑐(𝑖𝑖,𝑗𝑗)
(𝑡𝑡)  | ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 �𝐴𝐴𝐴𝐴𝑗𝑗𝑛𝑛

(𝑡𝑡)��  // update Cost Vector  

   𝑡𝑡 = 𝑡𝑡 + 1      // update time index  
   If |𝐶𝐶| == 𝑊𝑊 then    // if Overflow anticipated 
    Delete(𝐶𝐶0)    // Slide window by 1 
    LEARN = True    // Init Learning  
   [end if] 
   If LEARN == True Then 
    For (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝐺𝐺) Do    
         // concurrently calculate the reliability for all edges in 𝐺𝐺 

         Perbegin�𝑅𝑅(𝑡𝑡) = 𝑅𝑅(𝑡𝑡−1) ∪ � 𝑅𝑅𝑅𝑅𝑅𝑅 �𝑐𝑐(𝑖𝑖,𝑗𝑗)
([𝑡𝑡−𝑊𝑊:𝑡𝑡])�  | ∀𝑐𝑐(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) ∈ 𝐶𝐶�� 

    [end loop] 
    RNN.train( 𝑅𝑅 )    //train the neural net with reliability vector 
    𝛿𝛿𝑟𝑟 = 𝑟𝑟(𝑡𝑡) − RNN.predict(𝑡𝑡 + 1) // 𝛿𝛿𝑟𝑟 is the deviation of the forecast   
    If 𝛿𝛿𝑟𝑟 > CUTOFF then    // deviation exceeds the cutoff value   

     NEW_RET = �𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑡𝑡)�

𝑁𝑁(𝐺𝐺)2
 //Reliability for all edges  

     For (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝐺𝐺) do   // for all edges exceeding the cutoff 𝛿𝛿𝑐𝑐 
      If � 𝑁𝑁𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑇𝑇(𝑖𝑖,𝑗𝑗) −  𝑅𝑅𝑅𝑅𝑇𝑇(𝑖𝑖,𝑗𝑗)� > 𝛿𝛿𝑐𝑐 Then 
       𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝑁𝑁𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑇𝑇(𝑖𝑖,𝑗𝑗)  //update cost  
       𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑅𝑅 // update RET vector  
      [end if] 
     [end loop] 
    [end if] 
   [end if] 
  [end loop] 
 [end if] 
While(TOPO_CHANGE) 
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Figure 40 depicts the overall workflow resulting in a closed-loop system. In the First step, the 

TopoBuild algorithm reads the topology information and prepares the DP. Subplot B shows the 

emulated wireless topology using Mininet-Wifi from the Physical topology at subplot A. The 

OpenFlow protocol communicates with the OVS agent within the OpenDaylight controller to 

fetch the topology information (Subplot C). Notice, that the controller accesses the APs as a 

regular switch and the UEs as hosts. The TopoSense algorithm senses any change in the network, 

and TopoRoute calculates and injects route configuration to the infrastructure plane.  

Figure 40 Closed-loop model of self-configuration 
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4.2.3. Experiments and Results  

Figure 41 depicts the time both complexities of various phases and the latency for three use-

cases (1, 7, and 19 sites and three sectors/site with each sector consisting of 1, 25, 50, 75, and 

100 users) depicted in Figure 41 (A), (B) and (C), respectively. The Backhaul topology is 

configured wired and evaluated for Linear (minimal) and Mesh (Maximal) connectivity. The 

time to build the network on the SDN platform is termed as Build Time and Response Time 

the SDN takes to initiate traffic flow. Figure 41 (D) compares the breakdown of time 

consumption, number of links, and routing time; multi-threaded implementation of the shortest 

path algorithm limits the reactive route selection into the sub-second interval. 

A. Experimental Setup 

In the experiment, the following compute-node setup is as follows. The SLS runs in a 

MATLAB server VM with the Database tool running, and the ODBC adapter connects to 

MySQL Database. Mininet-wifi VM hosts BSs as APs and OVSs and UEs as stations. ODL 

runs in an Ubuntu 64 bit 14.04 VM and the Application server VM hosts the MySQL Database 

server along with TopoSense, TopoBuild, and TopoRoute apps. VMWare ESXi 6.5 server is 

used for the virtualization. 

B. Latency and Time Complexity 

Figure 41 depicts the latency of several stages of integration; SLS shares most of it. The setup 

phase consumes a significant amount of time depending on the network size and topology; this 

includes channel allocation and scheduling, SDN setup, Flow table population, Proactive route 

calculation, etc. However, the run-time is reactive and responds on a millisecond scale (Figure 

41 (E)) since all the routes are pre-calculated and the network runs on a centralized virtual 

platform, which eliminates control packet exchange between devices to learn network topology. 

The time complexity of the proactive phase is of a high degree polynomial class, and the 
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reactive phase is constant; thus, once the SDN is deployed, response time comes down to the 

millisecond scale. 

  

Figure 41 Sub-plots (A), (B), (C) depicts the build and response time for minimal (linear) and complete 
(mesh) topology of 1, 7 and 19 sites, respectively with 3 sectors per sites. (D) depicts total time consumption 
is predominated by the SLS channel scheduling, SDN tasks are comparatively lightweight and Routing 
time bounded by sub-second interval. (E) shows the total time consumption has a constant convergence 
time (it is too small to be visible on the staked bar chart) 
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4.3.ShellMon: Intelligent Telemetry System Architecture 

 

Figure 42 ShellMon API architecture 

4.3.1. Architecture  

The ShellMon API (Figure 42) provides an intelligent telemetry service to the CoRoS 

framework. In opposed to the classical telemetry protocol such as SNMP [252], and 

NetFlow[253], which are to some extent vendor dependent (e.g., SNMP MIBs and NetFlow 

versions), ShellMon provides a blend of two. Additionally, it supports RESTful RPC[254] style 

as well as Message Queuing communication for more robust implementation. Following is the 
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list of features from existing telemetry protocols that have inspired the architecting of the 

ShellMon API.  

1. Custom data modelling: A Data-model is a serializable data structure that a telemetry 

agent populates when polled from the Collector. In Classic SNMP, the Management 

Information Base (MIB) is a vendor-specific hierarchical data structure. Similarly, the 

classic NetFlow also provides a fixed attribute set. Flexible-NetFlow 19  provides a 

custom data model where a user could choose from a list of statistics for collection. It 

gives the flexibility of relevant stats collection as per the requirement, also being 

efficient to the bandwidth utilization in a scalable and constrained infrastructure. 

Current protocols such as NETCONF[255] and its RESTful extension 

RESTCONF[256] provide model-driven programmability using the YANG[257] data 

modelling language. Although YANG is a widely accepted and used modelling 

language, certain caveats might be critical for YANG for establishing telemetry in a 

multi-vendor scalable environment. First, the YANG uses an XML[258] based model 

descriptor, which does not support native data structures like Dictionary and List. 

Therefore, additional translation is needed, which adds further complexity to the 

process. Secondly, the data models are vendor-specific. However, there are some open-

source options (e.g., OpenConfig20). Still, they don't contribute much to the collection 

flexibility as a developer would require writing a YANG model from scratch to achieve 

so. ShellMon uses a JSON-based data descriptor that is far more human-readable than 

XML; the user does not have to follow the strict YANG formatting while composing 

 
 

19 Flexible NetFlow is a Cisco proprietary extension of classic NetFlow, that supports template-based 
telemetry. A template defines the attribute and their corresponding statistics that the NetFlow 
collector accumulates. For more details visit https://bit.ly/3D6FzJ3  

20 For more details on the HTML based models visit  https://www.openconfig.net/docs/  

https://bit.ly/3D6FzJ3
https://www.openconfig.net/docs/
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the model. As most programming languages natively understand JSON documents, no 

additional translation is needed. 

 

2. ALL-RESTFul transport: The transport mechanism of a telemetry API is crucial, as, 

in scalable infrastructure, it could affect the synchronization speed. Standard APIs such 

as SNMP and NetFlow use raw sockets for transporting the data over a negotiated port 

number. It could be a single point of failure if an intermediate firewall blocks that port. 

Eventually, every time a dynamic port is negotiated between the agent and the Collector, 

all the intermediate firewall needs to be provisioned by a new rule, dropping the former. 

Therefore, RESTCONF provides the transport using HTTP-based RESTFul API, which 

every firewall allows by default. The HTTP body encapsulates the RPC operations, 

which are exposed as API endpoints. RESTCONF is available only in high-end network 

devices. Thus, it doesn't cover the whole spectrum, and lower-end devices need to rely 

on the traditional protocols with their caveats above. ShellMon provides a platform-

agnostic All-REST(Figure 43)  architecture that relies on device-independent libraries 

such as Psutil and Napalm that use device-specific drivers underneath. ShellMon 

Figure 43 ShellMon protocol stack and NETCONF compliance 
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leverages multi-threading for accelerated in-device metric collection and abstracts the 

complete process by RESTFul API endpoints.   

3. Dual-Mode collection:  All existing telemetry protocols such as SNMP, NetFlow, 

NETCONF, and RESTCONF are pull-based. In a Pull model, a collector maintains a 

list of agent endpoints (e.g., IP address, Socket ID, or URL) and connects to a Database. 

The Collector polls each agent periodically, which triggers the agent to invoke the 

collection method. The agent replies with its locally collected metrics. ShellMon can 

operate in a Pull-based Model to comply with any RESTful collector using the standard 

method. Additionally, it supports a Push-based message queuing technique where the 

agent initiates the telemetry to an intermediate message broker using AMQP21. The 

message broker decouples the Collector and agent bond and introduces autonomy in 

scale and replication without informing each other for enhancing high availability, 

security, and load-balancing.   

 

4.3.2. Features  

1. No-SQL Realtime Database 

ShellMon uses a NO-SQL [259] Database to store telemetry information at the collector 

side. As mentioned above, ShellMon uses RESTFul communication with JSON 

serialization format. The collected data is stored in a hierarchical format, e.g., Figure 

44 depicts an example of the node utilization data model. An RDBMS model to keep a 

similar structure would require complex table design, primary and foreign key mapping, 

normalization, and functional dependencies. A NO-SQL database solves the issue by 

storing the JSON data and allows JSON-based queries. That said, migration to a big-

 
 

21 For more information on AMQP, visit https://bit.ly/3ofd7yn  

https://bit.ly/3ofd7yn
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data analytics engine is seamless as most options such as Hadoop. Additionally, it 

supports NO-SQL databases with map-reduce for scalability. 

2. Secure data acquisition   

End-to-end encryption is crucial to provide confidentiality to the data during 

communication in transit. This eradicates eavesdropping from untrusted entities as they 

cannot decrypt the encrypted cypher. OpenSSL would be leveraged to create Secure 

Sockets Layer (SSL) certificates that would be used to encrypt communications during 

transit. OpenSSL is a robust and well-known tool for Transport Layer Security (TLS) 

and SSL protocols. It is open-source and free for commercial and non-commercial 

purposes. A private Certificate Authority (CA) is created using OpenSSL to generate a 

root certificate and private key. After that, the root certificate is added to all 

participating devices, and then all certificates that are created and signed will be 

inherently trusted by those devices. 

Figure 44 ShellMon data model for node utilization telemetry 
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3. Asynchronous communication with AIOHTTP 

In a pull-based collection mode, the ShellMon Collector periodically polls the agents 

for their local metric. There are two bottlenecks in the mechanism, sequential polling 

of the agent is not scalable; therefore, asynchronous communication is used where each 

request-response takes place in an independent thread. However, HTTP, the carrier 

protocol for RESTful APIs, is not asynchronous by design; therefore, performance does 

not increase as if it were a full asynchronous communication. ShellMon uses a full-

asynchronous RESTful transport by altering the HTTP to Asynchronous I/O HTTP 

(AIOHTTP 22 ]) based transport. Additionally, the database update is also multi-

threaded; each session concurrently inserts the telemetry data to the No-SQL database 

acquiring a lock to eliminate any inconsistency. The Analyzer program reads from the 

Database parallelly and estimates statistics using moving average with a given window 

size to eliminate any spikes. 

 

4. Load Balancing and Fail-over 

 Pull-Based Model: For a pull-based model, failover and load balancing require 

explicit implementation. ShellMon provides high modularity through its full-REST 

communication architecture. A single secure asynchronous RESTful fabric connects the 

clients, servers, and the Database. The host file lists the agents to monitor; therefore, 

load balancing can be achieved by segregating the agent list into multiple host files. 

To eliminate the single point of failure from the Collector's perspective, it is 

vital to introduce multiple collectors. They will form a collector target group that is 

responsible for collecting data from the client nodes. Therefore, traffic would be 

 
 

22 For more information on AIOHTTP visit https://bit.ly/3bVgm8C   

https://bit.ly/3bVgm8C
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automatically distributed across the collector target group. This is to ensure traffic 

optimization so that no collector is overwhelmed. A control agent would then supervise 

the target group responsible for managing collectors and spinning up new collectors in 

case of a failover. This is achieved as each collector exposes a health check endpoint 

that the control agent uses to monitor them. If a collector fails three health point checks 

in a row, the control agent marks it as unhealthy. It then sends a notification to the admin. 

Additionally; it distributes the load of the unhealthy Collector to other healthy 

collectors. 

 

4.1. Push-Based Model: A decoupled architecture has been used to ensure a smooth 

transition between a fell over and reinstating the server. A decoupled architecture 

guarantees that each component of the service can perform its tasks independently. 

Therefore, each piece remains wholly autonomous and unaware of the other. This 

allows for the functionalities running in each element to be self-contained. This is 

achieved by using a messaging queue. In this scenario, the collectors and the client 

nodes do not communicate directly with each other. However, they communicate using 

a messaging queue. 

An Advanced Message Queuing Protocol (AMQP) 23  broker establishes 

communication between the collectors and the client nodes. AMQP is a lightweight 

messaging protocol that is used to transport messages between devices. It uses a 

publish-poll communication means and is ideal for connecting remote devices with a 

small code footprint and minimal network bandwidth. This is accomplished by using 

topics. Therefore, clients subscribed to a topic will receive messages published on that 

 
 

23 AMQP official documentation https://www.amqp.org/  

https://www.amqp.org/
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topic. It uses a routing mechanism to deliver messages to queues based on the message 

routing key. Additionally, it supports authentication and encryption using TLS to ensure 

a well secure communication medium. 

AMQP supports clustering natively; each AMQP broker synchronizes their 

queue with others. In a failover scenario, the brokers maintain seamless replication of 

queue contents. Therefore, the poll-based model provides load balancing and failover 

natively. 
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Chapter Summary  

 

This chapter discusses the architecture and methodology to integrate a system-level simulator 

with a software-defined networking infrastructure using a relational database as middleware. 

Further, it gives a comparative analysis of using GNS3 and Mininet Wi-Fi-based DP. The 

sequence model shows the data and control flow among several percolating entities. The data 

model of the middleware describes the information structuring, and a set of algorithms to fetch 

and replicate will extend this architecture by appending an analytics plane on top of it. Data 

analytics empowered by deep learning algorithms will learn the run-time behaviour of the 

network and help to improve network automation, self-organization, and state prediction ability. 

The resultant architecture facilitates the end-to-end performance evaluation of 5G and beyond 

5G use cases such as 5G-V2X where latency is a critical performance metric. 

 The ShellMon intelligent telemetry API architecture gives an insight description to 

facilitate data accumulation in a hybrid SDN architecture. The robust mechanism and the 

modular organization provide seamless extensibility and adaptability for future upgrades.  

 In summary, the chapter explains the compliance with the Self-Configuration property 

of the overall architecture for 5G and beyond Self-Organized networks.  
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Chapter 5: Self-Healing  

 

Small cells are deployed on cellular networks' edges to provide low latency response to the 

nearby connected devices. In the case of robust traffic, small cells can offload their burden to 

the surrounding small cells, and this process is known as cell breathing. The other competing 

vendors mostly overlap the coverage area of one cellular operator, and there must be some 

reliable incentivizing mechanism to encourage resource sharing among the small cells of 

multiple operators. Uneven distribution of computation or communication load on the cell 

controllers results in a disparity in energy consumption. Service migration is a process that 

unloads an overloaded controller by transferring its services to an under-loaded one. A reactive 

migration always ensures optimal load balancing by their convergence and also meeting the 

scalability requirements. 

 Blockchain has already proven its relevance in maintaining trust and reliability among 

multiple independently operating entities. However, to the best of our knowledge, no one has 

proposed the blockchain for achieving reliable cell breathing among the small cells of multiple 

operators. This chapter discusses Cellchain, a blockchain network for achieving reliable cell 

breathing among the multi-operator small cells. Further, the chapter presents a proof-of-

concept implementation over a virtualized SDN testbed that incentivizes reliable VNF sharing 

using containerized services deployed over the Raspberry Pi-based small cells. Experimental 

results show the efficiency of Cellchain for reliable cell breathing and the realization of tactile 

internet by confining the response time to 1ms based on the reliable infrastructure sharing 

between multiple operators. 
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5.1. Introduction  

Cloud computing advocates [260] the availability of unlimited resources, and this illusion of 

infinite resources has attracted a considerable number of users in the last decade. This results 

in the tremendous increase of burden on the server infrastructure, and intercloud caters as a 

solution for tackling the burst traffic with limited cloud resources. Intercloud refers to the 

cooperative sharing of cloud infrastructure between different cloud service providers. Another 

solution to the increasing cloud burden is MEC), which refers to shifting computing from the 

cloud to the network edges. 

 MEC reduces the burden from cloud infrastructure and increases the Quality of 

Experience (QoE) by reducing the latency. However, as compared to the limited resources of 

the cloud, edge resources already exist in scarcity. Hence, the intercloud-like cooperation 

among multiple MEC providers makes more sense, but it is more challenging to achieve it in 

MEC. The collaboration in MEC cannot be dedicated to the central authority, like the intercloud, 

as it increases the latency and reduces the QoE. 

 The absence of central coordinating authority results in the trust deficit among the 

cooperating entities of MEC. Blockchain has established trust among the independently 

operating entities by shifting dependency from the primary entity to the independently 

operating entities. Hence, Blockchain is a well-proven solution for establishing trust among the 

intercloud-like cooperating entities in MEC, and this chapter presents the Blockchain-based 

reliable cooperation among multiple independently working MEC operators. 

This chapter focuses on small cell-based MEC deployments. As evident from their self-

descriptive name, small cells have limited capacity and resources and thus use the concept of 

cell breathing to offload their burden to the neighbouring cells. Small cells are crucial for the 

next-generation networks as they help achieve the constraint of 1ms latency in future networks. 
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However, instead of deploying the small cells in greater density, it is better to facilitate 

intercloud cooperation among multiple small cell operators. 

 With the emergence of the Tactile Internet, multi-operator cell breathing is no longer 

optional. Tactile internet supports heavy computational applications like virtual and augmented 

reality. This heavy computation in Tactile internet requires multi-operator coordination at the 

level of the small cell. This paper presents a Blockchain-based reliable, rewarding system for 

accomplishing the multi-operating cell breathing where each operator runs a blockchain miner 

(covered in subsection), which controls the data added to the blockchain. Each operator gets 

the time as a reward when one of its small cells shares the computation of another small cell of 

other operators, which in turn spend its already earned time reward. 

 Miners of multiple operators monitor the time-based rewards through a distributed 

consensus algorithm, and NFVs (Network Function Virtualization) host the miners on the small 

cell of an operator. Each small cell invokes a resource-aware self-migration algorithm 

(Algorithm 3) which switches the miner between different small cells of an operator to avoid 

the overburdening of small cells due to the execution of the mining process by the blockchain 

miners. 

This chapter introduces Cell-Chain with a three-fold contribution, listed below.  

1. The first contribution is a self-resource-aware migrating algorithm for seamless shifting of 

an NFV based blockchain miner among multiple small cells of an operator. It enables the 

integration of blockchain at the levels of the small cell without deploying the dedicated 

machines for executing the mining process of blockchain. 

2.  The second contribution is the implementation of CellChain as a consortium-based 

blockchain to achieve intercloud-like reliable resource sharing among the small cells at the 

edge of the network. The consortium-based blockchain ensures the restricted access of the 

CellChain among the pre-selected operators.  
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3. The third contribution is to implement the time-based rewarding system, monitored by the 

distributed consensus among the miners of consortium members of CellChain. Raspberry 

Pi with a wireless antenna has been used to present a small cell and has deployed a testbed 

of multiple small cells of various operators.  

Experimental results of this testbed depict the effectiveness of CellChain in reducing the 

burden of small cells through the multi-operator cells breathing. 

 

5.2. Cell Breathing: An enabler for Tactile Internet 

This section describes the small calls, cell breathing, and tactile internet, along with the 

importance of cell breathing for Tactile Internet [261]. 

 

5.2.1. Evolution of Internet-based communication  

Initially, the internet originated as a network of wire-connected systems for file sharing. With 

time, it has gone through the following evolutionary phases for supporting the human-to-

machine interaction in tactile internet (Table 18). 

Evolution  Description  
Fixed Internet The first generation of the internet and based on the land-line 

telephonic infrastructure. 
 

Mobile Internet (H2H) Currently deployed and focuses on human-to-human (H2H) 
communication by providing audio, video, and data exchange 
services.  
 

Things Internet (M2M) It focuses on machine-to-machine (M2M) communication and is 
currently being practised at a limited scale compared to H2H 
communication and aims for full coverage after the deployment 
of 5G. 

  
Tactile Internet (H2M) It focuses on real-time human-to-machine (H2M) interaction 

with up to 1ms latency. It will also enable humans to control the 
next generation of robotic systems remotely. It is currently an 
active topic of research and is yet to get deployed in production. 

Table 18 Evolution of the Internet 
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5.2.2. Classification of Small Cells 

Small cells are radio access nodes of low-power and have a coverage range of a few meters up 

to a mile in radius. Small cells are opposite to Macrocells which have a range of up to 20 miles. 

Small cells can be either of the following three sub-categories based on scope and capabilities 

(Table 19) 

Small Cell type Description 
Femtocells They are usually installed by the user and are limited in capacity 

and coverage. They can be deployed for a building and can support 
very few simultaneous connections.  
 

Picocells They are also known as indoor Metrocells and support up to a 
hundred users with a range of around 250 yards. 
 

Microcells They are also known as Metrocells or outdoor Metrocells and are 
closer to the Picocells' capabilities, but they may have a coverage 
range up to a mile. Microcells can also use power control to limit 
the coverage range. 

Table 19 Classification of Small Cells with their brief descriptions 

5.2.3. Cell Breathing and its Importance for Tactile Internet 

Macrocells are well equipped with enough resources to support the considerable traffic. In 

contrast, Small Cells are limited in capacity and resources; therefore, in case of burst traffic, 

small cells offload their burden by sharing it with Macrocells, and this concept is known as cell 

breathing. However, cell breathing is not limited to Macrocells, and small cells can also offload 

burden with each other to accomplish cell breathing. As tactile internet requires more 

computation for mapping the H2M interaction, cell breathing is essential for supporting its high 

computational needs. 

 Usually, the neighbouring cells of a small cell belong to other operators, and intercloud-

like multi-operator cell breathing can help the operators offer the services with relatively fewer 

small cells. The collaboration at the intercloud level is reliable as the central authority in the 

cloud accomplishes it, but similar collaboration at the Small Cell level is not reliable due to the 
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absence of a dedicated central authority. The CellChain model addresses the problem above by 

offering distributed trust in the small cells of multiple operators.  

 

5.3. CellChain: An enabler for Reliable Multi-Operator Cell-Breathing   

This section elaborates on the role of blockchain in achieving reliable, rewarding system-based 

cell breathing among the small cells of multi-operators. 

5.3.1. Blockchain for Reliable Multi-Operator Cell Breathing 

We are using the consortium blockchain, which is one of the blockchain network types [262], 

to allow the cells that belong to the pre-defined operators as the consortium members. Every 

participating operator gets a miner, which is responsible for adding new blocks (data) to the 

blockchain and thus controls the growth of the Blockchain [263].  

 

5.3.2. Blockchain for Reliable Rewarding System  

 

The picture can't be displayed.

Figure 45 Reliable Rewarding System for Inter-operators Cell Breathing 
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Figure 45 shows two planes of Blockchain and the cell breathing plane. Both of these planes 

exist parallel to each other. Both 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙2 in the Cell Breathing plane belong to different 

operators; therefore, when cell breathing occurs between them, its details will be reliably stored 

in the blockchain after executing consensus algorithms. However, we assume that any 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑋𝑋 if 

shares computation with another cell must be under the same operator. Hence, the blockchain-

based rewarding system will activate when cell breathing occurs between the same operator's 

small cells. Otherwise, the total time of cell breathing becomes the reward to the operator 

whose cell is performing the computation on behalf of the other cell. This time is earned as a 

reward for the future to offload the computation of its own. 

5.3.3. Execution flow of Blockchain-based CellChain 

Figure 46 shows the execution flow of the cell chain. The following steps explain the execution 

details of the CellChain: 

1. A new node that is associated with a member operator is sending a request to join the cell 

chain. The operator responds to it but also broadcasts its information to the other operators. 

2. The new node subscribes to the MQTT broker to share its peer rank and know the peer 

rank of other small cells. It uses Algorithm 3 for calculating its Rank. 

3. Algorithm 4 invokes the container migration process and observes the cell breathing. This 

step also broadcasts the starting time of the cell breathing to store it in the blockchain.  

Figure 46 Execution flow of CellChain 



 174 

4. Broadcast the end-time of the Cell Breathing process, which the Blockchain stores.  

5. A consensus algorithm results in shifting the credits between the participants of the Cell 

Breathing process. 

5.4. Design and Implementation of CellChain 

The experimental setup uses Docker containers for hosting the two types of VNF. The first type 

is related to the miner, and instead of confining it to a dedicated machine, containerized services 

can migrate to the Small Cells of the same operator. The other VNF is for computation sharing, 

and they stay in both small cells of the same operator and the operator.  

5.4.1. System Architecture  

 

Figure 47 System Architecture of CellChain Wi-Fi  

Figure 47 depicts the schematic diagram of the system. A Mobile Platform (MP) is a node that 

hosts several VNFs as docker containers. An MP equips at least two antennas; one connects the 
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end devices (e.g., Fronthaul or access), and the other connects among MPs (e.g., Backhaul or 

Core). An SDN controller governs the inter-MP communication using SDN switches.  

5.4.2. Implementation of the CellChain RAN 

Figure 48 shows the physical implementation of the Radio Area Network (RAN). APs are 

stationary whereas Mobile Platforms (MPs) such as an AP sitting in a vehicle may move. Each 

MP has at least two Wi-Fi antennas. The Backhauling connection with the AP provides 

connectivity to the IoT devices as a Co-Access Pont (CAP). MP works as a gateway for the 

associated IoT devices and hosts the broker application different IoT protocols use. It also runs 

a DHCP & DNS server to isolate the IoT logical address space from the underlying network. 

Each CAP support handover through Wireless Distribution System (WDS). We assume all the 

MPs share the same SSID and IP address space to accommodate all connected IoT under the 

same subnet. The APs are the Internet Gateways for the network. To avoid interference, CAPs 

run at 2.4GHz and APs at GHz frequency24. Communication between APs and MPs mimics 

 
 

24 The 2.4GHz band has less FSPL and higher coverage than but less throughput compared to 
the 5GHz band. In case of multiple fronthaul antennas, they must be on non-overlapping channels.  

Figure 48 Physical implementation of SmallCell using Raspberry pi and Docker 
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the Backhaul, and MPs and IoT end devices are fronthaul communication concerning the actual 

telecom establishment. 

5.4.3. Monitoring & Containerization with Docker  

The experiment uses Raspberry Pi as physical MPs and APs are Open V-Switches (OVS), as 

depicted in Figure 48. Each runs two main applications, A Python-based custom monitoring 

tool called ShellMon and Docker engine. In this architecture, the MP host containerized 

services using Docker. Containers help keep the application code and its runtime together, save 

space as no kernel installation is needed, and thus result in faster migration. ShellMon 

periodically collects the resource utilization information such as CPU, memory, storage, 

bandwidth, remaining battery, etc., and computes a cumulative utilization metric called Z-value. 

A container is selected if the Z-value exceeds a certain user-specific threshold, and the 

migration process gets initiated to a suitable target. The OVS nodes connect to an SDN 

controller such as OpenDaylight over an out-of-band OpenFlow channel 

5.4.4. Configuration for Internal Communication  

Raspberry Pi runs Raspbian Operating systems. Each raspberry Pi board embeds a physical 

Wi-Fi antenna used for connecting APs and external USB Wi-Fi antennas to connect the end 

devices. Figure 48 depicts how the container networking between the Raspbian kernel and the 

Docker engine. Raspbian is a Linux-based distribution that natively supports kernel routing. 

Docker engine running on top of the kernel supports both Bridge and Network Address 

Translation (NAT) mode. The Default network configuration of Docker is NAT; however, the 

experiment uses a bridge connection so that the containers share the same IP address space as 

that of the physical network. It also preserves the container IP address, even if it migrates to a 

different engine. DHCP and DNS services may run as a container or directly on the kernel. 

Whenever an end device wants to connect, the subjected MPs respond to the DHCP Discover 
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message and provide IP addresses from the DHCP pool to isolate the end-device address space 

from the container address space. 

5.4.5. The Cell Rank Algorithm  

The Cell Rank Algorithm (Algorithm 8) is one of the two principal algorithms of ShellMon. It 

runs as a subroutine of the other one. Cell Rank performs the following tasks: 

1. It periodically gathers local resource information and computes cumulative utilization 

metrics (𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣).  

2. It Broadcast local 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 among the other MPs. 

3. It Receives 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 from remote MPs. 

The following stages describe the working mechanism of the Cell Rank algorithm. 

1. Initialization: The algorithm starts with an empty dictionary structure (𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) keyed at 

the IP address of MPs in the network and valued with their respective 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 

2. Update Items: When a new MP gets added, it broadcasts a subscribe (SUB) message 

and its IP address in the network. After receiving a SUB, all other MPs add the 

subscribed IP to their respective 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  valued with 0. Likewise, while leaving the 

Network, it broadcasts an unsubscribe (UNSUB) message, which other MPs remove 

the corresponding entries. If no updates appear for a certain amount of time (user-

specific), the algorithm treats the silent MP as dead and eventually removes the 

corresponding entry. 

Table 20 Cell Rank parameters 

 

Parameter Usage Measurement  
𝑈𝑈𝑐𝑐 CPU Utilization in percentage [0,1] ∈ ℝ+  
𝑁𝑁𝑐𝑐 Number of CPU cores  ℕ  
𝑁𝑁𝑀𝑀 Memory volume  GB 
𝑈𝑈𝑀𝑀 Memory Utilization in percentage [0,1] ∈ ℝ+  
𝑁𝑁𝑠𝑠 Free storage space GB 
𝑈𝑈𝐵𝐵𝐵𝐵 Bandwidth utilization (Load on the interface) [0,1] ∈ ℝ+  
𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′  Remaining battery (set to 1 if line-powered) [0,1] ∈ ℝ+  
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3. Collect Resource Information: The Cell Rank algorithm periodically accumulates the 

following parameters from the devices to decide a migration trigger (Table 20).  

4. Normalization: At any given instance 𝑡𝑡 , the cumulative utilization 𝑍𝑍𝐸𝐸|𝑇𝑇  is the 

normalized Z-value of an edge node E (Eq. 29).  

𝑍𝑍𝐸𝐸|𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑈𝑈𝑐𝑐,𝑈𝑈𝑀𝑀,𝑈𝑈𝐵𝐵𝐵𝐵,𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ ,𝑁𝑁𝑐𝑐 ,𝑁𝑁𝑀𝑀 ,𝑁𝑁𝑆𝑆) 

        = 𝛼𝛼1 �
𝑁𝑁𝑀𝑀
𝑈𝑈𝐶𝐶
� + 𝛼𝛼2 �

𝑁𝑁𝑀𝑀
𝑈𝑈𝑀𝑀

� + 𝛼𝛼3(1 − 𝑁𝑁𝑠𝑠) + 𝛼𝛼4 �
1

𝑈𝑈𝐵𝐵𝐵𝐵
� + 𝛼𝛼5(1 − 𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ ) 

          ∀𝛼𝛼𝑖𝑖 ∈ [0,1] ,�𝛼𝛼𝑖𝑖 = 1
𝑖𝑖

 

 

Eq. 29 

The normalization uses the CPU and memory utilization per core and volume, 

respectively. The inverse of the storage and battery utilization as less space and battery 

charge increases the utilization cost. ΑI are weighing coefficients by default set as 1
5

=

0.2  to give equal priority to all components. The priority values are subject to user 

choice for influencing one component than the other, given they summed up to 1.  

5. Publish and Receive: All MPs periodically publish 𝑍𝑍𝐸𝐸|𝑡𝑡 . If any communication 

exception happens, the MPs keep retrying until a timeout event occurs. The period 

sleeps for a time-interval  𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  and collects 𝑍𝑍𝐾𝐾|𝑡𝑡  from other K MPs except E to 

prevent redundancy and broadcast storm. 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  holds the 𝑍𝑍𝐾𝐾|𝑡𝑡  entries and gives 

constant time lookup. 
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5.4.6. The Cell Breathing Algorithm  

This algorithm is responsible for initiating the container migration (Algorithm 8). It takes three 

inputs, ZK|t  (temporal utilization of MPs from Cell Rank algorithm), ZCut  (the utilization 

threshold after the migration is triggered), Tout (A sliding time window for calculating the 

utilization's moving average). Let it be running from MPk; the following are the steps of the 

algorithm. This section explains the Algorithm for Cell Breathing. 

1. Spin Lock: The algorithm waits until the local utilization ZE|t exceeds the threshold 

Zcut . In such a case, it checks if the mean utilization for the time window Tout  has 

crossed the threshold value. This prevents any accidental trigger due to a spike in 

utilization.  

2. Find Migrant Container and Target: If the mean utilization surpluses the threshold 

value, the algorithm selects a target MP from the local dictionary 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  with the 

minimum utilization. Based on the round-trip time (RTT), a decision variable defines 

the candidate boundary to comply with the Low-Cost Low-Delay (LCDC) constraint, 

which prevents any infeasible migration decision to a node which most favourable by 

its utilization perspective; however, it is too far that the migration process might take 

longer. The next task is to find the Migrant container. Among the running container 

from the source MPE , the algorithm finds a container Cq  such that it is consuming 

maximum resources. The idea is to select a Migrant container that will relax the overall 

load the most.   

3. Prepare Migration: The algorithm first saves the running state of the Migrant 

container (Pre-Copy) by committing the running container into a compressed image file 

(Cq.img). However, the container keeps running. The pre-copy option helps preserve 

the state of a service when migration is anticipated. Additionally, the unique hash that 
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is calculated for the Blockchain (discussed in a later section) remains consistent if the 

service is a snapshot using the pre-copy method.  

4. Migration: Assuming the MPs use Message Queueing Telemetry Transport protocol 

(MQTT) to transfer the Cq.img file from 𝑀𝑀𝑃𝑃𝐸𝐸(source) to 𝑀𝑀𝑃𝑃𝑇𝑇 (target). The migration 

process initiates a stream transfer; alternatively, via Secure File Transfer Protocol 

(SFTP). 

5. Restart Container: If the transfer completes successfully, the target MP first 

decompresses the image file, then loads it into its local image registry and signals the 

source MP about the job completion. The source MP then stops the Migrant container 

locally and acknowledges the target MP, which runs the container at the remote site. 

The handshake mechanism reduces the downtime of the service significantly.  
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Algorithm  7 Cell Breathing 

Input:       ZK|t , ZCut , Tout  

Output:     Boolean   

Data Structure: Ordered List 

Steps: 

Do 
 While (ZK|t < Zcut) do 
  Ztot = 0      // initializing local sum 
  For t in [0 ∶ Tout] do  
   Ztot = Ztot + ZE|t // cumulative utilization  
  [end loop] 
  If  ztot

Tout
≥ Zcut then  // Mean utilization exceeds the threshold  

   [LABEL-1 ] 
    𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑍𝑍𝑖𝑖  ∀𝑖𝑖 ∈ {𝑀𝑀𝑃𝑃𝑘𝑘} , 𝑖𝑖 ≠ 𝐸𝐸 // find Target  

   𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗

𝐶𝐶𝑗𝑗 ∀𝑗𝑗 ∈ �𝐶𝐶𝑗𝑗� 𝑜𝑜𝑜𝑜 𝑀𝑀𝑃𝑃𝐸𝐸           // find Migrant      

   Commit CQ 
   𝐶𝐶𝑄𝑄 . 𝑖𝑖𝑖𝑖𝑖𝑖 = Compress(CQ) 
   STATUS = send( CQ. img, MPP )  // send 𝐶𝐶𝑄𝑄. 𝑖𝑖𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑃𝑃𝑃𝑃 
   If STATUS == OK then  // successful migration 
    Remote login to MPP   
    Stop CQ at MPE 
    Run CQ at MPP 
    Exit remote session  
    FLAG = True 
    FAIL = 0     // reset failure counter   
   Else 
    FAIL = FAIL + 1               // increase failure count  
    If ( FAIL > MAX_FAILS ) then  
     Break  // exit if max retry attempt exceeds 
    [end if] 
             Goto LABEL-1  // unsuccessful unsuccessful, retry  
   [end if] 
   FLAG = False 
  [end if] 

[end loop] 
While (True) 
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Algorithm  8 Cell Rank Algorithm  

Input   : TInterval , AddrBroker 

Result    : Raises Exception is Broker or Network malfunction is detected  

Data Structure: Dictionary 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝑘𝑘 ∶ 𝑍𝑍𝐾𝐾|𝑡𝑡� , Message Queue  

Steps: 

Do 
 If  ( EVENT == “Attachment Req” ) then 
  K = Req.ID    // fetch node ID from request message  
  𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐾𝐾] = 0     // initialize node K’s util as 0  
 Else If ( EVENT == “Detachment Req” ) then 
  K = Req.ID 
  Zdict. drop(K)            // remove the entry of 𝐾𝐾 from 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
 [end if] 
 
 //Collect instantaneous system information of node MPE at time t  
 𝑈𝑈𝑐𝑐    =  SYS.CPU_UTIL 
 𝑁𝑁𝑐𝑐    =  SYS.CPU_CORE_COUNT 
 𝑈𝑈𝑀𝑀   = SYS.MEM_UTIL 

𝑁𝑁𝑀𝑀   = SYS.MEM_VOL 
 𝑁𝑁𝑆𝑆    = SYS.STO_AVAIL 
 𝑈𝑈𝐵𝐵𝐵𝐵 = SYS.NET_LOAD 
 𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′  = SYS.BAT_AVAIL 
 
 𝑍𝑍𝐸𝐸|𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑈𝑈𝑐𝑐,𝑈𝑈𝑀𝑀,𝑈𝑈𝐵𝐵𝐵𝐵,𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ ,𝑁𝑁𝑐𝑐 ,𝑁𝑁𝑀𝑀,𝑁𝑁𝑆𝑆)      // Eq. 28 
 Publish �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑍𝑍𝐸𝐸|𝑡𝑡 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸�                       // publish the utilization  
  
 If not ( Boker_Exception || Communication_Exception ) then 
  Collect �𝑍𝑍𝐾𝐾|𝑡𝑡� ∀𝑘𝑘 ∈ 𝑀𝑀𝑀𝑀 ,𝐾𝐾 ≠ 𝐸𝐸                        
  For K in Zdict do 
   𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐾𝐾] = 𝑍𝑍𝐾𝐾|𝑡𝑡      // Update the dictionary 
  [end loop] 
  Sleep(Tinterval)      // Sleep  
 Else: 
  Raise Exception  
  [end-if] 
While (True)   
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5.4.7. Time Series Prediction of 𝐙𝐙_𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯    

 

Calculating the mean utilization during the Spin Lock phase of the Cell Breathing algorithm 

(Step 1) involves a prediction component. Values from time-window Tout fits into a polynomial 

fit algorithm. The fitted polynomial is then extrapolated up to 3rd order. The obtained value is 

returned. This may predict a value for a growing 𝑍𝑍𝑘𝑘|𝑡𝑡; it also ignores the outlying spike for 

fluctuating graphs. (Figure 49)  

 

5.5. Implementation of the Migration Framework  

Figure 50 depicts the deployment diagram of the container migration framework. The nodes 

represent a physical or virtual network function (e.g., Raspberry Pi, Routers, switches, etc.) 

connected over a shared network. Every node hosts an operating system that runs a Docker 

engine (for VNF placement) alongside ShellMon (for resource monitoring) and Migrator Agent 

that listens to the migrator-orchestrator for triggering migration. Relocatable VNFs are run as 

Figure 49 Forecasting of Utilization by extrapolating fitted polynomial 

The picture can't be displayed.
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VNFs on top of the container engine. Modes of communication between migrator-orchestrator 

and agents are of three types discussed later in this section. 

5.5.1. Migration Process  

This section describes the experimental setup for the migration orchestrator (Figure 50) 

1. The end devices such as IoT or UE send service requests such as Discover messages, 

Data etc., to a gateway device hosted by the MP. In the experiment, we used Raspberry 

Pi 3Bs as the MPs  

2. Gateway redirects the request to a Docker container running the appropriate VNF to 

service the request. 

3. The VNF returns the outcome to the gateway, which it eventually replies to the end 

device 

Figure 50 Communication model for VNF Migration 
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4. Resource utilization of the local device periodically relays to the ShellMon program 

that runs the Cell Breathing and Cell Rank algorithm to monitor and analyze the 

utilization patterns. 

5. ShellMon receives utilization data of remote MPs and broadcasts its local data. 

6. If Migration is needed, ShellMon calls for it, and the Cell Breathing algorithm initiates 

the procedure 

7. Migration takes place between a pair of MPs 

8. The immigrant container gets detached from its source and attached to the destination 

MP and restores its state. 

9. The end device re-establishes the communication with the containerized VNF using 

new the MP 

 

5.5.2. Communication Modes 

Seamless communication between the migrator-agent and the orchestrator is critical for the 

process. We propose three modes of communication. 

1. Peer Mode: In peer mode (Figure 51), the agent communicates with the orchestrator 

using a secure TCP socket. Agents encapsulate periodic updates and send them to the 

orchestrator. Similarly, the migration request is sent by the orchestrator to the agents. 

 

Figure 51 Communication in Peer mode with Sockets 
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2. Database Mode: In database mode (Figure 52), agents don’t communicate with the 

orchestrator directly; instead, they periodically update the information to a logically 

centralized database server, from which the orchestrator fetches. In our experiments, 

we used both SQL (using MySQL) and NO-SQL(using Hadoop-HBase) databases. 

 

Figure 52 Communication in Database mode using the centralized database server 

 

Broker Mode: The Broker mode (Figure 53) uses an intermediate message broker, through 

which agents communicate with the orchestrator. In our experiment, MQTT is the telemetry 

protocol. Agents publish monitoring information using the broker, from which the orchestrator 

subscribes. The migration request, specifying the source and the target nodes, is Published by 

the orchestrator and received by all nodes, but only the subjected nodes engage themselves in 

the migration process. 

 

Figure 53 Communication over broker mode using MQTT 
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5.5.3. Blockchain Integration 

VNF originated from one node in this architecture and keeps migrating across the network 

based on the instantaneous load on the nodes and QoS. The migration of any VNF throughout 

its lifetime is critical to be traceable, as it is vulnerable to any rouge VNF injected into the 

system and tracked the mobility. The proposed architecture uses Blockchain integration to 

serve this purpose. Every migration is treated as a transaction and is recorded into a Blockchain. 

Since Blockchain is immutable, every VNF can be tracked down to its origin. Figure 54 depicts 

the blockchain integration. 

5.6. Experimental results  

We have used two different types of VNFs. One VNF is for the miner, which can only be shared 

within the Small-Cells of the same operator, and the other VNF is for the computation and can 

Figure 54 Integrating VNF migration across Small Cells 
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be shared within the Small Cells of the same vendor or across different vendors. To 

automatically shift the VNFs between different small cells, we have implemented Algorithms 

1 and 2. We have also performed experiments to find the accuracy of implemented algorithms, 

and this section covers experimental setup and experimental results. 

 

Figure 56 Self-triggered Migration of VNF 

Figure 55 Convergence of node utilization 
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Figure 56 shows the experimental data acquired from an arbitrary MP demonstrating self-

migration. In this graph, X-axis denotes the time window of 100 seconds, and Y-axis denotes 

utilization in the [0,1000] range. The red dotted line passing through the 400-utilization mark 

denotes the threshold value (Zcut) at 40%. The remaining colour-coded curves are labelled in 

the legend. The Following describes the migration. In the interval [0, A], there is some instance 

when Zvalue curve crosses the threshold mark. But as the majority stays under the limit, the 

Cell Breathing algorithm triggers the migration. In the interval [A, B], some CPU and network 

activity takes the utilization mostly above the threshold value. Hence the Migration is triggered. 

In instance B, a sudden activity in-network utilization is registered due to the container image 

transfer, which continues until time C when the transfer commences. The victim container is 

also stopped; thus, the CPU utilization comes down. 

Figure 49 shows the time series prediction of Z values. The X-axis denotes the relative 

times-tamps (in seconds), and the Y-axis is the Z-Values encountered at the corresponding time 

with dots representing the samples. The time series prediction fits a polynomial over the data 

samples and forecasts the utilization by extrapolating; hence the prediction is made. Since the 

curve fit follows the moving average of the data samples, it doesn't consider the outlying spikes. 

Figure 55 shows the convergence property of the migration algorithm which includes three 

nodes during the experiment. Moving average-based prediction smooths the fluctuations and 

removes any spikes. At first, the Red node is stressed; when the stress level exceeds the average 

load of the network, tasks from the Red node are offloaded to the Green node. The Green-node 

is then stressed further, which results in tasks being offloaded to both the Blue and Red-node, 

and convergence is met. 
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Chapter Summary  

Cell breathing allows small cells to offload their burden to the nearby small cells for continuing 

the seamless services. Cell breathing among neighbouring small cells of multiple vendors 

enables the service providers to cover more areas with comparatively fewer resources. 

However, this multi-vendor collaboration can only be realized after the trust is established 

between cooperating operators. 

 This Chapter provides a trust management solution at the small cell level, without 

involving a central entity. This is achieved through a consortium blockchain where each vendor 

is hosting a miner at its co-located small cells. Instead of using the dedicated nodes for running 

the miners, the Cell Rank and Cell Breathing algorithm collaboratively transfer containerized 

services between different small cells of a vendor. The resultant architecture can automatically 

offload the computationally intensive jobs between small cells of different vendors, but miners 

are only transferred to the small cells of the same vendor.  

 In summary, the chapter explains the role of service migration as a tool to comply with 

the Self-Healing technique in 5G and beyond. Additionally, the self-migration architecture 

ensures security by the Blockchain integration to prevent any MITM and DDoS attacks.  
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Chapter 6: Conclusion & Future Directions 

6.1.Conclusion  

This thesis investigates the design and development of a cognitive routing framework 

compliant with the Self-Organization characteristics of the Knowledge Defined Networks (SO-

KDN) targeting the requirements of the fifth generation and beyond communications systems. 

The contributions to knowledge address all three layers of SON: self-Healing, self-

configuration, and self-optimization. Chapter 1 introduces the key concepts relevant to the 

discussions conducted in the following chapters and outlines the research contributions: SD-

WAN, SDN integration, SDN-Routing, and Cognitive routing. Chapter 2 investigates the state-

of-the-art of elementary topics which have motivated and helped to reason the research 

framework. These are QoS aware routing, Hybrid SDN architectures, ML’s application to 

routing optimization, Self-Healing technologies, and 5G SON.  

The Self-Optimization problem is covered in Chapter 3, which introduces three novel 

algorithms (STEN, MRoute, and MRRF) that work in conjunction to accomplish routing 

optimization in a KDN. Firstly, Stochastic Temporal Edge Normalization (STEN) devises a 

method that fuses node and link costs. This process results in an isomorphic transformation to 

the underlying network topology, which helps the routing algorithms to avoid nodes that are 

computationally overloaded while computing routes.  Secondly, the Multi-Route (MRoute) 

algorithm takes a hybrid routing approach, where it proactively enumerates all possible paths 

between all pairs of nodes in the network topology and stores them in the form of a state-

machines, which in turn get distributed in case of a larger multi-controller deployment. The 

runtime of MRoute uses a reactive approach to rank the discovered routes using reliability 

metrics. The use of data structures with a constant-time lookup capacity and proactive topology 
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enumeration results in a constant-time routing convergence. MRoute leverages the STEN while 

computing the inter-node costs. Thirdly, Most Reliable Route First (MRRF) analyses the 

change in costs and measures the reliability of the links using deep-learning models. As a result, 

the optimal routes are calculated based on the anticipated reliability rather than the costs 

themselves, which prevents frequent route flapping due to cost fluctuation and returns the most 

stable routes that eventually contribute to the 5G paradigm of Ultra-Reliable Low-Latency 

Communication (URLLC).  

Chapter 4 focuses on the Self-Configuration feature, where the controller injects the 

routes computed using the trio STEN, MRoute, and MRRF into the underlying Data Plane. The 

Chapter introduces three more algorithms, TopoSense, TopoRoute, and TopoBuild, to 

accomplish the config automation. TopoBuild replicates the data plane topology to the 

controller, TopoSense observes any changes and TopoRoute uses these trio to compute routes 

on demand. The chapter puts a use-case architecture called SDN-SIM that demonstrates the 

work of self-configuration through cross-platform integration of SDN with a system-level 

network simulator. Additionally, it presents a platform-agnostic monitoring and configuration 

API called ShellMon.      

Chapter 5 covers the final topic of contribution, which is compliance with Self-Healing. 

Currently, most of the existing works in the literature related to Self-Healing focus primarily 

on cellular health optimization. For this reason, we propose an alternative approach through 

service migration, especially after observing the tremendous application of cloud-native and 

micro-service technologies in 5G Softwarization. In service migration strategy, an orchestrator 

makes live services (mostly VNFs) migrate across a network to provide high availability 

through fault tolerance and load-balancing. Chapter 5 proposes an elastic Service-Oriented 

Architecture (eSOA) for Multi-access Edge Computing (MEC) called Cell Breathing. It 

orchestrates autonomy in migrating services among several MEC nodes based on a victim 
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selection algorithm called Cell Breathing and a target selection algorithm called Cell Rank. The 

architecture demonstrates convergence in load-balancing across the MEC deployment with 

three communication modes.  Additionally, the chapter also presents a prototype Blockchain 

integration that poses prevention potential attacks such as MITM and DDoS.  

 

6.2. Future Directions 

The goal of the research has been the design and development of a 5G-SON compliant Routing 

framework that leverages machine learning models to compute routes using reliability as a 

metric. In the process of exploring several existing approaches we have come across the KDN 

model and the rest of the discussion of the thesis revolves around it.  

Recent developments in the communication systems introduce several novel concepts 

such as Federated Learning, Consensus-based authentication, Trusted Execution Environment 

(TEE), Open RAN (ORAN) and Segment Routing. We see the potential of the existing research 

to enhance the modelling using the above technologies. Therefore, we aim for the following 

enhancement as a future extension to the existing work.  

1. TEE based secure MEC architecture: A secure MEC architecture that uses MRoute, 

where the keys are stored on-device leveraging the TEE technology. In this case, the key 

attributes such as the secret keys for encryption, the salt values for the hash and the 

credentials will be stored within a Trusted Platform Module (TPM). Therefore, data 

intercepted outside the intended devices would be impractical for any malicious 

exploitation.   

 

2. DRL and ORAN compliance: OpenRAN [264] consortium has proposed the ORAN 

architecture that aims for a vendor-agnostic intelligent RAN. Deploying MRoute over the 

Ran Intelligent Controller (RIC) could not only leverage Routing-as-a-Service but also the 
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native features of Next-Generation SDN (ng-SDN) such as transport independence, 

architecture independence and Zero-Touch Provisioning (ZTP). 

 

3. DLT and Segment Routing: The Segment Routing (SR) technology has gained 

significant propulsion after SD-WAN has become the mainstream architecture for large 

scale enterprises and Datacenters. The trend shows a prompt possibility of SR replacing 

MPLS based ISP services. However, there has been no evidence found at the time of 

writing this thesis, where SR uses cognitive routing for KDN or DLT based protection 

against MITM and DDoS. On the contrary, research shows that MITM and DDoS are the 

two major types of attacks, that target SDN infrastructures. This gap has resulted in a 

contemporary idea called “Security by Design”, where the architecture of the infrastructure 

provides preventive measures against the said attack vectors. There is a prompt potential 

in the Cell Breathing architecture to mature its capability by introducing config automation 

for Smart-Contracts. Thus, we aim to extend our work on Self-Healing technologies by 

securing them using a configurable smart contract and introducing an intelligent Segment-

Routing framework for transport. 

 

6.3. Concluding remarks 

Research is a process in continuity and is subject to evolution. This thesis documents the 

investigation of achieving self-organization in a Knowledge-Defined network subject to the 

light of cognitive routing. The development, design and evaluation involved in this 

investigation leverage the state of the art of the respective concepts present in the literature. I 

as the author of this thesis would like to conclude this document with a deep appreciation 

towards the reader for investing his/her time in it. Nevertheless, I shall keep pursuing my 

research covering the future directions mentioned above and keep contributing the knowledge.  
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