
 1

A Cognitive Routing Framework

for

 Self-Organized Knowledge-Defined Networks

Doctoral Thesis

by

Saptarshi Ghosh

School of Engineering, London South Bank University

Author Note

This thesis is submitted in partial fulfilment of the requirement for the PhD degree in

Computer Science and Informatics

 2

Dedication

I dedicate this thesis to my parents, Mr Nilmani & Mrs Subhra Ghosh for guiding me

to differentiate between the need and the temptation and teaching me never to compromise with

ethics. The research would never be possible without the guidance and constant push of my

supervisors Prof. Anastasios Dagiuklas & Dr Muddesar Iqbal. And nevertheless, my lovely

wife Riu, for being the support during some of the most decisive moments.

 I also dedicate this work to all my teachers and professors who have inspired me to fly

high, fueled me to never give up, and instilled confidence in me to aim for prepending the “Dr.”

before my name. Thank you, Mr Kumarjit Mandal, Mrs Paulami Bhattachariya, Dr Siddhartha

Roy, Dr Maumita Mitra, Prof. Samiran Chatterjee, Prof. Amitabha Gupta, and Mr Arindam

Saha.

 My beloved students deserve their due credit. I’d like to dedicate the work to all my

students for nurturing my teaching and presentational skills. My rocking colleagues from the

Smart Internet Technology Lab; Tim, Kasra, Emeka, Godwin, John, and Brahim, for those

sleepless nights.

 Finally, I’d like to dedicate this thesis to the One, for giving me the strength to decide

during the most idiosyncratic moments, which has landed me here writing my concluding

remarks. I’d strongly wish to continue my work and dedicate it to the service of mankind for a

better tomorrow.

 3

Abstract

This study investigates the applicability of machine learning methods to the routing protocols

for achieving rapid convergence in self-organized knowledge-defined networks. The research

explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and

beyond, aiming to design a routing protocol that complies with the SON requirements. Further,

it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to

extend the routing capability by calculating the “Most Reliable” path than the shortest one.

 The research identifies the potential key areas and possible techniques to meet the

objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing,

Hybrid SDN architectures, intelligent routing models, and service migration techniques. The

design phase focuses primarily on the mathematical modelling of the routing problem and

approaches the solution by optimizing at the structural level. The work contributes Stochastic

Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost

calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide

constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural

Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the

research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a

secure migration technique for containerized services in a Multi-access Edge Computing

environment using Distributed Ledger Technology.

 The research work now eyes the development of 6G standards and its compliance with

Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep

Reinforcement Learning and Quantum Computing.

Keywords: Routing, KDN, SDN, SON, ML

 4

Acknowledgements

Funder Funding details

Horizon-2020

This project is funded by MSCA-RISE - Marie Sklodowska-Curie
Research and Innovation Staff Exchange (RISE) scheme under the
project SONNET (Self-OrganizatioN towards reduced cost and eNergy
per bit for future Emerging radio Technologies). with the grant agreement
no. H2020-MSCA-RISE- 2016-734545.

Innovate-UK

The research received partial funding from the Innovate UK project
VICTORY under the Cyber Security Academic Startup Program
(CyberASAP) Knowledge Transfer Program.

DSTL
This research received partial funding from the Defense Science and
Technology Laboratory for the project Cognitive Routing System
(CoRoS) under the Defense and Security Accelerator program (DASA).

 5

Table of Contents

A Cognitive Routing Framework for Self-Organized Knowledge-Defined Networks ... 1

Dedication ... 2

Abstract ... 3

Acknowledgements .. 4

List of Figures ... 10

List of Tables ... 14

List of Algorithms .. 15

Contribution to Knowledge ... 16

Major Publications .. 16

Patent ... 16

Book Chapter .. 16

Chapter 1: A Preamble to Network Intelligence ... 17

1.1. Towards the Industry 5.0 paradigm ... 17

1.2. Software-Defined Networking and SD-WAN ... 19

1.2.1. Content Distributed Networking over SD-WAN, a use-case 19

1.2.2. Contribution to Knowledge.. 23

1.3. System-Level Simulation for 5G and Hybrid-SDN Integration 23

1.3.1. SDN integration, a Vehicular Networking perspective 24

1.3.2. Contribution to Knowledge.. 26

1.4. Efficient IP Routing for SDN .. 27

1.4.1. Energy-aware SDN Routing .. 27

1.4.2. Contribution to the Knowledge .. 28

1.5. Cognitive Routing, an Industry 5.0 perspective .. 28

1.5.1. Self-Organized Knowledge-Defined Networking (SO-KDN) 29

1.5.2. Contribution to Literature .. 32

 6

1.6. Motivation and Problem Statement ... 33

1.6.1. Motivation .. 33

1.6.2. Research Questions .. 34

Chapter Summary .. 35

Chapter 2 Related work .. 36

2.1. QoS aware routing .. 36

2.1.1. The architecture of the QoS Routing framework ... 37

2.1.2. Fundamental QoS Routing problem .. 38

2.1.3. Summary of QoS Routing algorithms.. 40

2.2. Hybrid SDN Architectures ... 42

2.2.1. Deployment strategies .. 43

2.2.2. Classification of Hybrid SDN controllers .. 45

2.2.3. Network management strategies .. 46

2.2.4. Summary .. 48

2.3. Application of Machine Learning in Routing .. 50

2.3.1. Optimizing routes using state-prediction ... 51

2.3.2. Optimizing routes using traffic-matrix prediction ... 52

2.3.3. Lessons Learned ... 52

2.4. Self-Healing Technologies ... 53

2.4.1. Self-Healing in Cellular Networks... 53

2.4.2. Service Migration based Self-Healing for MEC .. 57

2.4.3. Contemporary Service Migration using Distributed Ledge Technologies 61

2.5. Self-Organization, a beyond 5G perspective .. 64

2.5.1. Towards industry 5.0 architecture and beyond 5G compliance 69

2.5.2. State of the art in KDN .. 72

2.6. Chapter Summary ... 74

 7

Chapter 3: Self Optimization ... 75

3.1. Modeling a novel Policy-Based-Routing (PBR) model ... 76

3.2. Stochastic Temporal Edge Normalization (STEN) .. 76

3.2.1. Problem Formulation ... 77

3.2.2. Relationship between energy consumption and Routing 79

3.2.2. The Queuing model of a Stochastic Network .. 80

3.2.4. Numerical Example of STEN .. 84

3.2.5. Experimental Validation ... 87

3.3. Rapid Convergence in Multi-Path Routing (MRoute) .. 92

3.3.1. System modelling... 94

3.3.2. Computing all-possible paths ... 98

3.3.3 Route Tree ... 101

3.3.4. Topology Synchronization ... 103

3.3.5. Benchmarking .. 104

3.3.6. Comparative Parameters .. 105

3.3.6. Experimental Setup .. 106

3.3.7. Experimental Results ... 108

3.4. Most Reliable Route First (MRRF) ... 110

3.4.1. Problem formulation of Cognitive Routing ... 110

3.4.2. Metric formulation ... 115

3.4.3. Analysis and Optimization of MRoute algorithm .. 117

3.4.4. Estimation of the Reliability using Recurrent Neural Networks (RNN) 123

3.4.5. Implementation .. 125

Chapter Summary .. 132

Chapter 4: Self Configuration .. 133

4.1. Introduction .. 133

4.1.1. SDN use cases .. 135

4.1.2. The programming language taxonomy and SDN adaptability 136

4.1.3 State of the Art in SDN programming languages ... 138

4.2. System-Level Simulator integration with SDN (SDN-SIM) 140

 8

4.2.1. Preliminaries .. 140

4.2.2. System Architecture and Implementation .. 143

4.2.3. Experiments and Results .. 156

4.3. ShellMon: Intelligent Telemetry System Architecture ... 158

4.3.1. Architecture .. 158

4.3.2. Features .. 161

Chapter Summary .. 166

Chapter 5: Self-Healing ... 167

5.1. Introduction .. 168

5.2. Cell Breathing: An enabler for Tactile Internet .. 170

5.2.1. Evolution of Internet-based communication .. 170

5.2.2. Classification of Small Cells .. 171

5.2.3. Cell Breathing and its Importance for Tactile Internet 171

5.3. CellChain: An enabler for Reliable Multi-Operator Cell-Breathing 172

5.3.1. Blockchain for Reliable Multi-Operator Cell Breathing 172

5.3.2. Blockchain for Reliable Rewarding System .. 172

5.3.3. Execution flow of Blockchain-based CellChain .. 173

5.4. Design and Implementation of CellChain ... 174

5.4.1. System Architecture ... 174

5.4.2. Implementation of the CellChain RAN ... 175

5.4.3. Monitoring & Containerization with Docker ... 176

5.4.4. Configuration for Internal Communication ... 176

5.4.5. The Cell Rank Algorithm ... 177

5.4.6. The Cell Breathing Algorithm ... 179

5.4.7. Time Series Prediction of Z_value ... 183

5.5. Implementation of the Migration Framework .. 183

5.5.1. Migration Process .. 184

5.5.2. Communication Modes .. 185

5.5.3. Blockchain Integration ... 187

 9

5.6. Experimental results .. 187

Chapter Summary .. 190

Chapter 6: Conclusion & Future Directions ... 191

6.1. Conclusion ... 191

6.2. Future Directions ... 193

6.3. Concluding remarks ... 194

Bibliography ... 195

 10

List of Figures

Figure 1 A summary of the evolution of modern industries and the convergence of Networking

technologies and Machine Intelligence .. 18

Figure 2 QoS Routing Framework ... 37

Figure 3 Mathematical framework of a QoS routing module. ... 39

Figure 4 Classification of QoS aware routing models ... 40

Figure 5 Comparison of the efficiency of the QoS routing algorithms 42

Figure 6 Hybrid SDN networks and their classification [82] .. 43

Figure 7 Performace analysis of various hybrid SDN designs based on six attributes. Each

design apprach is scored agaisnt the available works in the literature. The result shows

the most efficient design uses an ILP optimizer with a virtual controller that perform

automated configuration. .. 49

Figure 8 Closed-loop operation cycle of a generic Self-Healing framework 54

Figure 9 Summary of methodologies used in Self-Healing techniques for Cellular networks 56

Figure 10 Holding state of an Edge server and the migration decision process 58

Figure 11 Pipeline stages of the Throughput Optimization framework 59

Figure 12 Protocol stack of a self-organized knowledge-defined network 69

Figure 13: Reference Topology .. 78

Figure 14 Queuing model of the network with service queues at nodes 80

Figure 15 Queuing model after relaxation of the service queues from nodes to links 83

Figure 16 Building a Graph from the adjacency matrix of the topology 84

Figure 17 Transforming the topology graph to an isomorphic graph after STEN transformation

 .. 86

https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621472
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621472
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621473
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621474
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621475
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621478
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621478
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621478
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621478
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621479
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621480
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621481
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621482
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621483
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621484
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621485
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621486
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621487
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621488
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621488

 11

Figure 18 Experimental Setup and Dataflow Architecture .. 87

Figure 19 Effect of CPU utilization in Ent-to-End throughput .. 88

Figure 20 Comparison between RIP, OSPF & proposed STR-RA in Utilization vs Delay

characteristic ... 90

Figure 21 Reference Architecture of an SD-WAN with a CDN use case 94

Figure 22 A use-case model of CDN implemented over an SD-WAN 96

Figure 23 Complete process of computing all-paths for all-pair of nodes. First MRoute

generates route trees 𝑇𝑇𝑇𝑇,𝑑𝑑 for all pair of vertices that results route forest 𝑅𝑅𝑅𝑅𝑅𝑅 for every

controller 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . Next, FSM compresses 𝑅𝑅𝑅𝑅𝑅𝑅 preserving the path information using

Route_ID and finally full mesh graph 𝒢𝒢(𝑉𝑉,ℰ) is generated that maps RouteIDs into edge-

set ℰ .. 99

Figure 24 RouteTree generated by MRoute w.r.t. for 𝑟𝑟1,3 .. 101

Figure 25 Controller network of distributed SDN ... 103

Figure 26 Workflow of the testbed .. 104

Figure 27 Deployment diagram of the experiment .. 106

Figure 28 Experimental Results and Comparison MRoute against SPF and DUAL using the

following parameters (A)Time Consumption to computing paths, (B) Time consumption

to converge, (C) Control traffic for topology synchronization, (D) Space consumption for

topology maintenance (E) Control traffic for convergence, (F) Route-Tree size. 108

Figure 29 Reference topology with route-policies... 110

Figure 30 RouteTree of 𝑅𝑅𝑅𝑅1,2 , rooted at 𝑅𝑅2 all the reachable paths terminate with 𝑅𝑅1 and

unreachable node 𝑅𝑅5. ... 114

Figure 31 Relaxation of Node costs into Edge using STEN .. 117

https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621489
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621490
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621491
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621491
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621492
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621493
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621494
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621494
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621494
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621494
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621494
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621495
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621496
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621497
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621498
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621499
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621499
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621499
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621499
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621500
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621501
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621501
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621502

 12

Figure 32 Dynamic Array-list with hash-table organization for fast searching. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the

virtual memory location, that holds the router object 𝑅𝑅𝑅𝑅 with ID k. Hash table maps an

ID to its location ... 118

Figure 33 Implementation of Route-Tag and generating FSM form route tree. The process

depicts the transformation of data-structures from the Route-Tree to Route State Graph

 .. 121

Figure 34 Deployment diagram of the Testbed. Infrastructure plane holds routers, overlay

server receives monitoring information and spawns VNFs per Router. Control planes

discover topology and application plane operates on it. Knowledge plane is for self-

learning however beyond the scope of the context. ... 125

Figure 35 (A) Comparison of accuracy (by mean squared error) with four network setups (128,

256,512 & 1024), the Global optima is reached with 128 Neuron at a batch size of 512.

(B) compares three optimizer algorithms (SGD, Adam & RMSPROP), over a varying

window size of [20 − 200], on which Adam gives best result on average 128

Figure 36 Evaluation of the Online-Learning, (a) Learning time with 200 epochs, (b)

Accelerated learning with Early-Stopping enabled (c) Comparing time-series prediction

of reliability in Best, Average and Worst-case scenario (d) compares the deviation in log-

scale, also shows the comparison is distinctive when there is less fluctuation 129

Figure 37 Demonstration of Self-Healing through rapid-convergence: At timestamp [0 − 100]

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 is most reliable as the corresponding rolling Sharpe-Ratio has maximum

descending gradient calculated on 100 timestamps. Similar pattern can be noticed for

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁4 during [100-240], 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁5 during [240 − 270] and 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2 during 270 − 350 .

The correlation is analytical however the RNN learns it. .. 131

Figure 38 Schematic system architecture of SDN-Sim with Full stack setup along with their

core functions ... 145

https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621503
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621503
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621503
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621504
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621504
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621504
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621505
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621505
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621505
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621505
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621506
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621506
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621506
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621506
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621507
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621507
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621507
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621507
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621508
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621508
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621508
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621508
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621508
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621509
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621509

 13

Figure 39 Sequence diagram for various message exchange between components of SDN-Sim

 .. 146

Figure 40 Closed-loop model of self-configuration ... 155

Figure 41 Sub-plots (A), (B), (C) depicts the build and response time for minimal (linear) and

complete (mesh) topology of 1, 7 and 19 sites, respectively with 3 sectors per sites. (D)

depicts total time consumption is predominated by the SLS channel scheduling, SDN

tasks are comparatively lightweight and Routing time bounded by sub-second interval.

(E) shows the total time consumption has a constant convergence time (it is too small to

be visible on the staked bar chart) .. 157

Figure 42 ShellMon API architecture .. 158

Figure 43 ShellMon protocol stack and NETCONF compliance .. 160

Figure 44 ShellMon data model for node utilization telemetry ... 162

Figure 45 Reliable Rewarding System for Inter-operators Cell Breathing 172

Figure 46 Execution flow of CellChain ... 173

Figure 47 System Architecture of CellChain Wi-Fi ... 174

Figure 48 Physical implementation of SmallCell using Raspberry pi and Docker 175

Figure 49 Forecasting of Utilization by extrapolating fitted polynomial 183

Figure 50 Communication model for VNF Migration ... 184

Figure 51 Communication in Peer mode with Sockets .. 185

Figure 52 Communication in Database mode using the centralized database server 186

Figure 53 Communication over broker mode using MQTT .. 186

Figure 54 Integrating VNF migration across Small Cells ... 187

Figure 55 Convergence of node utilization .. 188

Figure 56 Self-triggered Migration of VNF ... 188

https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621510
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621510
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621511
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621512
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621512
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621512
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621512
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621512
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621512
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621514
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621516
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621517
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621519
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621520
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621521
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621525
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621526

 14

List of Tables

Table 1 QoS Marker on each layer of OSI ... 36

Table 2 Component of a QoS routing framework .. 38

Table 3 Summary of Optimization algorithm and their relationship with CI 39

Table 4: Lists of the popular QoS routing algorithms, their Type (optimal or complete), and

class. PQ: Priority Queue, DBF: Distributed Bellman-Ford, LR: Lagrange

Relaxation, LCDC: Low-cost Low-Delay. .. 41

Table 5 Usability of ML techniques in SDN routing ... 52

Table 6 Summary of the techniques used in Self-Healing techniques 55

Table 7 Difference between service migration and Cellular Handover 57

Table 8 Lists of open-source tools used to develop the testbed ... 105

Table 9: Link and Node Parameters, Monitored By CP .. 115

Table 10: Transition table of M1,2 rows represent routers receiving packets with route-tag

represented by columns, cells represent the corresponding next hop and ϕ means

empty set. ... 121

Table 11 tag-cost-table for M1,2 .. 123

Table 12 SDN use cases ... 135

Table 13 Language Taxonomy of SDN programming languages .. 136

Table 14 Comparison of different programming paradigms .. 137

Table 15 Comparison of SDN programming languages [232] .. 139

Table 16 A comparative study of GNS3 and Mininet Wi-Fi as Data Plane Engine 148

Table 17 Descriptions of attributes of the data model ... 151

Table 18 Evolution of the Internet ... 170

Table 19 Classification of Small Cells with their brief descriptions 171

Table 20 Cell Rank parameters .. 177

https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621537
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621537
https://stulsbuac-my.sharepoint.com/personal/ghoshs5_lsbu_ac_uk/Documents/Thesis%20(1).docx#_Toc103621537

 15

List of Algorithms

Algorithm 1: Stochastic Temporal Relaxation Routing Algorithm (STR-RA) 89

Algorithm 2: Flow Modifier .. 91

Algorithm 3: MRoute ... 102

Algorithm 4: TopoBuild .. 152

Algorithm 5 : Topo Sense ... 153

Algorithm 6: TopoRoute ... 154

Algorithm 7 Cell Breathing ... 181

Algorithm 8 Cell Rank Algorithm .. 182

 16

Contribution to Knowledge

Major Publications

Title Published in Ref

Energy-Aware IP Routing Over SDN 2018 IEEE Global Communications
Conference (GLOBECOM) [1]

Reliable resource provisioning using bankers'
deadlock avoidance algorithm in MEC for industrial
IoT

2018 IEEE Access, vol. 6 [2]

Co-operative and hybrid replacement caching for
multi-access mobile edge computing

2019 European Conference on
Networks and Communications [3]

BlueArch – An implementation of 5G Testbed 2019 Journal of Communication [4]

SDN-Sim: integrating a system-level simulator with
a software-defined network

2020 IEEE Communications
Standards Magazine, vol. 4. [5]

A centralized hybrid routing model for multi-
controller SD-WANs

2020 Transactions on Emerging
Telecommunications Technologies,
vol 32

[6]

A Self-Organized Knowledge Defined Networks
Architecture for Reliable Routing

2020 4th International Conference on
Information Science and Systems
ICISS 2021

[7]

Robust, Resilient, and Reliable Architecture for V2X
Communications

2021 IEEE Transactions on
Intelligent Transportation Systems,
vol 22.

[8]

A Cognitive Routing Framework for Reliable
Communication in IoT for Industry 5.0

2021 IEEE Transactions on Industrial
Informatics, vol. 18, issue 8. [9]

Patent

Title Published by Doc. ID.
Intelligent SDN Routing Framework UK Intellectual Property Office GB2578453

Book Chapter

Book title Chapter title Publisher
Blockchains: Empowering
Technologies & Industrial Application

Security, privacy, and trust of distributed
ledger technology

IEEE/Willey

 17

Chapter 1: A Preamble to Network Intelligence

1.1.Towards the Industry 5.0 paradigm

The continuity in development has been a prominent feature of the history of mankind.

Engineering, the purposeful implementation of science, perhaps is a perfect example of the

preceding statement. Arguably, the most influencing driver for this substantial advancement is

the effect of the Industrial Revolution. A tiny fraction of three centuries has inked monumental

changes in our native instincts along a timeline of three hundred thousand years that humans

have occupied the earth. During the early stages of industrialization in the year 1800, the world

population was less than a billion; on the verge of the Fifth industrial revolution in 2021, it is

reaching 8 billion, and expected to be 11 by the year 2100. However, despite this exponential

growth, the mean life expectancy has boosted from 35 years in 1800 to 72 years in 2021,

falsifying the Malthusian growth model.

The rapid digital transformation driven by the Internet came in three phases, often

called The-Three-Waves. The first wave came from 1985 to 99 when companies like Microsoft,

Apple, IBM, Cisco, Sun, etc., developed hardware and software for the Internet. During the

second wave (2000-15), companies like Google, Amazon, Facebook, etc., built applications

over the Internet infrastructure; App-Economy was born. The third wave (2015 onwards) has

brought Internet Ubiquity. On the bright side, the consequences of digitization and

globalization have significantly improved the socio-economic landscape worldwide.

 18

Figure 1 summarizes the four iterations of industrial revolutions with their respective

contributions to modernizing society and the promises of the fifth one. However, the timeline

needs to be analyzed slightly differently to understand the key enablers of such futuristic claims.

From the age of electrification, two parallel yet mutually exclusive development have taken

place. These include telecommunication systems and machine intelligence. Presently,

communication networks have become enough Softwarized that programming and automating

them are now mainstream functions. Likewise, the rich ecosystem of machine learning and

deep learning APIs has made their implementation seamless and agile. Hence, the Software-

Defined Networking (SDN) model has paved the path for seamlessly integrating the power of

machine learning in solving networking problems. Such a network is called a Knowledge

Defined Network (KDN), which is self-aware and needs minimal human intervention to be

managed, complying with the industry 5.0 needs.

Figure 1 A summary of the evolution of modern industries and the convergence of Networking
technologies and Machine Intelligence

 19

1.2. Software-Defined Networking and SD-WAN

The increasing complexity of contemporary mobile and application-centric networks is

pushing traditional WAN architectures to their limit. Due to the rise of cloud services and edge

computing, enterprise networks' inter-site data transfer volume rise rapidly. Moreover,

enterprises tend to integrate several communication technologies such as Broadband, LTE,

MPLS, etc., for a high-available dynamic WAN connectivity, which a traditional WAN doesn’t

support natively. Additionally, its distributed computing model results in the Control-plane

traffic consuming a significant amount of backhaul bandwidth. Software-Defined WAN (SD-

WAN) is a generation shift that adapts the centralized model of SDN to WAN that fills the

bottlenecks of its predecessor. It provides over twice the bandwidth having the same backhaul

with more manageability, autonomy, and network security. Chapter 3 of this thesis discusses a

hybrid routing algorithm for multi-controller SD-WANs that computes all-possible routes

proactively and serves them on-demand. It also presents a model that results in a rapid

convergence across edge devices and the synchronization mechanism among several

controllers and a test-bed implementation.

1.2.1. Content Distributed Networking over SD-WAN, a use-case

Telecommunication industries across the world are going through a massive transformation

phase. The increasing demand for high-quality online content like streaming from "Over the

Top" (OTT) platforms (e.g., Netflix, Amazon Prime, YouTube) is driving the telcos to optimize

their existing network architectures. Content Distribution Network (CDN) that caches static

contents into a proxy server, e.g., Point of Presence (PoP), enables various alternatives to

reduce the delays. Content-caching is a clever and widely used method [9] that keeps the

response of most frequently requested contents and serves them from local storage rather than

redirecting from the origin. Studies have shown that using a predictive approach may reduce

the overhead cache value per day up to a fraction (10% - 20%) of the cache size [10].

 20

 Multi-Access Edge Computing (MEC) [11] enhances the availability of cloud services

by distributing them to the edge, bringing them closer to the mobile end users. MEC nodes host

several virtualized services and attach them to a dedicated network called the backhaul network.

SDN-based backhauling enables centralized control, which results in control-plane

functionalities such as routing, policing, etc., to execute as services. Unlike traditional

distributed computing models where network devices synchronize by exchanging control

packets, SDN decouples the control plane from the forwarding plane [12]. A network device

sends its local information to the controller to compute the forwarding logic. SDN results in

greater autonomy and programmability in a network configuration, including rapid policy

deployment that collectively reduces the CapEx and OpEx.[13]. A logically centralized cluster

of remote servers (SDN-Controllers) hosts the control plane. The SDN controller interfaces

with applications and hardware switches via the North-Bound (NBI) and South-Bound (SBI)

interfaces. The communication method for NBI is typically RESTFul, whereas the SBI uses

OpenFlow. Applications send generic RESTful configuration requests to the controller defined

by a policy, which gets translated into device-specific configuration and injected into the

devices. Therefore, SDN controllers play a principal role in abstracting the granularity of the

network infrastructure and easing the device configuration for application developers.

 With the introduction of Network Function Virtualization (NFV), it is possible to

Virtualize Network Functions (VNF) and host them in a remote computing platform (e.g.,

Cloud, Remote servers, etc.). However, not all network functions, such as Radio transceivers,

sensors, etc., can be virtualized. For instance, Virtualized appliances like routers (e.g., Cisco

CSR, HP VSR, Juniper vEX, Quagga, etc.), switches (e.g., Cisco Nexus-9k, 10k, HP Flex-

Fabric, Cumulus, etc.), and firewalls (e.g., Cisco ASAv, PF-Sense, etc.) are a pretty common

sight in production networks [14]. The orchestrator program manages the VNF associated with

optimal placement, resource allocation, and provisioning [15]. A challenge in the SDN-MEC

 21

based design of the CDN environment is to optimize the forwarding traffic. SDN offers a birds-

ey view of the network, which eases traffic control by taking forwarding decisions at the control

plane. The high-level traffic management also leverages optimal connectivity under mobility

conditions, using efficient ad-hoc routing techniques. Reactive routing is an ad-hoc routing

process that discovers routes on-demand, whereas proactive routing finds Routes before

applying them. SDN is also effective for hardware independence. For a mobile ad-hoc network,

the SDN-NFV approach demonstrates better agility for high volume data than a non-SDN-

based one, which stands superior in large-signal load [16].

 Although SDN offers a wide range of benefits over traditional network models, it falls

short in implementational acceptance. Giant-sized network infrastructure owners such as

service providers, data centres, and telcos are reluctant to scrap all their existing non-SDN-

compliant forwarding hardware for the sake of enjoying the SDN benefits [17]. The primary

reason is the cost of re-investment over the expected profit from service quality escalation, and

second, the resource spending to retrain for a smooth operational transition. These results in

the overlay-SDN model (initially introduced by VMWare through their NSX platform [18]),

which cancels the need to replace the Data-plane devices instead of creating a virtual overlay

network that connects it to the control plane. The overlay tunnels enable the edge devices, i.e.,

routers and layer-three switches, to communicate with the controller using the Internet as a

fabric. The control plane gets segregated, as the global controls reside in the remote-

orchestrator, whereas the device-specific controls stay in the edge devices. The architecture is

called Software-defined WAN or SD-WAN [19][20]. In SD-WAN architecture, the orchestrator

hosts the application plane and interacts with the controller cluster. The application plane

performs network operations like routing and sends generic results to the controller. The

controller then translates it to device-specific commands and pushes it to the downstream edge

 22

nodes. Cisco uses Overlay Management Protocol (OMP) [21], and Citrix uses Adaptive

Transport Protocol [22] for this purpose.

 SD-WAN architecture leverages the centralized routing model where edge devices do

not exchange control information. Instead, they update the central controller. Routing as a part

of the Layer-3 operations executes within the controller. This surfaces a fundamental problem

in adapting traditional routing protocols such as OSPF [23] and EIGRP [24], inherently

distributed in nature. This opens up a new dimension in the routing protocol design philosophy

that aims to compute routes from a centralized perspective. This is not to be misinterpreted by

drawing parallels to some centralized mechanisms in traditional routing such as Designated

Routers in OSPF, Route-Reflector in BGP, Root-Bridge in Spanning Tree protocol, or Next-

Hop Server in DMVPN. In all these cases, the central node’s functionality is to collect and

distribute network information. The ultimate computation is carried out on the nodes in a

distributed fashion. SD-WAN Routing calculates routes on an aggregated topology built by

fusing information from individual edge nodes and configuring the routing tables to the edge.

Chapter 3 presents a centralized rapid-convergence routing algorithm (MRoute) for SD-WAN

[25][26] that proactively finds all-possible paths for all pairs of nodes, ranks them, updates

rank over time, and serves routes on-demand and a multi-controller implementation MRoute.

Runtime performance is compared with OSPF and EIGRP emulating them on an SDN test-bed

that comprises [27] IaaS Cloud, OpenDaylight [28] as the controller, and Mininet [21] as the

forwarding plane.

 23

1.2.2. Contribution to Knowledge

Chapter 3 of this thesis describes a solution to some critical issues of SD-WAN with CDN as a

test case scenario.

1. A model of sharing routing information in a multi-controller SD-WAN.

2. A hybrid routing algorithm proactively calculates all-possible paths between all pairs

of nodes and reactively serves them on demand.

3. An SD-WAN testbed to implement, experiment, and benchmark the proposed model.

1.3. System-Level Simulation for 5G and Hybrid-SDN Integration

Design and structural complexity are skyrocketing with the introduction of diverse technology

paradigms in next-generation cellular and vehicular networks. The beyond- 5G use cases such

as mobile broadband, URLLC, 5G-V2X, and UAV communications require ultra-low latency

and high throughput and reliability with limited operational complexity and cost. These use

cases are explored in 3GPP Releases 16 and 17. To facilitate end-to-end performance evaluation

for these applications, SDN-Sim - integrating a System Level Simulator (SLS) with a Software

Defined Network (SDN) infrastructure is proposed. While the SLS models the communication

channel and evaluates system performance on the physical and data link layers, the SDN

performs network and application tasks such as routing, load balancing, etc. Chapter 4

discusses an architecture that replicates the SLS-defined topology into an SDN emulator for

offloading control operations. It uses link and node information calculated by the SLS to

compute routes in SDN and feeds the results back to the SLS. The chapter also proposes the

data modelling and processing, replication, route calculation frameworks, and architecture.

 24

1.3.1. SDN integration, a Vehicular Networking perspective

Towards 5G/B5G, the third-generation partnership project (3GPP) is finalizing Release 16 and

defining Release 171. In the area of vehicular networks, the 3GPP, in partnership with the Fifth

Generation Automotive Association (5GAA), is driving the efforts on the 5G-based vehicle-to-

everything (V2X) paradigm, which adds advanced features to the LTE-V2X from Release 14,

particularly in the areas of support for ultra-reliable and low-latency communication (URLLC)

applications for the future intelligent transport systems (ITS) [29],[30], [31]. In the evolution

path from LTE-V2X to 5G-V2X, the authors in [29] advocated the incorporation of software-

defined networking (SDN) in the architecture to enhance the system performance through

SDN’s capabilities in facilitating intelligent multi-hop routing, dynamic resource allocation,

and advanced mobility support, among others.

 To evaluate the performance of proposed algorithms, techniques, and frameworks for

any new era of communication networks, numerical simulations, mathematical analyses, and

field trials are the three main approaches being employed. Though analytically tractable,

mathematical methods (e.g., stochastic geometry tools) are often constrained by simplifying

assumptions that potentially limit their use in modelling large-scale, highly complex, and

dynamic networks. Realistic performance can be measured in live operating environments.

However, the financial and operational requirements are costly and practically infeasible for

the early design and development stages. Hence, in the past few decades, simulations have

become essential tools for the assessment of network performance due to the apparent cost and

implementation advantages [32].

 Depending on the performance metrics under investigation, simulators can be

categorized into three: Link Level Simulator (LLS), System Level Simulator (SLS), and

1 https://www.3gpp.org/news-events/2058-ran-rel-16-progress-and-rel-17-potential-work-areas

https://www.3gpp.org/news-events/2058-ran-rel-16-progress-and-rel-17-potential-work-areas

 25

Network Level Simulator (NLS). The LLS examines detailed, bit-level physical (PHY) layer

functionalities of a single link. The SLS evaluates the performance of links involving many

base stations (BSs) and user equipment (UEs) at the medium access control (MAC) layer (with

the PHY abstracted). It focuses on the radio access network/air interface and facilitates analyses

of resource allocation, capacity, coverage, spectral and energy efficiencies, among others. The

NLS, however, assesses the performance of protocols across all layers of the network, including

control signalling and backhaul/fronthaul issues. Performance is characterized using metrics

such as latency, packet loss, etc. [33].

 Besides metric-based classification, simulators can also be grouped based on radio

access technologies supported (e.g. cellular, vehicular, Wi-Fi, etc.), programming languages

(MATLAB, Python, C++, etc.), licensing option (open source, proprietary) or network

scenario capabilities (LTE, 5G, B5G, etc.) [33]2. While the SLS does not simulate beyond the

MAC layer, the NLS simulates networks up to the application layer. However, the

implementation and computational complexity of NLS become very high when a large number

of nodes are involved [34].

 Another significant paradigm shift in network design took place with the advent of SDN

[34]. It decouples the control (signalling) plane from the data (forwarding) plane and runs

applications in the application plane to manage the network. This brings transparency to

network design and lets software developers write applications for managing the networks,

keeping the internal structure in abstraction. Each layer uses several interfaces to communicate

with each other. The control plane communicates with both application and data planes using

2 Representative simulators include the Vienna LTE-A and 5G simulators for LLS and SLS
(https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/), and the 5G-K Simulators for
the NLS (http://5gopenplatform.org/main/index.php).

https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/
http://5gopenplatform.org/main/index.php

 26

north and southbound interfaces, respectively. In the case of a cluster of controllers, east and

westbound interfaces are used for communicating among them.

 As the default southbound protocol for SDN, OpenFlow uses Flow Tables (FT) to

perform packet forwarding. Each FT entry is a forwarding rule determined by the controller. A

forwarding rule has mainly three significant fields, a “match,” an “action,” and a “priority.” A

“match” is some criteria for an inbound packet to be checked. A packet that satisfies the criteria

is termed a “table hit”; otherwise, it is a “table miss.” For each case, an action is defined such

that the OpenFlow switch executes on the subjected packet. If a packet satisfies matches from

multiple flow rules, priority breaks the tie. The SDN Controllers populate flow entries. The

OpenFlow switch requests the controller for every table miss and the controller replies with a

flow entry. If the controller cannot resolve an action, it is set as a “drop,” The switch does not

process the packet. The decoupled control plane reduces computational cost on forwarding

devices by offloading the control packet processing tasks to the controller. Therefore, SDN

offers better modularity, programmability, agility, automation, and load balancing capability

than traditional networks. Also, the SDN-based approach is becoming the norm in network

design practices for cloud computing and 5G.

1.3.2. Contribution to Knowledge

Chapter 4 of this thesis presents a novel SDN-based System Level Simulator (SDN-Sim)

platform where the SLS-Stage runs in MATLAB and the NLS stage using python3. The

architecture uses the SDN design philosophy to reduce the overall computational complexity

of the system considerably. The computationally demanding upper layer network functions

(e.g., inter-cellular routing) are offloaded to the virtualized cloud infrastructure. Low-level

network information (e.g., Channel model, topology, etc.) is mapped from SLS to SDN. The

virtual infrastructure uses VMWare ESXi servers; OpenFlow and RESTConf are the south and

 27

northbound protocols, OpenDaylight as the SDN controller, and GNS3 and Mininet-wifi as the

data plane emulation.

1.4. Efficient IP Routing for SDN

The routing protocols play a vital role in saving energy, especially by minimizing the time a

packet travels from source to destination. Energy-aware routing protocols aim to select a route

that engages routers to minimum overall energy consumption.

1.4.1. Energy-aware SDN Routing

Energy awareness techniques in routing algorithms have been in the limelight of the research

community for a while. For the last few decades, it has been evident that Moor’s law is broken,

and devices are becoming more powerful. However, on the flip side, they are becoming more

power-hungry, and the advancement in battery capacity is not coping with the rate. Therefore,

designing energy-efficient software has become a trend in the research community to meet the

green objective. Contribution from several fields has made it a prosperous domain. In [35], the

authors present how energy savings can be optimized by using Microsoft’s MAUI framework

by offloading the application. But when the local energy is saved by executing an intense part

of the program remotely, communication cost is proportional to the routing time. The routing

algorithm plays a vital role in the energy savings schemes. Routing protocols developed for

homogeneous networks, such as Ad-hoc On-Demand Distance Vector (AODV), don’t work for

the heterogeneous environment, as the resource utilization of network devices affects efficiency.

Hence, Resource-Aware Routing for Low powered and Lossy Networks (RPL) was

standardized (RFC 6550) [36], which also formulates the node cost calculation metric. Link

cost calculation typically depends on the nature & type of the network; however, some

generalized techniques are discussed in [37], [38].

 28

 Software-Defined Networking (SDN) [39] is also becoming the de facto standard of

modern networking. It decouples the control and data plane. The control plane (CP) is a

logically centralized entity hosted by one or many devices called Controllers; it instructs the

traffic forwarding rules to the Data Plane (DP), which constitutes switches, which only

forwards. CP bridges with the DP with OpenFlow protocol and switches register the

instructions in OpenFlow Tables.

1.4.2. Contribution to the Knowledge

Within the context of this research work, an energy-aware routing algorithm has been designed

and developed that exploits application offloading. Furthermore, it proposes a resource-aware

routing algorithm for SDN, which monitors the resource utilization of network devices (nodes)

and channels (links), using a push agent and fetches topology and flow table information from

the controller. Using Link Queue Modelling [40] and Stochastic Network Calculus [41] a route

is guaranteed that avoids busy nodes and uses unutilized ones. Results show the validity of the

algorithm.

1.5. Cognitive Routing, an Industry 5.0 perspective

Complex communication across interconnected devices poses a unique reliability challenge on

the verge of the 4th industrial revolution and the beginning of Industry 5.0. Time-critical

applications such as industrial and mission-critical communication systems demand stability

in scale. Recent progress in SDN routing has shown significant improvement in various 5G

KPIs but fulfilling the Ultra-Reliable Low-Latency Communication (URLLC) to achieve

seamless Industrial-IoT communication stays inadequate. One of the significant challenges

deals with dynamic network behaviour. The Knowledge-Defined Networks (KDN) bridges the

gap by extending SDN architecture with Knowledge Plane (KP) on top, which learns the

 29

network dynamics to avoid suboptimal decisions. Cognitive Routing is a relatively young

discipline that uses Machine Learning (ML) algorithms to optimize routing decisions. Research

shows that the majority working in this area focus on traffic prediction and route optimization;

however, the reliability approximation exploration is limited. Cognitive Routing leverages the

Sixth Generation (6G), SON, with the self-learning feature.

 Chapter 3 of this thesis covers a self-organized cognitive routing framework to support

URLLC. In this context, a bespoke KDN reduces end-to-end latency by choosing the most-

reliable path with minimal probability of route-flapping. The proposed framework pre-

calculates all possible paths between every pair of nodes and ensures Self-Healing with a

constant-time convergence. Furthermore, it uses Sharpe-Ratio to measure volatility and

forecasts its trends using RNN with LSTM. The framework uses online learning to tackle

network dynamics. An experimental testbed benchmarks the proposed framework to compare

the convergence parameters against SPF and DUAL.

1.5.1. Self-Organized Knowledge-Defined Networking (SO-KDN)

In 2013, the German Academy of Engineering Sciences presented a recommendation and

research agenda for Industry 4.0 Its primary motivation was to achieve seamless integration

between physical and virtual technologies to facilitate smart manufacturing, which results in

significant inflation of the IoT technology in industrial automation. Between 2009 and 2019,

the Industrial sector has contributed 20% to the EU’s GDP. Industry 5.0, as a natural successor,

aims to build on top of the existing architectural frameworks of Industrial and Heterogenous

IoT (I-IoT, H-IoT) and interoperability between cyber-physical systems. The Directorate-

General of Research and Innovation (EU) has identified a new set of concepts that Industry 5.0

addresses. These are Human-centric solutions, Bio-inspired Technologies, Real-time digital-

twins technology, Network analytics, Machine-learning based automation, and Trustworthy

 30

autonomy. A large-scale industry needs to have a scalable network fabric to interconnect all its

devices. Software-Defined Networking (SDN) provides a programmable, vendor-agnostic

communication platform. 5G leverages SDN at its core to virtualize network services (NFV),

and ISPs use it in WAN deployment (SD-WAN). SDN provides a bird’s eye view of the network

where the control plane accumulates global knowledge about the underlying topology and

flows. Additionally, the data plane generates enough that the controller can mine for analytics.

In SDN-based routing, the routing protocol uses the global view to calculate optimal paths

without letting the routers exchange control packets. An efficient routing protocol aims to avoid

sub-optimal paths and converge rapidly in a dynamic environment. However, highly time-

critical industrial communication systems, such as IoT infrastructure for manufacturing plants,

cannot tolerate delays due to routing protocol convergence. Therefore, routing optimization

using analyzing the network’s behaviour provides a better heuristic which eventually reduces

the convergence probability. In SDN [42] Routing, the Shortest-Path calculation is the

subjected Optimization problem where a controller calculates the optimal values of the free

parameters subject to a set of communication constraints defined as a policy (Self-

Optimization). The controller then Configures the parameters into the underlying network

devices (Self-Configuration) and serves alternate Routes On-Demand, if the primary one fails

(Self-Healing); thus, supporting the SON [43]. However, the application of Machine Learning

(ML) in Route-Optimization is a relatively new domain; at the time of writing this paper, there

are a handful of works done in developing an Intelligent Routing Algorithm for SDN. The base

model of fitting ML in SDN is referred to as Knowledge-Defined Networks (KDN)[44], where

the primary objective is to accumulate holistic information from a supervising Control Plane

(CP) of an underlying IP network, analyze them to extract knowledge that generalizes the

network behaviour. This knowledge eventually helps to bypass the need for using costly

heuristic Routing algorithms, having preserved the equal adaptation capabilities to network

 31

dynamics[45]. Self-Organized Networking (SON) [46] in the fifth-generation cellular

communication systems (5G) enhances the requirements of its predecessor. Some of the new

requirements involve increasing traffic capacity, improving QoS/QoE, support of

heterogeneous Radio Access Networks (RAN), 10Gbps pack data rate, sub-millisecond latency,

support of ultra-high reliability, improved security, privacy and flexibility, and reduction of

CAPEX and OPEX [47] [48] [49]. SON constitutes the following three entities.

• Self-Optimization provides several control-plane (CP) optimization strategies such as

Caching, Routing, load balancing, etc. which are invoked autonomously. Relevant

algorithms calculate the optimal values of several decision variables w.r.t., the set of

constraints, called policies.

• Self-Configuration automates the injection of the decision parameters (e.g., operational

and radio config) to the underlying data-plane devices.

• Self-Healing provides high availability to the overall network. A typical model uses

detection, diagnostic and compensation sequences to automate the recovery process.

Recent development in SON shows significant use of ML to accelerate the performance of its

constituents [50].

 32

1.5.2. Contribution to Literature

Chapter 3 of this thesis describes Most-Reliable-Route-First (MRRF), an Intelligent Routing

algorithm for Self-Organized Knowledge-Defined Networks. The model initially calculates all

possible paths for all pairs of nodes from the Networks’ topology using our proposed algorithm

(MRoute) and aims to learn the reliability of individual links by their statistical measures of

volatility over time. The algorithm maintains the routes’ ranks based on their cumulative

reliability and serves them on-demand in constant time, assuring the most reliable Routes. A

full-fledged implementation of the KDN model as a test-bed to conduct experiments, which

benchmarks MRoute with Diffusion Update Algorithm (DUAL) [51] and Shortest Path First

(SPF) [52] that powers EIGRP as OSPF, respectively. Result confirms the validity of a constant

time switch-over of Routes guaranteeing the highest reliability.

 33

1.6. Motivation and Problem Statement

This section summarizes the motivation behind the research and presents a problem statement

that it aims to address.

1.6.1. Motivation

As per the contemporary landscape of SDN and its applications are concerned, three broad

elementary issues have contributed to the motivation of this research.

1. Limitation of the SDN/SD-WAN solutions: At the time this thesis is being compiled, the

existing SDN/SD-WAN solutions are limited in their usage in the infrastructure

orchestration. It offers more automation than control, i.e., SDN controllers are more often

used to automate the underlying devices than offloading control plane functionalities.

2. Centralized Routing Model: The classic implementation routing protocol families (i.e.,

Distance Vector, Link-State or Path-Vector) is based on a distributed computing model,

where the speaker nodes advertise their local view of the topology with their neighbours

and flood any topology change via link-local multicast. However, this introduces a

propagation delay for a relatively large topology which affects the convergence speed. As

the contemporary Software-Defined Network model provides a centralized view of the

topology, thus, running a distributed algorithm does not take advantage of the centralized

computing model of the SDN. This includes Routing as a Service and out-of-band control

with zero control packet exchange at the data plane during convergence. Therefore, a

routing model dedicated to the SDN is a need.

3. uRLLC Compliance: The 5G specification introduces uRLLC as a KPI. Although several

research in complying with the uRRLC has contributed to the data plane, there is a void

for the same at the control plane. None of the existing routing models (to the best of our

knowledge) consider statistical end-to-end reliability while calculating the routing metric.

Also, routing as a reinforcement-learning problem is a novel concept.

 34

1.6.2. Research Questions

This section summarizes the research questions and methodologies in two sections the “Why?”

And the “How?”, the former lists the legitimacy of the research problem and the latter outlines

the key ideas for tackling them.

The Why? – problems this research addresses:

1. How to provide rapid convergence in a dynamic network to achieve end-to-end Low-

Latency communication.

2. How to facilitate network automation & programmability as an integral part of the design.

3. How to leverage Machine-Learning models to optimize routing decisions.

4. How to use both the Link (Communication) and Node (Computation) costs together to

influence the routing decision.

5. How to use statistically evaluated end-to-end Reliability as a routing metric?

The How? – Methodologies to solve the above problems.

1. Refactoring the Single-Source Shortest-Path-Problem.

2. Running routing protocol as a pluggable application module, i.e., Routing-as-a-Service.

3. A hybrid graph-search algorithm that pre-computes all possible paths between all pairs of

nodes and maintains their order or preference in the runtime.

4. A robust telemetry protocol that feeds the network state to the application plane.

5. A Meta-Graph processing approach, that fuses multiple topology information (e.g.,

Neighborship, Flows, Utilization, etc.) into a single structure to perform centralized

topology computation.

6. Using Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) to

model network state as an Auto-Regressive problem and compute anticipated reliability

based on historical behaviour of the network.

 35

Chapter Summary

This chapter introduces the concept of Network Intelligence in the view of the Industry 5.0

compliance. In the context of this thesis, the chapter discusses four major concepts that

contribute to the development of a cognitive routing framework. Each Section trails the

“contribution to the knowledge” of the concept. The chapter first gives a closer look into the

Software-Defined WAN (SD-WAN) architecture with a use case of Content Distribution

Networking (CDN). The Section elaborates on the need and architectural migration that the

contemporary networks are going through which would need the SD-WAN implementation.

Additionally, it includes a brief market survey on various SD-WAN technologies from

renowned vendors. The next section puts a use case on integrating an SDN platform with a

System-Level Simulator, which extends the discussion on the former concept towards a hybrid

implementation where part of the network is Softwarized and the rest remains traditional. The

section briefly discusses various simulation platform that exists in the literature and presents a

generic view in the context of vehicular networks. Further, a specific use case of routing in

such an environment is explored in the context of this Thesis which the next section explains

in detail. Further, it presents a more subjective discussion on SDN routing and its fundamental

differences from a traditional distributed model. The chapter concludes with a discussion on

the cognitive routing for a Self-Organized Knowledge Defined Network leveraging the

concepts discussed in the previous sections. It presents a detailed study on the same concept

in the light of 5G and Industry 5.0 compliance.

 In summary, this chapter sets the stage for discussion in the following chapters. It

justifies the rationale, motivation and need for the research and its potential adaptability and

compliance to the evolving networking technologies such as 5G, URLLC and Industry 5.0.

 36

Chapter 2 Related work

Cognitive routing is a breed of routing algorithms where ML algorithms enhance the optimal

route computation. The domain of cognitive routing is a constructive blend of several

developments that have been progressing for quite a time now. The contemporary form of

cognitive routing aims to comply with several other objectives; these include meeting the QoS

requirements, compatibility with a Hybrid SDN architecture, compatibility with the Segment

Routing techniques, and indeed, the application of deep learning framework. The following

sections will touch upon each of the said areas to explore the motivations for cognitive routing

as a whole.

2.1. QoS aware routing

Quality of Service is a feature on Layer 2 to 4 on the OSI protocol stack to prioritize traffic

flows for streamlining them in congestion. A QoS framework ingests a policy set that describes

a list of constraints. The framework uses tools to enforce the policy on the network, e.g.,

Classification, Marking, Queuing, Shaping, and Policing. The PDU header carries the marking

information to tag a flow for prioritization. Table 1 depicts the marking field used in the PDU

of each layer.

Layers Marker Bits
L3 (IP) Type of Service (TOS) byte 8
L2.5 (MPLS) Experimental (EXP) bits 3
L2 (Ethernet) Class of Service (COS) bits 3

Table 1 QoS Marker on each layer of OSI

 37

A class of routing algorithms has come out as extensive research in this field to support the

constraints defined by QoS policies natively. Traditionally, the QoS policies are more stringent

towards the delay constrained; hence, it is often referred to as delay-constrained least-cost

(DCLC) algorithms.

 With the advent of the SDN, centralized QoS enforcement is becoming an alternative

to the classical distributed options[53][54][55]. The centralized management diminishes the

need for complex control packet exchange between routers to determine an optimal path (e.g.,

RSVP); also, it provides a mature admission control mechanism to determine the Path before

admitting a flow than eventually dropping it during policing at an intermediate router (e.g.,

DSCP).

2.1.1. The architecture of the QoS Routing framework

A QoS Routing framework has four major components listed in Table 2 and depicted in Figure

2[56]. The state model works as follows; the

QoS routing algorithm receives a flow request.

Now, the algorithm needs to decide if an

optimal path exists at the current state of the

network to accommodate the constraints. The

network resource model supplies the expected

delay based on the present network state. The

cost function provides the boundary conditions

as per the current network state. The Resource

allocator examines the available resources

(bandwidth, delay) and supplies the network

state with the resource model. Figure 2 QoS Routing Framework

 38

Module Name Purpose
The Cost
Function

The objective function that the QoS algorithm would optimize.

The Resource
allocator

The module allocates bandwidth on different queues to maximize the
flow accommodation.

Network
Resource Model

A mathematical model that realizes the distribution function after
analyzing the network traffic behaviour using stochastic network
calculus. It monitors the traffic characteristics and updates the expected
consumption.

QoS Routing The routing module runs the optimization function over the QoS cost
function, meeting the resource allocator's constraints and complying
with the distribution realized by the network resource model.

Table 2 Component of a QoS routing framework

2.1.2. Fundamental QoS Routing problem

The mathematical formulation of the QoS Routing is a blend of Graph Theory, Queuing Theory,

and Stochastic Network Calculus. Let's assume a Simple finite graph G(V, E) represents the

network topology, where vertex set V = {vI} represents the nodes, and the edge set E =

�eI,j � adj�vI, vj�} represents the links between nodes. The cost-vector C = �cI,j� ∈ ℝ+
|E| is a

positive-real vector of the cost of each edge eI,j. Let there be m constraints defined, each with

a boundary value dkforming a positive-real vector D ∈ ℝ+
m. Let Psd denotes a set of feasible

paths from a source s to a destination d. As every path is a member of the binary power set

{0,1}|E|Where a 1 denotes the subjected edge to be a part of the path. Hence, with ￼|E|, all

with ￼ ℝ+ and ￼ m ￼ ℝ+ constraints, the constraints matrix ￼ M ∈ ℝ+
|E|×m And the

formulation of the optimization model looks in Equation (1).

𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑃𝑃𝑠𝑠𝑠𝑠

𝐶𝐶𝑇𝑇𝑥𝑥

 𝑠𝑠. 𝑡𝑡.𝑀𝑀𝑀𝑀 ≤ 𝐷𝐷

Eq. 1

 39

Figure 3 depicts the visual representation of the formulation; recall the state model in Figure 2,

the QoS Routing module takes the cost, and the delay as input selects an optimal path.

An optimization algorithm finds a solution 𝑧𝑧′ ; Equation (Eq. 2) measures the algorithms’

efficiency or CI (Cost Inefficiency) in finding an optimal solution. As the objective of QoS

routing algorithms is to minimize cost thus, any sub-optimal solution surpluses zopt.

𝐶𝐶𝐶𝐶 =
𝑧𝑧′ − 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜
𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜

 Eq. 2

An optimization algorithm is said to be optimal if it always finds an optimal Path (Psd). A

Complete algorithm always finds a feasible Path if it exists; a Heuristic algorithm might find a

sub-optimal path. Table 3 summarizes the different types of optimality and their relationship

with CI.

Algorithm Type Cost Inefficiency
Complete CI ∈ [0,1]
Complete CI = 0
Heuristic CI ∈ (0,1]

Table 3 Summary of Optimization algorithm and their relationship with CI

Figure 3 Mathematical framework of a QoS routing module.

 40

2.1.3. Summary of QoS Routing algorithms

A comprehensive survey by Guck et al. [57] has walked through all state-of-the-art QoS routing

algorithms, evaluating their optimality completeness. Following is the list of algorithms that

have been evaluated.

Figure 4 Classification of QoS aware routing models

 41

Mnemonic Class Optimal Complete Reference
SPF PQ + SP [52]
A* PQ + SP [58]
CHA PQ + SP [59]
A* Prune PQ + CSP/MCSP Yes Yes [60]
LDP PQ + CSP Yes
FB Elem +

CSP/MCSP
 Yes (CSP) [61]

DBF DBF + SP Yes Yes [62]
YNA DBF + SP Yes Yes [63]
CBF DBF + CSP Yes Yes [64]
DCBF DBF + CSP Yes [65]
DEB DBF + CSP Yes [65]
LARAC LR + CSP Yes [65],[66],[67]
LARACGC LR + CSP Yes [68]
SCRC LR + CSP Yes Yes [69]
k-LARAC LR + CSP Yes [65]
NR_DCLC LR + CSP Yes [70]
DCCR LR + CSP Yes [71]
(k)H_MCOP LR + CSP/MCSP Yes (CSP) [72]
(E/MH)_MCOP LR + CSP/MCSP Yes (E) Yes (E/MH) (CSP) [73]
DCUR LCLD + CSP Yes [74], [75]
DCR LCLD + CSP Yes [76]
IAK LCLD + CSP Yes [77]
SMS-
RDM/CDP/PBO

LCLD + CSP Yes [78]

SF-DCLC LCLD + CSP Yes [79]

Table 4: Lists of the popular QoS routing algorithms, their Type (optimal or complete), and
class. PQ: Priority Queue, DBF: Distributed Bellman-Ford, LR: Lagrange Relaxation, LCDC:

Low-cost Low-Delay.

Table 4 lists the popular QoS Routing algorithms along with their optimality. Notice that the

Lagrange Relaxation-based algorithms are mostly not optimal but complete. We perform a

qualitative comparison of the sub-optimal algorithms based on their Cost Inefficiency (CI) and

Runtime Ratio (RR) based on the data available from the works of Guck et al.[80]. We fused

the CI and RR factor to calculate an efficiency measure for ranking them using a simple rule

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 100− 𝑅𝑅𝑅𝑅
𝐶𝐶𝐶𝐶

 . As both CI and RR are measured in percentage and RR is proportional

to the efficiency but lower is better, but CI is inverse. The result (Figure 5) shows that the k-

LARAC is the most efficient method. However, it is a computationally intensive solution.

 42

Figure 5 Comparison of the efficiency of the QoS routing algorithms

2.2. Hybrid SDN Architectures

Hybrid SDN is an intermediate state of a traditional network while it is transforming to become

an SDN. There could be various influences for an enterprise to opt for an intermediate state.

Amin et al. [81], in their survey on the Hybrid SDNs, outline several such reasons; this includes

optimizing the reusability of existing devices, gradual training of technical staff for a stable

migration, and cost optimization.

 The domain of Hybrid SDN is vast; however, in the recent past, a considerable amount

of research has shown the potential and relevance of the topic. Concerning this thesis, the

hybrid SDN model has motivated me to design Software-Defined Self-Organization across an

architecture-independent infrastructure plane. Several such influences have helped devise

various configuration algorithms and fundamental design logic in the following chapters. The

following subsections summarize the state-of-the-art of Hybrid-SDNs, relevant to the scope of

the thesis (Figure 6).

 43

Figure 6 Hybrid SDN networks and their classification [82]

2.2.1. Deployment strategies

While transiting from a traditional, fully distributed network architecture, when an enterprise

initiates Softwarization, it might opt for several deployment strategies. The choice is purely

subject to the scale and requirements.

1. Custom Architectural Design: In this strategy, researchers propose bespoke flow

management of a traditional network through an SDN controller. A virtual overlay network

based on seminal panoptical design [83] suggests the incremental introduction of SDN

switches among an existing legacy topology. All the packets must go through the SDN

switches, where the switch builds a solitary confinement Tree to optimize the forwarding

logic. However, topologies in a Datacenter (DC) environment need specialized treatment.

Most of the DC topologies are of Spine-Leaf [84] in nature, where a cluster of spine

switches acts as a single distributed switch, and each spine switch connects to all the leaf

switches, resulting in a single hop traversal for any inter-leaf traffic. Softwarizing a DC

network requires seamless scalability and load-balancing; thus, the migration strategy

should not be abrupt but gradual. A common approach is to classify and segregate the

programmable traffic (that flows through the SDN nodes) from the non-programmable

traffic and apply traffic engineering to the programmable traffic to maximize the end-to-

 44

end throughput [85]. Several other Softwarization techniques exist in the present literature

that concern optical networks [86] [87], wireless mesh networks [88], and Satellite

overlays [89]; however, these techniques fall beyond the scope of the thesis.

2. Hardware Shim: Unlike the previous model, the Hardware Shim [90] proposes a

coexistence of SDN and legacy protocol processing modules within a switch kernel. A

shim module resides within the switch that exchanges information between the SDN and

Non-SDN networks. Both the CAM/TCAM and Flow-Table data structures share the

switch memory and are used by the non-programmable and programmable traffics,

respectively. However, this solution is proprietary to the vendors as, in general, they offer

a monolithic or non-programmable kernel; thus, there are no commercial generic solutions

exits as of the time of writing this thesis.

3. Integer Linear Programming (ILP) based optimization: The ILP optimization models

the network into a graph and analytically finds the strategic migration. That said, these

techniques are simulation-driven and hence do not always align with the economic

feasibility. If performance upgrade is concerned, Softwarizing all nodes and applying a

greedy algorithm-based traffic engineering would be the optimal choice [91]. However, it

would also scrap a large amount of active hardware resulting in a significant CapEx. An

alternative strategy is to calculate a Softwarized topology with minimum SDN hardware.

An efficient dynamic programming-based algorithm [92] can process a topology of

n nodes in O(log n) time, it minimizes the CapEx, but the end-to-end throughput stays

sub-optimal. A sweet spot between the previous two strategies is to partition the network

based on their traffic characteristics to put a dense SDN topology for QoS aware network

and a sparse SDN topology for the rest [93][94].

4. Heuristics-based Optimization: Unlike the ILP optimization strategy, which optimizes

the analytical model of the network, the Heuristic-based optimization is rather empirical

 45

in nature. One might use this strategy when a network shows stochastic behaviour (i.e., the

traffic characteristics are dynamic and not predetermined but realized by sampling). The

controller accumulates telemetry from a large pool of network devices and decides a subset

of the topology to Software preserving the configuration (e.g., translating forwarding

logics of a legacy switch into flow entries in an OpenFlow switch). Hong et al. [95] use

this strategy and show a 20% Softwarization reduces 32% control traffic. Xu et al. [96]

apply the same method in combination with Depth First Search and Randomized Rounding

techniques, which results in a 40% throughput gain.

2.2.2. Classification of Hybrid SDN controllers

SDN controller is the heart of SDN; it possesses a bird’s eye view of the underlying network

topology and enables a central management point. A cluster of SDN controllers uses so-called

East-West APIs to establish an inter-controller fabric and offer scalability for large network

topology. The controller cluster aggregates the topologies governed by each member controller

and optimizes the unified graph collaboratively. The present literature shows several objectives

that the controller might orient its optimality criteria. These criteria depend on the requirement

and scale of the networks.

1. Virtualized Controllers: Their utilization varies in a resource-constrained network where

the compute and network resources often don’t change. In a hybrid-SDN, the controller

unifies the resource management by translating configuration policies into data-plane-

specific instructions (e.g., Flow entries for OpenFlow, Route-Maps for Cisco IOS devices).

HybNET [97] offers a solution for the OpenStack neutron controller as a central control

plane for SDN and legacy switches. It puts an abstraction layer between legacy and SDN

networks to achieve a data-plane agnostic control plane. SYMPHONY [98] extends the

scope of the control plane by integrating it into the legacy device. It uses the OSPF control

 46

plane to communicate with the controller and maintains a global routing table unifying the

SDN and legacy topologies; however, it lacks load-balancing. The SDN Hybrid Embedded

Architecture (SHEAR) [99] deploys a small number of SDN nodes within the legacy

topology. The SDN nodes become a programmable spine for the legacy leaf switches

resulting in a high convergence. Telekinesis [99] spits the control plane by sending Flow

instructions to SDN nodes and special packets to legacy nodes to update their CAM entries.

The CAM override forces all traffic to pass through the SDN nodes; however, it only offers

Routing and does not include TCAM-specific modification (e.g., ACL Filtering, QoS

policy enforcement). Cardigan et al. [100] implement OpenFlow-based distributed routing

by replacing all legacy devices with SDN nodes.

2. The controller as Middleware: In this strategy, the controller is a translator between SDN

and Legacy configuration. ClosedFlow [101] offers SDN-like control on legacy networks

with features like out-of-band management, topology discovery, ACL-based filtering, and

event-driven packet processing; however, it lacks load balancing. Exodus [102] offers

translation through an intermediate config format called pseudo-SDN rules and compiles

them into OpenFlow and Cisco IOS instructions. LegacyFlow [103] bridges two non-SDN

networks via an SDN fabric. The controller injects flow instructions to the SDN nodes,

which connect the downstream non-SDN topology segment. The SDN nodes themselves

are interconnected; thus, the Data-Place gets split into a Spine-Leaf topology with a central

control plane on top.

2.2.3. Network management strategies

Network management is a closed-loop operation involving data accumulation from the

infrastructure through a telemetry mechanism and injection of the configuration back to the

infrastructure. The previous two sections describe the deployment strategies and the SDN

 47

controller classification. The final bit of the story is network management, which describes

how efficiently the network resources are managed. In the literature, several existing

mechanisms are used by contemporary SDN controllers. However, resource management and

self-configuration are the two major strategies that are relevant to this thesis.

1. Resource Management: Santosh et al. [104] propose a Weighted Fair Queue (WFQ) based

programmable software-defined wireless LAN controller to provide load balancing, security

policy enforcement, and QoS services. Unified Virtual Monitoring Function (SuVMF) [105]

is proposed as a robust telemetry system for large hybrid SDNs. It offers conditional filtering,

configuration transformation, and custom monitoring. Katov et al. [106] focus on usage

consolidation and power consumption minimization in enterprise networks. It monitors the

usage patterns of network devices and suppresses unnecessary nodes when the mean usage

comes down. The results show a 45% drop in energy consumption with a 47% drop in link

utilization. Seiber et al. propose a Network Service Abstraction Layer (NASL) [107] that

unifies the control and data plane to optimize QoS policies for time-critical applications;

additionally, vendor-agnostic programmability and monitoring [108].

2. Configuration Automation: Configuration automation releases the human factor from

configuring network devices in a scalable infrastructure. It also removes the burden of

configuration review before pushing it into production. Katiyar et al. [109] propose an

external configurator using the DHCP-SDN model for Hybrid-SDNs. Martinez et al. [110]

offer a semantic-based configuration of legacy devices called the Ontology-Based

Information Extraction system. Mishra et al. [111] propose a decentralized approach, where

each subnet of non-SDN nodes has at least one SDN node that collects the resource

information periodically and injects forwarding logic as floating static routes. Amin et al.

use a Graph Theory based incremental topology change detection mechanism [112] called

Automatic Policy-violation Detection for topology Change (Auto-PDTC) [113] which

 48

detects devices that need reconfiguration. Seiber et al. [114] use a Queuing theory-based

analytical model for detecting devices that need reconfiguration in a partial SDN setup.

2.2.4. Summary

Figure 7 shows a comparative analysis of the hybrid SDNs discussed above. The evaluation

counts the publications available in the literature leveraging the techniques and sums them

based on six metrics: namely, traffic overhead, link utilization, number of SDN flows, number

of path failures, deployment complexity and scalability. High traffic overhead and link

utilization leave less bandwidth for the data traffic hence it acts adversely. Several SDN flows

could be fixed as proactive flow entries or dynamic as reactive entries. The reactive flows

provide dynamic manipulation based on altering network conditions, thus, it is a more robust

fit. Path failures could be resilient which gives a quick failover or non-resilient where the

network needs re-convergence. The deployment complexity measures the performance of a

middlebox, i.e., an SDN box within a traditional network and the scalability measures the

complexity in scaling the topology. Scoring each category based on the positives and negatives

that the existing publications suggest, the study finds the optimal design would be a hybrid

SDN model that deploys SDN nodes within the traditional infrastructure using ILP

optimization with a virtualized controller and leverages automation to program the

infrastructure plane.

 49

Figure 7 Performace analysis of various hybrid SDN designs based on six attributes. Each design
apprach is scored agaisnt the available works in the literature. The result shows the most efficient

design uses an ILP optimizer with a virtual controller that perform automated configuration.

 50

2.3. Application of Machine Learning in Routing

The application of ML in solving contemporary SDN problems contributes to relaxing the

computational complexity of traditional discrete optimization problems. Traditionally, discrete

optimization methods such as Greedy, Dynamic, and Mixed Integer Programming are the de-

facto choice for network optimization problems. A heuristic function drives the efficiency of

the algorithms’ convergence. However, formulating a heuristic is challenging in a dynamic

network, where various characteristics vary over time. Moreover, the recent introduction of the

Network-Slicing model requires specific treatment for selected traffic flows using Policies.

Therefore, ML models have become quite popular to deal with network dynamics. A new layer

called Knowledge-Plane (KP) sits on top of the classic three-layer SDN model that accumulates

various network telemetry from the application plane, learns the behaviour from the historical

dataset, and feeds the (near) optimal solution back to the application plane. The previous

section describes the various controller functions in a hybrid SDN; ML-based optimization

solves the issue of oscillation that otherwise be a common phenomenon in heuristic

optimization. Oscillation happens when a slight change in the network state results in re-

convergence. Recall the EIGRP metric; although the Load and Reliability parameters are

present in the formulation, they are not used in production. Their fluctuation could force the

underlying DUAL algorithm to recalculate the paths, resulting in an unstable network state.

ML algorithms instead provide a more stable sub-optimal solution curved for the specific

network behaviour.

 In the literature, the SDN use-cases of the ML-based solutions exist [115] for: (A) traffic

classification for QoS [116], (B) Routing optimization [117], (C) deep packet inspection, (D)

resource management for QoS [118], and (E) malicious signature detection for security [119].

To be aligned with the theme of the discussion, we shall only concentrate on the aspect of

Routing optimization and the respective development that exists in the literature.

 51

 The domain of Cognitive Routing is still undergoing its infancy. Although ML

frameworks have helped accelerate many networking problems, routing is one of its recent

application domains. The state of the art of cognitive routing solves the route-optimization

problem broadly in two ways, State-prediction, and Route-matrix prediction. The following

subsection presents the literature below.

2.3.1. Optimizing routes using state-prediction

The state prediction mechanism essentially sees the active Routes of network topology as states

and tries to predict the optimal state given a source and destination using an RNN or RL or

DRL. The earliest attempt by Yanjun et al. [120] uses a meta-learning approach, where an

ANN is trained using the input and output of a heuristic algorithm. Eventually, the ANN models

the hidden distribution that results in a real-time outcome bypassing the otherwise complex

heuristic method. NeuRoute [121] uses RNN with LSTM to predict link utilization patterns to

optimize the routes. A reinforcement learning approach by Sendra et al. [122] predicts the

optimal path using the consequent network state variation as a penalty. For large-scale overlay

deployment such as Datacenters, Francois et al. [123] leverage the Cognitive Routing Engine

(CRE) [124]. The proposed model places the CRE within a logically central SDN controller

that oversees the overlay fabric and runs a closed-loop control using RL. The QoS Aware

Adaptive Routing (QAR) [125] uses RNN to predict QoS constraints compatibility of the links

and determines the optimal paths for hierarchical SDNs. A more complex, however efficient

Deep RL-based approach by Stampa et al. [126] finds the all-pair optimal path keeping the

delay constrained checked.

 52

2.3.2. Optimizing routes using traffic-matrix prediction

In this approach, the machine learning model predicts a given topology's hidden distribution of

a varying cost matrix; therefore, the only feasible model is an RNN. Lopez et al. [127] propose

a traffic prediction mechanism that forecasts the traffic pattern by estimating the trend. It

creates proactive flow configuration for the data plane devices and injects them before

congestion occurs. Alvizu et al. [128] propose a dynamic optical routing technique using

metaheuristics. The algorithm has three phases, Offline Scheduling, Online training and Online

Routing. Chen et al. [129] perform a multivariate evaluation for load-balancing that includes

hop count, latency, packet loss, and bandwidth utilization. Azzouni et al. [130] propose NeuTM,

which uses LSTM for the traffic matric prediction method.

2.3.3. Lessons Learned

After analyzing various ML methods applied in solving the SDN-Routing problem, we have

concluded that RNN, Reinforcement Learning (RL), and Deep RL are the major techniques

that suit the subjected problem class. The SDN Routing problem has primarily two categories,

route prediction, and traffic prediction. Table 5 presents the applicability and efficiency of the

three ML techniques in these categories.

 RNN RL DRL
Route Prediction Fair Fair High
Traffic Prediction High X X

Table 5 Usability of ML techniques in SDN routing

 53

2.4. Self-Healing Technologies

Network outage due to overload or unprecedented failures is the greatest adversary for any

network service provider. Contemporary network infrastructure relies on automation

technology to battle any outage situation, preferably anticipating them before they occur. On

average, the cellular network operators spend 23% - 26% of their annual revenue on managing

the operation outages [131]. In 2015, the network outage cost $20B to the mobile network

operators and service providers (MNO-SP) worldwide, 7% of their total revenue [132]. 3GPP

poses the Self Organized Network (SON) as a solution that solves the problem of network

inconsistencies and anomalies more structurally by addressing architectural changes. SON

constitutes Self-Optimization (SO) [133] which provides autonomous optimization of

performance [134], Self-Configuration (SC), which automates configuration of network nodes;

and, Self-Healing [135], which identifies degradation of KPIs and heals it autonomously.

 Research shows that for an MNO-SP to sustain itself, it can spend at most 1.7% of its

revenue on NetOps without compromising service quality [136]. Modern network

infrastructure has shown promising improvement after adapting the 3GPP recommendations

on SON. Despite increasing traffic volume and network architecture complexity, it has

demonstrated a trend in affected cell coverage during an outage. A key player is the

Heterogenous Networks (HetNets) [137] which reduces the network density but increases the

network parameters resulting in a better QoE.[138]

2.4.1. Self-Healing in Cellular Networks

Mainstream adaptation of SON begins from the 4G era. Self-Healing technology brings four

key features; First, Autonomy, which makes function invocation independent of human input;

second, Availability, which allows the network to scale; third, Adaptability, which absorbs the

 54

external Influences and learns from internal failures and, fourth, Intelligence, which learns the

network behaviour from historical data [139].

 Prominent research on Self-Healing shows the impact of automation in various use

cases. EUREKA[140] studies the wireless communication use-case, especially on UMTS and

Wi-Fi networks, SOCRATES [141] studies LTE networks, QSON [142] studies SON

coordination, and SEMAFOUR [143] studies self-management for heterogeneous RANs. The

existing research outlines a Self-Healing framework that involves a network controller to

automate network outage management. Further, the framework classifies any outage into either

a full outage which results in a total network failure or a Partial-Outage, where the KPI

degrades.

A Self-Healing framework consists of three stages; first, an Outage Detection algorithm

determines a full or partial outage and the nodes that need further action. Second, a diagnostic

Algorithm that detects the exact cause of the failure; third, a Compensation algorithm that

Figure 8 Closed-loop operation cycle of a generic Self-Healing framework

 55

injects configuration changes based on the diagnostic information that the controller

accumulates (Figure 8).

Components Description and Classification
Methodology Techniques used to detect, diagnose and compensate for a failure.

1. Analytical: Breaks down the mathematical model and optimizes.
1.1.Convex optimization
1.2.Non-Convex optimization
1.3.Genetic Algorithms
1.4.Simulated Annealing
1.5.Multi-objective optimization
1.6.Game theory

2. Heuristic: Predefined rules and prior knowledge
2.1.Rule-Based: Uses if-else rule
2.2.Framework based: consists of predefined guidelines

3. Learning-Based: Uses ML algorithms
3.1.Supervised (SL)
3.2.Unsupervised (UL)
3.3.Reinforcement (RL)

Topology Defines the logical structure of the networks
1. Homogenous: One tier of macro-cells covering large areas.
2. Heterogenous: Multi-tier of macro and small cells or HetNet

Performance
metrics

Benchmark measurements to evaluate network performance.
1. Accessibility: the ability of the users to use the network resources
2. Retainability: retain a session until it finishes without dropping it.
3. Mobility: Seamless handover
4. Others: RSRP, SINR, RSRQ

Control Mechanism Controlling the SON functions
1. Centralized: CP is decoupled from the devices
2. Distributed: CP resided in devices
3. Hybrid: a combination of both

Control Direction Optimization of service link
1. Node to user
2. User to node
3. Both

Table 6 Summary of the techniques used in Self-Healing techniques

Asghar et al. [136] present a comprehensive survey on the recent development in Self-Healing

technology; Figure 8 depicts the various stages of a generic Self-Healing framework and its

 56

closed-loop control flow, and Table 6 lists a summary of the techniques and taxonomy used in

a Self-Healing framework. The current literature shows several works on Self-Healing

techniques for cellular networks; Figure 9 summarizes the methodologies applied to Self-

Healing techniques. Research shows the dominance of Supervised and Unsupervised learning

algorithms for Failure detection and diagnostic problems, respectively. However, Analytical

and Supervised learning show more usage in designing the compensation algorithms.

Figure 9 Summary of methodologies used in Self-Healing techniques for Cellular networks

 57

2.4.2. Service Migration based Self-Healing for MEC

The previous subsection describes the various Self-Healing techniques and methodologies used

in Cellular networks. However, 5G and beyond technologies significantly leverage the MEC

framework to reduce the network OpEx and improve QoS/QoE. A primary driving force has

been the massive cloudification of resources. Enterprise networking has shown a steady trend

in migrating shared resources to the public or private clouds while keeping the essential

resources on-premises. In a distributed system, long-distance communication between remote

resources via a cloud breach latency constraint may occur, especially in time-critical

applications. MEC lowers the complexity by offloading computational and data resources to a

closer cloud infrastructure (MEC node). Self-Healing in MEC architectures needs special

treatment. In the literature concerning MEC orchestration, Service Migration has been a well-

known technique that addresses the issue of autonomous healing of various failure scenarios.

Factors Migration Handover
Volume of
transaction

Higher, as it transfers application
runtime or memory images between
edge servers.

Lower, as it transfers control and data
traffic between cells.

Triggering
factor

It happens when a device wants to
offload or transfer tasks due to load-
balancing or failover mitigation.

It happens when a device loses
connectivity from its current cell or
finds a better-quality cell.

Dependencies Topology and protocol independent Topology and protocol-dependent
Table 7 Difference between service migration and Cellular Handover

Service migration involves replicating a running service across the MEC cluster by minimizing

the transaction overhead and downtime. There are two service migration models for MEC; first,

the Live-Migration which migrates a live application if the host node fails or gets overloaded,

and second is the Cellular Handover, which happens when most of the consumer migrates to

the vicinity of a remote MEC node. However, the handover and migration have subtle

differences (Table 7), which results in definitive treatment. For the sake of the context, this

thesis excludes the Cellular Handover mechanisms.

 58

Service Migration Frameworks for MEC

In the literature, there are two principal techniques

for approaching the problem of service migration. The first is the simple Three-Layer

Framework (TLF)[144][145], and the second is a relatively complex Payload Optimization

Framework (POF) [144][146]. While TLF focuses on transferring a live service between edge

nodes, POF aims to optimize the transfer volume.

Figure 10 Holding state of an Edge server and the migration decision process

 59

 In the TLF approach, the Edge server has a Base, the OS kernel, which hosts several

applications and their corresponding runtime (e.g., Python virtual environment); each

application can run multiple instances. When migration is triggered, the source node queries a

given destination regarding its current holding state and transfers the minimum information to

restart the process at the remote end. Figure 10[147] depicts the system layout of the decision

algorithm.

The POF approach is more complex than TLF; it uses a pipeline mechanism of several stages

to optimize the payload size; hence, resulting in a compute-intensive but a space-efficient

solution. Figure 11 [147] depicts the pipeline stages in POF; it enhances the TLF concept by

inheriting the principle idea of three-layer segregation of a system but optimizes the traffic load.

Unlike the TLF approach, where each application instance migrates sequentially, POF

parallelizes them using the pipeline. Additionally, POF adapts dynamic network behaviours in

choosing various parameters for pipeline stages. There are two Dynamic-Adaptation strategies;

a simple Bottleneck-finding strategy that chooses parameters based on end-to-end throughput

availability and a more advanced Heuristic adaptation of the former approach.

Figure 11 Pipeline stages of the Throughput Optimization framework

 60

The bottleneck throughput on a migration path (𝑠𝑠,𝑑𝑑) is the chocking point, where the

forwarding cost is maximum. If 𝐵𝐵𝑊𝑊𝑖𝑖 is the Effective bandwidth, pI is the processing time and

𝑟𝑟𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 of a node i at the path (s, d) then the system throughput TPsys of the node

are the minimum of the processing and network throughput expressed as equation Eq. 3

The heuristic extension of the former method works on a sliding time window [1 − t] of t time

instance, that enhances the system throughput by scaling its components.

1. Let 𝑃𝑃𝑡𝑡 = {𝑝𝑝𝑖𝑖 | 𝑖𝑖 = [1 − 𝑡𝑡]}, 𝑅𝑅𝑡𝑡 = {𝑟𝑟𝑖𝑖 | 𝑖𝑖 = [1 − 𝑡𝑡]}

2. Measure Pt and Rt periodically

3. Calculate average values Pm and Rm at which the migration probability is above a

margin.

4. Calculate scales 𝑆𝑆𝑝𝑝 = 𝑃𝑃𝑡𝑡
𝑃𝑃𝑚𝑚

 and 𝑆𝑆𝑟𝑟 = 𝑅𝑅𝑡𝑡
𝑅𝑅𝑚𝑚

5. Calculate a heuristic of the system throughput (HTP) (Eq. 4)

 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑡𝑡𝑇𝑇𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑆𝑆𝑟𝑟𝑇𝑇𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁�

= 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑠𝑠𝑡𝑡

∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
,
𝑠𝑠𝑟𝑟 × 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
𝐵𝐵𝑊𝑊𝑖𝑖

∏ 𝑟𝑟𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
 �

Eq. 4

6. Select a node as the destination that maximizes the HTP. (Eq. 5)

𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

�𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑠𝑠𝑡𝑡

∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
,
𝑠𝑠𝑟𝑟 × 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
𝐵𝐵𝑊𝑊𝑖𝑖

∏ 𝑟𝑟𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
 ��

Eq. 5

Migration Strategies

The current literature solves the service migration problem in MEC using three major

techniques. First, Follow Me Cloud (FMC), second, Markov Decision Process-based Migration

(MDPM), and third, Time Window-based Migration (TWM).

𝑇𝑇𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑇𝑇𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛� = 𝑚𝑚𝑚𝑚𝑚𝑚 �
1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
,
𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈(𝑠𝑠,𝑑𝑑)

𝐵𝐵𝑊𝑊𝑖𝑖

∏ 𝑟𝑟𝑖𝑖𝑖𝑖∈(𝑠𝑠,𝑑𝑑)
 �

Eq. 3

 61

 The FMC prototype and its variants [148][149][150][151] migrate services across

federated DC nodes (Edge Servers), where the service gets replicated or migrated as the users

move. In other words, the cloud service follows the user density, and when it drops below a

cutoff, the service expires from its host. The QoS parameters such as Cost, and Delay governs

the migration decision.

 The MDPM models use stochastic analysis of the users' movement to decide on a

migration. MDPM models come in two flavours. A unidimensional MDP (1D-MDP)

[151][152] model considers the users’ movement along a straight line (e.g., a car on the road).

The Edge server decides migration based on the distance of a user consuming a service from

the Edge server which hosts the service. A more capable model is the two-dimensional MDP

(2D-MDP) [148][153] models user mobility on a 2D surface (e.g., a drone) which is more

suitable for Cellular networks.

 The TWM strategy searches for an optimal placement sequence of multiple services

that minimizes the average cost over a given time window [154][155]. Using time-series

prediction methods such as Auto-Regression and Recurrent Neural Networks, an extension to

the TWM calculates a Look-Ahead Window[154], which helps the Edge server to take

proactive migration decisions based on historical data. Unlike MDPM, TWM can

accommodate heterogeneous cost function, network topology, and mobility patterns. It also

poses a less complex solution as, unlike MDPM, it suppresses the probability distribution

function discovery.

2.4.3. Contemporary Service Migration using Distributed Ledge Technologies

The 5GPPP consortium discusses the potential usage of Softwarization and Orchestration for

efficient 5G service management. The three enabling technologies for it are multi-Tenancy

support, Cloud and virtualization, and network programmability. The same white paper

 62

document also talks about Network Slicing that bundles the said technology enablers and

applies them to the use cases with optimal configuration. Each slice gets its use case-specific

Virtual Network Function (VNF) optimized for the service it carries out. Eventually, it offers

greater manageability, abstraction, isolation, and throughput. Focus et al. [156] in their paper

on challenges in Network Slicing in 5G, point out the lack of adaptivity in the present

management and orchestration (MANO) framework. It suggests that introducing a slice

management plane that analyses the current state and predicts the future State can perform

better slice allocation in efficiency and scalability. Efficient architectural alternatives for the

infrastructure layer of the network slice architecture exist in the literature. Two of the most

efficient are software Defined Network (SDN) and Mobile Edge Computing (MEC). SDN

decouples the control and data plane and establishes a centralized control mechanism. It offers

better manageability and dynamic control. Haleplidis et al.[39] in the RFC 7426 discusses the

layered architecture of SDN and its functionalities. MEC, unlike SDN, decentralizes the

computational capabilities to the edge of the network, making them closer to the end IoT

devices.

 MEC significantly reduces the networking between end devices and the cloud, as the

most frequently invoked edge nodes execute tasks. Eventually, it reduces response time and

enhances efficiency. In his survey on MEC, Abbas et al. [157] discuss various components,

application areas, and research challenges. The same article also highlights transparent

application migration as one of the open issues. Yassin et al. [158], in their report on SDN and

IoT, present several SDN enabling solutions for IoT, such as IoT protocols, IoT Operating

systems, development platforms etc. This provides adequate information to build an SDN-

enabled IoT infrastructure. Virtualization plays a significant role in the network function layer

of Network Slicing architecture. Although traditional virtualization offers an enormous benefit

 63

in terms of resource utilization for the VNFs, it lacks when it comes to migration. Containers,

on the other hand, for their lightness, show better performance on migration.

 Tay et al. [159], in their article comparing VM (live migration) and Container

(kill/Restart migration), concludes Containers lead the stateless migration and VMs lead the

state-full. Also, the VM migration is more complex and requires specialized configuration such

as Shared Storage (NAS) and a dedicated network interface, which makes it inapplicable for

fully distributed IoT infrastructure. Addressing all the issues highlighted in this section,

Chapter 5 presents an Intelligent IoT solution for accommodating heterogeneous IoT (H-IoT)

under a multi-access mobile edge computing (MA-MEC) platform powered by SDN. A tool

called Shell-Mon orchestrates Transparent Application Migration by running apps in Docker

Containers. The proposed system is also resource-aware, i.e., it periodically records and

distributes local resource state information across other nodes. Also, it decides the best suitable

time and destination of migration. Here we state some of the works that are solving the same

problem domain. Qiu et al.[160] in their works shows an LXE based container migration using

a tool called Checkpoint and Restore (CRIU) [161] that records checkpoints of a running

docker container and can be used to restore. The article uses multipath TCP communication to

transfer the container. Dupont et al. [162], in their writing, also used LXE container migration

in 2 dimensions, horizontal (roaming) and vertical (offloading), putting flexibility as one of

their future aspects. Nadgowda et al. [161] introduce a migration system called Voyager that

uses CRIU on Docker containers. It does In-Memory state migration and local file system

migration through in-band (data federation) and out-of-band (lazy replication) transfer

techniques. The IoT architecture presented in Chapter 5 stands out differently from the current

literature's present solutions utilizing its intelligent nature. The proposed system does not need

a shared memory architecture hence can be fully distributed. It uses CRIU for checkpointing

local container state but also monitor other IoT nodes' resource utilization and maintains them

 64

in a Resource Information Database (RIDB). Based on resource utilization trends, it can predict

the future state. The behavioural analysis of resource utilization can automatically select the

victim container to be migrated and destination too. This decision-making ability enhances

self-reliance, scalability, and less pre-configuration overhead. SDN can also empower load-

based priority configuration for different V-Switch ports for better Quality of Service (QoS).

 Blockchain has been in the limelight for a while as the backbone of one of the

revolutionary concepts of the present era of Cryptocurrency. From its first inception [163],

potential utilization and use cases have been famous in the research community [164] [165]

[166]. One such area is Multi-Operator Network (MoN) and Small Cell (SC), which coincide

with the interest of this paper. Backman [167] shows signalling enhancement on the traditional

5G network stack to enable on-demand resource allocation. BC uses Slice Leasing Ledger and

Smart contracts to append a trust layer brings two advantages. First, it reduces the coordination

and transaction cost by negotiating with a trusted party to undergo an automatic agreement.

Second, it diminishes the issue of Single Point of failure by offering distributed architecture

hence, the case of DoS attack. The effective use of Smart Contracts for implementing Service

Level Agreement (SLA) [168] [169] with various QoS parameters, implementing the

decentralized application over the multi-admin domain [170] with three scenarios, software-

defined Wide Area Network (SD-WAN), NFV, IaaS, and Network Slicing. Network Slicing

also leverages efficient spectrum micro licensing in an Ultra-dense Small-Cell Radio Aria

Network (RAN) [171]. Also, a caching/offloading model for blockchain-based MEC by Liu et

al.[172] that uses a caching algorithm with computational offloading.

2.5. Self-Organization, a beyond 5G perspective

Fifth Generation Mobile technology (5G) has evolved after several years of R&D focused on

systems beyond 4G. Similarly, in a similar situation, the ICT industry faces challenges

 65

regarding Systems beyond 5G and the innovation in sixth-generation (6G) technologies.

Leading companies and research communities focus on evolving 5G and completely new

technologies [173], capabilities, and solutions that will be unique to the market beyond 5G

[173]. R&D considerations and the ICT ecosystem include new B5G market-driven business

models and opportunities and societal factors, such as the United Nations Sustainable

Development Goals. Additionally, the 6G market will also focus on filling 5G capability gaps.

 Industry 5.0 requires a context-aware personalized interface between machines and

humans with the so-called ’human touch.’ A prime enabler for such services is using on-the-fly

contextual profiling and data analytics using Artificial Intelligence (AI) and Machine Learning

(ML) techniques. We can anticipate that the number of generated data will grow exponentially

over the following years. The vast volume of data can help improve the performance of AI, in

particular deep learning. Improved AI drives deeper user engagement and will, in turn, generate

even more valuable data. However, in the conventional cloud/client model, the link between

the centralized cloud and the end-users has increasingly become a bottleneck, as the virtuous

cycle continues to drive ever more data and increasingly lower latency services and

applications.

Moreover, the Edge-Cloud has provided offload and caching capabilities to devices

connected to the co-located access point. To reduce the Total Cost of Ownership (TCO), AI is

needed to push on the edge, allowing innovation and open edge services to partners and

developers to create applications that support consumers, enterprises, and multiple verticals

while adding significant value to their business. AI can handle many network functionalities

such as managing interference, optimizing VNF placement on the edge, detecting DDoS,

maintaining QoE of the applications, and making optimal local decisions. Therefore,

distributed intelligence at the edge network can be a real differentiation in 6G. Additionally, AI

 66

will be the key to automating/optimizing E2E application provisioning in such a complex

network by taking inputs from end-to-end and across protocol layers.

In Networking, Dynamic Routing Protocols are essentially distributed algorithms running

across an IP-Network. Each instance runs an identical Shortest Path Algorithm and shares the

locally available information with its peers. The process in which the local information gets

propagated classifies the protocol family into two groups. In the Distance Vector Routing

(DVR), often called "Routing by Rumors," routers only know what their neighbours tell.

Therefore, routing protocols such as RIP [174], and EIGRP [24], although space-efficient but

prone to have routing loops.

On the contrary, in Link-State Routing (LSR), often called "Routing by Propaganda,"

each router is aware of the entire network topology, thus never falling into Routing Loops;

however, maintaining a large topology table. Protocols like OSPF [23] manage this problem

by segregating the network into multiple Areas; also, it defines various types of Link State

Advertisement (LSA) types and limits them to get flooded within certain Areas. The recent

time has evident a tremendous escalation in the network scale both in the structural and

operational complexity [175]. Traditional routing protocols are not adequately capable of

dealing with such complexity, which results in a slower convergence that eventually affects the

network's end-to-end performance. One of the sole reasons is that routing protocols are

inherently distributed; thus, they rely on the underlying communication systems to exchange

information. As the communication speed is far inferior to modern processors, it becomes a

bottleneck. To address this problem, Software-Defined Network [39] decouples the Control-

Plane (CP) and keeps it in a logically centralized location, keeping the Data Plane (DP)

distributed. In this architecture, network devices only forward traffic, whereas all the control

functionalities execute centrally at CP. The CP sees the underlying network from a Bird’s-eye-

 67

view like the Link State Request (LSR) model but does not replicate them to individual routers,

diminishing the communication bottleneck.

 SDN’s new paradigm in networking has brought significant industry appreciation;

various network models and protocols have been developed in recent times to leverage

Softwarization into mainstream networking. Some of the instances are NG-SDN from Open

Networking Foundation (ONF) [176], Cisco-Viptella SDWAN [19], SD-Access [177],

VMWare NSX [178], 5G-PPP software networks [179], Disaggregated platforms like ONIE

[180], ONL [181], SAI [182], SONiC [183] form Open Compute Project(OCP). It is prominent

that traditional routing protocols are not a fit for these modern networking models, primarily

because they appear to run a distributed algorithm in a centralized computing model, which

has motivated the research community to develop SDN-specific routing algorithms. With a

more flexible, programmable, and manageable networking model, two of the prominent use

cases of SDN-Routing have surfaced in recent times, namely Segment Routing [184] and QoS

Routing [57]. The former leverages Multi-Protocol Label Switching (MPLS) [185] based

communication at the underlay and replaces Label Discovery Protocol (LDP) [186] and

Resource Reservation Protocols (RSVP) [187] in CP. Quality of Service (QoS) Routing steers

traffic to an optimal path preserving various communication constraints.

 Self-Organized Networks (SON), an adaptive, autonomous, and scalable Network-

model is becoming the norm in designing massive network architectures [188] such as Data-

Centers (DC), Internet-Service Providers networks (ISP), and large-scale Enterprise Networks.

The SON for beyond 5G networks offers Self-Learning ability, i.e., building self-awareness of

the underlying network behaviours and characteristics, i.e., Self-Optimization, Self-

Configuration, and Self-Healing. In SDN Routing, the Shortest-Path calculation is the

optimization subject where a controller calculates the optimal values of the free parameters

subject to a set of communication constraints defined as a policy (Self-Optimization). The

 68

controller then configures the parameters into the underlying network devices (Self-

Configuration) and serves alternate routes on-demand if the primary one fails (Self-Healing),

thus supporting the SON. However, the application of ML in route-optimization is a relatively

new domain; at the time of writing, a handful of works are available to develop an intelligent

routing algorithm for SDN. The base model of fitting ML in SDN is known as Knowledge-

Defined Networks (KDN) [22]. The primary objective is to accumulate holistic information

from a supervising CP of an underlying IP network and analyze them to extract knowledge

generalizing network behaviour. This knowledge eventually helps bypass the need to use costly

heuristic Routing algorithms, having preserved the equal adaptation capabilities to network

dynamics [45].

 Routing in 6G is likely to use KDN, where the primary objective is to accumulate

holistic information from a supervising CP of an underlying network to offer SON capabilities:

analyze them to extract knowledge that generalizes the network behaviour. This knowledge

eventually helps bypass the need to use costly heuristic routing algorithms, preserving equal

adaptation capabilities to network dynamics.

 6G will provide SON with the following characteristics: Self-Learning ability, i.e.,

building self-awareness of the underlying network behaviours and characteristics, i.e., Self-

Optimization, Self-Configuration, and Self-Healing.

 Chapter 3 explains the mechanism of proposes the Most-Reliable-Route-First (MRRF),

an Intelligent Routing algorithm for Self-Organized Knowledge-Defined Networks. The

proposed model initially calculates all possible paths for all pairs of nodes from the Networks’

topology using our proposed algorithm (MRoute) and aims to learn the reliability of individual

links by their statistical measures of volatility over time. The algorithm maintains the routes’

ranks based on their cumulative reliability and serves them on-demand in constant time,

assuring the most reliable Routes. We further propose a full-fledged implementation of the

 69

KDN model as a test-bed to conduct experiments, which benchmarks MRoute with Diffusion

Update Algorithm (DUAL) [51] and Shortest Path First (SPF) [52] that powers EIGRP as OSPF,

respectively. Result confirms the validity of a constant time switch-over of routes guaranteeing

the highest reliability.

2.5.1. Towards industry 5.0 architecture and beyond 5G compliance

Architectural evolution & SO-KDN Protocol Stack

5G beyond technology aims to design and develop a scalable architecture compliant with Open-

RAN [189] and ng-SDN [190] (Figure 12), handling a massive amount of data generated at the

edge supporting different verticals (e.g., surveillance, public safety, autonomous vehicles, etc.).

Ubiquitous connectivity at the Edge (edge cloud, backhauling), Big Data management, and

AI/ML form a virtuous cycle for next-generation connected computing. The combination of AI

and an optimized edge architecture can reduce cloud data and backhauling costs. The

introduction of federated learning can reduce the complexity of AI/ML engines when they are

deployed in a distributed environment. Additionally, cellular operators can provide a platform

for innovation and open edge services to relevant partners, allowing them to develop and create

Figure 12 Protocol stack of a self-organized knowledge-defined network

 70

applications that support consumers, enterprises, and multiple verticals while adding

significant value to their business. 6G architectures foresee facilitate the following

characteristics:

• Ultra-high data requirements at the edge using new radio architectures: Cell-free

massive MIMO networking can potentially resolve many of the interference issues that

plague current cellular networks. In cell-free mMIMO networks, cooperative signal

processing is usually prohibitively costly due to the considerable amount of data, which

may involve a high computational cost of joint processing. Full-scale cooperation also

requires the estimation of channel coefficients from all devices to all radio units (RUs), or

access points (APs), resulting in significant channel estimation overhead, thus

fundamentally limiting the gain achieved through cooperation.

• Automation: AI/ML is vital for making decisions across different layers, from physical to

application. MEC can support AI processing, decomposing applications in processes that

run in parallel at any location, including vehicles, drones, or machinery, and collect and

process data from smart devices as they consume or generate data. Additionally, local AI

may need to update ML models from the collected data.

• Multi-Tier Edge Cloud Architecture: 6G aims to design a multi-tier edge cloud

architecture allowing the establishment of collaboration among edge-cloud instances. Such

tiers are essential to optimize the different types of caching within the multi-tier

architecture (e.g., Video caching, Face recognition, Positioning) and apply different types

of caching policing by considering the multi-tier level caching popularity prediction and

backhauling costs, and capabilities.

• Application Decomposition: Both academia and industry have focused on Edge

Computing by providing software (e.g., Google Lite TensorFlow) and hardware (e.g.,

NVIDIA Jetson AGX Xavier, AWS DeepLens) solutions suitable for edge processing. The

 71

latest trend is decomposing QoS demanding AI-based applications to be deployed across

heterogeneous distributed edge cloud infrastructure. It aims to design and develop a

decomposed model considering each decomposed service's computation requirements and

QoS constraints.

• Overlay Plane: To achieve transport-agnostic design, 6G communication provides

dynamic end-to-end Tunnelling technologies (e.g., IPSec3 over DMVPN4 and OMP5). It

allows Enterprise and service providers to use any transport mode of their choice (e.g.,

MPLS, LTE, 5G, and Internet), deploying a virtual network on top. The Overlay-plane

provides a platform to virtualize, manage and orchestrate a physical network. Additionally,

it abstracts the data-plane infrastructure to the control plane and presents a unified interface

to automate and configure policies on it.

• Big Data Management: The powerful data processing and analytics capabilities

traditionally lived in the heart of the centralized data centre must be strategically placed

closer and closer to the data generating and consuming endpoints. By expanding the

powerful capabilities of the edge data centre, service and network providers can deliver

more effective services, reduce application latency by processing more data closer to the

edge, and optimize TCO.

Knowledge -Defined Self-Organization in beyond 5G

The 6G Self-Organized Network inherits the Self-Optimization, Self-Configuration, and Self-

Healing from its predecessor 5G, which also includes Self-Learning. It shows an apparent

convergence of KDN and SON to achieve this. Centralized policy-based routing with SDN

3 Security Architecture for the Internet Protocol RFC (https://bit.ly/3h6PTYA)
4 Dynamic Multipoint VPN Configuration Guide (https://bit.ly/3ttN4Wv)
5 Cisco-Viptella Overlay Management Protocol (https://bit.ly/3yW5sZ3)

https://bit.ly/3h6PTYA
https://bit.ly/3ttN4Wv
https://bit.ly/3yW5sZ3

 72

accomplishes the Self-Optimization, Self-Configuration is leveraged by Network automation

and programmability and rapid convergence provides Self-Healing and route-reliability

prediction using deep-Leaning make the self-learning possible. It results in an intelligent

network architecture that inherits all benefits of SDN and extends its capability with centralized

intelligence. In this research work, we have tried to exploit SDN-routing as an optimization

problem. The KP accumulates the network behaviour and predicts the most reliable route,

which the network can converge in a constant time. The rapid switch-over guarantees Self-

Healing, having met the URLLC criteria.

2.5.2. State of the art in KDN

The inception of the KDN comes from Clark et al. [44], who proposes a unified KP that takes

decisions based on partial and conflicting information accumulated from a distributed cognitive

framework. KP has been considered in solving the Optimal Route-Preference problem by

learning network behaviour over time. However, the article lacks real-world network types

such as ISP, Enterprise, Cellular, etc., and does not include working principles in a

heterogeneous network. These issues are addressed by Strassner et. al.[191] by their extension

of KDN with an Interface-Plane, which offers a clearer view of the implementation and

necessary building blocks. Several surveys show the growing application of ML and Deep

Learning (DL) on SDN architectures in recent times, aiming to achieve the KDN. Fadlullah et

al. present a classification of various ML/DL algorithms and their application to intelligent

network traffic control systems [50]. Chen et al. focus on the application of DL into several

cognitive wireless communication systems such as the Internet of Things (IoT), Multi-Access

Edge Computing (MEC), Unmanned Aerial Vehicle (UAV) networks, etc. [192]. Zhao et al.

[193] review the specific applications of ML to SDN problems such as defence mechanisms

against Distributed Denial of Service (DDoS) attacks, Anomaly Detection, Traffic

 73

Classification, Routing Optimization, etc. To restrict our scope of the discussion, we now put

the relevant state-of-the-art focusing on Routing Optimization only.

 Shortest Path Algorithm (SPA) and Heuristic Algorithms (HA) are the two widely used

approaches that solve routing-optimization problems [194]. Among several alternatives,

Artificial Neural Networks (ANN), Reinforcement Learning (RL), Deep RL (DRL), and Lazy

Learning (LL) are the four learning models primarily used to address Routing Optimization.

Yanjun et al. [120] propose an ML-Meta later-based approach where an ML model is trained

by the calculated traffic parameters of a heuristic algorithm and its corresponding network state

as input. The proposed framework maps the input and output of the HA that reduces its

exponential run-time to a constant one. NeoRoute [195] models traffic characteristics by

forecasting future link consumption using the Recurrent Neural Network (RNN) with Long

Short-Term Memory (LSTM). A similar problem is addressed by Álvaro López-Raventós, et.

al. for high-density WANs [127]. The previous research papers use supervised-ML models for

training, which assumes the network characteristics are likely to stay identical over time.

Therefore, they are not suitable for dynamic networks, which in contrast need an Online-

Training model such as RL or DRL. Sandra et al. [196] propose a DRL framework, which trains

an agent that weighs the delay, loss, and bandwidth for every possible link of a target network.

The network feeds either reward or penalty back to the agent based on the change in end-to-

end throughput. The agent uses the feedback to tune its decision-making model. Francois [123]

et al. apply DRL with a Random Neural Network in cognitive routing in SDN. The proposed

architecture shows consistent performance even in a highly chaotic environment. Applications

of DRL in SDN-specific problems include QoS Aware Adaptive Routing [125].

 74

2.6. Chapter Summary

The goal of this chapter is to outline the state-of-the-art of the various disciplines in the

current literature that actively motivates this research. The thesis represents the design

development of a Routing Framework that is QoS aware, runs on hybrid SDN infrastructure,

leverages Machine Learning to intelligently choose a route, and complies with the 5G self-

organized networking philosophy. Therefore, the chapter covers a comprehensive survey and

summarization of five respective domains namely, QoS aware routing in SDN, Hybrid SDN

architectures, Application of machine learning in Routing, Self-Healing technologies, and 5G-

SON. Each section explores the state-of-the-art algorithms and modelling techniques for the

above topics.

The study shows the following. For QoS aware routing algorithm we used a metric that

gives a measure of efficiency leveraging the Cost Inefficiency and Runtime Ratio, which shows

Lagrange Relaxation method is the most efficient complete but non-optimal algorithm. The

optimal hybrid SDN design uses ILP optimization in SDN node deployment, virtualized

controller, and config automation in managing data plane devices. For routing optimization,

RNN and RL are efficient solutions in terms of computational complexity, however, if

prediction efficiency is concerned, DRL techniques give optimal results with a higher

computational cost. A basic framework of Self-Healing involves three stages namely, Failure

detection, diagnostic and compensation. Detection algorithms dominate unsupervised

algorithms, whereas Diagnostic algorithms leverage supervised ones. Compensation

algorithms also use Supervised methods but with no exclusive dominance. This chapter also

presents the adaptability of service migration as a tool to accomplish Self-Healing. Finally, the

chapter presents the concept of KDN and its compliance with next-generation self-organized

networking, especially in the context of beyond 5G networks and Industry 5.0.

 75

Chapter 3: Self Optimization

The self-Optimization method aims to seamlessly execute the optimization functions (e.g.,

QoS, QoE, Routing convergence, etc.) in a network with minimum human intervention. In

SDN, the controller is responsible for hosting the SO module. The controller receives several

control inputs from the underlying network and computes the optimal configuration parameters,

eventually programmed into the devices using remote configuration protocols such as

NETCONF6, RESTCONF7, and SSH8. The latter part is called Self-Configuration if automated

with a device automation tool such as Ansible, Puppet, Chef, Salt, etc. In the context of this

chapter, the optimization problem is Routing, i.e., computing the best path between a pair of

nodes in a network topology.

The chapter discusses the concept of Policy Based Routing (PBR) first, which allows

overriding a Router’s default routing behaviour by programming it with a set of custom rules,

called Policy. Further, a novel cost-relaxation technique, Stochastic Temporal Edge

Normalization (STEN), is introduced. STEN is a pre-processing algorithm that results in an

isomorphic transformation of the network topology by fusing the node costs into the link cost.

This is followed by a routing framework, Cognitive Routing as a Service (CoRoS) which

leverages STEN and converges in constant time, providing the most reliable route.

6 https://datatracker.ietf.org/doc/html/rfc6241
7 https://datatracker.ietf.org/doc/html/rfc8040
8 https://datatracker.ietf.org/doc/html/rfc4253

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc4253

 76

3.1. Modeling a novel Policy-Based-Routing (PBR) model

In the classic PBR, a policy is written in the form of route maps. A route map is a series of

conditions and action pairs applied on ingress interfaces. When traffic appears on a PBR-

enabled interface, its header is examined and matched against the policy. If it matches a

condition, the router’s control plane invokes the corresponding action (e.g., altering Next-Hop

address, TTL value, egress interface ID, etc.). SDN uses the same concept through the South-

Bound protocol (SBI), e.g., OpenFlow, OMP, etc. ASICs of the DP devices maintain a match-

action table populated and altered by the Controller via OpenFlow. However, the OpenFlow

protocol is limited to controlling forwarding traffic only. It does not provide robustness as

Route-Maps, and it does not configure devices. There are other protocols such as OVSDB, and

SNMP that could collaborate with OpenFlow. However, it results in a complex design.

The proposed hybrid PBR model leverages Route-Maps' robustness but has a central controller

injecting the policy into the routers using remote configuration. The SO module computes the

optimal parameters for the Policy, which is then plugged with the native PBR modules of the

router. The following chapters discuss the methods used by the SO module.

3.2. Stochastic Temporal Edge Normalization (STEN)

In graph theory, Shortest Path Algorithm (SPA) is a class of optimization algorithms that find

the best path between a pair of vertices. A fundamental criterion for a SPA is, that the graph

must be simple (i.e., no self-loop and no parallel edges must exist in the Graph). In SDN routing,

each underlying router informs the controller about its directly connected networks. The

controller uses the link-state approach to build the topology and applies SPA to calculate the

optimal path. The primary logic is, for 𝐺𝐺(𝑉𝑉,𝐸𝐸) the network topology that 𝑣𝑣𝑖𝑖 has an optimal

path to a non-adjacent vertex 𝑣𝑣𝑗𝑗 via its neighbour 𝑣𝑣𝑘𝑘 . Then, the routing process installs

reachability to all the networks 𝑣𝑣𝑗𝑗 with a 𝑣𝑣𝑘𝑘. The cost calculation for most of the SPA uses link

 77

parameters only; however, with the rise of NFV and network Softwarization, a significant

amount of heterogeneity in computing resource distribution can be evident. A virtual network

appliance (e.g., Cisco CSR, Cumulus router, etc.) shares a shared pool of hardware resources

through Hypervisors (e.g., VMWare ESXi, Citrix XEN, etc.), where the FIB is virtualized. All

flows are processed by software.

Therefore, the processor and memory utilization (node cost) affect the overall

processing delay. For instance, a sub-optimal path with an inferior link-state could deliver a

packet faster than an optimal path as it has a sufficiently higher processing delay. The

traditional routing protocols can’t detect it, as node costs are not considered in SPA calculation.

Hence, including node cost in path calculation is an obvious solution. However, there are two

issues. Firstly, there exists no standard model for relaxing node costs into link costs. Secondly,

the node costs appear in the graph as a finite-self loop if the problem is modelled as a Finite-

State Machine (FSM). In the latter option, the graph is not simple as it contains self-loops and

is not compatible with SPA. The novel technique (STEN) leverages queuing theory-based

approximation to relax the node cost into links, making the graph simple to be SPA compatible

while preserving the node cost information.

3.2.1. Problem Formulation

This section formulates the STEN problem. Consider 𝐺𝐺(𝑉𝑉, 𝐸𝐸) is a directed connected graph

that represents the network topology, where the vertex set 𝑉𝑉 = {𝑣𝑣𝑖𝑖|1 < 𝑖𝑖 < 𝑛𝑛} contains a

programmable forwarding device (e.g., Router, L3 Switch, etc.) and the edge set 𝐸𝐸 =

�𝑒𝑒𝑖𝑖,𝑗𝑗�𝑎𝑎𝑎𝑎𝑎𝑎�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�,∀𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} contains the WAN links (Figure 13). The magnitude of an

edge �𝑒𝑒𝐼𝐼,𝑗𝑗� is calculated as Eq. 6, Ce and Cn are multivariate real functions calculating the edge

 78

and node cost respectively using the node parameters Xn (CPU and memory utilization) and

edge parameters Xe (bandwidth, delay, load, and reliability).

�𝑒𝑒𝑖𝑖,𝑗𝑗� = �
𝑍𝑍𝑒𝑒|(𝑖𝑖𝑖𝑖) = 𝐶𝐶𝑒𝑒(𝑋𝑋𝑒𝑒) ∶ 𝑖𝑖 ≠ 𝑗𝑗
𝑍𝑍𝑛𝑛|𝑖𝑖 = 𝐶𝐶𝑛𝑛(𝑋𝑋𝑛𝑛) ∶ 𝑖𝑖 = 𝑗𝑗

Eq. 6

Each node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 points to a set of directly connected networks 𝐻𝐻𝑖𝑖, and a set of neighbours

𝒩𝒩(𝑣𝑣𝑖𝑖) = �𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉�. Therefore, the routing problem can be summarized as, if 𝑣𝑣𝑖𝑖 has the best

path 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉 𝑣𝑣𝑗𝑗 ∈ 𝒩𝒩(𝑣𝑣𝑖𝑖) 𝑣𝑣𝑖𝑖 installs routes for all prefixes 𝐻𝐻𝑗𝑗 and 𝑣𝑣𝑘𝑘 as the next hop. The values

of 𝑋𝑋𝑛𝑛 & 𝑋𝑋𝑒𝑒 varies over time, the calculated costs generate time series for both node and edge

utilization as 𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡) ,𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) ∀𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 . The problem is to ℵ:𝐺𝐺(𝑉𝑉,𝐸𝐸) → 𝐺𝐺′(𝑉𝑉,𝐸𝐸′) such that

𝑍𝑍𝑒𝑒′|(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) ∈ 𝐸𝐸′(𝐺𝐺′), 𝑍𝑍𝑛𝑛|𝑖𝑖

(𝑡𝑡) ∈ 𝑉𝑉(𝐺𝐺), 𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) ∈ 𝐸𝐸(𝐺𝐺) for any 𝑡𝑡 instance. It diminishes the 𝑍𝑍𝑛𝑛|𝑖𝑖 of 𝐺𝐺′

which makes 𝐺𝐺′ a simple graph and thus it becomes compatible for SPA to run on it. The

granularity of the transformation, i.e., node and link parameters used, and cost calculation

function, is discussed later in this chapter. This section focuses on the STEN relaxation process.

Figure 13: Reference Topology

 79

3.2.2. Relationship between energy consumption and Routing

Assume that an application requires a total of E amount of energy to run locally. Without loss

of generality, it is assumed that part of the application runs locally, and the rest is offloaded to

it remotely. Then, E can be expressed as a sum of the energy consumed for local execution (𝐸𝐸𝑙𝑙),

remote execution (𝐸𝐸𝑟𝑟)) and data transfer (𝐸𝐸𝑡𝑡). From the source’s perspective 𝐸𝐸𝑟𝑟 = 0 as it is

not utilizing the source’s energy resources. Hence, the actual energy saved by offloading the

application partially is 𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑡𝑡, as the energy spent for data transfer acts as a penalty for the

saved energy. Initially proposed by Microsoft in their article on the MAUI framework[35], it

formulates the optimal saved energy for a call graph in a distributed application with a

constrained latency.

The proposed solution is a 0 − 1 IIPP problem. The objective function maximizes the

energy saved by executing a method remotely. The saved energy is the difference in the total

energy cost of local execution (𝐸𝐸𝑣𝑣𝑙𝑙 | 𝑣𝑣 ∈ 𝑉𝑉) and the total data transfer cost for executing the

method, (𝐶𝐶𝑢𝑢,𝑣𝑣 � 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝑎𝑎𝑛𝑛𝑛𝑛 𝑒𝑒𝑢𝑢,𝑣𝑣 ∈ 𝐸𝐸�). There are two constraints for the above objective

function. First, the total time for the execution 𝑇𝑇𝑣𝑣𝑙𝑙 + 𝑇𝑇𝑣𝑣𝑟𝑟 must be within a certain latency.

𝑇𝑇𝑣𝑣𝑙𝑙 & 𝑇𝑇𝑣𝑣𝑟𝑟 are referred to as the local and remote execution time of 𝑣𝑣 ∈ 𝑉𝑉. Second, only Remote

methods can be offloaded for remote execution. The formal representation is given below (Eq.

7):

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑣𝑣
𝑣𝑣∈𝑉𝑉

× 𝐸𝐸𝑣𝑣𝑙𝑙 − � |𝐼𝐼𝑢𝑢 − 𝐼𝐼𝑣𝑣| × 𝐶𝐶𝑢𝑢,𝑣𝑣
𝑒𝑒𝑢𝑢,𝑣𝑣∈𝐸𝐸

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡,� �(1 − 𝐼𝐼𝑣𝑣)
𝑣𝑣∈𝑉𝑉

× 𝑇𝑇𝑣𝑣𝑙𝑙 + 𝐼𝐼𝑣𝑣 × 𝑇𝑇𝑣𝑣𝑟𝑟� + � �|𝐼𝐼𝑢𝑢 − 𝐼𝐼𝑣𝑣| × 𝐵𝐵𝑢𝑢,𝑣𝑣� ≤ 𝐿𝐿
𝑒𝑒𝑢𝑢,𝑣𝑣∈𝐸𝐸

𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝑣𝑣 ≤ 𝑟𝑟𝑣𝑣 ∀𝑣𝑣 ∈ 𝑉𝑉

Eq. 7

where, 𝐼𝐼𝑣𝑣 is an integer that is equal to 0 for local execution and 1 for the remote. 𝑅𝑅𝑣𝑣 represents

methods marked as remote, and 𝐵𝐵𝑢𝑢,𝑣𝑣 is the state transfer time from 𝑢𝑢 to 𝑣𝑣. It can be inferred

from equation Eq. 7 that the latency constraint is linearly dependent on the execution time

 80

𝑇𝑇𝑣𝑣𝑙𝑙 & 𝑇𝑇𝑣𝑣𝑟𝑟 and state transfer time 𝐵𝐵𝑢𝑢,𝑣𝑣. Further, remote execution and state transfer time are

proportional to the network delay. Hence, a routing protocol that guarantees to choose a path

reactively that costs the least latency, with every altering network condition, would meet the

latency satisfiability constraint with the highest probability. Eventually optimizing the saved

energy, defined as the equation Eq. 7. The following section discusses our proposed algorithm's

design cost and design, stating the relationship between the routing protocol and energy savings.

3.2.2. The Queuing model of a Stochastic Network

STEN uses Stochastic Network Calculus (SNC) theory, which renders a network as a collection

of queues, i.e., each node and the edge are replaced by their queuing functions. Traffic flowing

along a path a 𝑃𝑃𝑖𝑖,𝑗𝑗 migrates through a sequence of node and edge queues. Knowing the

distribution of them could approximate the flow delivery time. Additionally, if each queue’s

delay is computed, both node (with service and processing delay) and edge (with transmission

and propagation delay) queues become operationally compatible. Therefore, an additive

operation between all the Queues along 𝑃𝑃𝑖𝑖,𝑗𝑗 provides the end-to-end delay along the same path;

Figure 14 Queuing model of the network with service queues at nodes

 81

twice the RTT measured from either end. If a packet appears to an ingress interface at the time

t0 and leaves at tk from an egress interface9 , the queuing time = service time + processing

time (Eq. 8)

(𝑡𝑡𝑘𝑘 − 𝑡𝑡0) = 𝑡𝑡𝑞𝑞. Eq. 8

As the system load increases, more packets gather in the service queue, resulting in a longer

queue size which is proportional to Tq; hence, 𝑍𝑍𝑛𝑛|𝑖𝑖 ∝ 𝑡𝑡𝑞𝑞. For the sake of simplicity, we do not

consider the situation of link congestion, i.e., the egress interface pumping more packets into a

link than its Bandwidth-Delay Product (BDP10). Part of the reason is that all modern network

devices implement a QoS mechanism (RSVP or DSCP) that prevents this from happening.

Figure 14 depicts the queuing model of the topology shown in Figure 13, where the weights of

each edge and self-loop become the length of the corresponding queues. Each queue has a point

of entry and exit called rear and front, denoted as hollow and solid circles respectively on the

figure. For depiction simplicity, we assume that the links are simplex, i.e., eI,j can only carry

data from vI to vj not vice versa. The queuing system can be heterogeneous, i.e., each queue

may run a different scheduling mechanism. Therefore, it is obvious to generalize it. As

mentioned earlier, the queue size is proportional to the processing load for the nodes and traffic

load for the edges. The queue size is also proportional to the QT; the mean of QT is also called

Average Waiting Time (AWT). Hence, choosing the least time-consuming path can also be a

sequence of queues. The sum of AWT is the least among the possible alternatives, which

inherently select nodes and edges comparatively underloaded.

9 Due to the Split-Horizon rule used as a default loop-prevention technique in Distance Vector Routing,
ingress and egress ports are generally non-identical, except special cases like NBMA or DMVPN
networks.

10 The BDP defines the maximum number of bits that can fit into a channel without having a collision.

 82

Average Waiting Time (AWT) of a Node (𝐖𝐖𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧)

A queue is mathematically expressed as 𝐴𝐴/𝐵𝐵/𝑐𝑐/𝐾𝐾 where A is the distribution of inter-arrival

time, B is the service time, c is the number of servers, and K is the capacity. Since the packets

arrive from many sources and the service time depends on the system load, which depends on

several random causes, A & B have been chosen as distribution agnostic. Also, we assume the

problem as an unbounded buffer problem with a single server; hence k = ∞ and c = 1. This

makes the queuing model 𝐺𝐺/𝐺𝐺/1. From Little’s theorem (Eq. 9) [197].

𝑊𝑊 = 𝑊𝑊𝑞𝑞 +
1
𝜇𝜇

= �
𝐿𝐿𝑞𝑞
𝜆𝜆

+
1
𝜇𝜇�

= 𝑂𝑂�𝐿𝐿𝑞𝑞� Eq. 9

Where,

𝑊𝑊 : AWT of the system

𝑊𝑊𝑞𝑞: AWT of the queue

𝐿𝐿𝑞𝑞 : mean number of requests in the queue

𝜆𝜆 : mean rate of interval

𝜇𝜇 : mean service rate

From the approximated value of 𝐿𝐿𝑞𝑞 for 𝐺𝐺/𝐺𝐺/1 queues derived by Marchal (Eq. 11)[197],

𝐿𝐿𝑞𝑞 = 𝑂𝑂(𝜌𝜌2,𝜎𝜎𝑠𝑠2,𝜎𝜎𝑎𝑎2, 𝜇𝜇2, 𝜆𝜆2) Eq. 10

where ρ: utilization of the server and 𝜎𝜎𝑠𝑠2 , 𝜎𝜎𝑎𝑎2 : variance of the service & inter-arrival time,

respectively; Hence, from equations Eq. 9 & Eq. 10 Zn is the node utilization.

𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑂𝑂�𝐿𝐿𝑞𝑞� = 𝑂𝑂(𝜌𝜌2) = 𝑂𝑂(𝑧𝑧𝑛𝑛2) Eq. 11

 83

Therefore, as the system goes busy Zn decreases and Wnode (AWT11) increases quadratically

(Eq. 11).

Average Waiting Time of an Edge 𝐖𝐖𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞

The AWT of edges is relatively simpler to calculate since the channel is First In First Out

(FIFO); we consider the mean round trip time (RTT) as AWT, which is inversely proportional

to the edge cost. Therefore,

𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑂𝑂(𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑂𝑂 �
1
𝑍𝑍𝑒𝑒
� Eq. 12

Figure 15 shows the normalized version of Figure 14. All the loops |eii| are set to zero;

instead, their values are distributed among the adjacent edges of the node vi. The coefficient αjI

11 Average Waiting Time (AWT) is a measure of delay a process has to face before it is
served. AWT is statistically calculated by averaging the individual waiting time of all processes in a
queue.

Figure 15 Queuing model after relaxation of the service queues from nodes to links

 84

is a rational number between [0,1] that denotes a fraction of |𝑒𝑒𝑖𝑖𝑖𝑖| , such that ∑ 𝛼𝛼𝑗𝑗𝑖𝑖 = 1𝑗𝑗 . It

specifies the next-hop probability of a switch vI distributed over its incident edges. This edge

normalization process is temporal as it changes time-to-time and stochastic because the fraction

is probabilistic and distribution agnostic. Once normalized, the graph realigns, the busy nodes

move farther, and the free nodes come closer. Consequently, running any shortest path

algorithm will choose a path with minimum path length, which comprises freer nodes than the

busy ones. The normalization function ℵ transforms a graph with a self-loop into one with a

normalized edge. ℵ is defined formally below (Eq. 13),

ℵ�𝐺𝐺(𝑉𝑉,𝐸𝐸)� → 𝐺𝐺′(𝑉𝑉,𝐸𝐸′)
𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎, |𝑒𝑒𝑖𝑖𝑖𝑖�→ |𝑒𝑒𝑖𝑖𝑖𝑖� + 𝛼𝛼𝑘𝑘𝑖𝑖 |𝑒𝑒𝑖𝑖𝑖𝑖| + 𝛼𝛼𝑘𝑘

𝑗𝑗�𝑒𝑒𝑗𝑗𝑗𝑗� 𝑎𝑎𝑎𝑎𝑎𝑎, |𝑒𝑒𝑖𝑖𝑖𝑖| = 0 ∀𝑒𝑒 ∈ 𝐸𝐸|
Eq. 13

3.2.4. Numerical Example of STEN

Step 1: Building the Binary Adjacency Matrix: The controller receives HELLO messages

from downstream routers and locally connected networks. Using Link-State logic (i.e., if two

routers have a common local network, then they are neighbours), the controller builds the

topology and stores it as a binary adjacency matrix Adjb. (Figure 16).

⎝

⎜⎜
⎛

0 1 1 0 0 1
1 0 0 0 0 1
1 0 0 1 1 0
0 0 1 0 1 1
0 0 1 1 0 0
1 1 0 1 0 0⎠

⎟⎟
⎞

Figure 16 Building a Graph from the adjacency matrix of the topology

 85

 Step 2: Calculating Cost matrix: For each time instance, the controller fuses the node and

edge costs 𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡) ,𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) to 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏 using the following transformation (Eq. 14),

𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐
(𝑡𝑡) = �𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) �
𝑛𝑛×𝑛𝑛

∘ 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏 + ��𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡)�

1×𝑛𝑛
. 𝐼𝐼𝑛𝑛� Eq. 14

Firstly, the Hadamard product �𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) �

𝑛𝑛×𝑛𝑛
∘ 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏 copies the edge costs 𝑍𝑍𝑒𝑒|(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) at the (𝑖𝑖, 𝑗𝑗)

position of the Adjc matrix. Secondly, the dot product ��𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡)�

1×𝑛𝑛
. 𝐼𝐼𝑛𝑛� is summed to place

𝑍𝑍𝑛𝑛|𝑖𝑖
(𝑡𝑡)(𝑖𝑖, 𝑖𝑖) position along the diagonal of 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐 in 𝑂𝑂(1) with 𝑂𝑂(𝑛𝑛2) number of threads and keeps

both the node and link costs within the same data structure 𝑂𝑂(𝑛𝑛) space. However, 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐 cannot

be used for SPA as the diagonal needs to be zeroed out first. Adjc generates a times series of

matrices. Its value can be any arbitrary 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐
(𝑡𝑡).

Step 3: Relaxing the node costs into edges: The controller uses the mean load share of the

interfaces to distribute the node cost into the edges. It measures the mean load share as the

moving average of loads from the connected interfaces then normalizing into a [0,1] scale over

a defined window. Therefore, it yields the probability of a packet being forwarded to an egress

interface. The 𝐴𝐴𝐴𝐴𝑗𝑗𝑙𝑙￼ keeps a record of it, the row-wise sum is always 1 or 0. The 𝐴𝐴𝐴𝐴𝑗𝑗𝑙𝑙 matrix

is not symmetric as the load at two ends could be different. The relaxation function is as follows

(Eq. 15)

𝐴𝐴𝐴𝐴𝑗𝑗𝑠𝑠
(𝑡𝑡)[𝑖𝑖, 𝑗𝑗] = 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐

(𝑡𝑡)[𝑖𝑖, 𝑖𝑖]2𝐴𝐴𝐴𝐴𝑗𝑗𝑙𝑙
(𝑡𝑡)[𝑖𝑖, 𝑗𝑗] + 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐

(𝑡𝑡)[𝑖𝑖, 𝑗𝑗] Eq. 15

First, the node cost at 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐
(𝑡𝑡)[𝑖𝑖, 𝑖𝑖] is squared to calculate the 𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛 for the 𝑖𝑖𝑡𝑡ℎ node. The faction

of the AWT corresponding to an edge 𝑒𝑒(𝑖𝑖,𝑗𝑗) is calculated by multiplying it with a load of edge

𝑒𝑒(𝑖𝑖,𝑗𝑗) which then adds up to the corresponding edge cost got minimization. The node costs are

negated for simplifying the following step. The resultant matrix is the Affinity matrix 𝐴𝐴𝐴𝐴𝑗𝑗𝑎𝑎.

 86

The sum 𝐴𝐴𝐴𝐴𝑗𝑗𝑎𝑎 + 𝐴𝐴𝐴𝐴𝑗𝑗𝑐𝑐 = 𝐴𝐴𝐴𝐴𝑗𝑗𝑠𝑠 (STENed matrix) relaxes the node costs into the edges making

the resulting graph a simple graph, isomorphic to the one represented by 𝐴𝐴𝐴𝐴𝑗𝑗𝑏𝑏. (Figure 17)

 𝑨𝑨𝑨𝑨𝒋𝒋𝒍𝒍 =

⎝

⎜⎜
⎛

0 0.268 0.325 0 0 0.407
0.458 0 0 0 0 0.542
0.109 0 0 0.188 0.703 0

0 0 0.211 0 0.326 0.463
0 0 0.364 0.636 0 0

0.297 0.293 0 0.428 0 0. ⎠

⎟⎟
⎞

 𝑨𝑨𝑨𝑨𝒋𝒋𝒂𝒂 + 𝑨𝑨𝑨𝑨𝒋𝒋𝒄𝒄 =

⎝

⎜⎜
⎛

−0.649 0.248 0.322 0 0 0.079
0.254 −0.357 0 0 0 0.102
0.128 0 −0.713 0.584 0.703 0

0 0 0.306 −0.79 0.292 0.193
0 0 0.037 0.18 −0.216 0

0.157 0.396 0 0.308 0 −0.861.⎠

⎟⎟
⎞

+

⎝

⎜⎜
⎛

0.649 0.933 0.863 0 0 0.382
0.933 0.357 0 0 0 0.480
0.863 0 0.713 0.598 0.022 0

0 0 0.598 0.790 0.082 0.345
0 0 0.022 0.082 0.216 0

0.382 0.480 0 0.345 0 0.861⎠

⎟⎟
⎞

 =

⎝

⎜⎜
⎛

0 1.182 1.185 0 0 0.462
0.519 0 0 0 0 0.582
0.171 0 0 1.183 0.221 0

0 0 0.874 0 0.374 0.538
0 0 0.115 0.31 0 0

0.235 1.218 0 1.092 0 0 ⎠

⎟⎟
⎞

= 𝑨𝑨𝑨𝑨𝒋𝒋𝒔𝒔

 Isomorphic

Figure 17 Transforming the topology graph to an isomorphic graph after STEN transformation

 87

3.2.5. Experimental Validation

We implemented a testbed (Figure 18) using the GNS3 network emulator and OVSs hosted

using Docker containers, OpenDaylight (ODL) beryllium SR4 as the SDN Controller and

MySQL Server is used for middleware & database management. Three bespoke apps

(ShellMon, TopoBuild, TopoRoute, and TopoSense) run in the application layer to apply STEN

to downstream IP flows. (Explained in Chapter 4).

A. Experimental Setup: Each OVS runs the ShellMon client and sends event-driven resource

updates to ShellMon Server. The TopoSense app retrieves topology and flow table

information from ODL using RESTConf protocol from nodes/topology and nodes/inventory

resources, respectively, and updates the database. Route-App fetches data from the database,

runs Algorithm 1 generates a graph with resource information and the shortest path for

eligible edges. Each shortest path then gets configured to the OVS using OpenFlow packet

out messages from the controller. Figure 18 depicts the complete data flow.

Figure 18 Experimental Setup and Dataflow Architecture

 88

B. Methodology: Since the router OS is mostly monolithic, altering the code is a complex task.

Therefore, the system has been tested using traditional routing, and OVSs with STEN flows

with Quagga software routers. To emulate the routing behaviour, the controller pushes the

flow instruction to the switch. The routers run both RIP and OSPF to generate a dataset for

Distance-Vector and Link-State routing. Two nodes are selected as Client and Server and

placed at the end along the network diameter to simulate traffic flow. After the routing

protocol determines the optimal path, we choose an intermediate node as Victim. A Linux

tool, Stress, progressively overload the victim, and the time to deliver a data burst using

Iperf12 is observed to simulate the bottleneck behaviour. The rate of increasing time is the

measurement of efficiency.

C. Experimental Results & Discussion:

12 Iperf is a link benchmarking tool that tests the utilization based on TCP and UDP flows. For
more information visit https://iperf.fr/ .

Figure 19 Effect of CPU utilization in Ent-to-End throughput

https://iperf.fr/

 89

Algorithm 1: Stochastic Temporal Relaxation Routing Algorithm (STR-RA)

Input: Graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) - Topology from SDN Controller
 𝑍𝑍𝑛𝑛|𝑣𝑣

(𝑡𝑡) & 𝑍𝑍𝑒𝑒|𝑙𝑙
(𝑡𝑡) - Utilization ∀𝑣𝑣 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑙𝑙 ∈ 𝐸𝐸 at the time, t.

Output: Set of Routes 𝑅𝑅𝑖𝑖𝑖𝑖
(𝑡𝑡)

Steps:
1. While (true) {
2. Set 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝜙𝜙
3. Normalize 𝐺𝐺 : 𝐺𝐺′ = ℵ(𝐺𝐺) // Apply STEN.
4. For all vertex pair �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝑉𝑉(𝐺𝐺′) × 𝑉𝑉(𝐺𝐺′) {
5. If �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 � ∈ 𝐸𝐸′{
6. If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒′𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒′𝑘𝑘𝑘𝑘� + 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸′′′

′
′) < |𝑒𝑒′𝑖𝑖𝑖𝑖|

7. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ 𝑒𝑒′𝑖𝑖𝑖𝑖
8. 𝛥𝛥𝑒𝑒′𝑖𝑖𝑖𝑖 : change in edge weight.
9. If 𝛥𝛥𝑒𝑒′𝑖𝑖𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒𝑖𝑖𝑖𝑖′) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑒𝑒′𝑘𝑘𝑘𝑘�
10. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ 𝑒𝑒′𝑖𝑖𝑖𝑖

 }

11. Else 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 ∪ 𝑒𝑒′𝑖𝑖𝑖𝑖
 }

12. If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≠ 𝜙𝜙
13. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
14. For all �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� ∈ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
15. 𝑅𝑅𝑖𝑖𝑖𝑖 ← 𝑅𝑅𝑖𝑖𝑖𝑖 𝑈𝑈 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗�
16. For all 𝑟𝑟𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖𝑖𝑖 call Flow Modifier
17. Sleep (Timeout)
 }

The first set of experiments (Figure 19) measures the dropping end-to-end throughput over

CPU load. With no change in link capacity, the experiment shows that the throughput falls from

700 Mbps to 250 Mbps when additional threads increase from 0 to 128. A fitted polynomial

comes as a quadratic one which further validates the claimed relationship between utilization

and delay.

In the following experiment (Figure 20), a bespoke application, TopoRoute, programs

the ODL controller, which writes the flow entries to the downstream switches using OpenFlow.

 90

Programming the switches simulates the routing behaviour. The TopoRoute application

hosts a reactive algorithm named Stochastic Temporal Relaxation Routing Algorithm (STR-

RA) (Algorithm 1), which computes STEN on a given graph and generates routes.

Running Dijkstra’s algorithm for all parts of vertices would cost O(|V|4) . To reduce it,

Algorithm 1 chooses only those pairs of vertices which are eligible. This means that they have

a possibility of replacement by an alternate path. The eligibility criteria are listed below,

a. If 𝑒𝑒𝑖𝑖𝑖𝑖 is an edge between two adjacent vertices �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� and the sum of minimum

weighing incident edges of the subjected vertices and the minimum weighing edge of the

entire graph is less than �𝑒𝑒𝑖𝑖𝑖𝑖�, i.e.

𝑚𝑚𝑚𝑚𝑚𝑚
(𝑖𝑖,𝑘𝑘) ∈ 𝐸𝐸′(|𝑒𝑒′𝑖𝑖𝑖𝑖|) + 𝑚𝑚𝑚𝑚𝑚𝑚

(𝑘𝑘, 𝑗𝑗) ∈ 𝐸𝐸′��𝑒𝑒
′
𝑘𝑘𝑘𝑘�� + 𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒 ∈ 𝐸𝐸′(𝐸𝐸
′′′′′) < |𝑒𝑒′𝑖𝑖𝑖𝑖| Eq. 16

Figure 20 Comparison between RIP, OSPF & proposed STR-RA in Utilization vs Delay characteristic

 91

b. If the change in the value of a direct edge 𝑒𝑒𝑖𝑖𝑖𝑖′ is denoted as 𝛥𝛥𝑒𝑒𝑖𝑖𝑖𝑖′ , exceeds the sum of

minimum weighing incident edges of the subjected vertices.

𝛥𝛥𝑒𝑒𝑖𝑖𝑖𝑖′ > 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖,𝑘𝑘 ∈ 𝐸𝐸′(|𝑒𝑒𝑖𝑖𝑖𝑖′ |) + 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗,𝑘𝑘 ∈ 𝐸𝐸′��𝑒𝑒𝑘𝑘𝑘𝑘
′ �� Eq. 17

c. All indirect vertex pairs, i.e., �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� |𝑒𝑒𝑖𝑖𝑖𝑖 ∉ 𝐸𝐸 are eligible.

This doesn’t reduce the asymptotic upper bound of the runtime but the lower bound

significantly when the eligible edges are few. STR-RA calls the flow modifier program that

encodes the flow rules using OpenFlow.

Algorithm 2: Flow Modifier

Input: Route 𝑟𝑟𝑖𝑖𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖𝑖𝑖

Output: Flow entry 𝐹𝐹𝑖𝑖𝑖𝑖

Steps:

1. For all 𝑣𝑣𝑘𝑘 in 𝑟𝑟𝑖𝑖𝑖𝑖{
2. If 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑘𝑘) ≠ 𝜙𝜙{
3. 𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝑣𝑣𝑘𝑘
4. 𝑠𝑠𝑠𝑠𝑠𝑠 ← 𝐻𝐻𝑖𝑖 = {ℎ𝑖𝑖}
5. 𝑑𝑑𝑑𝑑𝑑𝑑 ← 𝐻𝐻𝑗𝑗 = �ℎ𝑗𝑗�
6. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑘𝑘)�
7. 𝑜𝑜𝑜𝑜𝑜𝑜.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(

 𝑛𝑛𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠
 𝑛𝑛𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

 }

 }

When comparing the results of Experiment 1 and Experiment 2 by plotting the end-to-end delay,

STR-RA shows to maintains a fixed delay bracket while RIP and OSPF climb quadratically.

This is since when the intermediate node’s utilization exceeds a threshold, STEN virtually

stretches all its incident edges. The shortest path algorithm reconverges, and an alternate path

is discovered via a less stressed node, and the traffic gets steered through it. A small bump can

be noticed during STR-RA’s convergence when the threshold was yet to be met. A slight rise

 92

in the latter section is since the simulation was carried out on the same system. Thus, stressing

one node also affects the physical processor load, hence other nodes.

3.3. Rapid Convergence in Multi-Path Routing (MRoute)

The key to achieving rapid convergence in a data network is to cache pre-computed forwarding

information using some 𝑂𝑂�𝑓𝑓(𝑛𝑛)� time, where n is the number of nodes in the topology and

used on-demand in 𝑂𝑂(1) time without needing to re-calculate. NetFlow or the Fast-Switching

model is the earliest such approach which is debuted as an industry standard replacing its

predecessor, the process-switching. Although the “Route once and switch many” philosophy

gave an initial boost to the L2 and L3 operations by offloading the lookups from the

route/switch processor to the hardware; however, it failed to keep up with the scalability. The

switching processor eventually gets involved with a limited cache memory once a cache

replacement is needed. Cisco solved this issue using their proprietary Cisco Express

Forwarding (CEF) technique which dumps the entire Routing Information Base (RIB) into

hardware Forward Information Base (FIB) and Adjacency Table. Any traffic which does not

match any Access Control List (ACL) or QoS policy does not involve the control plane

processing.

Routing protocols support multipathing natively, OSPF provides equal path load-

balancing between multi-path routes using round-robin and EIGRP offers unequal cost load-

balancing using a variance multiplier 13 along a primary path or Successor route (S) and a

backup path or Feasible Successor route (FS). If S fails, EIGRP switches to FS in constant time,

13 EIGRP Load balances between 𝑆𝑆 ∪ 𝐹𝐹𝐹𝐹 routes if routes 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑖𝑖) ≤ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) ∀𝑟𝑟𝑖𝑖 ∈
𝐹𝐹𝐹𝐹 for each �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑖𝑖)
� packet sent along S route, 1 packet is sent along FS route.

 93

proving rapid convergence with single-successor fault tolerance. However, if the FS route fails

too, the router needs to defuse the convergence process across the network using the

Query/Reply and SIA-Query/SIA-Reply control packets. During this phase, all routers put the

lost routes in an active state, and all control processing freezes for the subjected routing

protocol instance. This results in an 𝑂𝑂(𝑑𝑑) communication complexity, where d is the network

diameter. OSPF is a Link-State routing protocol, that updates the rest of the peers within the

same area about the lost route at an infinite cost. This triggers the SPF convergence on every

node with 𝑂𝑂(𝑛𝑛2) time for pathfinding and 𝑂𝑂(𝑑𝑑) Time for control message propagation.

For an SDN, the controller possesses a birds-ey view of the network, and thus, with

link-state logic, it can realize the underlying topology in 𝑂𝑂(1) time. Every downstream router

advertises its locally connected routes towards the controller, which is ideally one-hop away14.

MRoute takes the topology graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) as input and generates all possible paths between

every pair of nodes. The controller stores the result into a data structure called Route Forest

(𝑅𝑅𝑅𝑅 = �RT𝑖𝑖,𝑗𝑗 �), which is a collection of Route-Trees 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗 . Every 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅 | ∀(𝑖𝑖, 𝑗𝑗) ∈

𝑉𝑉2, 𝑖𝑖 ≠ 𝑗𝑗 is an n-ary tree that stores all paths between vI, vj ∈ V. A Route-Tree is finite with a

maximum depth and width as the diameter of the network (𝑑𝑑) and |𝑉𝑉| − 1, respectively.

Further discussion is provided by explaining that generating an 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗 It is computationally

independent with only a read operation on the shared adjacency matrix. Therefore, the

controller can simultaneously compute RTI,j for each node pair (𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉2 using

multithreading. Moreover, as the number of edges is fixed, and the edges are distributed across

all the Route-Trees as branches; therefore, a dynamic programming approach with

memorization would lower the computation complexity of several orders. That said, STEN

14 In practice, an SDN controller establishes a secure tunnel (e.g., OMP on IPsec, OpenFlow on
TLS/SSL)

 94

periodically recalculates the updated link cost, a Hash-Map with 𝑂𝑂(|𝐸𝐸|) space stores the

updates and revises the route-forest in 𝑂𝑂(1) time with 𝑂𝑂(|𝐸𝐸|) Threads.

3.3.1. System modelling

To explain the MRoute algorithm, this section instantiates an SD-WAN[198] implementation

as a use-case related to CDN provisioning. Figure 20 depicts the system architecture. The DP

constitutes two groups of servers, first, that originates the traffic, such as a Point-of-Present

(PoP) and a CDN infrastructure, and second the hosts the consumers. Controllers that manage

the producer side optimize the egress traffic, whereas the consumer plane optimizes the ingress.

An overlay network logically segregates the producer and consumer plane and maintains

connectivity with respective edge devices. The edge devices manage any mobility management

such as handovers of devices. The consumer side segments its user base into several zones to

facilitate hierarchical routing. Interzonal communication takes place via the controller.

However, a dynamic multi-point VPN (DMVPN phase-3) can provide site-to-site on-demand

Figure 21 Reference Architecture of an SD-WAN with a CDN use case

 95

connectivity with summarized routes. Each controller aggregates partial topology information

from downstream edge routes in a link-state manner and generates a topology graph. Each

controller shares complete topology information to its direct neighbours and summarizes any

topology information while being a transit; this is a distance-vector approach. The process

limits the size of the all-pair shortest path three by pruning those prefixes which are reachable

via a neighbour. Generally, all routing protocols follow a four-step process in execution. First,

neighbour discovery, secondly topology synchronization, followed by the shortest pathfinding

and finally, when the routing table converges, it stays idle in the control plane until a primary

route fails and a reconvergence is needed. We assume the controller and edge network topology

is unvarying. The following steps describe the process in detail.

Phase 1: Neighbor Discovery:

Controllers create end-to-end tunnels to form adjacencies. Edge server registers themselves to

a policy server and gets tunnel parameters for establishing two-way communication. However,

for the sake of simplicity, we consider simple GRE tunnels among the controllers. In other

words, the neighborship may be either static or dynamic. Every controller maintains a

neighbour table to keep track of the neighbours’ activity. Figure 22 shows a sample topology

of a controller network with flow vectors after the neighbour discovery.

Phase 2: Initial controller advertisement:

In traditional routing protocols like RIPv2, OSPFv2, and EIGRP, control packets are exchanged

using both multicast and unicast methods. However, SD-WAN depends on overlay networking,

where P2P or P2MP VPN tunnels connect the edge devices to the controllers. Each controller

CONI generates a topology 𝐺𝐺𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖) for its underlying edge network, where 𝑉𝑉𝑖𝑖 and 𝐸𝐸𝑖𝑖 are the

set of downstream edge routers and their corresponding links, respectively. 𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖 computes the

 96

topology matrix 𝐶𝐶𝑖𝑖 = �𝑐𝑐𝑖𝑖,𝑗𝑗�𝑉𝑉×𝑉𝑉
 | ∀𝑒𝑒𝑖𝑖,𝑗𝑗 ∈ 𝐸𝐸 , members of which are a set of possible costs

between the pair of nodes in 𝐺𝐺𝑖𝑖 . For static neighborship, the neighbour database populates

entries with indefinite ageing time while adding neighbours. For dynamic neighbour discovery,

a pair of neighbours connect on-demand and any tunnel that ages above a limit (typically 2

hours) are removed. A 𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖 advertises only to its full 𝐶𝐶𝑖𝑖 to its direct neighbours 𝒩𝒩(CONi).

When a controller acts as a transit node, it forwards its neighbour’s cost matrix to another

neighbour, by sending a list of reachable network prefixes.

Phase 3: Vertex set augmentation:

After the neighbour discovery and initial advertisements, all controllers become aware of their

neighbours’ topology and far-end networks accessible by the non-neighbour controllers. The

Vertex-Set Augmentation (VSA) process augments the producer side, which comprises origin

servers from the consumer and end-users. The segregation enables easy policy maintenance,

Figure 22 A use-case model of CDN implemented over an SD-WAN

 97

especially for QoS and PBR. Next, each controller also dynamically changes routes between

networks based on the load profile of intermediate routers. A load profile of an edge-router

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑅𝑅𝑖𝑖) measures its mean processing load (CPU and memory) and communication load

(bandwidth utilization and congestion) using a moving average with a given window size. A

heavily loaded router maintains a longer service queue, which results in a delay in packet

processing. In this phase, the controller ranks routers based on their load.

Phase 4: Route Calculation

Every controller computes a full-mesh graph 𝒢𝒢𝑖𝑖(𝑉𝑉𝑖𝑖 ,ℰ𝑖𝑖) from the underlying topology 𝐺𝐺𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖)

To maintain the database of all possible paths between all-pair of nodes. It tags the path with a

unique Route_ID. The process starts with a controller CONI computing a Route Forest RFI,

comprises a collection of Route Tree 𝑅𝑅𝑅𝑅𝑠𝑠,𝑑𝑑 | ∀(𝑠𝑠,𝑑𝑑) ∈ 𝑉𝑉2, 𝑠𝑠 ≠ 𝑑𝑑. An 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 keeps all possible

paths souring from s towards d. Each of its branches is a unique path connecting vs ∈ V and

𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉. RT is a ternary tree of exponential, i.e., 𝑂𝑂(2𝑛𝑛) space complexity. Moreover, in case of

no topology change, it serves no purpose but to occupy the space. Therefore, a compression

method would solve the problem by transforming the 𝑅𝑅𝐹𝐹𝑖𝑖 into an optimal data structure with

polynomial complexity. The proposed approach leverages the FSM that compresses the 𝑂𝑂(2𝑛𝑛)

sized Route-Forest into a graph of size 𝑂𝑂(𝑛𝑛). Details of this compression are discussed in a

later section.

The FSM has |V| states and |E| bidirectional transition functions 𝛿𝛿(𝑖𝑖, 𝑗𝑗) and the

Route_ID is used as input symbols. All states in the FSM are set as final and initial, allowing

the transition from any arbitrary state. With a given Route_ID and an initial state, the complete

path can be realized by recursive transition on the SMF, keeping the ID the same at each

iteration.

 98

 Finally, the full-mesh graph 𝒢𝒢(V,ℰ) is generated by aggregating the Router_IDs of 𝑇𝑇𝑠𝑠,𝑑𝑑

and mapped as 𝑒𝑒𝑠𝑠,𝑑𝑑 ∈ ℰ. Thus, the FSM stores the node sequence for every path and  stores

Route ID mapping. This brings the storage complexity to 𝑂𝑂(|𝑉𝑉|2) as both the FSM and 𝒢𝒢 are

graphs of |V| nodes, and it is trivial to represent graphs in their adjacency-matrix form with

𝑂𝑂(𝑛𝑛2) space or with 𝑂𝑂(𝑛𝑛) Space if linked representation is used. The FSM matrices are

exchanged during database synchronization between controllers. Immediate neighbours

exchange the full matrix so each controller can aggregate its topology to its neighbours.

However, being a transit controller suppresses most details and only advertises Router_IDs

learned from a remote controller. The primary reason is efficient space management. Figure 22

depicts the complete process of the controller generating the full mesh graph from their

underlying topology.

3.3.2. Computing all-possible paths

The MRoute Algorithm

Controllers run MRoute (Algorithm 3) for their underlying network topology to compute all-

possible paths between all pairs of vertices. The algorithm takes a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), a pair of

vertices 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉 and returns a Route-Tree 𝑇𝑇𝑠𝑠,𝑑𝑑 . Every leaf-to-root traversal of 𝑡𝑡𝑠𝑠,𝑑𝑑 is a

possible path between 𝑣𝑣𝑠𝑠 and 𝑣𝑣𝑑𝑑 Figure 18 RouteTree generated by MRoute w.r.t. for

r1,3depicts the generation of Route-Tree 𝑇𝑇1.3 regarding the topology shown in Figure 22.

 Figure 24 shows the route tree corresponding to R1,3 . The algorithm uses the

backtracking principle to enumerate all possible routes between source and destination vertices,

in this context, (𝑣𝑣1, 𝑣𝑣3). The following paragraph explains the working principle of MRoute.

MRoute has two phases; during the Grow Phase the route tree grows by recursively expanding

its branches, the Shrink Phase runs intermittently with the Grow phase, where invalid paths are

pruned out from the tree.

 99

Figure 23 Complete process of computing all-paths for all-pair of nodes. First MRoute generates route trees 𝑇𝑇𝑠𝑠,𝑑𝑑 for all
pair of vertices that results route forest 𝑅𝑅𝐹𝐹𝑖𝑖 for every controller 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖. Next, FSM compresses 𝑅𝑅𝐹𝐹𝑖𝑖 preserving the path
information using Route_ID and finally full mesh graph 𝒢𝒢(𝑉𝑉,ℰ) is generated that maps RouteIDs into edge-set ℰ

 100

• Initialization: MRoute initiates the process by creating an n-ary tree with vd as root.

• Recursion: The 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) the function returns the adjacent vertices of a node 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉, and

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) returns the list of ancestors that have already been visited along the branch

where the intermediate node 𝑣𝑣𝑘𝑘 belongs. That said, the recursive function could be

described as follows (Eq. 18).

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑣𝑣𝑘𝑘,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = �
𝜙𝜙 ∶ 𝑣𝑣𝑘𝑘 = 𝑣𝑣𝑠𝑠
𝜙𝜙 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) = 𝜙𝜙
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∪ {𝑣𝑣𝑘𝑘}) ∀𝑥𝑥 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘)

Eq. 18

Condition 1: Terminate with success if the source vertex is visited.

Condition 2: Terminate with failure if no neighbour is left to visit.

Condition 3: Recursively visit all the neighbours that are not visited, keeping the current

node as an ancestor along the trail.

• Termination: The recursion terminates if one of the following cases is valid.

o If the source vertex 𝑣𝑣𝑠𝑠 is found on any of the branches, the branch satisfies the criteria

of a path that starts with 𝑣𝑣𝑠𝑠 and ends with 𝑣𝑣𝑑𝑑. As 𝑣𝑣𝑑𝑑 is the root, backtracking the branch

gives a unique path. Thus, the recursion is terminated.

o If all adjacent vertices appear as ancestors, this means no more un-visited neighbours

have left along with the subjected recursion. This condition terminates the recursion to

prevent any loop or duplicate path discovery.

• Optimization: All descendent nodes leading to a non-source leaf are pruned out to

optimize the space of the tree. This recursive removal is called Shrink-Phase.

• Result: Backtracking each branch of the route tree returns a set of paths between 𝑣𝑣𝑠𝑠 and

𝑣𝑣𝑑𝑑, which MRoute (Algorithm 3) returns.

 101

3.3.3 Route Tree

The Route tree 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 is an m-way search tree that represents all paths between 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉

with the following properties.

1. The destination vertex 𝑣𝑣𝑑𝑑 is the root.

2. All leaves are the source vertex 𝑣𝑣𝑠𝑠

3. Every branch has a positive weight (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) assigned as a sum of individual edge

costs along the branch. STEN periodically calculates the edge cost.

4. For any intermediate vertex vk, the function 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) and 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) return the

ancestors along the branch and the adjacent nodes, respectively, for 𝑣𝑣𝑘𝑘. The base case

for the recursion is 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) ∩ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) = 𝜙𝜙.

Figure 24 RouteTree generated by MRoute w.r.t. for 𝑟𝑟1,3

 102

Algorithm 3: MRoute

Purpose: Finds all possible paths between (𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑) ∈ 𝑉𝑉2
Local Input: 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ,𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉
Global Input: 𝐴𝐴𝐴𝐴𝐴𝐴,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
Output: 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑
Data Structure: n-ary tree
Implementation: Dynamic Array, Implicit Stack
Strategy: Recursion, Backtracking
Begin
 if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜙𝜙 then
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑣𝑣𝑘𝑘
 if 𝑣𝑣𝑘𝑘 = 𝑣𝑣𝑠𝑠 then
 //Successful termination
 Return ST
 else
 // Unvisited children
 𝐶𝐶𝑘𝑘 ← {𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘)}
 if 𝐶𝐶𝑘𝑘 = 𝜙𝜙 then
 // Unsuccessful Termination
 Return UT
 else
 for 𝑣𝑣𝑖𝑖 ∈ 𝐶𝐶𝑘𝑘 do
 Call Update_Ancestors()
 // Recur
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑣𝑣𝑘𝑘, 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑)
 end loop
 end if
 end if
 end if
end

 103

3.3.4. Topology Synchronization

The previous section discusses the principles of MRoute that generates all possible parts

between all pairs of vertices. The source and destination vertices belong to the source and

destination classes, respectively. An SDN controller does this calculation for its local network.

Controllers then share this information with their neighbours. In large distributed SDNs, this

process may cause an overflow of controllers’ memory. However, routes learned from remote

controllers are only significant to routers with proximity. Therefore, we propose that the

advertisement of locally known routes is restricted to the neighbouring controllers, and only

the best path is advertised further. This results in limited flooding in the controller network and

prevents overflow from the controllers’ routing table.

Figure 25 depicts the controlled advertising of local routes across a distributed SDN. The user

belongs to a consumer network managed by the controller by 𝐶𝐶𝐶𝐶𝑁𝑁1 . Thus, 𝐶𝐶𝐶𝐶𝑁𝑁1 ￼’s

neighbors𝐶𝐶𝐶𝐶𝑁𝑁2 ￼𝐶𝐶𝐶𝐶𝑁𝑁3 ￼. T𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘 the SDN is partitioned into adjacent areas based on

proximity. In General, ￼𝑟𝑟𝑟𝑟𝑎𝑎𝑘𝑘−1,𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘+1A￼ and 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘−1 only the best route learned from

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑘𝑘+1 to ￼ and vice-versa.

Figure 25 Controller network of distributed SDN

 104

3.3.5. Benchmarking

Figure 26 depicts the architecture and workflow using various open-source tools to develop the

testbed. Table 8 lists them with their purpose and brief usage description. The workflow of the

testbed is as follows. The testbed runs a Python script that uses Mininet API to interact and

build topology in the Mininet-Server. A series of test cases of four topology configurations (i.e.,

Linear, Regular, Tree, and Mesh) with an increasing number of nodes [0 – 100] is fed into the

emulator. Mininet ‘talks’ with a controller-cluster using OpenFlow. The controllers discover

their downstream topology and feedback OpenFlow rules to the respective switches. OpenFlow

rules are generated by translating the routes calculated by the routing engine. The script then

starts disconnecting random links [0 – 10000], from the topology, which invokes network re-

convergence. Eventually, switches contact their upstream controller for a new rule. The

controller contacts the routing engine for a new route. In the case of the proposed model, routes

are pre-computed and ranked. This diminishes the need to enter the convergence process

instead; it gives the following best Route on demand. The rapid-convergence feature of MRoute

gives it an edge over its competitors. Several parameters (listed in the next section) are collected

during this process, and further used for comparison and benchmarking.

Figure 26 Workflow of the testbed

 105

Tool Purpose Description
Mininet Open-source SDN

simulator
• Simulates SDN
• Python API to automate network creation node

and link state manipulation
OpenDaylight Opensource SDN

Controller
• It Interfaces with an SDN network, simulated in

Mininet using OpenFlow 1.3.
• It Provides the topology and flow table

information using RESTful API.
MySQL Opensource Database • Stores Node and link states varying over time

Table 8 Lists of open-source tools used to develop the testbed

3.3.6. Comparative Parameters

The experiment compares MRoute against OSPF and EIGRP, considering their wide

acceptance in the enterprise networks with their respective routing classes, i.e., Link-state and

Advanced Distance Vector routing. The experiment simulates OSPF and EIGRP at the control

plane by using their underlying algorithms, i.e., SPF and DUAL, respectively and it compares

with the proposed algorithm. The comparison benchmarks MRoute uses six parameters, namely,

1. Discovery Time: The average time the algorithm takes to calculate all routes for all pairs.

Analytically MRoute is an NP-Hard problem; therefore, the time complexity is exponential,

however for SPF and DUAL, it is 𝑂𝑂(𝑛𝑛2).

2. Convergence Time: The average time the algorithm takes to calculate an alternative path

if the primary path fails. Since MRoute proactively pre-calculates all possible routes and

maintains their dynamic rank, it is always guaranteed that the controller will reinforce it to

the network instantly until there is at least one valid route. As a result, the network will

converge in a constant order of time.

3. Communication cost for Discovery: Routing protocols use distributed computing models.

To discover and monitor neighbours, they use the "Hello" protocol over Multicast. The

number of control packets in MRoute is constant as all edge devices send their local

information to the controller using a tunnel. Therefore, it is independent of the network

diameter.

 106

4. Communication cost for Convergence: MRoute is free from re-routing, as any time a re-

routing request comes, the controller returns the following best active route. Thus, no

control messaging is needed.

5. Space Consumption: The amount of memory needed to maintain the topology

information, including the data structures and look-up tables.

6. Route Tree size: The algorithm is inherent, exponential, yet deterministic. During the

growing phase, the tree adds children and removes the invalid paths during the shrinking

phase. The tree size growth is also tested to examine the temporal space complexity of the

n-ary tree data structure.

3.3.6. Experimental Setup

Figure 27 depicts the detailed setup of the experiment and implementation of the testbed; the

numbered events denote the workflow. The testbed comprises several virtual machines

Figure 27 Deployment diagram of the experiment

 107

designated for the Mininet and OpenDaylight instances. They share a common network

segment provided by the hypervisor. A set of network topology configurations is listed in the

test-case database pushed into the Mininet instance. One iteration comprises five phases that

terminate with a report summarizing parameters listed in the previous section. Each topology

configuration creates 3 OpenFlow LAN networks; each represents an edge segment and is

designated to a specific controller from the Controller-Cluster. OpenDaylight (ODL)

controllers listen to their respective TCP port 6633, with which the Open V-Switches (OVS)

correspond to their downstream topologies established with the OpenFlow datalink. Each

controller maintains its downstream topology map and flow tables and exposes them using

RESTConf API to the northbound using TCP port 8181. The data-collector module

accumulates topologies flow tables from individual controllers in the application plane, which

are then fused into a global topology (as described in Figure 27). The routing algorithm module

executes SPF, DUAL and MRoute on the topology and returns benchmark information to the

data-analyzer, which finally formats the comparison information in a CSV file and streams it

to the Reporting module. We limit the benchmarking with a 3-Controller (each with 4-vCPUs

& 8GB RAM) configuration. However, the same process is scalable to a larger configuration

with adequate resources given. A clarification for the readers’ comprehension of Controller-

Cluster, The cluster configuration does not yield a controller aggregation (e.g., Akka 15

clustering) but rather a collection of multiple autonomous controllers.

15 For more information about Akka clustering, visit https://bit.ly/3qshdWK

https://bit.ly/3qshdWK

 108

3.3.7. Experimental Results

The comparative analysis between MRoute, DUAL, and SPF (Figure 28) benchmarks

algorithms using six parameters as discussed in section 3.3.5. Subplot (A) compares the time

complexity concerning the size of the network. These results are plotted on a log scale.

Therefore, MRoute shows exponential growth in comparison with DUAL and SPF, which are

bounded above by 𝑂𝑂(𝑛𝑛2) . Due to the diffusion-computation model and the presence of a

feasible successor. DUAL goes less deep into the convergence state than SPF. We tuned the

SPF to run on each downstream topology in parallel, simulating a multi-area OSPF network.

Although it seems initially that DUAL is the optimum than its competitors, these algorithms’

work in SD-WAN flips the perception. MRoute calculates all possible paths in advance.

therefore, in the long run, if the topology remains unaltered, it will never enter a re-convergence

process, which is not the case with DUAL and SPF. This is shown in the subplot (B), where the

random link failure causes SPF to re-converge every time. DUAL shows a better result as, in

some cases, a feasible successor exists or a neighbour replies with a route much before the

Figure 28 Experimental Results and Comparison MRoute against SPF and DUAL using the following
parameters (A)Time Consumption to computing paths, (B) Time consumption to converge, (C) Control
traffic for topology synchronization, (D) Space consumption for topology maintenance (E) Control traffic
for convergence, (F) Route-Tree size.

 109

query reaches the network boundary. However, MRoute shows a constant reading, as it is a

𝑂𝑂(1) that requiring a fixed number of operations that involve querying and getting a reply for

the following best route. The process can be thought of as a generalized case of DUAL, where

all backup routes are ranked and listed. The communication complexity measures the number

of packets exchanged between the nodes while discovering or converging into the network. In

the case of SPF and DUAL, the algorithms are inherently distributed. Therefore, the local

routes are advertised, queried during re-convergence, and polled for their liveliness using

reliable updates and ‘HELLO’ messages. Since OSPF uses a link-state model, the total number

of packets exchanged is higher than that of distance-vector-based EIGRP. MRoute is designed

as a centralized routing algorithm; therefore, it does not exchange any discovery or update

messages with other nodes. Instead, it updates only the controller, which is logically one hop

away. This is justified by the subplot (C, E).

The state-model representation of the Route-forest reduces the space consumption of MRoute

drastically by tagging routes as a fixed-length binary vector of edges with RouteID. However,

while generating the Route-Tree, it consumes memory exponentially. Although the pruning

phase releases some memory, the overall growth remains exponential. The state model is built

after the complete forest is generated, which compresses them into tables and relinquishes the

memory (subplot (F)). The space complexity of MRoute sits between SPF and DUAL as OSPF

maintains an identical link-state database for all nodes and EIGRP topology tables list the

successor and feasible successors for each destination prefix depicted in subplot (F).

 110

3.4. Most Reliable Route First (MRRF)

3.4.1. Problem formulation of Cognitive Routing

The controller sees the topology of the SDN as a simple, finite, and connected graph. The

network consists of programmable routers and switches connected to the Controller via a secure

and reliable SBI. The controller treats both the router and switch as a generic EN having a well-

defined set of Communication (L1) and MAC (L2) protocols configured. Additionally, the

Routing (L3) and Transport (L4) protocols must ensure the following properties.

1. EN doesn’t exchange SP traffic among each other but only with the controller over the

SBI.

2. There exists no Neighbor Discovery mechanism. EN shares their local information and

keep-alive packets with the controller only.

Figure 29 Reference topology with route-policies

 111

3. The controller can monitor information about various resource utilization of the EN

such as Memory, CPU, Network interface, etc.

4. The network topology does not change frequently.

Each 𝐸𝐸𝑁𝑁𝑖𝑖 maintains a local Routing Table (𝑅𝑅𝑇𝑇𝑖𝑖) comprising three disjoint sets of entries, The

Connected Routes (𝐶𝐶𝑅𝑅𝑖𝑖) are networks connected directly to the device interfaces, The Static

Routes (𝑆𝑆𝑅𝑅𝑖𝑖) are configured statically on the device and Remote Routes (𝑅𝑅𝑅𝑅𝑖𝑖) are not learned

from the controller. These sets partition the routing table, i.e., 𝐶𝐶𝑅𝑅𝑖𝑖 ∩ 𝑆𝑆𝑅𝑅𝑖𝑖 ∩ 𝑅𝑅𝑅𝑅𝑖𝑖 = 𝜙𝜙 and

𝐶𝐶𝑅𝑅𝑖𝑖 ∪ 𝑆𝑆𝑅𝑅𝑖𝑖 ∪ 𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑇𝑇𝑖𝑖. The controller uniquely identifies each EN by their Node ID like

Router ID in OSPF and EIGRP and maps it with their corresponding CR set. When an EN

receives a packet with an unknown destination address, it forwards it to the controller. The

controller then resolves the destination node’s ID from a map, finds a route between the source

and destination router, and replies to it back to the source node.

 Figure 29 depicts a reference topology of 6 routers with Node ID R1 − R6 , the

corresponding CRis are further segregated into the LAN (𝐿𝐿𝑖𝑖) and WAN (𝑊𝑊𝑖𝑖) links (𝐿𝐿𝑖𝑖 ∩ 𝑊𝑊𝑖𝑖 =

𝜙𝜙), following RFC-1918 [199]. The controller uses the Link-State Routing (LSR) approach to

build a topology from this information, i.e., nodes with a shared WAN network are adjacent.

However, for the sake of simplicity, we did not include topology with Broadcast segments as

it requires additional Designated node placement. Hence, we assume all the links are Point-to-

Point in nature.

The network has a set of node-specific parameters (𝑋𝑋𝑁𝑁) such as CPU and memory

utilization, and a set of Edge-specific parameters (𝑋𝑋𝐸𝐸) such as bandwidth, delay, load,

reliability, etc. The WAN links are constrained and heterogeneous, i.e., their attributes are

bounded above by some pre-defined values specific to that link. These values generally depend

on the network policy or the media type; hence we leave it user-defined. We propose the

formulation of link-cost as a set of linear programming Problems, for individual edges, with a

 112

linear cost-function 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 :𝑋𝑋𝐸𝐸 → ℝ+ , between 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗 , such that its linear constraints

𝑔𝑔𝑖𝑖,𝑗𝑗 (𝑋𝑋𝐸𝐸) ≤ 𝐾𝐾𝑖𝑖,𝑗𝑗 are met. This is to overcome the limitation of OSPF’s sub-optimal routing

issue due to its simplistic metric and EIGRP’s route-flapping problem caused by its dynamic

metric parameters. The proposed method uses link attributes defined by RFC-7868[24].

However, as the metrics are calculated locally to the controller, it diminishes the need to

exchange update packets between edge nodes, thus eliminating the cause of route-flapping.

Like the edge cost, the node cost also contributes to the calculation of the final metric. The

node-cost function 𝑓𝑓𝑖𝑖𝑁𝑁 ∶ 𝑋𝑋𝑁𝑁 → ℝ+ computes a cost based on the node attributes (𝑋𝑋𝑁𝑁).

The controller generates a Graph structure isomorphic to the network topology and

weighs its edges by relaxing the 𝑓𝑓𝑖𝑖𝑁𝑁 and 𝑓𝑓𝑗𝑗𝑁𝑁 into 𝑓𝑓𝑖𝑖,𝑗𝑗
𝐸𝐸 for all adjacent for all 𝑅𝑅𝑖𝑖 ,𝑅𝑅𝑗𝑗 using STEN.

As the 𝑋𝑋𝐸𝐸 and 𝑋𝑋𝑁𝑁 varies over time, but the topology remains the same; hence the subjected

Graph is a dynamic isomorphic Graph, which we refer to as Meta-Graph.

The proposed algorithm performs the following steps to meet the rapid-convergence

criteria.

1. Efficiently computes all possible paths between all pairs of nodes from the meta-graph

using MRoute. This step is invoked whenever the topology changes.

2. Computes the reliability of the links by profiling their cost variation over time using an

RNN using LSTM; This is a periodic step. As the LSTM estimates a time series by

autoregression.

3. Ranks the computed paths obtained from step 1 based on their cumulative reliability

obtained from step 2. This step is invoked every time an update happens.

4. Returns the most reliable routes on-demand as the primary route keeping the rest in a

backup. In case the primary Route fails, the following best Route is served instantly. Hence

rapid convergence is achieved.

 113

The Simple, undirected and connected graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) represents the topology of the underlying

network; where, 𝑉𝑉 = {𝑣𝑣𝑖𝑖} and 𝐸𝐸 = �𝑒𝑒𝑖𝑖.𝑗𝑗 �𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 �� be the Vertex and Edge set,

respectively. 𝑉𝑉 and 𝐸𝐸 are finite and non-empty, 𝑎𝑎𝑎𝑎𝑎𝑎�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� = 1 if 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 are adjacent, and 0

otherwise. The graph is simple (No self-loop, no parallel edge) to fit the SPA criteria. It is

undirected as we assume that the links are full-duplex in nature, and the connected property

ensures a path between any pair of vertices. The following measures are computed from 𝐺𝐺:

1. Adjacency Matrix: 𝐴𝐴𝐴𝐴𝐴𝐴(𝐺𝐺) = [𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑗𝑗) ∈ {0,1}]𝑛𝑛×𝑛𝑛 is a symmetric binary matric

represents the adjacency of the graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) and |𝑉𝑉| = 𝑛𝑛.

2. Policy Set: A finite non-empty set of policy tuples that includes 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 and �𝑔𝑔𝑖𝑖,𝑗𝑗 ≤ 𝐾𝐾�. The

policy set (Eq. 19)

𝑃𝑃𝑃𝑃𝑃𝑃 = �< 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 (𝑋𝑋𝐸𝐸), �𝑔𝑔𝑖𝑖,𝑗𝑗(𝑋𝑋𝐸𝐸) ≤ 𝐾𝐾𝑖𝑖,𝑗𝑗� > ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉2 � Eq. 19

3. Variable Cost Matrix (VCOST): 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) = �𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) ∈ ℝ+�
𝑛𝑛×𝑛𝑛×𝑡𝑡

 is a tensor

representing the cost matrix at time instance t. All the 𝑛𝑛 diagonal values 𝑐𝑐𝑖𝑖,𝑖𝑖 represents

corresponding node-costs 𝑓𝑓𝑖𝑖𝑁𝑁 and the non-diagonal ones represent the edge-cost 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 for

all valid edges i.e. (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸.(Eq. 20)

�𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)� = �
𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑖𝑖,𝑗𝑗

𝐸𝐸 (𝑋𝑋𝐸𝐸 , 𝑡𝑡) , 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸
𝑓𝑓𝑖𝑖𝑁𝑁(𝑋𝑋𝑛𝑛, 𝑡𝑡), 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Eq. 20

4. Normalized Cost Matrix (NCOST): As the diagonal elements of 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝑡𝑡) represent

weighted self-loops, it violates the "simple-graph" criteria. Therefore, a normalization

is needed that relaxes the self-loops but preserves their effects on the resultant "Simple-

 114

Graph." We use the Stochastic Temporal Edge Normalization (STEN) technique to do

so, which results. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡) = ��𝑐𝑐𝑖𝑖,𝑗𝑗′ (𝑡𝑡)� ∈ [0,1]�.

5. Route Tree: The MRoute algorithm generates the tree and is discussed in section 3.3.

Figure 29 depicts the Route-Tree 𝑅𝑅𝑇𝑇1,2 w.r.t. the reference topology Figure 29 shows

the hop counts and cumulative costs for each valid route (terminating at source vertex

𝑣𝑣1). At ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 5 , 𝑅𝑅3 has two children, 𝑅𝑅1 and 𝑅𝑅5 and𝑅𝑅1 is the source, it

terminates the search successfully. However, 𝑅𝑅5 has no adjacency left that has not

appeared in its ancestor set. Therefore 𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅5) – 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅5) = 𝜙𝜙 , and the search

registers an unsuccessful termination. The MRoute algorithm has two phases: Phase-1

(Grow Phase), where the tree grows recursively, registers several unsuccessful

terminations, and Phase-2 (Shrink Phase) eliminates all such branches.

6. Route Forest: For an n -node graph, there exists �𝑛𝑛2� possible pairs (from the

Handshaking theorem in Graph Theory) of nodes. Each node produces a Route Tree. A

collection of such trees forms a Route-Forest. It is generated by invoking MRoute

Figure 30 RouteTree of 𝑅𝑅𝑇𝑇1,2, rooted at 𝑅𝑅2 all the reachable paths terminate with 𝑅𝑅1 and
unreachable node 𝑅𝑅5.

 115

parallelly �𝑛𝑛2� times for each pair of nodes. The concurrency in execution is possible as

the procedures are computationally independent, and only the shared data structures are

read.

3.4.2. Metric formulation

The proposed composite metric for MRoute constitutes the node cost 𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡) and edge costs

𝐶𝐶𝑖𝑖,𝑗𝑗𝑁𝑁 (𝑡𝑡). The node and edge parameters are listed in Table 9, followed by the formulation of

costs.

Node
Parameters
(𝐗𝐗𝐍𝐍)

CPU Parameter Core Count (nc) frequency (fc) Utilization (uc)
Units Integer MHz [0,1]

Memory Parameters Volume (vm) Frequency (fm) Utilization (um)
Units MB MHz [0,1]

Link
Parameters
(𝐗𝐗𝐄𝐄)

Parameters Bandwidth
(BW)

Delay
(DLY)

Load
(LD)

Reliability
(RLY)

MTU

Units Mbps ms [0,1] [0,1] [0,1500]
Table 9: Link and Node Parameters, Monitored By CP

Formulation of the Node Cost: The node cost uses CPU and memory utilization as parameters.

However, CPU & memory utilization can solely determine performance (i.e., a 20% utilized 8-

core CPU processes more operations than an 80% single-core CPU, which applies to the

context of DDR4 vs. DDR2 memory). Moreover, with recent adaptation to network

virtualization (e.g., Cisco IOU, CSRv), CPU and memory allocation is more flexible, yielding

more heterogeneity in the network. Therefore, we propose a more robust metric formulation.

The weight parameters αc and αm are left to the user to regulate (e.g., EIGRP K-Values), the

default value is set to 0.5. (Eq. 21)

𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡) = 𝑓𝑓𝑖𝑖𝑁𝑁(𝑋𝑋𝑖𝑖𝑁𝑁, 𝑡𝑡)
 = �𝛼𝛼𝑐𝑐 �𝑓𝑓𝑐𝑐𝑖𝑖(𝑡𝑡) ∗ 𝑛𝑛𝑐𝑐𝑖𝑖(𝑡𝑡) ∗ 𝑢𝑢𝑐𝑐𝑖𝑖(𝑡𝑡)� + 𝛼𝛼𝑚𝑚 �𝑓𝑓𝑚𝑚𝑖𝑖

(𝑡𝑡) ∗ 𝑣𝑣𝑚𝑚𝑖𝑖
(𝑡𝑡) ∗ 𝑢𝑢𝑚𝑚𝑖𝑖

(𝑡𝑡)� �
 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎,𝛼𝛼𝑐𝑐 + 𝛼𝛼𝑚𝑚 = 1; 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝛼𝛼𝑐𝑐 = 𝛼𝛼𝑑𝑑 = 1 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝛼𝛼𝑐𝑐 ,𝛼𝛼𝑚𝑚 ∈ [0,1]

Eq. 21

 116

Formulation of the Link Cost: The link cost function uses the same parameters as EIGRP.

All the control traffic is targeted to the controller. This not only reduces the diameter of control

flow from O(n) (linear) to O(1) constant but also results in fast convergence. The topology is

built inside the controllers’ memory, and no control packets are flooded to make a neighborship.

The SDN paradigm unifies the benefits of OSPF and EIGRP as it creates a complete topology

view like OSPF, uses all parameters of a more robust composite metric and supports unequal-

cost load balancing like EIGRP.

The formulation in Eq. 22 has three components.

1. BDP: The Bandwidth Delay Product 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝐵𝐵𝐵𝐵(𝑡𝑡) × 𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) measures the

instantaneous end-to-end throughput.

2. Load: The BDP is scaled by the mean load �𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) × 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)� and

measures the amount of occupancy in the link.

3. Reliability: The occupied capacity is scaled with the additive inverse of reliability

�𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × �1 − 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)�� to measure the unreliability of the occupied capacity.

𝐶𝐶𝑖𝑖,𝑗𝑗𝐸𝐸 (𝑡𝑡) = 𝑓𝑓𝑖𝑖,𝑗𝑗𝐸𝐸 �𝑋𝑋𝑖𝑖,𝑗𝑗𝐸𝐸 , 𝑡𝑡�

= �𝛽𝛽𝐿𝐿𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖,𝑗𝑗(𝑡𝑡)

× �𝛽𝛽𝐵𝐵𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑖𝑖,𝑗𝑗)�𝐵𝐵𝑊𝑊𝑖𝑖(𝑡𝑡)� × 𝛽𝛽𝐷𝐷 � 𝐷𝐷𝐷𝐷𝑌𝑌𝑖𝑖(𝑡𝑡)
𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑖𝑖,𝑗𝑗)

�

× 𝛽𝛽𝑟𝑟 �1 − 𝑅𝑅𝑅𝑅𝑌𝑌𝑖𝑖,𝑗𝑗(𝑡𝑡)��

Such that,
∑𝛽𝛽𝑘𝑘 = 1;𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝛽𝛽𝑘𝑘 = 0.25 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝑘𝑘 ∈ {𝐵𝐵,𝐷𝐷,𝑅𝑅, 𝐿𝐿} 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝛽𝛽𝑘𝑘 ∈ [0,1]
𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖,𝑗𝑗 = 𝑇𝑇𝑇𝑇𝐷𝐷𝑖𝑖,𝑗𝑗+𝑅𝑅𝑅𝑅𝐿𝐿𝑖𝑖,𝑗𝑗

2
 is the mean load across the end-to-end link

𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑠𝑠,𝑑𝑑)�𝐵𝐵𝑊𝑊𝑖𝑖(𝑡𝑡)� is the effective throughput of the bottleneck link
∑ 𝐷𝐷𝐷𝐷𝑌𝑌𝑖𝑖(𝑡𝑡)𝑖𝑖∈𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑠𝑠,𝑑𝑑) is the cumulative delay along the path.

Eq. 22

 117

Formulation of Normalized Metric: Concerning equations Eq. 20 and Eq. 21, the cumulative

metric for a link cI,j′ (t) is obtained by relaxing the node costs of both endpoints �𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡),𝐶𝐶𝑗𝑗𝑁𝑁(𝑡𝑡)�

and scaling them by their

corresponding load-share

�𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡),𝑃𝑃𝑗𝑗,𝑖𝑖(𝑡𝑡)� into the link cost

𝐶𝐶𝑖𝑖,𝑗𝑗𝐸𝐸 (𝑡𝑡) as shown in Figure 31 The

parameters γN, γE are the

weighing factors set by the user.

The load-share of an interface is a

proportion of the number of

packets passed through that

interface over the total Packet exchanged. The value is expressed in [0,1]. (Eq. 23)

𝑐𝑐𝑖𝑖,𝑗𝑗′ (𝑡𝑡) = �𝛾𝛾𝑁𝑁 �𝑃𝑃𝑖𝑖,𝑗𝑗𝐶𝐶𝑖𝑖𝑁𝑁(𝑡𝑡) + 𝑃𝑃𝑗𝑗,𝑖𝑖 𝐶𝐶𝑗𝑗𝑁𝑁(𝑡𝑡)� + 𝛾𝛾𝐸𝐸 �𝐶𝐶𝑖𝑖,𝑗𝑗
𝐸𝐸 (𝑡𝑡)��

𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎, 𝛾𝛾𝑁𝑁 + 𝛾𝛾𝐸𝐸 = 1;
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛾𝛾𝑁𝑁 = 𝛾𝛾𝐸𝐸 = 0.5 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∀𝛾𝛾𝑁𝑁, 𝛾𝛾𝐸𝐸 ∈ [0,1]

Eq. 23

Figure 31 depicts the relaxation process to calculate the variable cost metric 𝑐𝑐𝑖𝑖,𝑗𝑗′ (𝑡𝑡) ∈ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

at time t.

3.4.3. Analysis and Optimization of MRoute algorithm

MRoute takes to source and destination vertex (𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑) as input, looks up to global structures

𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 during its recursive run-time and returns a route tree 𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑. The n-ary tree is

stored in a hashed-dynamic array structure. It finds all possible paths between a pair of vertices

using the Backtracking strategy. The problem is inherently brute-force in nature, and the state-

space complexity is NP-hard. Therefore, we introduce optimization and relaxation, which are

further explained in the later section of this chapter.

Figure 31 Relaxation of Node costs into Edge using STEN

 118

Optimizing the Route-Tree Data structure

 MRoute adds nodes recursively into the Route-Tree, the algorithm assumes 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉) is

of 𝑂𝑂(1). Generally, an n-ary tree can be stored using either a linked (non-contiguous) or array

(contagious) structure. Since the data structure is unordered, each node must maintain

(|𝑉𝑉| − 1) pointers it consumes in 𝑂𝑂(𝑛𝑛2) space. However, not every time is the network mesh.

Additionally, the recurrence decreases monotonically as more neighbours are visited. They

would not appear as children. Therefore, the number of children decreases as the tree gets

deeper and choosing an n-ary tree structure is not space-optimal.

 We propose an optimal data structure to accommodate such a sparse array. Furthermore,

when a graph is converted into a tree, there will be multiple instances where the same node

appears in various spaces. To eliminate any confusion during insertion, pointing, and displaying

a node (Figure 32).

Figure 32 Dynamic Array-list with hash-table organization for fast searching. 𝐿𝐿𝐿𝐿𝑐𝑐𝑖𝑖 is the virtual
memory location, that holds the router object 𝑅𝑅𝑗𝑗 with ID k. Hash table maps an ID to its location

 119

An efficient and light index generation method is needed. For an n-ary tree, the following Eq.

24 generalized heap-indexing rule is adapted for this purpose.

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣𝑘𝑘) = 𝑖𝑖) ⇒ �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑣𝑣𝑘𝑘) = �

𝑖𝑖
𝑛𝑛
�

𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑑𝑑𝑗𝑗�𝑣𝑣𝑗𝑗� = 𝑛𝑛𝑛𝑛 + 𝑗𝑗

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉| = 𝑛𝑛

Eq. 24

A non-contiguous data structure stores the nodes for better scalability to avoid any

segmentation error while using large topologies. Nodes are kept in random memory location

𝐿𝐿𝐿𝐿𝑐𝑐𝑘𝑘. The ID is calculated using rules in Eq. 24 and is kept along with the nodes' data. A hash

table maps the index to location; thus, the search time is reduced to 𝑂𝑂(1); Figure 24 depicts

the process.

Optimizing Route-Forest Formation

MRoute is a costly algorithm in terms of space consumption while generating a Route-Forest.

The algorithm is invoked 𝑂𝑂(𝑛𝑛2) Times. The calculation of the route tree for any arbitrary pair

of nodes is computationally independent since they share a common data structure 𝐴𝐴𝐴𝐴𝐴𝐴 and

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. This satisfies the criteria to execute them in parallel without any race condition (as no

write operation on global structures occurs). Therefore, each 𝑅𝑅𝑇𝑇𝑖𝑖,𝑗𝑗 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑉𝑉2 is computed

parallelly in their threads. Also, 𝑇𝑇𝑖𝑖,𝑗𝑗 can also be realized by reversing 𝑇𝑇𝑗𝑗,𝑖𝑖 with 𝑂𝑂(𝑛𝑛2).

 120

FSM model and Route-tagging

As the Route Tree grows exponentially, a compression algorithm is necessary to keep it scalable.

We propose a novel approach to achieve such by using a Finite State Machine (FSM) or Type-

3 automata, which eventually generates regular expressions to identify a route uniquely. That

said, an n-node FSM consumes O(n) space for storage using a matrix format; thus, it also leads

to an 𝑂𝑂(1) access tine. Hence, we chose to leverage the FSM model for compressing Route-

Trees.

Let, ℳ(𝒬𝒬,𝒯𝒯, 𝛿𝛿, 𝑞𝑞0,ℱ) be a pentuple describing an FSM such that,

o 𝒬𝒬 is a finite, non-empty set of states (𝒬𝒬 = V)

o 𝒯𝒯 is a finite, non-empty set of unique route identifiers (Route-Tags), (𝒬𝒬 ∩ 𝒯𝒯 = ϕ)

o δ is a transition function, such that.? δ:𝒬𝒬 × 𝒯𝒯 → 𝒬𝒬

o q0 is the initial state, q0 ∈ Q = vs ∈ V

o ℱ is a finite, non-empty set of Final stets(s), ℱ = {vd} ⊆ Q

Any Route Tree has unique paths between roots and leaves. An identifier called Route-Tag tags

each Path uniquely. This compresses the exponentially large Route-Tree into a state machine

of size 𝑂𝑂(|𝑉𝑉|). We term this transformation ℱ:𝑅𝑅𝑇𝑇𝑠𝑠,𝑑𝑑 → ℳ𝑠𝑠,𝑑𝑑 as Route State-Transformation

Function (RSTF) and ℳ𝑠𝑠,𝑑𝑑 as Route State Graph (RSG), depicts the transformation with

changes in the data structures. Table 10 shows the transition function from the state machine

(Figure 33).

 121

𝓠𝓠 × 𝓣𝓣 1 2 2 4

𝑅𝑅1 ϕ ϕ ϕ ϕ

𝑅𝑅2 R1 R6 R6 R6

𝑅𝑅3 ϕ ϕ R1 R1

𝑅𝑅4 ϕ ϕ R3 R5

𝑅𝑅5 ϕ ϕ ϕ R3

𝑅𝑅6 ϕ R1 R4 R4

Figure 33 Implementation of Route-Tag and generating FSM form route tree. The process depicts the
transformation of data-structures from the Route-Tree to Route State Graph

Table 10: Transition table of
ℳ1,2 rows represent routers
receiving packets with route-tag
represented by columns, cells
represent the corresponding next
hop and 𝜙𝜙 means empty set.

 122

Path Matrix

A path-matrix 𝑃𝑃 = 𝑉𝑉2 is defined as �𝑝𝑝𝑖𝑖,𝑗𝑗 ∈ 𝑃𝑃� = ℳ𝑖𝑖,𝑗𝑗 . Every valid traversal in ℳ𝑠𝑠,𝑑𝑑

corresponds to a feasible route between 𝑣𝑣𝑠𝑠, 𝑣𝑣𝑑𝑑 ∈ 𝑉𝑉. We propose two methods to encode the

RSG.

1. Encoding as Grammar: In this approach, the state machine is encoded into a set of

production rules called grammar 𝒢𝒢(𝒱𝒱,𝒯𝒯,𝒫𝒫, s). This mode of encoding is useful when the

routes are generated either as patterns or regular expressions. A grammar 𝒢𝒢 is expressed as

a quadruple were,

• 𝒱𝒱 is it a set of non-terminals?

• 𝒯𝒯 is a set of the terminal (Route-Tags)

• 𝒫𝒫 is a set of Regular production rules.

• s is the start symbol.

As an example, 𝒢𝒢1,2, be the grammar corresponding to ℳ1,2which is expressed in Eq. 25 .

𝒫𝒫 = {R1 → ϵ,
 R2 → τ1,2R1 � τ2,6R6 � τ1,2,
 R3 → τ1,3R1| τ1,3,
 R4 → τ3,4R3 | τ4,5R5 ,
 R5 → τ3,5R3,
 R6 → τ1,6R1| τ4,6R4 |τ1,6,
 τ1,2 → 1,
 τ1,3 → 3|4,
 τ1,6 → 2,
 τ2,6 → 2|3|4,
 τ3,4 → 3,
 τ3,5 → 4,
 τ4,5 → 4,
 τ4,6 → 3|4 }

Eq. 25

Encoding RSG into its grammar summarizes the routes, and parsing-ability is enforced using

regular expressions.

 123

2. Encoding as The-Cost table: The Tag-Cost-table 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝒯𝒯 × 𝐸𝐸 is a binary matrix. Each

row identifies one route tag (𝑡𝑡𝑘𝑘 ∈ 𝒯𝒯) and it is the corresponding edge set. The column-sum

tells how many route tags are sharing a given edge (typically used for load-balancing). The

Tag-Cost function is formulated in Eq. 26 and the Tag-Cost table in Table 11. A Min-heap

implementation of storing the tag-costs takes 𝑂𝑂(1) time to return the best route and

𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏�|𝑉𝑉|) time to reorder them.

𝑐𝑐𝑠𝑠,𝑑𝑑
(𝑡𝑡𝑘𝑘∈𝒯𝒯)(𝑡𝑡) = � �𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) × 𝑇𝑇𝑇𝑇𝑇𝑇[𝑡𝑡𝑘𝑘]�

(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 Eq. 26

Encoding RSG into TCT does leverage the reactive route-response mechanism due to

its constant search for the best route. Also, the tabular structure makes it easy to program and

alter with varying edge costs.

Tags e1,2 e1,3 e1,6 e2,6 e3,4 e3,5 e4,5 e4,6 Cost
1 1 0 0 0 0 0 0 0 c1,2

(1)(t)
2 0 0 1 1 0 0 0 0 c1,2

(2)(t)
3 0 1 0 1 1 0 0 1 c1,2

(3)(t)
4 0 1 0 1 1 1 1 0 c1,2

(4)(t)
Share 1 2 1 3 2 1 1 1

Table 11 tag-cost-table for ℳ1,2

3.4.4. Estimation of the Reliability using Recurrent Neural Networks (RNN)

As the normalized costs matrix (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) varies over time (due to node or link cost), it creates

a time series matrix. However, the matrix comprises individual normalized links which vary

independently and does not provide performance analytics directly. Therefore, first, we

segregate each link and treat them as separate time series. Then, unlike predicting the traffic

pattern or load, we focus more on predicting the trend. One of the challenges regards online

training in a dynamic environment. A trained neural network often rejects to adapt to sudden

 124

changes as the outlier. Therefore, we aim to model the network dynamics by the degree of

volatility of individual links.

A. Sharpe-Ratio based approximation

In finance, the Sharpe ratio [200] is a widely used metric in portfolio management that

measures the volatility of a stock and estimates the risk associated with it[201]. It is defined as

the ratio of the sample-mean and the sample-standard-deviation of a set and is proportional to

the volatility. The approximation steps are as follows,

1. Calculate volatility 𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡) of each 𝐶𝐶𝑖𝑖,𝑗𝑗(𝑡𝑡) with a user-defined window size 𝑊𝑊 rolling

over time t (Eq. 27).

𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡) =
𝐶𝐶𝚤𝚤,𝚥𝚥′ ([𝑡𝑡 − 𝑤𝑤 ∶ 𝑡𝑡])��������������������

𝑆𝑆𝑆𝑆�𝐶𝐶𝑖𝑖,𝑗𝑗([𝑡𝑡 − 𝑤𝑤: 𝑡𝑡]) �
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸

Eq. 27

2. Estimate the edgewise hypothesis functions hI,j ∈ ℋ as an auto-regressive function

using an RNN with a period W16. (Eq. 28)

𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = ℎ𝑖𝑖,𝑗𝑗�𝒱𝒱𝑖𝑖,𝑗𝑗[𝑡𝑡 − 𝑤𝑤: 𝑡𝑡]� Eq. 28

3. Use 𝒱𝒱𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) as a metric to choose the best path. The proposed model uses offline

training to build the initial model and then uses online training to update it. We define

a cutoff value 𝜖𝜖 > 30%.

16 In the theory of time series analysis, the optimal window size is when the Partial Auto
Correlation Function (PACF) intersects the lag axis; after which the data at the time series does not
contribute to the approximation.

 125

3.4.5. Implementation

Figure 34 depicts the deployment diagram of our testbed. A multi-tier approach is conceived

for operational and functional segregation. The SDN philosophy of decoupling control and data

plane has been the proposed architecture's core design principle. However, the Knowledge

plane has been integrated on top to support SON capabilities.

Figure 34 Deployment diagram of the Testbed. Infrastructure plane holds routers, overlay server receives
monitoring information and spawns VNFs per Router. Control planes discover topology and application
plane operates on it. Knowledge plane is for self-learning however beyond the scope of the context.

 126

A. Self-Organized Knowledge Defined Network (SO-KDN) testbed

The architecture supports network automation and SON. It finds the optimal route using

MRoute (Self-Optimization), then installs them to the underlying nodes by pushing device-

specific configuration into the edge devices (self-configuration) and guarantees a most-reliable

Route by keeping updating them over time (Self-Healing). Thus, it meets all three criteria of

SON. The following explains the working of the layers. Please refer to the implementation

details, including connection API and algorithm code, for further information [46].

1. Infrastructure Plane: This layer hosts physical and emulated network nodes (e.g., routers,

L2/L3 switches, etc.). In this experiment, Cisco IOU-L3 routers are simulated on GNS3.

Routers are also connected to Overlay-plane securely using IPsec-DMVPN to exchange

control traffic, like the OpenFlow channel.

2. Overlay Plane: This layer interfaces between the infrastructure and control plane. A VNF

process (agent) is spawned for each router underneath, which maintains a secure link

(using SSH) to monitor the resource utilization. Additionally, it also injects configuration

commands. We use Napalm17, library to automate the routes. Remote routes are injected

as floating-static routes, and their priorities are controlled with respective administrative

distances.

3. Control Plane: Resource and topology information are fused to generate the meta-graph

in the control plane. REST-Conf is used to interface with the overlay plane below and the

application plane above.

4. Application Plane: The application plane brings modularity to the architecture, hosting

various apps that govern the use-cases' functional characteristics. MRoute is one such

17 For more information on Napalm visit https://napalm.readthedocs.io/en/latest/

https://napalm.readthedocs.io/en/latest/

 127

application. However, there are other functions such as migration and monitoring beyond

the scope of the context of this chapter.

5. Knowledge Plane: The knowledge plane leverages the KDN paradigm. This component

takes care of all data pre-processing, and offline and online training. It returns a trained

model initially as an outcome of offline training. However, the model gets updates during

online training whenever the trend changes. KDN functionalists can be divided into four

main units.

a. Pre-processing: This acts as a staging area for the model of the training units. It

performs data acquisition, data quality checks, and validations, imputing and

standardization. Typically, 70% of the overall process time is spent on this phase.

b. Offline training: After the pre-processing tasks, the offline activity starts by dividing

the data into training, validation, and testing for the machine learning (ML) model. It

utilizes the historical data from the repository to train the model and predicts the

networking characteristics to produce decisions such as VNF placement and state

prediction.

c. Online Training: It is used when the data is generated in a sequence (such as time

series). Network resource utilization is a form of a time series. The Topology is

represented as a matrix. Each element of the matrix represents a normalized link cost

between a pair of nodes. Over time, a sequence of such matrices is received, making

it a 𝑛𝑛 × 𝑛𝑛 × 𝑡𝑡 tensor. Where n be the number of nodes and t be the time.

d. Modelling: The learning algorithm learns from the fed dataset and generates a

prediction model. Since the problem can be classified as a time series prediction type,

RNN is chosen as the base architecture.

 128

B. RNN Architecture

In this section, the design of the machine learning function is presented. We also introduce a

few techniques used, like hyper-parameters, fine-tuning, and choosing the best optimization

algorithm.

1. Hyper-Parameter Tuning: In this phase, the Hyper-parameters such as Batch-size and

number of neurons are tuned from experimental data. Figure 35 depicts testing Mean

Squared Error (MSE) cross-validation for three layers on a Deep RNN using 200 epochs.

The reason for this was to choose the appropriate number of neurons and the batch size

for the training and validation datasets; the error rate is measured using Mean Squared

Error (MSE). As highlighted in bold, the optimum hyper-parameters have been 128

neurons and 512 batch sizes at 0.08 MSE.

2. Optimization Algorithm: Figure 33 compares the various optimizers. For the LSTM

model, different sets of window sizes are tested. Three principal variants of Gradient

Descent (SGD, ADAM & RMSPROP) are compared. As a proof of concept, results

Figure 35 (A) Comparison of accuracy (by mean squared error) with four network setups (128, 256,512 &
1024), the Global optima is reached with 128 Neuron at a batch size of 512. (B) compares three optimizer
algorithms (SGD, Adam & RMSPROP), over a varying window size of [20 − 200], on which Adam gives
best result on average

 129

show that predicting a 200ms window size using Adam can achieve a mean error rate

of 10%.

3. Scoring: The proposed technique performs traffic prediction on the normalized

reliability of the links. The result shows that reliability can be estimated with the

appropriate hyper-parameters with a mean of 90% accuracy.

C. Online Learning

The online learning phase receives constant feedback from the network. If the predicted

reliability deviates from the actual one within a given threshold, the RNN needs to re-learn to

adjust its weights. The re-learning process takes place for multiple edges simultaneously.

Figure 36 Evaluation of the Online-Learning, (a) Learning time with 200 epochs, (b) Accelerated
learning with Early-Stopping enabled (c) Comparing time-series prediction of reliability in Best,
Average and Worst-case scenario (d) compares the deviation in log-scale, also shows the comparison is
distinctive when there is less fluctuation

 130

Hence, the tuning needs to be optimized. We use TensorFlow’s Early Stopping feature to

accelerate the learning process by monitoring the loss function’s value and breaking the

iteration whenever the loss converges to a value. Therefore, the learning process doesn’t need

to run for all the epochs. Figure 36(a) shows the loss function’s characteristics spanning 200

epochs which took 27.6 Seconds to complete learning. The function settles around 55’th epoch

and has stayed constant since then. Figure 36(b) depicts the effect of the Early Stopping that

brings the training time to just 0.53 seconds. Thus, it exponentially reduces the time

consumption of re-training the RNN, making it feasible for online training.

With several trials of online training, a more comprehensive comparison between the actual

and predicted reliability is shown in Figure 36(c, d). The first compares the best, worst and

average cases, sampling them down to a set of 20 instances, collected over 20 minutes of

online learning. The results show discrimination is prominent when there is less fluctuation in

the data sets; it’s more comprehensive when the deviation is plotted on a log scale (Figure 36

(d)).

D. Rapid Convergence and Co-relation to Sharpe Ratio

Figure 37 depicts the varying reliability of five edge nodes over a period of 350 stamps each

of 10 seconds. The log scale is used to magnify the variation. Over time, three nodes have

come up as the most reliable in the order of None2, Node4, Node5 and again Node2. During

the experiment, we emulated these dynamics by randomly altering various node and edge

attributes. This causes the network to be highly chaotic and the routing protocols to re-

converge frequently. An effect that appears in Figure 24(A, E). MRoute has shown an 𝑂𝑂(1)

time convergence as routes are not only chosen in constant time. Additionally, the most reliable

node is switched instantly. The relative dotted boxes also draw a clear correlation between the

learned reliability and the Sharpe ratio. As the Sharpe ratio measures the degree of volatility

 131

every time, it meets a rapid depression. The corresponding router is chosen as the most reliable.

During the training, the RNN captures this trend and predicts accordingly. We set the window

size of 100 timestamps; thus, an offset of 100 can be seen on the time axis of the two plots.

Figure 37 Demonstration of Self-Healing through rapid-convergence: At timestamp [0 − 100] 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2 is
most reliable as the corresponding rolling Sharpe-Ratio has maximum descending gradient calculated on
100 timestamps. Similar pattern can be noticed for 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒4 during [100-240], 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒5 during [240 − 270]
and 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2 during [270 − 350]. The correlation is analytical however the RNN learns it.

 132

Chapter Summary

This chapter summarizes the contributions to the Self-Optimization problem of 5G and beyond.

The optimization problem it addresses is the Routing as-a-service for a knowledge-defined

network (KDN). It covers a three-part discussion, first, the STEN method takes both the link

and node utilization into account for costing the communication cost, which makes the routing

decision more robust as it can include convergence scenarios based on service overload. Second,

the pathfinding algorithm MRoute which proactively finds all possible paths between all pairs

of nodes and stores them efficiently to the controller for a reactive constant time convergence.

Third, the MRRF technique uses RNN to estimate the reliability as uses it for metric calculation,

which is then used by MRoute to update the cost matrix periodically.

 The experiments benchmark the optimization process in each of its aforementioned

stages against both distance vector and link-state routing algorithms. Test results validate the

claims of constant time convergence in dynamic network situations by verifying several stress

scenarios.

 In summary, the chapter discusses the compliance of the Cognitive Routing model to

the Self-Optimization feature in 5G and beyond architectures. It also explains the role of

cognitive routing in pursuing the URLLC by choosing a more reliable path to transport than

the cheapest one.

 133

Chapter 4: Self Configuration

The self-configuration property leverages the Softwarization property of Software

Defined Networking (SDN). Chapter 3 discusses the Self-optimization property, where it

describes how the optimization problem calculated the optimal decision variables subjected to

the given constraints. The self-configuration property is responsible to inject them into an

underlying Control Plane (CP) using North-Bound Interfaces (NBI) which the CP exposes as

Application Programming Interfaces (APIs).

This chapter introduces the elementary self-configuration concept from a software

engineering perspective with a historical coverage of several SDN programming paradigms.

Later, it presents a list of contributions that leverages the self-configuration framework in the

scope of this thesis.

4.1. Introduction

Over the stretch of several decades, Internet architecture has evolved enormously. The core

philosophy that gave birth to the Internet was to provide a generic fabric that connects several

vendor-specific and platform-dependent networks, hence the term ‘Inter-Network’. Therefore,

the design philosophy of the Internet is more skewed towards stability than dynamics, e.g., the

working principle of Exterior Border Gateway Protocol (eBGP) deviates significantly from the

rest of Interior Gateway Routing Protocols (IGPs) in that very context. Eventually, the Internet

architecture has become static and hard to change as the core design prefers stability and

accuracy over dynamics. This phenomenon is called Internet Ossification [202], which

elongates the innovation lifecycle in network engineering compared to its software counterpart.

 134

The SDN architecture results in a paradigm shift in dealing with the stringent

requirements by segregating the network’s functional constituents. It offers rapid

programmability on the overlay network keeping the underlaying networking untouched.

Arguably, this has been the key factor behind the decoupling of the Control and Data planes

which outstand SDN over its likely predecessors such as Open Signaling (OpenSig) [203],

Active Networks (AN) [204], and Ethane [205].

Although AN is not similar to what SDN offers, before exploring deep into SDN

programmability, it is essential to address two questions, first, why did OpenSig fail? and why

did SDN win?. The OpenSig model addressed the issues faced by AN by segregating the CP

and DP, but its static programming interface results in a tight couple between the programming

language and programmable hardware. The SDN model blends the best of both the

aforementioned models. First, it removes the platform dependence using flow modification

and loosens the coupling between the programming language and the programable hardware

using standard APIs. Second, it applies CP-DP segregation by isolating the forwarding logic

from the forwarding hardware (e.g., switch, router, firewall) and placing it in the central

controller. This results in the forwarding hardware autonomously controlling its forwarding

circuits (i.e., Application Specific Integrated Circuit or ASIC) using a local software; where the

forwarding rules reside in a local data structure called Flow Table (FT) which the controller

populates.

Currently, three major organizations namely: The Open Networking Foundation (ONF),

Internet Engineering Task Force (IETF) and Open Networking Research Center (ONRC) are

responsible for SDN standardization. However, it is legit to mention, that there have been

several flow management protocols developed like OpenFlow [206], NetOpen [207], OpFlex

[208], POF [209], ForCES [210]; but OpenFlow has become the de facto protocol for SDN due

to its robustness and wider industry acceptance.

 135

The remainder of this section will delve deep into the SDN programmability to cement

the rationale behind modelling the contributions to knowledge made by this thesis.

4.1.1. SDN use cases

A study of the recent literature [211][212] suggests seven use case scenarios that leverage SDN

programmability. Table 12 lists the suggested use cases and their objectives.

Use Case Objective
Routing Migrating from the traditional decentralized routing model to a logically

centralized mechanism that accommodates Virtualization, Orchestration,
Automation and Programmability on networks.

Cloudification It is the most important use case in SDN [213]. Manages interconnection
and interaction between Datacenter and transport networks (e.g., bandwidth
allocation, policy enforcement, traffic engineering and network telemetry).
Cloud platforms offer network orchestration as a part of their code modules,
e.g., Neutron in OpenStack, Network-Node in Open Nebula, Network
manager in Cloud Stack, etc.

Load
Balancing

SDN provides load-balancing as a part of its control logic. There are claims
that SDN could replace dedicated load balancers due to its native support
[211].

Network
Management

Centralized control eases the implementation policy-based network. Several
automation frameworks such as Ansible, Puppet, Chef, Salt etc. enable the
controller to automate the policy injection. Cisco’s Intent-Based
Networking [214] is a great example. The Cisco DNA centre and Campus
Fabric for Cisco SD-Access (SD-LAN) and in SD-WAN with VManage
(management plane), VBond (Orchestration), VSmart (Control Plane) and
VEdge (Data-Plane).

Application-
Centric
Networking

SDN controller exposes Northbound-APIs for exchanging valuable
information between the CP and AP and East/Westbound-APIs for inter-
controller information exchange. External applications can leverage these
APIs to inject application-specific policies such as Security policies,
QoS/QoE policies etc. This reduces the deployment complexity
significantly [215]

Security The Authentication, Authorization, and accounting (AAA) architecture is
the de-facto standard for enterprise networking. However, there has been
several evidence of attacks in the AAA model, especially through Man in
the Middle (MITM) and Distributed Denial of Service (DDoS) attacks.

Table 12 SDN use cases

 136

4.1.2. The programming language taxonomy and SDN adaptability

Attribute Classification Description Ref
Pr

og
ra

m
m

in
g

Pa
ra

di
gm

Declarative
programming

• Formal language expresses the intent primarily using
logic rather than arithmetic

• The developer focuses on ‘What’ than ‘How’
• The interpreter translates the ‘What’ clauses into

‘How’ methods using Frenetic Notation [216]

[216]
[217]
[218]

Functional
Reactive
Programming
(FRP)

• Suitable for event-driven programming
• Method invocations depend on event occurrence

(Signals) hence reactive

[219]
[220]

L
an

gu
ag

e
Sp

ec
ifi

ca
tio

n Formal

• Uses mathematical notation to express instruction
• suitable for SDN programming

[221]
[222]
[223]

Informal

Uses graphical modelling language such as UML to
express the instructions

[224]

N
et

w
or

k
Pr

og
ra

m
m

ab
ili

ty

Domain-
Specific
Language
(DSL)

• Tailored to cater to a specific domain of application
• Suitable for SDN programming
• Abstracts the development complexity of common

network procedures (e.g., Sockets, Tunnel, Flow-
Injections etc.)

• There are two classes of DSL, Textual and Visual aka
Domain-Specific Modelling Language (DSML)

• DSML uses the concept of Model-Driven Engineering
(MDE) to speed up the deployment process by hiding
the implementation details and reducing the
complexity of programming mundane tasks.

• The MDE framework achieves the above by
segregating its specifications into MD-Architecture
(MDA) which uses UML to define the overall
deployment architecture and MD-Development
which leverages the model defined in MDA and
Interoperability to translate into target-specific
instructions. The Object Management Group (OMG)
defines the translation standards for MDE using a
concept called Meta-modelling.

[225]
[226]
[227]
[228]
[229]
[230]
[231]
[228]

General
Purpose (GPL)

• Domain agnostic (e.g., C, C++, Java Python etc.)
• Suitable for developing generic Network applications

(Traditional and SDN)

Table 13 Language Taxonomy of SDN programming languages

 137

Table 13 summarizes the several industry-standard programming languages based on their class

as prescribed in the standards [222][216]. These apply to implementing the controller logic and

higher-level ones can express policies better. From the above table, we can conclude that a

model SDN programming language should be Declarative or Functional reactive, Formal and

Domain-Specific. Table 14 compares the benefits and demerits of each programming language

paradigm defined above.

Paradigm Pros Cons
FRP • Efficient event-driven programming.

• Enable modelling of delays and state,
• Implicit caching and multicast

• Performance
• Complexity in creating data

structures, memory, and space
leaks

DSL • High abstraction level
• Fewer lines of code
• Flexible
• Enables verification and validation of

application
• Higher productivity in the specific

problem domain
• Layering that can lead to language-

independent from the underlying
infrastructure

• Performance
• Language design is hard
• Useless for application outside

the domain

Imperative • Flexibility
• A high degree of abstraction
• The developer defines ‘how’ he

wants a network to behave

• Complexity in creating
structures

• Low abstraction level

Declarative • High abstraction level
• Fewer lines of code
• Simplicity, in focusing on ‘what’ a

developer wants a network to behave

• Inflexibility
• Hard to express conditions

Logic
programming

• Flexibility and reliability
• The network architecture of protocol

(e.g., OpenFlow) can be changed
without changing the program or their
underlying code

• Performance
• Lack of arithmetic, event, and

datatype support
• Complexity in creating

structures
Table 14 Comparison of different programming paradigms

 138

4.1.3 State of the Art in SDN programming languages

The initial SDN language developments could be traced back to 2009 when the standard was

incepted. Lopes et al. in their survey [232] present a comprehensive comparison of the state-

of-the-art initial SDN programming languages given in Table 15.

Language Paradigm Objective Year Limitation
FML
[233]

Declarative
+ DSL

High-level abstraction
of network behaviour
to replace specific
configuration

2009 No arithmetic operation,
No dynamic policy, No
rule conflict resolution, No
explicit negation rule

Nettle
[234]

Declarative
+ FRP +
DSL

Declarative
programming of
OpenFlow

2011 No rule conflict resolution

Procera
[227]

Declarative
+ FRP +
DSL

Express reactive
dynamic policies in a
declarative way

2012 No direct support for
events or external queries

Flog
[235]

Declarative
 + DSL

Event driven and
forward-chaining
language

2012 No explicit negation rule

NetCore
[236]

Declarative
+ FRP +
DSL

Intent-based network
programming, the
programmer defines
the ‘what’ clauses and
the interpreter
translates them into
‘How’.

2012 No support for stateful
control

Frenetic
[216]

Declarative
 + DSL

High level of
abstraction for
programming state
and forwarding policy
to the controller

2013 Consistency only to single
switch per flow.

FatTire
[217]

Declarative
 + FRP +
DSL

Write a program in
terms of paths through
the network and
explicit fault tolerance
requirements

2013 No inbuild Fault detection
and recovery, and no QoS
support

Pyretic
[237]

Declarative
+ DSL

Specify network
policies with a high
level of abstraction

2013 Consistency only to single
switch per flow.

 139

Language Paradigm Objective Year Limitation
Nlog
[238]

Declarative
 + DSL

Compute the network
forwarding state
separating the logic
specification at the
controller

2013 No flow verification
method, no explicit
negation rule

Flowlog
[239]

Declarative
+ DSL

Abstract DP and CP
behaviour

2014 No abstraction for queries

Merlin
[240]

Declarative Express high-level
policies that provision
network resources

2014 Does not provide
consistency between
policies

Kinetic
[241]

DSL Provide abstraction
for automating
changes in network
policies

2015 Does not provide
consistent updates by itself

Table 15 Comparison of SDN programming languages [232]

The above summary shows the various SDN programming languages developed during the

period of 2009 – 15 with their corresponding merits and limitations. The study shows that there

isn’t any language for “one size fits all”, due to some inherited limitations such as static policies,

no configuration conflict resolution, no explicit rule generation, lack of event-driven

programming support, lack of external query support, lack of simultaneous configuration of

multiple switches with consistent configuration, lack of fault tolerance and high availability,

and lack of rule verification. Therefore, after 2015 when SDN standardization was stated by

ONF, the number of languages started to converge into more API driven implementation. The

SDN controller exposes a standard RESTful API such as RESTCONF to allow applications to

leverage it. This addresses all the limitations mentioned above to be resolved by the controller

itself before it pushes the translate forwarding entry to the data plane. Recently ONF has

launched a new programming language called P4[242] that provides the ease of declarative

programming and Stratum[243] a switch operating system that unifies several platform-

specific deployments. The following sections list the contributions to the self-configuration

domain primarily using the API manipulation using a GPL (Python3.x).

 140

4.2. System-Level Simulator integration with SDN (SDN-SIM)

Design and structural complexity are skyrocketing with the introduction of diverse technology

paradigms in next-generation cellular and vehicular networks. The beyond- 5G use cases such

as time-critical application, 5G-V2X, and UAV communications require ultra-low latency and

high throughput and reliability with limited operational complexity and cost. These use cases

are being explored in 3GPP Releases 16 and 17. To facilitate end-to-end performance

evaluation for these applications, we propose SDN-Sim-integration of a System Level

Simulator (SLS) with a Software Defined Network (SDN) infrastructure. While the SLS

models the communication channel and evaluates system performance on the physical and data

link layers, the SDN performs network and application tasks such as routing, load balancing,

etc. The proposed architecture replicates the SLS-defined topology into an SDN emulator for

offloading control operations. It uses link and node information calculated by the SLS to

compute routes in SDN and feeds the results back to the SLS. Along with the architecture, data

modelling and processing, replication, and route calculation frameworks are proposed.

4.2.1. Preliminaries

Towards 5G/B5G, the third-generation partnership project (3GPP) finalizes release and defines

Release 171. In the area of vehicular networks, the 3GPP, in partnership with the Fifth

Generation Automotive Association (5GAA), is driving the efforts on the 5G-based vehicle-to-

everything (V2X) paradigm, which adds advanced features to the LTE-V2X from Release 14,

particularly in the areas of support for ultra-reliable and low-latency communication (URLLC)

applications for the future intelligent transport systems (ITS) [29],[30], [31]. In the evolution

path from LTE-V2X to 5G-V2X, the authors in [29] advocated the incorporation of SDN in the

architecture to enhance the system performance through SDN’s capabilities in facilitating

 141

intelligent multi-hop routing, dynamic resource allocation, and advanced mobility support,

among others.

To evaluate the performance of proposed algorithms, techniques, and frameworks for

any new era of communication networks, numerical simulations, mathematical analyses, and

field trials are the three main approaches being employed. Though analytically tractable,

mathematical methods (e.g., stochastic geometry tools) are often constrained by simplifying

assumptions that potentially limit their use in modelling large-scale, highly complex, and

dynamic networks. Realistic performance can be measured in live operating environments.

However, the financial and operational requirements are costly and practically infeasible for

the early design and development stages. Hence, in the past few decades, simulations have

become essential tools for the assessment of network performance due to the apparent cost and

implementation advantages [32].

Depending on the performance metrics under investigation, simulators can be

categorized into three: Link Level Simulator (LLS), System Level Simulator (SLS), and

Network Level Simulator (NLS). The LLS examines detailed, bit-level physical (PHY) layer

functionalities of a single link. The SLS evaluates the performance of links involving many

Base Stations (BSs) and User Equipment (UEs) at the Medium Access Control (MAC) layer

(with the PHY abstracted). It focuses on the radio access network/air interface and facilitates

analyses of resource allocation, capacity, coverage, spectral and energy efficiencies, amongst

others. The NLS, however, assesses the performance of protocols across all layers of the

network, including control signalling and backhaul/fronthaul issues. Performance is

characterized using metrics such as latency, packet loss, etc. [33].

Besides metric-based classification, simulators can also be grouped based on radio

access technologies supported (cellular, vehicular, Wi-Fi, etc.), programming language

environment (MATLAB, Python, C++, etc.), licensing option (open source, proprietary, free of

 142

charge for academic use) or network scenario capabilities (LTE, 5G, B5G, etc.) [33]18. While

the SLS does not simulate beyond the MAC layer, the NLS simulates networks up to the

application layer. However, the implementation and computational complexity of NLS become

very high when many nodes are involved [32].

Another significant paradigm shift in network design takes place with the advent of

SDN [34]. It decouples the control (signalling) plane from the data (forwarding) plane and runs

applications in the AP to manage the network. This brings transparency to network design and

lets software developers write applications for managing the networks, keeping the internal

design in abstraction. Each layer uses several interfaces to communicate with each other. The

CP communicates with both AP and DP using North and Southbound interfaces, respectively.

In the case of a cluster of controllers, East and Westbound interfaces are used for

communicating among them.

The default southbound protocol for SDN, OpenFlow uses FT to perform packet

forwarding. Each FT entry is a forwarding rule determined by the controller. A forwarding rule

has mainly three significant fields, a “match,” an “action,” and a “priority.” A “match” is some

criteria for an inbound packet to be checked. A packet that satisfies the criteria is termed a

“table hit”; otherwise, it is a “table miss.” For each case, an action is defined such that the

OpenFlow switch executes on the subjected packet. If a packet satisfies matches from multiple

flow rules, priority is used to break the tie. The SDN Controllers populate flow entries. The

OpenFlow switch requests the controller for every table miss and the controller replies with a

flow entry. If the controller cannot resolve an action, it is set as a “drop,” The switch does not

process the packet. The decoupled control plane reduces computational cost on forwarding

18 Representative simulators include the Vienna LTE-A and 5G simulators for LLS and SLS
(https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/), and the 5G-K Simulators for
the NLS (http://5gopenplatform.org/main/index.php).

http://5gopenplatform.org/main/index.php

 143

devices by offloading the control packet processing tasks to the controller. Therefore, SDN

offers better modularity, programmability, agility, automation, and load balancing capability

than traditional networks. Also, the SDN-based approach is used in network design practices

for cloud computing and 5G.

This section presents a novel SDN-based System Level Simulator (SDN-Sim) platform

where the SLS-Stage runs in MATLAB, and the NLS stage is based on python3. By inheriting

all the benefits of SDN, the architecture considerably reduces the overall computational

complexity of the system. The computationally demanding upper layer network functions (e.g.,

inter-cellular routing) are offloaded to the virtualized cloud infrastructure. The controller maps

Low-level network information (e.g., Channel model, topology, etc.) from SLS to SDN.

Python-based application development and virtual infrastructure using Type-1 hypervisor

(VMWare ESXi) servers. OpenFlow and RESTCONF are the south and northbound protocols,

respectively. OpenDaylight is used as the SDN controller, while GNS3 and Mininet-wifi

emulate the data plane emulation.

4.2.2. System Architecture and Implementation

Figure 38 depicts the system architecture of SDN-Sim, with the SLS at the bottom and the SDN

infrastructure running on the top. When the SLS does the channel modelling and scheduling,

the SDN takes care of the upper layer functionalists such as IP routing and traffic control,

described as follows.

A. System Level Simulator

The tasks of the SLS run in loops of transmission time intervals (TTIs), and the results are

averaged over several simulation runs or channel realizations [244].

• Scenario Setting: The layout depicts a Vehicular Network of BSs/Roadside Units (RSU)

and vehicle-mounted radio/UEs configured with 3D locations of the nodes. UEs or

 144

vehicles are mobile and attached to their serving RSU, which further interfaces with the

cellular networks through BSs with parameters such as line-of-sight probability, distance,

and Signal-to-Noise Ratio (SNR).

• Channel Modeling: For all links, the path loss (PL), shadow fading (SF), transmit and

receive, and antenna gains and fast fading are calculated to estimate the channel of each

user for both desired and interfering links.

• Scheduling: Radio resources are allocated to users based on the scheduling algorithm.

Resource blocks (bandwidth) and power are allocated either in a quasi-random fashion (for

open Loop configuration) or based on feedback from the users in closed-loop systems. The

channel state information (CSI) feedback and other factors such as the traffic type of users,

link adaptation strategy employed, and quality of service (QoS) demands are used as

decision determinants at the scheduling stage.

• Link Quality and Performance Estimation: The links' signal-to-noise and interference

ratio (SINR) are then estimated. The users ‘throughput and the cells’ capacities are

calculated using the SINRs and the link abstraction model (for the block error rate (BLER)).

Recent developments in SLSs are mainly focused on solving problems on channel modelling

[245], high-frequency communication [246], [247], coexistence and performance optimization

[248], energy efficiency, latency, scheduling, and load balancing over a heterogeneous network

[249], among others. The 5G public-private partnership project (5GPPP) has described several

aspects of Softwarization, service management, and orchestration in their architectural

reference [250], including SDN, cloud computing, virtualization, etc. Therefore, cloud

computing is being employed to enhance the scalability and computational efficiency of 5G

SLSs by offloading the computational load [251].

 145

B. Software-Defined Network

The task of the SDN extension is described as follows.

• Channel State Monitoring: The SLS running in a MATLAB server with Open Database

Connector (ODBC) driver updates the topology and channel modelling parameters to a

centralized Database.

Figure 38 Schematic system architecture of SDN-Sim with Full stack setup along with their core functions

 146

• SDN Emulation: The topology information is reactively fetched and emulates using the

TopoBuild module in the SDN DP through GNS3 (wired core networks) and Mininet-wifi

(wireless edge network). The CP starts communicating with Open-Flow.

• Route Calculation: The application plane fetches topology from the control plane,

translates it into a graph using the TopoSense module and finds the shortest paths between

node pairs using the TopoRoute module. These paths are fed back to the database and the

controllers.

The workflow and communication sequence taking place between the various elements of the

architecture are as given in Figure 39

1. Update communication parameters: The SLS performs channel modelling, radio

resource allocation, and system performance evaluation. After optimizing the model for a

given scenario generates several channel parameters (bandwidth, distance, path-loss,

The picture can't be displayed.

Figure 39 Sequence diagram for various message exchange between components of SDN-Sim

 147

latency, and delay) and BS parameters (position, range, RSSI, transmission power, etc.).

Since parameters are calculated per BS, each BS updates its local dataset to the centralized

database.

2. Fetch node and link parameters: TopoBuild is a bespoke program to fetch SLS

parameters from the central database and relay them to the SDN Data plane to replicate

the topology. BSs are placed as wireless access points, running OpenFlow protocol. Links,

depending on types (i.e., fronthaul or backhaul), are assigned to BSs. Wireless fronthaul

connection carries several radio parameters such as path loss, frequency band, RSSI, etc.

3. Topology replication: TopoBuild translates parameters obtained from the central DB into

a series of commands. There are two possible infrastructures (GNS3 and Mininet-Wifi) in

the proposed architecture with three possible deployment options (full GNS3, full Mininet-

wifi, and hybrid). TopoBuild generates a script to replicate the topology and injects it into

the specific engines (GNS3 and/or Mininet-Wifi) based on the deployment type and

connection specifications. A feature comparison between GNS3 and Mininet-Wifi is given

in Table 16 and briefly described as follows.

 148

 GNS3 Mininet-Wifi
Si

m
ila

rit
ie

s • Both are open source and offer GUI-based network design.
• Both support API based Interfacing with the external environment
• Both have methods to access the physical interface
• Both can host OVSs and dummy workstations for data plane

Pr
os

• It is not Limited to SDNs only.
• Use of actual OVS images.
• Better Test-result accuracy
• Realistic test cases.
• Supports scalability via Clustering.
• Native Docker Support.
• Extensibility with apps from the

GNS3 market- place

• Rapid Implementation, no SDN /
OpenFlow configuration needed link
configuration

• wireless support
• native SDN support
• Inbuild mobility & propagation models

C
on

s

• No wireless support
• Manual configuration for SDN /

OpenFlow and other supporting
devices No link configuration

• Requires more physical resources to
set up the test environment

• Limited to SDNs
• Test-result accuracy
• Scalability via multi-threading
• No clustering supports
• No paravirtualization
• No app-based functional extensibility

Table 16 A comparative study of GNS3 and Mininet Wi-Fi as Data Plane Engine

a. GNS3 Infrastructure: GNS3 is an open-source network emulation software. It

comprises the controller VNF that interfaces through RESTful APIs, manages

topology, etc., and a cluster of para-virtualized compute nodes that host VNFs such

as routers, switches, firewalls as containers, or VMs. In SDN-Sim, TopoBuild

communicates with GNS3-Controller using RESTful API, and the Open-V-

Switches (OVS) run as a docker container within the GNS3-Compute cluster.

Therefore, GNS3 offers realistic test cases with a testbed and produces more

authentic results than a simulation. On a downside, it lacks support for wireless

networking emulation; however, it allows access to a physical wireless card.

b. Mininet-Wifi Infrastructure: With a Wi-Fi extension, inheriting all the features

of Mininet, it can now emulate wireless SDNs. With the support of its python API,

programming and configuring Mininet-Wifi is more user-friendly. Mininet-Wifi

 149

runs in a single sandbox with its interactive command line. Thus, TopoBuild uses

raw sockets to inject the Mininet-wifi commands for deployment and parameters

updates. It also offers four mobility and five propagation models. Since Mininet-

Wifi uses HWSIM drivers to simulate wireless networking, emulating an extensive

network is constrained. Also, it does not support clustering,

4. Accessing Control Plane with OpenFlow: Both GNS3 and Mininet-Wifi host OVSs; thus,

they communicate with the controller using OpenFlow v1.3 (OF1.3) as southbound

protocol. OF1.3 uses bidirectional messaging to communicate with the switches. A switch

requests a controller with a Packet-In message, and the controller replies with a Packet-

Out. SDN-Sim uses Open-Daylight-Beryllium SR4 (ODL) as a controller that runs as VM.

Both GNS3 and Mininet-Wifi use TCP ports 6633 and 6635 for communication. The CP

supports the binding of several controller nodes with clustering to maintain scalability,

high availability, and persistence in the data plane. ODL supports ’Akka’ clustering for this

purpose.

5. Interfacing with Application Plane with RESTCONF: SDN-Controller interacts with

the application plane using Northbound APIs. ODL uses RESTCONF (RFC-8040). It is a

RESTful version of NETCONF (RFC- 6241) protocol and uses JSON (RFC-7159) format

to transfer data among REST-enabled devices. In SDN-Sim, we use two RESTCONF

resources (Inventory and Topology). “Operational” resources are to read, and “Config” are

to write. The inventory resource provides node-wise OpenFlow tables, and the Topology

resource provides the topology of the network. The App TopoSense makes use of the

resources to model a graph by fusing topology and flow-table information. TopoSense

invokes TopoRoute to calculate the route for a given topology.

 150

6. Route Calculation: TopoRoute uses Stochastic Temporal Edge Normalization (STEN) [1]

technique (Discussed in Chapter 3) to find routes. It receives the topology and flows tables

from TopoSense. The link parameters are already present in the database. By fusing them,

a single source shortest path algorithm is run over every pair of vertices. A set of all

possible routes are generated. In a traditional network, local routes are shared among

neighbours to form routing tables. With the size of the network, due to propagation delay,

the routing becomes significantly slow. However, in an SDN paradigm, discovery is made

by the controller; hence the topology graph is mapped proactively. Therefore, the shortest

paths between every pair can be calculated in parallel. This results in speeding up the

routing process and allows scalability in the network.

7. OpenFlow Tables Update: TopoRoute does event-driven updates of the flow tables in the

Central DB. The calculated routes are fed back to the TopoSense, which eventually replies

to the routes back to the controller using RESTCONF Inventory-Config API.

After the central DB gets updated, the SLS picks the information, and an inter-cellular route is

discovered to leverage the lower (physical and data link) layer operations. The complete

operational sequence diagram is given in Figure 39.

C. Data Modelling & Design of Central Database

The central database plays the role of middleware between the SLS and the SDN. Table

17 shows the related entities and their corresponding attributes for the data model. There

are three main entities: Node, Flow Table, and Channel. A node can be of either Access

Point (AP) or Host. One host is associated with one AP, and one AP can associate with

many hosts. Each AP is an OVS; thus, it contains a flow table(s) and a unique Data Path

 151

Table 17 Descriptions of attributes of the data model

Identifier (DPID). A pair of nodes makes a channel with a unique channel ID (mapping is

recorded at the Node Channel Map table). A channel between a Host and an AP is called

fronthaul (Wireless), and between a pair of APs is a backhaul (Wired). No channel exists

between two hosts. Since TopoSense reads information from the APs, the route calculation by

TopoRoute takes place over the backhaul network.

Node Attributes
Node ID Primary key, Unique ID for each node
Type Type of the node (AP or Host)
Range Communication Range of the node
Position Location of node (3D cartesian coordinate)
Channel Operating Channel Number
Frequency Operating Frequency (In Hz)
Mode Operating Mode (B/G/N/AC/AX)
Tx power Transmit Power in mW
IP Address Nodes IP Address
MAC Address Nodes MAC Address

Access Point Attributes
Station Association List of Host the AP is associated

Host Attributes
AP Association The ID of the AP to which the host is associated
RSSI Relative Received Signal Strength (at host end)

Flow Table Attribute
DPID Unique Data path ID of the AP
Source IP Match field for source IP in ingress packet
Destination IP Match field for Destination IP in ingress packet
Source MAC Match field for source MAC in ingress Frame
Destination MAC Match field for source MAC in ingress Frame
Action OpenFlow Action opcode
Timeout Timeout (Dead) timer
Packet Count Total packet count statistics
Byte Count Total bytes count statistics
Duration Hold time for OpenFlow Entry

Node Channel Map Attributes
Channel ID Foreign key to Unique Channel ID in Table
Node_1 Foreign key to the first Node ID
Node_2 Foreign key to the second Node ID
 Channel Attributes
Channel ID Primary key, Channel Identifier
Bandwidth Channel Bandwidth in Mbps
Distance Distance between incident nodes in meters
Pathloss Pathloss of the channel in dB
Latency Average latency (in ms)
Delay Average RTT (in ms)

 152

D. Design of Application Plane

Three major apps TopoBuild (Algorithm 4), TopoSense (Algorithm 5), and TopoRoute

(Algorithm 6) run in the Application Plane. In the previous sections, their usage has been

mentioned, the working principles are given below.

Algorithm 4: TopoBuild

Name : TopoBuild

Purpose : Initiate topology replication from the SLS to the SDN platform

Input : Topology Information

Output : Configuration command for the Emulation

Data structure: Di-Graph

Steps:

Do
𝑁𝑁 = {𝑛𝑛𝑖𝑖} // read Node information
𝐸𝐸 = {(𝑖𝑖, 𝑗𝑗)| ∀ 𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗 ∈ 𝑁𝑁 ,𝐴𝐴𝐴𝐴𝐴𝐴�𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗�} // read Edge information
𝐶𝐶 = �𝑐𝑐𝑖𝑖,𝑗𝑗� // read Channel Information
If Not (TOPO_INIT) then
 CMD_NODE = { add_node(𝑛𝑛𝑖𝑖) ∀𝑛𝑛𝑖𝑖 ∈ 𝑁𝑁} //add node config
 CMD_EDGE = { add_edge(𝐼𝐼, 𝑗𝑗) ∀(𝐼𝐼, 𝑗𝑗) ∈ 𝐸𝐸 } // add edge config
 Sim = INIT_DP() // initialize Data Plane simulation
[end if]

// Configuring DP
For ni ∈ N Do
 Perbegin(Sim.Exec(CMD_NODE)) // concurrent injection of node config
[end loop]

For (I, j) ∈ E Do
 Perbegin(Sim.Exec(CMD_EDDE)) // concurrent injection of edge config
[end loop]

While(TOPO_CHANGE) //recompute, if a topology change is detected; else spinlock

 153

Algorithm 5 : Topo Sense

Name : TopoBuild

Purpose : Interact with SDN Controller to update topology information

Input : Controller Information (RESTCONF client object)

Output : Flow instruction for Shortest Path injection

Data structure: Di-Graph

Steps:

Do
 Try // read the OpenFlow Table and Topology using RESTCONF

 OFT = RestConf.Operational.request(GET, Inventory)
 TOPO = RestConf.Operational.request(GET, Topology)
 [throws COMM_EXCP]

 Try // get the graph 𝐺𝐺 built using TopoBuild algorithm

 G = Call(TopoBuild(TOPO))
 [throws CONFIG_EXCP]

 Try // Create the Shortest Path vector created using TopoRoute algorithm
 SP = Call (TopoRoute (G))
 [throws GRAPH_EXCP]

For (I, j) ∈ G€ do //Serialize SP configurations into JSON for transport
 CONF(I,j) = JSON.Encode(SP(I,j)) // for all edge

 [end loop]

 Try // Concurrent configuration of nodes, update OFT and TOPO
 Perbegin(RestConf.Config.request(POST, CONF(I,j), Inventory))

 OFT = RestConf.Operational.request(GET, Inventory)
 TOPO = RestConf.Operational.request(GET, Topology)
 [throws COMM_EXCP]

 Catch (COMM_EXCP)
 Reconnect(TIME_OUT) // retry until TIME_OUT timer expires
 [end catch]
 Catch (GRAPH_EXCP)
 Exit(Code = 100) // exit with code 100
 [end catch]
 Catch (CONFIG_EXCP)
 Exit (Code = 200) // exit with code 200
 [end catch]
While(TOPO_CHANGE) // repeat if topology changes; otherwise spinlock

 154

Algorithm 6: TopoRoute

Name : TopoBuild
Purpose : Interact with SDN Controller to update topology information
Input : Controller Information (RESTCONF client object)
Output : Flow instruction for Shortest Path injection
Data structure: Digraph
Steps
Do
 If (INIT == False) Then // If forest is not initialized
 𝑡𝑡 = 0 , LEARN = False // initialize timestamp and Flags
 𝑅𝑅 = �𝑅𝑅(𝑡𝑡)�, 𝐶𝐶 = �𝐶𝐶(𝑡𝑡)� // initialize Cost and Reliability Vector

 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐺𝐺.Adj() // Read adjacency matrix of 𝐺𝐺
 𝐹𝐹 = Call (MRout(Adj)) // Create Route Forest F using MRoute
 IINIT = True // set the init flag
 Else
 RET = 𝜙𝜙 // initialize return Vector
 While |𝐶𝐶| ≤ 𝑊𝑊 Do // accumulate costs until window expires
 𝐴𝐴𝐴𝐴𝑗𝑗𝑛𝑛

(𝑡𝑡) = Call(STEN(Adj)) // Normalize using STEN

 𝐶𝐶(𝑡𝑡) = 𝐶𝐶(𝑡𝑡−1) ∪ �𝑐𝑐(𝑖𝑖,𝑗𝑗)
(𝑡𝑡) | ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 �𝐴𝐴𝐴𝐴𝑗𝑗𝑛𝑛

(𝑡𝑡)�� // update Cost Vector

 𝑡𝑡 = 𝑡𝑡 + 1 // update time index
 If |𝐶𝐶| == 𝑊𝑊 then // if Overflow anticipated
 Delete(𝐶𝐶0) // Slide window by 1
 LEARN = True // Init Learning
 [end if]
 If LEARN == True Then
 For (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝐺𝐺) Do
 // concurrently calculate the reliability for all edges in 𝐺𝐺

 Perbegin�𝑅𝑅(𝑡𝑡) = 𝑅𝑅(𝑡𝑡−1) ∪ � 𝑅𝑅𝑅𝑅𝑅𝑅 �𝑐𝑐(𝑖𝑖,𝑗𝑗)
([𝑡𝑡−𝑊𝑊:𝑡𝑡])� | ∀𝑐𝑐(𝑖𝑖,𝑗𝑗)

(𝑡𝑡) ∈ 𝐶𝐶��

 [end loop]
 RNN.train(𝑅𝑅) //train the neural net with reliability vector
 𝛿𝛿𝑟𝑟 = 𝑟𝑟(𝑡𝑡) − RNN.predict(𝑡𝑡 + 1) // 𝛿𝛿𝑟𝑟 is the deviation of the forecast
 If 𝛿𝛿𝑟𝑟 > CUTOFF then // deviation exceeds the cutoff value

 NEW_RET = �𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑡𝑡)�

𝑁𝑁(𝐺𝐺)2
 //Reliability for all edges

 For (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝐺𝐺) do // for all edges exceeding the cutoff 𝛿𝛿𝑐𝑐
 If � 𝑁𝑁𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑇𝑇(𝑖𝑖,𝑗𝑗) − 𝑅𝑅𝑅𝑅𝑇𝑇(𝑖𝑖,𝑗𝑗)� > 𝛿𝛿𝑐𝑐 Then
 𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝑁𝑁𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑇𝑇(𝑖𝑖,𝑗𝑗) //update cost
 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁𝑁𝑁𝑁𝑁_𝑅𝑅𝑅𝑅𝑅𝑅 // update RET vector
 [end if]
 [end loop]
 [end if]
 [end if]
 [end loop]
 [end if]
While(TOPO_CHANGE)

 155

Figure 40 depicts the overall workflow resulting in a closed-loop system. In the First step, the

TopoBuild algorithm reads the topology information and prepares the DP. Subplot B shows the

emulated wireless topology using Mininet-Wifi from the Physical topology at subplot A. The

OpenFlow protocol communicates with the OVS agent within the OpenDaylight controller to

fetch the topology information (Subplot C). Notice, that the controller accesses the APs as a

regular switch and the UEs as hosts. The TopoSense algorithm senses any change in the network,

and TopoRoute calculates and injects route configuration to the infrastructure plane.

Figure 40 Closed-loop model of self-configuration

 156

4.2.3. Experiments and Results

Figure 41 depicts the time both complexities of various phases and the latency for three use-

cases (1, 7, and 19 sites and three sectors/site with each sector consisting of 1, 25, 50, 75, and

100 users) depicted in Figure 41 (A), (B) and (C), respectively. The Backhaul topology is

configured wired and evaluated for Linear (minimal) and Mesh (Maximal) connectivity. The

time to build the network on the SDN platform is termed as Build Time and Response Time

the SDN takes to initiate traffic flow. Figure 41 (D) compares the breakdown of time

consumption, number of links, and routing time; multi-threaded implementation of the shortest

path algorithm limits the reactive route selection into the sub-second interval.

A. Experimental Setup

In the experiment, the following compute-node setup is as follows. The SLS runs in a

MATLAB server VM with the Database tool running, and the ODBC adapter connects to

MySQL Database. Mininet-wifi VM hosts BSs as APs and OVSs and UEs as stations. ODL

runs in an Ubuntu 64 bit 14.04 VM and the Application server VM hosts the MySQL Database

server along with TopoSense, TopoBuild, and TopoRoute apps. VMWare ESXi 6.5 server is

used for the virtualization.

B. Latency and Time Complexity

Figure 41 depicts the latency of several stages of integration; SLS shares most of it. The setup

phase consumes a significant amount of time depending on the network size and topology; this

includes channel allocation and scheduling, SDN setup, Flow table population, Proactive route

calculation, etc. However, the run-time is reactive and responds on a millisecond scale (Figure

41 (E)) since all the routes are pre-calculated and the network runs on a centralized virtual

platform, which eliminates control packet exchange between devices to learn network topology.

The time complexity of the proactive phase is of a high degree polynomial class, and the

 157

reactive phase is constant; thus, once the SDN is deployed, response time comes down to the

millisecond scale.

Figure 41 Sub-plots (A), (B), (C) depicts the build and response time for minimal (linear) and complete
(mesh) topology of 1, 7 and 19 sites, respectively with 3 sectors per sites. (D) depicts total time consumption
is predominated by the SLS channel scheduling, SDN tasks are comparatively lightweight and Routing
time bounded by sub-second interval. (E) shows the total time consumption has a constant convergence
time (it is too small to be visible on the staked bar chart)

 158

4.3.ShellMon: Intelligent Telemetry System Architecture

Figure 42 ShellMon API architecture

4.3.1. Architecture

The ShellMon API (Figure 42) provides an intelligent telemetry service to the CoRoS

framework. In opposed to the classical telemetry protocol such as SNMP [252], and

NetFlow[253], which are to some extent vendor dependent (e.g., SNMP MIBs and NetFlow

versions), ShellMon provides a blend of two. Additionally, it supports RESTful RPC[254] style

as well as Message Queuing communication for more robust implementation. Following is the

 159

list of features from existing telemetry protocols that have inspired the architecting of the

ShellMon API.

1. Custom data modelling: A Data-model is a serializable data structure that a telemetry

agent populates when polled from the Collector. In Classic SNMP, the Management

Information Base (MIB) is a vendor-specific hierarchical data structure. Similarly, the

classic NetFlow also provides a fixed attribute set. Flexible-NetFlow 19 provides a

custom data model where a user could choose from a list of statistics for collection. It

gives the flexibility of relevant stats collection as per the requirement, also being

efficient to the bandwidth utilization in a scalable and constrained infrastructure.

Current protocols such as NETCONF[255] and its RESTful extension

RESTCONF[256] provide model-driven programmability using the YANG[257] data

modelling language. Although YANG is a widely accepted and used modelling

language, certain caveats might be critical for YANG for establishing telemetry in a

multi-vendor scalable environment. First, the YANG uses an XML[258] based model

descriptor, which does not support native data structures like Dictionary and List.

Therefore, additional translation is needed, which adds further complexity to the

process. Secondly, the data models are vendor-specific. However, there are some open-

source options (e.g., OpenConfig20). Still, they don't contribute much to the collection

flexibility as a developer would require writing a YANG model from scratch to achieve

so. ShellMon uses a JSON-based data descriptor that is far more human-readable than

XML; the user does not have to follow the strict YANG formatting while composing

19 Flexible NetFlow is a Cisco proprietary extension of classic NetFlow, that supports template-based
telemetry. A template defines the attribute and their corresponding statistics that the NetFlow
collector accumulates. For more details visit https://bit.ly/3D6FzJ3

20 For more details on the HTML based models visit https://www.openconfig.net/docs/

https://bit.ly/3D6FzJ3
https://www.openconfig.net/docs/

 160

the model. As most programming languages natively understand JSON documents, no

additional translation is needed.

2. ALL-RESTFul transport: The transport mechanism of a telemetry API is crucial, as,

in scalable infrastructure, it could affect the synchronization speed. Standard APIs such

as SNMP and NetFlow use raw sockets for transporting the data over a negotiated port

number. It could be a single point of failure if an intermediate firewall blocks that port.

Eventually, every time a dynamic port is negotiated between the agent and the Collector,

all the intermediate firewall needs to be provisioned by a new rule, dropping the former.

Therefore, RESTCONF provides the transport using HTTP-based RESTFul API, which

every firewall allows by default. The HTTP body encapsulates the RPC operations,

which are exposed as API endpoints. RESTCONF is available only in high-end network

devices. Thus, it doesn't cover the whole spectrum, and lower-end devices need to rely

on the traditional protocols with their caveats above. ShellMon provides a platform-

agnostic All-REST(Figure 43) architecture that relies on device-independent libraries

such as Psutil and Napalm that use device-specific drivers underneath. ShellMon

Figure 43 ShellMon protocol stack and NETCONF compliance

 161

leverages multi-threading for accelerated in-device metric collection and abstracts the

complete process by RESTFul API endpoints.

3. Dual-Mode collection: All existing telemetry protocols such as SNMP, NetFlow,

NETCONF, and RESTCONF are pull-based. In a Pull model, a collector maintains a

list of agent endpoints (e.g., IP address, Socket ID, or URL) and connects to a Database.

The Collector polls each agent periodically, which triggers the agent to invoke the

collection method. The agent replies with its locally collected metrics. ShellMon can

operate in a Pull-based Model to comply with any RESTful collector using the standard

method. Additionally, it supports a Push-based message queuing technique where the

agent initiates the telemetry to an intermediate message broker using AMQP21. The

message broker decouples the Collector and agent bond and introduces autonomy in

scale and replication without informing each other for enhancing high availability,

security, and load-balancing.

4.3.2. Features

1. No-SQL Realtime Database

ShellMon uses a NO-SQL [259] Database to store telemetry information at the collector

side. As mentioned above, ShellMon uses RESTFul communication with JSON

serialization format. The collected data is stored in a hierarchical format, e.g., Figure

44 depicts an example of the node utilization data model. An RDBMS model to keep a

similar structure would require complex table design, primary and foreign key mapping,

normalization, and functional dependencies. A NO-SQL database solves the issue by

storing the JSON data and allows JSON-based queries. That said, migration to a big-

21 For more information on AMQP, visit https://bit.ly/3ofd7yn

https://bit.ly/3ofd7yn

 162

data analytics engine is seamless as most options such as Hadoop. Additionally, it

supports NO-SQL databases with map-reduce for scalability.

2. Secure data acquisition

End-to-end encryption is crucial to provide confidentiality to the data during

communication in transit. This eradicates eavesdropping from untrusted entities as they

cannot decrypt the encrypted cypher. OpenSSL would be leveraged to create Secure

Sockets Layer (SSL) certificates that would be used to encrypt communications during

transit. OpenSSL is a robust and well-known tool for Transport Layer Security (TLS)

and SSL protocols. It is open-source and free for commercial and non-commercial

purposes. A private Certificate Authority (CA) is created using OpenSSL to generate a

root certificate and private key. After that, the root certificate is added to all

participating devices, and then all certificates that are created and signed will be

inherently trusted by those devices.

Figure 44 ShellMon data model for node utilization telemetry

 163

3. Asynchronous communication with AIOHTTP

In a pull-based collection mode, the ShellMon Collector periodically polls the agents

for their local metric. There are two bottlenecks in the mechanism, sequential polling

of the agent is not scalable; therefore, asynchronous communication is used where each

request-response takes place in an independent thread. However, HTTP, the carrier

protocol for RESTful APIs, is not asynchronous by design; therefore, performance does

not increase as if it were a full asynchronous communication. ShellMon uses a full-

asynchronous RESTful transport by altering the HTTP to Asynchronous I/O HTTP

(AIOHTTP 22]) based transport. Additionally, the database update is also multi-

threaded; each session concurrently inserts the telemetry data to the No-SQL database

acquiring a lock to eliminate any inconsistency. The Analyzer program reads from the

Database parallelly and estimates statistics using moving average with a given window

size to eliminate any spikes.

4. Load Balancing and Fail-over

 Pull-Based Model: For a pull-based model, failover and load balancing require

explicit implementation. ShellMon provides high modularity through its full-REST

communication architecture. A single secure asynchronous RESTful fabric connects the

clients, servers, and the Database. The host file lists the agents to monitor; therefore,

load balancing can be achieved by segregating the agent list into multiple host files.

To eliminate the single point of failure from the Collector's perspective, it is

vital to introduce multiple collectors. They will form a collector target group that is

responsible for collecting data from the client nodes. Therefore, traffic would be

22 For more information on AIOHTTP visit https://bit.ly/3bVgm8C

https://bit.ly/3bVgm8C

 164

automatically distributed across the collector target group. This is to ensure traffic

optimization so that no collector is overwhelmed. A control agent would then supervise

the target group responsible for managing collectors and spinning up new collectors in

case of a failover. This is achieved as each collector exposes a health check endpoint

that the control agent uses to monitor them. If a collector fails three health point checks

in a row, the control agent marks it as unhealthy. It then sends a notification to the admin.

Additionally; it distributes the load of the unhealthy Collector to other healthy

collectors.

4.1. Push-Based Model: A decoupled architecture has been used to ensure a smooth

transition between a fell over and reinstating the server. A decoupled architecture

guarantees that each component of the service can perform its tasks independently.

Therefore, each piece remains wholly autonomous and unaware of the other. This

allows for the functionalities running in each element to be self-contained. This is

achieved by using a messaging queue. In this scenario, the collectors and the client

nodes do not communicate directly with each other. However, they communicate using

a messaging queue.

An Advanced Message Queuing Protocol (AMQP) 23 broker establishes

communication between the collectors and the client nodes. AMQP is a lightweight

messaging protocol that is used to transport messages between devices. It uses a

publish-poll communication means and is ideal for connecting remote devices with a

small code footprint and minimal network bandwidth. This is accomplished by using

topics. Therefore, clients subscribed to a topic will receive messages published on that

23 AMQP official documentation https://www.amqp.org/

https://www.amqp.org/

 165

topic. It uses a routing mechanism to deliver messages to queues based on the message

routing key. Additionally, it supports authentication and encryption using TLS to ensure

a well secure communication medium.

AMQP supports clustering natively; each AMQP broker synchronizes their

queue with others. In a failover scenario, the brokers maintain seamless replication of

queue contents. Therefore, the poll-based model provides load balancing and failover

natively.

 166

Chapter Summary

This chapter discusses the architecture and methodology to integrate a system-level simulator

with a software-defined networking infrastructure using a relational database as middleware.

Further, it gives a comparative analysis of using GNS3 and Mininet Wi-Fi-based DP. The

sequence model shows the data and control flow among several percolating entities. The data

model of the middleware describes the information structuring, and a set of algorithms to fetch

and replicate will extend this architecture by appending an analytics plane on top of it. Data

analytics empowered by deep learning algorithms will learn the run-time behaviour of the

network and help to improve network automation, self-organization, and state prediction ability.

The resultant architecture facilitates the end-to-end performance evaluation of 5G and beyond

5G use cases such as 5G-V2X where latency is a critical performance metric.

 The ShellMon intelligent telemetry API architecture gives an insight description to

facilitate data accumulation in a hybrid SDN architecture. The robust mechanism and the

modular organization provide seamless extensibility and adaptability for future upgrades.

 In summary, the chapter explains the compliance with the Self-Configuration property

of the overall architecture for 5G and beyond Self-Organized networks.

 167

Chapter 5: Self-Healing

Small cells are deployed on cellular networks' edges to provide low latency response to the

nearby connected devices. In the case of robust traffic, small cells can offload their burden to

the surrounding small cells, and this process is known as cell breathing. The other competing

vendors mostly overlap the coverage area of one cellular operator, and there must be some

reliable incentivizing mechanism to encourage resource sharing among the small cells of

multiple operators. Uneven distribution of computation or communication load on the cell

controllers results in a disparity in energy consumption. Service migration is a process that

unloads an overloaded controller by transferring its services to an under-loaded one. A reactive

migration always ensures optimal load balancing by their convergence and also meeting the

scalability requirements.

 Blockchain has already proven its relevance in maintaining trust and reliability among

multiple independently operating entities. However, to the best of our knowledge, no one has

proposed the blockchain for achieving reliable cell breathing among the small cells of multiple

operators. This chapter discusses Cellchain, a blockchain network for achieving reliable cell

breathing among the multi-operator small cells. Further, the chapter presents a proof-of-

concept implementation over a virtualized SDN testbed that incentivizes reliable VNF sharing

using containerized services deployed over the Raspberry Pi-based small cells. Experimental

results show the efficiency of Cellchain for reliable cell breathing and the realization of tactile

internet by confining the response time to 1ms based on the reliable infrastructure sharing

between multiple operators.

 168

5.1. Introduction

Cloud computing advocates [260] the availability of unlimited resources, and this illusion of

infinite resources has attracted a considerable number of users in the last decade. This results

in the tremendous increase of burden on the server infrastructure, and intercloud caters as a

solution for tackling the burst traffic with limited cloud resources. Intercloud refers to the

cooperative sharing of cloud infrastructure between different cloud service providers. Another

solution to the increasing cloud burden is MEC), which refers to shifting computing from the

cloud to the network edges.

 MEC reduces the burden from cloud infrastructure and increases the Quality of

Experience (QoE) by reducing the latency. However, as compared to the limited resources of

the cloud, edge resources already exist in scarcity. Hence, the intercloud-like cooperation

among multiple MEC providers makes more sense, but it is more challenging to achieve it in

MEC. The collaboration in MEC cannot be dedicated to the central authority, like the intercloud,

as it increases the latency and reduces the QoE.

 The absence of central coordinating authority results in the trust deficit among the

cooperating entities of MEC. Blockchain has established trust among the independently

operating entities by shifting dependency from the primary entity to the independently

operating entities. Hence, Blockchain is a well-proven solution for establishing trust among the

intercloud-like cooperating entities in MEC, and this chapter presents the Blockchain-based

reliable cooperation among multiple independently working MEC operators.

This chapter focuses on small cell-based MEC deployments. As evident from their self-

descriptive name, small cells have limited capacity and resources and thus use the concept of

cell breathing to offload their burden to the neighbouring cells. Small cells are crucial for the

next-generation networks as they help achieve the constraint of 1ms latency in future networks.

 169

However, instead of deploying the small cells in greater density, it is better to facilitate

intercloud cooperation among multiple small cell operators.

 With the emergence of the Tactile Internet, multi-operator cell breathing is no longer

optional. Tactile internet supports heavy computational applications like virtual and augmented

reality. This heavy computation in Tactile internet requires multi-operator coordination at the

level of the small cell. This paper presents a Blockchain-based reliable, rewarding system for

accomplishing the multi-operating cell breathing where each operator runs a blockchain miner

(covered in subsection), which controls the data added to the blockchain. Each operator gets

the time as a reward when one of its small cells shares the computation of another small cell of

other operators, which in turn spend its already earned time reward.

 Miners of multiple operators monitor the time-based rewards through a distributed

consensus algorithm, and NFVs (Network Function Virtualization) host the miners on the small

cell of an operator. Each small cell invokes a resource-aware self-migration algorithm

(Algorithm 3) which switches the miner between different small cells of an operator to avoid

the overburdening of small cells due to the execution of the mining process by the blockchain

miners.

This chapter introduces Cell-Chain with a three-fold contribution, listed below.

1. The first contribution is a self-resource-aware migrating algorithm for seamless shifting of

an NFV based blockchain miner among multiple small cells of an operator. It enables the

integration of blockchain at the levels of the small cell without deploying the dedicated

machines for executing the mining process of blockchain.

2. The second contribution is the implementation of CellChain as a consortium-based

blockchain to achieve intercloud-like reliable resource sharing among the small cells at the

edge of the network. The consortium-based blockchain ensures the restricted access of the

CellChain among the pre-selected operators.

 170

3. The third contribution is to implement the time-based rewarding system, monitored by the

distributed consensus among the miners of consortium members of CellChain. Raspberry

Pi with a wireless antenna has been used to present a small cell and has deployed a testbed

of multiple small cells of various operators.

Experimental results of this testbed depict the effectiveness of CellChain in reducing the

burden of small cells through the multi-operator cells breathing.

5.2. Cell Breathing: An enabler for Tactile Internet

This section describes the small calls, cell breathing, and tactile internet, along with the

importance of cell breathing for Tactile Internet [261].

5.2.1. Evolution of Internet-based communication

Initially, the internet originated as a network of wire-connected systems for file sharing. With

time, it has gone through the following evolutionary phases for supporting the human-to-

machine interaction in tactile internet (Table 18).

Evolution Description
Fixed Internet The first generation of the internet and based on the land-line

telephonic infrastructure.

Mobile Internet (H2H) Currently deployed and focuses on human-to-human (H2H)
communication by providing audio, video, and data exchange
services.

Things Internet (M2M) It focuses on machine-to-machine (M2M) communication and is
currently being practised at a limited scale compared to H2H
communication and aims for full coverage after the deployment
of 5G.

Tactile Internet (H2M) It focuses on real-time human-to-machine (H2M) interaction

with up to 1ms latency. It will also enable humans to control the
next generation of robotic systems remotely. It is currently an
active topic of research and is yet to get deployed in production.

Table 18 Evolution of the Internet

 171

5.2.2. Classification of Small Cells

Small cells are radio access nodes of low-power and have a coverage range of a few meters up

to a mile in radius. Small cells are opposite to Macrocells which have a range of up to 20 miles.

Small cells can be either of the following three sub-categories based on scope and capabilities

(Table 19)

Small Cell type Description
Femtocells They are usually installed by the user and are limited in capacity

and coverage. They can be deployed for a building and can support
very few simultaneous connections.

Picocells They are also known as indoor Metrocells and support up to a
hundred users with a range of around 250 yards.

Microcells They are also known as Metrocells or outdoor Metrocells and are
closer to the Picocells' capabilities, but they may have a coverage
range up to a mile. Microcells can also use power control to limit
the coverage range.

Table 19 Classification of Small Cells with their brief descriptions

5.2.3. Cell Breathing and its Importance for Tactile Internet

Macrocells are well equipped with enough resources to support the considerable traffic. In

contrast, Small Cells are limited in capacity and resources; therefore, in case of burst traffic,

small cells offload their burden by sharing it with Macrocells, and this concept is known as cell

breathing. However, cell breathing is not limited to Macrocells, and small cells can also offload

burden with each other to accomplish cell breathing. As tactile internet requires more

computation for mapping the H2M interaction, cell breathing is essential for supporting its high

computational needs.

 Usually, the neighbouring cells of a small cell belong to other operators, and intercloud-

like multi-operator cell breathing can help the operators offer the services with relatively fewer

small cells. The collaboration at the intercloud level is reliable as the central authority in the

cloud accomplishes it, but similar collaboration at the Small Cell level is not reliable due to the

 172

absence of a dedicated central authority. The CellChain model addresses the problem above by

offering distributed trust in the small cells of multiple operators.

5.3. CellChain: An enabler for Reliable Multi-Operator Cell-Breathing

This section elaborates on the role of blockchain in achieving reliable, rewarding system-based

cell breathing among the small cells of multi-operators.

5.3.1. Blockchain for Reliable Multi-Operator Cell Breathing

We are using the consortium blockchain, which is one of the blockchain network types [262],

to allow the cells that belong to the pre-defined operators as the consortium members. Every

participating operator gets a miner, which is responsible for adding new blocks (data) to the

blockchain and thus controls the growth of the Blockchain [263].

5.3.2. Blockchain for Reliable Rewarding System

The picture can't be displayed.

Figure 45 Reliable Rewarding System for Inter-operators Cell Breathing

 173

Figure 45 shows two planes of Blockchain and the cell breathing plane. Both of these planes

exist parallel to each other. Both 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙2 in the Cell Breathing plane belong to different

operators; therefore, when cell breathing occurs between them, its details will be reliably stored

in the blockchain after executing consensus algorithms. However, we assume that any 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑋𝑋 if

shares computation with another cell must be under the same operator. Hence, the blockchain-

based rewarding system will activate when cell breathing occurs between the same operator's

small cells. Otherwise, the total time of cell breathing becomes the reward to the operator

whose cell is performing the computation on behalf of the other cell. This time is earned as a

reward for the future to offload the computation of its own.

5.3.3. Execution flow of Blockchain-based CellChain

Figure 46 shows the execution flow of the cell chain. The following steps explain the execution

details of the CellChain:

1. A new node that is associated with a member operator is sending a request to join the cell

chain. The operator responds to it but also broadcasts its information to the other operators.

2. The new node subscribes to the MQTT broker to share its peer rank and know the peer

rank of other small cells. It uses Algorithm 3 for calculating its Rank.

3. Algorithm 4 invokes the container migration process and observes the cell breathing. This

step also broadcasts the starting time of the cell breathing to store it in the blockchain.

Figure 46 Execution flow of CellChain

 174

4. Broadcast the end-time of the Cell Breathing process, which the Blockchain stores.

5. A consensus algorithm results in shifting the credits between the participants of the Cell

Breathing process.

5.4. Design and Implementation of CellChain

The experimental setup uses Docker containers for hosting the two types of VNF. The first type

is related to the miner, and instead of confining it to a dedicated machine, containerized services

can migrate to the Small Cells of the same operator. The other VNF is for computation sharing,

and they stay in both small cells of the same operator and the operator.

5.4.1. System Architecture

Figure 47 System Architecture of CellChain Wi-Fi

Figure 47 depicts the schematic diagram of the system. A Mobile Platform (MP) is a node that

hosts several VNFs as docker containers. An MP equips at least two antennas; one connects the

 175

end devices (e.g., Fronthaul or access), and the other connects among MPs (e.g., Backhaul or

Core). An SDN controller governs the inter-MP communication using SDN switches.

5.4.2. Implementation of the CellChain RAN

Figure 48 shows the physical implementation of the Radio Area Network (RAN). APs are

stationary whereas Mobile Platforms (MPs) such as an AP sitting in a vehicle may move. Each

MP has at least two Wi-Fi antennas. The Backhauling connection with the AP provides

connectivity to the IoT devices as a Co-Access Pont (CAP). MP works as a gateway for the

associated IoT devices and hosts the broker application different IoT protocols use. It also runs

a DHCP & DNS server to isolate the IoT logical address space from the underlying network.

Each CAP support handover through Wireless Distribution System (WDS). We assume all the

MPs share the same SSID and IP address space to accommodate all connected IoT under the

same subnet. The APs are the Internet Gateways for the network. To avoid interference, CAPs

run at 2.4GHz and APs at GHz frequency24. Communication between APs and MPs mimics

24 The 2.4GHz band has less FSPL and higher coverage than but less throughput compared to
the 5GHz band. In case of multiple fronthaul antennas, they must be on non-overlapping channels.

Figure 48 Physical implementation of SmallCell using Raspberry pi and Docker

 176

the Backhaul, and MPs and IoT end devices are fronthaul communication concerning the actual

telecom establishment.

5.4.3. Monitoring & Containerization with Docker

The experiment uses Raspberry Pi as physical MPs and APs are Open V-Switches (OVS), as

depicted in Figure 48. Each runs two main applications, A Python-based custom monitoring

tool called ShellMon and Docker engine. In this architecture, the MP host containerized

services using Docker. Containers help keep the application code and its runtime together, save

space as no kernel installation is needed, and thus result in faster migration. ShellMon

periodically collects the resource utilization information such as CPU, memory, storage,

bandwidth, remaining battery, etc., and computes a cumulative utilization metric called Z-value.

A container is selected if the Z-value exceeds a certain user-specific threshold, and the

migration process gets initiated to a suitable target. The OVS nodes connect to an SDN

controller such as OpenDaylight over an out-of-band OpenFlow channel

5.4.4. Configuration for Internal Communication

Raspberry Pi runs Raspbian Operating systems. Each raspberry Pi board embeds a physical

Wi-Fi antenna used for connecting APs and external USB Wi-Fi antennas to connect the end

devices. Figure 48 depicts how the container networking between the Raspbian kernel and the

Docker engine. Raspbian is a Linux-based distribution that natively supports kernel routing.

Docker engine running on top of the kernel supports both Bridge and Network Address

Translation (NAT) mode. The Default network configuration of Docker is NAT; however, the

experiment uses a bridge connection so that the containers share the same IP address space as

that of the physical network. It also preserves the container IP address, even if it migrates to a

different engine. DHCP and DNS services may run as a container or directly on the kernel.

Whenever an end device wants to connect, the subjected MPs respond to the DHCP Discover

 177

message and provide IP addresses from the DHCP pool to isolate the end-device address space

from the container address space.

5.4.5. The Cell Rank Algorithm

The Cell Rank Algorithm (Algorithm 8) is one of the two principal algorithms of ShellMon. It

runs as a subroutine of the other one. Cell Rank performs the following tasks:

1. It periodically gathers local resource information and computes cumulative utilization

metrics (𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣).

2. It Broadcast local 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 among the other MPs.

3. It Receives 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 from remote MPs.

The following stages describe the working mechanism of the Cell Rank algorithm.

1. Initialization: The algorithm starts with an empty dictionary structure (𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) keyed at

the IP address of MPs in the network and valued with their respective 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.

2. Update Items: When a new MP gets added, it broadcasts a subscribe (SUB) message

and its IP address in the network. After receiving a SUB, all other MPs add the

subscribed IP to their respective 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 valued with 0. Likewise, while leaving the

Network, it broadcasts an unsubscribe (UNSUB) message, which other MPs remove

the corresponding entries. If no updates appear for a certain amount of time (user-

specific), the algorithm treats the silent MP as dead and eventually removes the

corresponding entry.

Table 20 Cell Rank parameters

Parameter Usage Measurement
𝑈𝑈𝑐𝑐 CPU Utilization in percentage [0,1] ∈ ℝ+
𝑁𝑁𝑐𝑐 Number of CPU cores ℕ
𝑁𝑁𝑀𝑀 Memory volume GB
𝑈𝑈𝑀𝑀 Memory Utilization in percentage [0,1] ∈ ℝ+
𝑁𝑁𝑠𝑠 Free storage space GB
𝑈𝑈𝐵𝐵𝐵𝐵 Bandwidth utilization (Load on the interface) [0,1] ∈ ℝ+
𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ Remaining battery (set to 1 if line-powered) [0,1] ∈ ℝ+

 178

3. Collect Resource Information: The Cell Rank algorithm periodically accumulates the

following parameters from the devices to decide a migration trigger (Table 20).

4. Normalization: At any given instance 𝑡𝑡 , the cumulative utilization 𝑍𝑍𝐸𝐸|𝑇𝑇 is the

normalized Z-value of an edge node E (Eq. 29).

𝑍𝑍𝐸𝐸|𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑈𝑈𝑐𝑐,𝑈𝑈𝑀𝑀,𝑈𝑈𝐵𝐵𝐵𝐵,𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ ,𝑁𝑁𝑐𝑐 ,𝑁𝑁𝑀𝑀 ,𝑁𝑁𝑆𝑆)

 = 𝛼𝛼1 �
𝑁𝑁𝑀𝑀
𝑈𝑈𝐶𝐶
� + 𝛼𝛼2 �

𝑁𝑁𝑀𝑀
𝑈𝑈𝑀𝑀

� + 𝛼𝛼3(1 − 𝑁𝑁𝑠𝑠) + 𝛼𝛼4 �
1

𝑈𝑈𝐵𝐵𝐵𝐵
� + 𝛼𝛼5(1 − 𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′)

 ∀𝛼𝛼𝑖𝑖 ∈ [0,1] ,�𝛼𝛼𝑖𝑖 = 1
𝑖𝑖

Eq. 29

The normalization uses the CPU and memory utilization per core and volume,

respectively. The inverse of the storage and battery utilization as less space and battery

charge increases the utilization cost. ΑI are weighing coefficients by default set as 1
5

=

0.2 to give equal priority to all components. The priority values are subject to user

choice for influencing one component than the other, given they summed up to 1.

5. Publish and Receive: All MPs periodically publish 𝑍𝑍𝐸𝐸|𝑡𝑡 . If any communication

exception happens, the MPs keep retrying until a timeout event occurs. The period

sleeps for a time-interval 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and collects 𝑍𝑍𝐾𝐾|𝑡𝑡 from other K MPs except E to

prevent redundancy and broadcast storm. 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 holds the 𝑍𝑍𝐾𝐾|𝑡𝑡 entries and gives

constant time lookup.

 179

5.4.6. The Cell Breathing Algorithm

This algorithm is responsible for initiating the container migration (Algorithm 8). It takes three

inputs, ZK|t (temporal utilization of MPs from Cell Rank algorithm), ZCut (the utilization

threshold after the migration is triggered), Tout (A sliding time window for calculating the

utilization's moving average). Let it be running from MPk; the following are the steps of the

algorithm. This section explains the Algorithm for Cell Breathing.

1. Spin Lock: The algorithm waits until the local utilization ZE|t exceeds the threshold

Zcut . In such a case, it checks if the mean utilization for the time window Tout has

crossed the threshold value. This prevents any accidental trigger due to a spike in

utilization.

2. Find Migrant Container and Target: If the mean utilization surpluses the threshold

value, the algorithm selects a target MP from the local dictionary 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 with the

minimum utilization. Based on the round-trip time (RTT), a decision variable defines

the candidate boundary to comply with the Low-Cost Low-Delay (LCDC) constraint,

which prevents any infeasible migration decision to a node which most favourable by

its utilization perspective; however, it is too far that the migration process might take

longer. The next task is to find the Migrant container. Among the running container

from the source MPE , the algorithm finds a container Cq such that it is consuming

maximum resources. The idea is to select a Migrant container that will relax the overall

load the most.

3. Prepare Migration: The algorithm first saves the running state of the Migrant

container (Pre-Copy) by committing the running container into a compressed image file

(Cq.img). However, the container keeps running. The pre-copy option helps preserve

the state of a service when migration is anticipated. Additionally, the unique hash that

 180

is calculated for the Blockchain (discussed in a later section) remains consistent if the

service is a snapshot using the pre-copy method.

4. Migration: Assuming the MPs use Message Queueing Telemetry Transport protocol

(MQTT) to transfer the Cq.img file from 𝑀𝑀𝑃𝑃𝐸𝐸(source) to 𝑀𝑀𝑃𝑃𝑇𝑇 (target). The migration

process initiates a stream transfer; alternatively, via Secure File Transfer Protocol

(SFTP).

5. Restart Container: If the transfer completes successfully, the target MP first

decompresses the image file, then loads it into its local image registry and signals the

source MP about the job completion. The source MP then stops the Migrant container

locally and acknowledges the target MP, which runs the container at the remote site.

The handshake mechanism reduces the downtime of the service significantly.

 181

Algorithm 7 Cell Breathing

Input: ZK|t , ZCut , Tout

Output: Boolean

Data Structure: Ordered List

Steps:

Do
 While (ZK|t < Zcut) do
 Ztot = 0 // initializing local sum
 For t in [0 ∶ Tout] do
 Ztot = Ztot + ZE|t // cumulative utilization
 [end loop]
 If ztot

Tout
≥ Zcut then // Mean utilization exceeds the threshold

 [LABEL-1]
 𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑍𝑍𝑖𝑖 ∀𝑖𝑖 ∈ {𝑀𝑀𝑃𝑃𝑘𝑘} , 𝑖𝑖 ≠ 𝐸𝐸 // find Target

 𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗

𝐶𝐶𝑗𝑗 ∀𝑗𝑗 ∈ �𝐶𝐶𝑗𝑗� 𝑜𝑜𝑜𝑜 𝑀𝑀𝑃𝑃𝐸𝐸 // find Migrant

 Commit CQ
 𝐶𝐶𝑄𝑄 . 𝑖𝑖𝑖𝑖𝑖𝑖 = Compress(CQ)
 STATUS = send(CQ. img, MPP) // send 𝐶𝐶𝑄𝑄. 𝑖𝑖𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑃𝑃𝑃𝑃
 If STATUS == OK then // successful migration
 Remote login to MPP
 Stop CQ at MPE
 Run CQ at MPP
 Exit remote session
 FLAG = True
 FAIL = 0 // reset failure counter
 Else
 FAIL = FAIL + 1 // increase failure count
 If (FAIL > MAX_FAILS) then
 Break // exit if max retry attempt exceeds
 [end if]
 Goto LABEL-1 // unsuccessful unsuccessful, retry
 [end if]
 FLAG = False
 [end if]

[end loop]
While (True)

 182

Algorithm 8 Cell Rank Algorithm

Input : TInterval , AddrBroker

Result : Raises Exception is Broker or Network malfunction is detected

Data Structure: Dictionary 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝑘𝑘 ∶ 𝑍𝑍𝐾𝐾|𝑡𝑡� , Message Queue

Steps:

Do
 If (EVENT == “Attachment Req”) then
 K = Req.ID // fetch node ID from request message
 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐾𝐾] = 0 // initialize node K’s util as 0
 Else If (EVENT == “Detachment Req”) then
 K = Req.ID
 Zdict. drop(K) // remove the entry of 𝐾𝐾 from 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 [end if]

 //Collect instantaneous system information of node MPE at time t
 𝑈𝑈𝑐𝑐 = SYS.CPU_UTIL
 𝑁𝑁𝑐𝑐 = SYS.CPU_CORE_COUNT
 𝑈𝑈𝑀𝑀 = SYS.MEM_UTIL

𝑁𝑁𝑀𝑀 = SYS.MEM_VOL
 𝑁𝑁𝑆𝑆 = SYS.STO_AVAIL
 𝑈𝑈𝐵𝐵𝐵𝐵 = SYS.NET_LOAD
 𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ = SYS.BAT_AVAIL

 𝑍𝑍𝐸𝐸|𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑈𝑈𝑐𝑐,𝑈𝑈𝑀𝑀,𝑈𝑈𝐵𝐵𝐵𝐵,𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵′ ,𝑁𝑁𝑐𝑐 ,𝑁𝑁𝑀𝑀,𝑁𝑁𝑆𝑆) // Eq. 28
 Publish �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑍𝑍𝐸𝐸|𝑡𝑡 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸� // publish the utilization

 If not (Boker_Exception || Communication_Exception) then
 Collect �𝑍𝑍𝐾𝐾|𝑡𝑡� ∀𝑘𝑘 ∈ 𝑀𝑀𝑀𝑀 ,𝐾𝐾 ≠ 𝐸𝐸
 For K in Zdict do
 𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐾𝐾] = 𝑍𝑍𝐾𝐾|𝑡𝑡 // Update the dictionary
 [end loop]
 Sleep(Tinterval) // Sleep
 Else:
 Raise Exception
 [end-if]
While (True)

 183

5.4.7. Time Series Prediction of 𝐙𝐙_𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯

Calculating the mean utilization during the Spin Lock phase of the Cell Breathing algorithm

(Step 1) involves a prediction component. Values from time-window Tout fits into a polynomial

fit algorithm. The fitted polynomial is then extrapolated up to 3rd order. The obtained value is

returned. This may predict a value for a growing 𝑍𝑍𝑘𝑘|𝑡𝑡; it also ignores the outlying spike for

fluctuating graphs. (Figure 49)

5.5. Implementation of the Migration Framework

Figure 50 depicts the deployment diagram of the container migration framework. The nodes

represent a physical or virtual network function (e.g., Raspberry Pi, Routers, switches, etc.)

connected over a shared network. Every node hosts an operating system that runs a Docker

engine (for VNF placement) alongside ShellMon (for resource monitoring) and Migrator Agent

that listens to the migrator-orchestrator for triggering migration. Relocatable VNFs are run as

Figure 49 Forecasting of Utilization by extrapolating fitted polynomial

The picture can't be displayed.

 184

VNFs on top of the container engine. Modes of communication between migrator-orchestrator

and agents are of three types discussed later in this section.

5.5.1. Migration Process

This section describes the experimental setup for the migration orchestrator (Figure 50)

1. The end devices such as IoT or UE send service requests such as Discover messages,

Data etc., to a gateway device hosted by the MP. In the experiment, we used Raspberry

Pi 3Bs as the MPs

2. Gateway redirects the request to a Docker container running the appropriate VNF to

service the request.

3. The VNF returns the outcome to the gateway, which it eventually replies to the end

device

Figure 50 Communication model for VNF Migration

 185

4. Resource utilization of the local device periodically relays to the ShellMon program

that runs the Cell Breathing and Cell Rank algorithm to monitor and analyze the

utilization patterns.

5. ShellMon receives utilization data of remote MPs and broadcasts its local data.

6. If Migration is needed, ShellMon calls for it, and the Cell Breathing algorithm initiates

the procedure

7. Migration takes place between a pair of MPs

8. The immigrant container gets detached from its source and attached to the destination

MP and restores its state.

9. The end device re-establishes the communication with the containerized VNF using

new the MP

5.5.2. Communication Modes

Seamless communication between the migrator-agent and the orchestrator is critical for the

process. We propose three modes of communication.

1. Peer Mode: In peer mode (Figure 51), the agent communicates with the orchestrator

using a secure TCP socket. Agents encapsulate periodic updates and send them to the

orchestrator. Similarly, the migration request is sent by the orchestrator to the agents.

Figure 51 Communication in Peer mode with Sockets

 186

2. Database Mode: In database mode (Figure 52), agents don’t communicate with the

orchestrator directly; instead, they periodically update the information to a logically

centralized database server, from which the orchestrator fetches. In our experiments,

we used both SQL (using MySQL) and NO-SQL(using Hadoop-HBase) databases.

Figure 52 Communication in Database mode using the centralized database server

Broker Mode: The Broker mode (Figure 53) uses an intermediate message broker, through

which agents communicate with the orchestrator. In our experiment, MQTT is the telemetry

protocol. Agents publish monitoring information using the broker, from which the orchestrator

subscribes. The migration request, specifying the source and the target nodes, is Published by

the orchestrator and received by all nodes, but only the subjected nodes engage themselves in

the migration process.

Figure 53 Communication over broker mode using MQTT

 187

5.5.3. Blockchain Integration

VNF originated from one node in this architecture and keeps migrating across the network

based on the instantaneous load on the nodes and QoS. The migration of any VNF throughout

its lifetime is critical to be traceable, as it is vulnerable to any rouge VNF injected into the

system and tracked the mobility. The proposed architecture uses Blockchain integration to

serve this purpose. Every migration is treated as a transaction and is recorded into a Blockchain.

Since Blockchain is immutable, every VNF can be tracked down to its origin. Figure 54 depicts

the blockchain integration.

5.6. Experimental results

We have used two different types of VNFs. One VNF is for the miner, which can only be shared

within the Small-Cells of the same operator, and the other VNF is for the computation and can

Figure 54 Integrating VNF migration across Small Cells

 188

be shared within the Small Cells of the same vendor or across different vendors. To

automatically shift the VNFs between different small cells, we have implemented Algorithms

1 and 2. We have also performed experiments to find the accuracy of implemented algorithms,

and this section covers experimental setup and experimental results.

Figure 56 Self-triggered Migration of VNF

Figure 55 Convergence of node utilization

 189

Figure 56 shows the experimental data acquired from an arbitrary MP demonstrating self-

migration. In this graph, X-axis denotes the time window of 100 seconds, and Y-axis denotes

utilization in the [0,1000] range. The red dotted line passing through the 400-utilization mark

denotes the threshold value (Zcut) at 40%. The remaining colour-coded curves are labelled in

the legend. The Following describes the migration. In the interval [0, A], there is some instance

when Zvalue curve crosses the threshold mark. But as the majority stays under the limit, the

Cell Breathing algorithm triggers the migration. In the interval [A, B], some CPU and network

activity takes the utilization mostly above the threshold value. Hence the Migration is triggered.

In instance B, a sudden activity in-network utilization is registered due to the container image

transfer, which continues until time C when the transfer commences. The victim container is

also stopped; thus, the CPU utilization comes down.

Figure 49 shows the time series prediction of Z values. The X-axis denotes the relative

times-tamps (in seconds), and the Y-axis is the Z-Values encountered at the corresponding time

with dots representing the samples. The time series prediction fits a polynomial over the data

samples and forecasts the utilization by extrapolating; hence the prediction is made. Since the

curve fit follows the moving average of the data samples, it doesn't consider the outlying spikes.

Figure 55 shows the convergence property of the migration algorithm which includes three

nodes during the experiment. Moving average-based prediction smooths the fluctuations and

removes any spikes. At first, the Red node is stressed; when the stress level exceeds the average

load of the network, tasks from the Red node are offloaded to the Green node. The Green-node

is then stressed further, which results in tasks being offloaded to both the Blue and Red-node,

and convergence is met.

 190

Chapter Summary

Cell breathing allows small cells to offload their burden to the nearby small cells for continuing

the seamless services. Cell breathing among neighbouring small cells of multiple vendors

enables the service providers to cover more areas with comparatively fewer resources.

However, this multi-vendor collaboration can only be realized after the trust is established

between cooperating operators.

 This Chapter provides a trust management solution at the small cell level, without

involving a central entity. This is achieved through a consortium blockchain where each vendor

is hosting a miner at its co-located small cells. Instead of using the dedicated nodes for running

the miners, the Cell Rank and Cell Breathing algorithm collaboratively transfer containerized

services between different small cells of a vendor. The resultant architecture can automatically

offload the computationally intensive jobs between small cells of different vendors, but miners

are only transferred to the small cells of the same vendor.

 In summary, the chapter explains the role of service migration as a tool to comply with

the Self-Healing technique in 5G and beyond. Additionally, the self-migration architecture

ensures security by the Blockchain integration to prevent any MITM and DDoS attacks.

 191

Chapter 6: Conclusion & Future Directions

6.1.Conclusion

This thesis investigates the design and development of a cognitive routing framework

compliant with the Self-Organization characteristics of the Knowledge Defined Networks (SO-

KDN) targeting the requirements of the fifth generation and beyond communications systems.

The contributions to knowledge address all three layers of SON: self-Healing, self-

configuration, and self-optimization. Chapter 1 introduces the key concepts relevant to the

discussions conducted in the following chapters and outlines the research contributions: SD-

WAN, SDN integration, SDN-Routing, and Cognitive routing. Chapter 2 investigates the state-

of-the-art of elementary topics which have motivated and helped to reason the research

framework. These are QoS aware routing, Hybrid SDN architectures, ML’s application to

routing optimization, Self-Healing technologies, and 5G SON.

The Self-Optimization problem is covered in Chapter 3, which introduces three novel

algorithms (STEN, MRoute, and MRRF) that work in conjunction to accomplish routing

optimization in a KDN. Firstly, Stochastic Temporal Edge Normalization (STEN) devises a

method that fuses node and link costs. This process results in an isomorphic transformation to

the underlying network topology, which helps the routing algorithms to avoid nodes that are

computationally overloaded while computing routes. Secondly, the Multi-Route (MRoute)

algorithm takes a hybrid routing approach, where it proactively enumerates all possible paths

between all pairs of nodes in the network topology and stores them in the form of a state-

machines, which in turn get distributed in case of a larger multi-controller deployment. The

runtime of MRoute uses a reactive approach to rank the discovered routes using reliability

metrics. The use of data structures with a constant-time lookup capacity and proactive topology

 192

enumeration results in a constant-time routing convergence. MRoute leverages the STEN while

computing the inter-node costs. Thirdly, Most Reliable Route First (MRRF) analyses the

change in costs and measures the reliability of the links using deep-learning models. As a result,

the optimal routes are calculated based on the anticipated reliability rather than the costs

themselves, which prevents frequent route flapping due to cost fluctuation and returns the most

stable routes that eventually contribute to the 5G paradigm of Ultra-Reliable Low-Latency

Communication (URLLC).

Chapter 4 focuses on the Self-Configuration feature, where the controller injects the

routes computed using the trio STEN, MRoute, and MRRF into the underlying Data Plane. The

Chapter introduces three more algorithms, TopoSense, TopoRoute, and TopoBuild, to

accomplish the config automation. TopoBuild replicates the data plane topology to the

controller, TopoSense observes any changes and TopoRoute uses these trio to compute routes

on demand. The chapter puts a use-case architecture called SDN-SIM that demonstrates the

work of self-configuration through cross-platform integration of SDN with a system-level

network simulator. Additionally, it presents a platform-agnostic monitoring and configuration

API called ShellMon.

Chapter 5 covers the final topic of contribution, which is compliance with Self-Healing.

Currently, most of the existing works in the literature related to Self-Healing focus primarily

on cellular health optimization. For this reason, we propose an alternative approach through

service migration, especially after observing the tremendous application of cloud-native and

micro-service technologies in 5G Softwarization. In service migration strategy, an orchestrator

makes live services (mostly VNFs) migrate across a network to provide high availability

through fault tolerance and load-balancing. Chapter 5 proposes an elastic Service-Oriented

Architecture (eSOA) for Multi-access Edge Computing (MEC) called Cell Breathing. It

orchestrates autonomy in migrating services among several MEC nodes based on a victim

 193

selection algorithm called Cell Breathing and a target selection algorithm called Cell Rank. The

architecture demonstrates convergence in load-balancing across the MEC deployment with

three communication modes. Additionally, the chapter also presents a prototype Blockchain

integration that poses prevention potential attacks such as MITM and DDoS.

6.2. Future Directions

The goal of the research has been the design and development of a 5G-SON compliant Routing

framework that leverages machine learning models to compute routes using reliability as a

metric. In the process of exploring several existing approaches we have come across the KDN

model and the rest of the discussion of the thesis revolves around it.

Recent developments in the communication systems introduce several novel concepts

such as Federated Learning, Consensus-based authentication, Trusted Execution Environment

(TEE), Open RAN (ORAN) and Segment Routing. We see the potential of the existing research

to enhance the modelling using the above technologies. Therefore, we aim for the following

enhancement as a future extension to the existing work.

1. TEE based secure MEC architecture: A secure MEC architecture that uses MRoute,

where the keys are stored on-device leveraging the TEE technology. In this case, the key

attributes such as the secret keys for encryption, the salt values for the hash and the

credentials will be stored within a Trusted Platform Module (TPM). Therefore, data

intercepted outside the intended devices would be impractical for any malicious

exploitation.

2. DRL and ORAN compliance: OpenRAN [264] consortium has proposed the ORAN

architecture that aims for a vendor-agnostic intelligent RAN. Deploying MRoute over the

Ran Intelligent Controller (RIC) could not only leverage Routing-as-a-Service but also the

 194

native features of Next-Generation SDN (ng-SDN) such as transport independence,

architecture independence and Zero-Touch Provisioning (ZTP).

3. DLT and Segment Routing: The Segment Routing (SR) technology has gained

significant propulsion after SD-WAN has become the mainstream architecture for large

scale enterprises and Datacenters. The trend shows a prompt possibility of SR replacing

MPLS based ISP services. However, there has been no evidence found at the time of

writing this thesis, where SR uses cognitive routing for KDN or DLT based protection

against MITM and DDoS. On the contrary, research shows that MITM and DDoS are the

two major types of attacks, that target SDN infrastructures. This gap has resulted in a

contemporary idea called “Security by Design”, where the architecture of the infrastructure

provides preventive measures against the said attack vectors. There is a prompt potential

in the Cell Breathing architecture to mature its capability by introducing config automation

for Smart-Contracts. Thus, we aim to extend our work on Self-Healing technologies by

securing them using a configurable smart contract and introducing an intelligent Segment-

Routing framework for transport.

6.3. Concluding remarks

Research is a process in continuity and is subject to evolution. This thesis documents the

investigation of achieving self-organization in a Knowledge-Defined network subject to the

light of cognitive routing. The development, design and evaluation involved in this

investigation leverage the state of the art of the respective concepts present in the literature. I

as the author of this thesis would like to conclude this document with a deep appreciation

towards the reader for investing his/her time in it. Nevertheless, I shall keep pursuing my

research covering the future directions mentioned above and keep contributing the knowledge.

 195

Bibliography

[1] S. Ghosh, T. Dagiuklas, and M. Iqbal, “Energy-Aware IP Routing Over SDN,” in 2018
IEEE Global Communications Conference (GLOBECOM), Dec. 2018, pp. 1–7, doi:
10.1109/GLOCOM.2018.8647764.

[2] E. E. UGWUANYI, S. GHOSH, M. IQBAL, and T. DAGIUKLAS, “Reliable Resource
Provisioning Using Bankers’ Deadlock Avoidance Algorithm in MEC for Industrial IoT,”
Ceskoslov. Gynekol., vol. 21, no. 6, pp. 422–423, 1956, doi:
10.1109/ACCESS.2018.2857726.

[3] E. E. Ugwuanyi, S. Ghosh, M. Iqbal, T. Dagiuklas, S. Mumtaz, and A. Al-Dulaimi, “Co-
Operative and Hybrid Replacement Caching for Multi-Access Mobile Edge Computing,”
in 2019 European Conference on Networks and Communications (EuCNC), Jun. 2019,
pp. 394–399, doi: 10.1109/EuCNC.2019.8801991.

[4] S. Ghosh, E. Ugwuanyi, A. Dagiuklas, and M. Iqbal, “BlueArch--An implementation of
5G Testbed,” J. Commun., 2019.

[5] S. Ghosh et al., “SDN-Sim: Integrating a System-Level Simulator with a Software
Defined Network,” IEEE Commun. Stand. Mag., vol. 4, no. 1, pp. 18–25, 2020, doi:
10.1109/MCOMSTD.001.1900035.

[6] S. Ghosh, M. Iqbal, and T. Dagiuklas, “A centralized hybrid routing model for
multicontroller SD-WANs,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 6, p.
e4252, 2021.

[7] S. Ghosh, B. El Boudani, A. Dagiuklas, and M. Iqbal, “A Self-Organised Knowledge
Defined Networks Architecture for Reliable Routing,” in 4th International Conference
on Information Science and Systems ICISS 2021, 2021.

[8] M. A. Khan et al., “Robust, Resilient and Reliable Architecture for V2X
Communications,” IEEE Trans. Intell. Transp. Syst., 2021.

[9] R. Mijumbi, J. Serrat, J. Gorricho, S. Latre, M. Charalambides, and D. Lopez,
“Management and orchestration challenges in network functions virtualization,” IEEE
Commun. Mag., vol. 54, no. 1, pp. 98–105, Jan. 2016, doi:
10.1109/MCOM.2016.7378433.

[10] Li Ling, Ma Xiaozhen, and Huang Yulan, “CDN cloud: A novel scheme for combining
CDN and cloud computing,” in Proceedings of 2013 2nd International Conference on
Measurement, Information and Control, Aug. 2013, vol. 01, pp. 687–690, doi:
10.1109/MIC.2013.6758055.

 196

[11] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On Multi-Access
Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and
Orchestration,” IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017,
doi: 10.1109/COMST.2017.2705720.

[12] B. Carbunar, M. Pearce, V. Vasudevan, and M. Needham, “Predictive Caching for Video
on Demand CDNs,” in 2011 IEEE Global Telecommunications Conference -
GLOBECOM 2011, Dec. 2011, pp. 1–5, doi: 10.1109/GLOCOM.2011.6133574.

[13] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and W. Kellerer, “Software
Defined Optical Networks (SDONs): A Comprehensive Survey,” IEEE Commun. Surv.
Tutorials, vol. 18, no. 4, pp. 2738–2786, 2016, doi: 10.1109/COMST.2016.2586999.

[14] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network
Function Virtualization: State-of-the-Art and Research Challenges,” IEEE Commun.
Surv. Tutorials, vol. 18, no. 1, pp. 236–262, 2016, doi: 10.1109/COMST.2015.2477041.

[15] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P. Mekikis, A. Antonopoulos, and C.
Verikoukis, “Online VNF Lifecycle Management in a MEC-enabled 5G IoT
Architecture,” IEEE Internet Things J., p. 1, 2019, doi: 10.1109/JIOT.2019.2944695.

[16] “OpenFlow-enabled SDN and Network Functions Virtualization.” Feb. 2014.

[17] B. Butler, “Business Value of Cisco SD-WAN Solutions : Studying the Results of
Deployed Organizations,” pp. 1–13, 2019.

[18] T. Fojta, “VMware vCloud ® Architecture ToolkitTM for Service Providers Architecting
a VMware vCloud Director ® Solution for VMware Cloud ProvidersTM,” no. January,
2018, Accessed: Jun. 10, 2020. [Online]. Available: www.vmware.com.

[19] Cisco SD-WAN Getting Started Guide. Cisco Systems, 2019.

[20] Citrix Product Documentation, Citrix SD-WAN 10.2. .

[21] I. Cisco Systems, “Unicast Overlay Routing Overview.”

[22] Citrix Product Documentation, “Adaptive transport,” 2017, Accessed: Jun. 10, 2020.
[Online]. Available: https://docs.citrix.com/en-us/citrix-virtual-apps-
desktops/technical-overview/hdx/adaptive-transport.html.

[23] J. Moy, “OSPF Version 2,” no. 2328. RFC Editor, Apr. 1998, doi: 10.17487/RFC2328.

[24] D. Savage, J. Ng, S. Moore, D. Slice, P. Paluch, and R. White, “Cisco’s Enhanced
Interior Gateway Routing Protocol (EIGRP),” no. 7868. RFC Editor, May 2016, doi:
10.17487/RFC7868.

[25] A. Jain, Sadagopan N S, S. K. Lohani, and M. Vutukuru, “A comparison of SDN and

 197

NFV for re-designing the LTE Packet Core,” in 2016 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), Nov. 2016, pp. 74–
80, doi: 10.1109/NFV-SDN.2016.7919479.

[26] R. Nikbazm, M. Dashtbani, and M. Ahmadi, “Enabling SDN on a special deployment
of OpenStack,” in 2015 5th International Conference on Computer and Knowledge
Engineering (ICCKE), Oct. 2015, pp. 337–342, doi: 10.1109/ICCKE.2015.7365852.

[27] H. Zhang and J. Yan, “Performance of SDN Routing in Comparison with Legacy
Routing Protocols,” in 2015 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, 2015, pp. 491–494, doi:
10.1109/CyberC.2015.30.

[28] T. Zhang, A. Bianco, and P. Giaccone, “The role of inter-controller traffic in SDN
controllers placement,” in 2016 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), Nov. 2016, pp. 87–92, doi: 10.1109/NFV-
SDN.2016.7919481.

[29] L. Zhao et al., “Vehicular Communications: Standardization and Open Issues,” IEEE
Commun. Stand. Mag., vol. 2, no. 4, pp. 74–80, Dec. 2018, doi:
10.1109/MCOMSTD.2018.1800027.

[30] S. A. Busari, M. A. Khan, K. M. S. Huq, S. Mumtaz, and J. Rodriguez, “Millimetre-
wave massive MIMO for cellular vehicle-to-infrastructure communication,” IET Intell.
Transp. Syst., vol. 13, no. 6, pp. 983–990, Jun. 2019, doi: 10.1049/iet-its.2018.5492.

[31] S. A. Busari et al., “Generalized Hybrid Beamforming for Vehicular Connectivity Using
THz Massive MIMO,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8372–8383, 2019,
doi: 10.1109/TVT.2019.2921563.

[32] M. K. Müller et al., “Flexible multi-node simulation of cellular mobile communications:
the Vienna 5G System Level Simulator,” EURASIP J. Wirel. Commun. Netw., vol. 2018,
no. 1, p. 227, Sep. 2018.

[33] P. Alvarez, C. Galiotto, J. van de Belt, D. Finn, H. Ahmadi, and L. DaSilva, “Simulating
dense small cell networks,” in 2016 IEEE Wireless Communications and Networking
Conference, Apr. 2016, pp. 1–6.

[34] D. Kreutz, F. M. V Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S.
Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proc. IEEE, vol. 103,
no. 1, pp. 14–76, Jan. 2015.

[35] E. Cuervo et al., “Maui: making smartphones last longer with code offload,” in
Proceedings of the 8th international conference on Mobile systems, applications, and
services, 2010, pp. 49–62.

 198

[36] R. Alexander et al., “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks,”
no. 6550. RFC Editor, Mar. 2012, doi: 10.17487/RFC6550.

[37] K. Kowalik, B. Keegan, and M. Davis, “Rare-resource aware routing for mesh,” in 2007
IEEE International Conference on Communications, 2007, pp. 4931–4936.

[38] V. C. Gungor, C. Sastry, Z. Song, and R. Integlia, “Resource-aware and link quality
based routing metric for wireless sensor and actor networks,” in 2007 IEEE
International Conference on Communications, 2007, pp. 3364–3369.

[39] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O. Koufopavlou,
“Software-Defined Networking (SDN): Layers and Architecture Terminology,” no.
7426. RFC Editor, Jan. 2015, doi: 10.17487/RFC7426.

[40] W.-L. Jin, “A link queue model of network traffic flow,” arXiv Prepr. arXiv1209.2361,
2012.

[41] M. Fidler and A. Rizk, “A guide to the stochastic network calculus,” IEEE Commun.
Surv. \& Tutorials, vol. 17, no. 1, pp. 92–105, 2014.

[42] K. Nisar et al., “A survey on the architecture, application, and security of software
defined networking: Challenges and open issues,” Internet of Things, vol. 12, p. 100289,
2020, doi: https://doi.org/10.1016/j.iot.2020.100289.

[43] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey of Machine Learning
Techniques Applied to Self-Organizing Cellular Networks,” IEEE Communications
Surveys and Tutorials. 2017, doi: 10.1109/COMST.2017.2727878.

[44] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A Knowledge Plane
for the Internet,” in Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2003, pp. 3–10, doi:
10.1145/863955.863957.

[45] R. Hajlaoui, H. Guyennet, and T. Moulahi, “A Survey on Heuristic-Based Routing
Methods in Vehicular Ad-Hoc Network: Technical Challenges and Future Trends,” IEEE
Sens. J., vol. 16, no. 17, pp. 6782–6792, 2016.

[46] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self organisation in future
cellular networks,” IEEE Communications Surveys and Tutorials, vol. 15, no. 1. pp.
336–361, 2013, doi: 10.1109/SURV.2012.021312.00116.

[47] M. A. M. Albreem, “5G wireless communication systems: Vision and challenges,” in
2015 International Conference on Computer, Communications, and Control Technology
(I4CT), 2015, pp. 493–497.

[48] J. G. Andrews et al., “What will 5G be?,” IEEE J. Sel. areas Commun., vol. 32, no. 6,
pp. 1065–1082, 2014.

 199

[49] P. Wainio and K. Seppänen, “Self-optimizing last-mile backhaul network for 5G small
cells,” in 2016 IEEE International Conference on Communications Workshops (ICC),
2016, pp. 232–239.

[50] J. Xie et al., “A Survey of Machine Learning Techniques Applied to Software Defined
Networking (SDN): Research Issues and Challenges,” IEEE Commun. Surv. Tutorials,
vol. 21, no. 1, pp. 393–430, 2019.

[51] W. T. Zaumen and J. J. Garcia-Luna-Aceves, “Loop-free multipath routing using
generalized diffusing computations,” in Proceedings. IEEE INFOCOM ’98, the
Conference on Computer Communications. Seventeenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat.
No.98, 1998, vol. 3, pp. 1408–1417 vol.3.

[52] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math., vol.
1, no. 1, pp. 269–271, Dec. 1959, doi: 10.1007/BF01386390.

[53] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic Engineering
with Segment Routing: SDN-Based Architectural Design and Open Source
Implementation,” in 2015 Fourth European Workshop on Software Defined Networks,
2015, pp. 111–112, doi: 10.1109/EWSDN.2015.73.

[54] I. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. A. Garcia-Espin, “An OpenNaaS
Based SDN Framework for Dynamic QoS Control,” in 2013 IEEE SDN for Future
Networks and Services (SDN4FNS), 2013, pp. 1–7, doi:
10.1109/SDN4FNS.2013.6702533.

[55] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa, S. de Lucena,
and R. Raszuk, “Revisiting Routing Control Platforms with the Eyes and Muscles of
Software-Defined Networking,” in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, 2012, pp. 13–18, doi: 10.1145/2342441.2342445.

[56] J. W. Guck, M. Reisslein, and W. Kellerer, “Function Split Between Delay-Constrained
Routing and Resource Allocation for Centrally Managed QoS in Industrial Networks,”
IEEE Trans. Ind. Informatics, vol. 12, no. 6, pp. 2050–2061, 2016, doi:
10.1109/TII.2016.2592481.

[57] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS Routing
Algorithms for SDN: A Comprehensive Survey and Performance Evaluation,” IEEE
Commun. Surv. Tutorials, vol. 20, no. 1, pp. 388–418, 2018, doi:
10.1109/COMST.2017.2749760.

[58] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2,
pp. 100–107, 1968, doi: 10.1109/TSSC.1968.300136.

 200

[59] E. I. Chong, “On finding single source single destination k shortest paths,” in Proc.
International Conference on Computing and Information, July 1995, 1995, pp. 40–47.

[60] G. Liu and K. G. Ramakrishnan, “A* Prune: an algorithm for finding K shortest paths
subject to multiple constraints,” in Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No. 01CH37213), 2001, vol. 2, pp. 743–749.

[61] W. C. Lee, M. G. Hluchyi, and P. A. Humblet, “Routing subject to quality of service
constraints in integrated communication networks,” IEEE Netw., vol. 9, no. 4, pp. 46–
55, 1995.

[62] R. BELLMAN, “ON A ROUTING PROBLEM,” Q. Appl. Math., vol. 16, no. 1, pp. 87–
90, 1958, [Online]. Available: http://www.jstor.org/stable/43634538.

[63] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,” Manage. Sci., vol. 17,
no. 11, pp. 712–716, 1971, [Online]. Available: http://www.jstor.org/stable/2629312.

[64] R. Widyono and others, The design and evaluation of routing algorithms for real-time
channels. Citeseer, 1994.

[65] Z. Jia and P. Varaiya, “Heuristic methods for delay-constrained leastcost routing problem
using k-shortest-path algorithms,” in Proc. IEEE INFOCOM, 2001, pp. 1–9.

[66] D. Blokh and G. Gutin, “An approximate algorithm for combinatorial optimization
problems with two parameters,” Australas. J. Comb., vol. 14, pp. 157–164, 1996.

[67] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation based method
for the QoS routing problem,” in Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No. 01CH37213), 2001, vol. 2, pp. 859–868.

[68] G. Y. Handler and I. Zang, “A dual algorithm for the constrained shortest path problem,”
Networks, vol. 10, no. 4, pp. 293–309, 1980, doi:
https://doi.org/10.1002/net.3230100403.

[69] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved solution algorithm
for the constrained shortest path problem,” Transp. Res. Part B Methodol., vol. 41, no.
7, pp. 756–771, 2007.

[70] G. Feng, C. Douligeris, K. Makki, and N. Pissinou, “Performance evaluation of delay-
constrained least-cost QoS routing algorithms based on linear and nonlinear lagrange
relaxation,” in 2002 IEEE International Conference on Communications. Conference
Proceedings. ICC 2002 (Cat. No. 02CH37333), 2002, vol. 4, pp. 2273–2278.

[71] L. Guo and I. Matta, “Search space reduction in QoS routing,” Comput. Networks, vol.
41, no. 1, pp. 73–88, 2003.

 201

[72] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” in Proceedings
IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Society (Cat. No.
01CH37213), 2001, vol. 2, pp. 834–843.

[73] G. Feng, K. Makki, N. Pissinou, and C. Douligeris, “Heuristic and exact algorithms for
QoS routing with multiple constraints,” IEICE Trans. Commun., vol. 85, no. 12, pp.
2838–2850, 2002.

[74] D. S. Reeves and H. F. Salama, “A distributed algorithm for delay-constrained unicast
routing,” IEEE/ACM Trans. Netw., vol. 8, no. 2, pp. 239–250, 2000.

[75] H. F. Salama, D. S. Reeves, and Y. Viniotis, “A distributed algorithm for delay-
constrained unicast routing,” in Proceedings of INFOCOM’97, 1997, vol. 1, pp. 84–91.

[76] Q. Sun and H. Langendörfer, “A new distributed routing algorithm for supporting delay-
sensitive applications,” Comput. Commun., vol. 21, no. 6, pp. 572–578, 1998.

[77] K. Ishida, K. Amano, and N. Kannari, “A delay-constrained least-cost path routing
protocol and the synthesis method,” in Proceedings Fifth International Conference on
Real-Time Computing Systems and Applications (Cat. No. 98EX236), 1998, pp. 58–65.

[78] R. Sriram, G. Manimaran, and C. S. R. Murthy, “Preferred link based delay-constrained
least-cost routing in wide area networks,” Comput. Commun., vol. 21, no. 18, pp. 1655–
1669, 1998.

[79] W. Liu, W. Lou, and Y. Fang, “An efficient quality of service routing algorithm for delay-
sensitive applications,” Comput. Networks, vol. 47, no. 1, pp. 87–104, 2005.

[80] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS Routing
Algorithms for SDN: A Comprehensive Survey and Performance Evaluation,” IEEE
Commun. Surv. Tutorials, vol. 20, no. 1, pp. 388–415, 2018.

[81] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN Networks: A Survey of Existing
Approaches,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3259–3306, 2018, doi:
10.1109/COMST.2018.2837161.

[82] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey of existing
approaches,” IEEE Communications Surveys and Tutorials, vol. 20, no. 4. pp. 3259–
3306, 2018, doi: 10.1109/COMST.2018.2837161.

[83] M. Canini, A. Feldmann, D. Levin, F. Schaffert, and S. Schmid, “Software-defined
networks: Incremental deployment with panopticon,” Computer (Long. Beach. Calif).,
vol. 47, no. 11, pp. 56–60, 2014.

[84] R. Cardona, “Introduction to Spine-and-Leaf Topologies,” in The Fast-Track Guide to
VXLAN BGP EVPN Fabrics, Springer, 2021, pp. 1–26.

 202

[85] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “One step at a time:
Optimizing SDN upgrades in ISP networks,” in IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, 2017, pp. 1–9.

[86] H. Xu, J. Fan, J. Wu, C. Qiao, and L. Huang, “Joint deployment and routing in hybrid
SDNs,” in 2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS), 2017, pp. 1–10.

[87] M. Caria and A. Jukan, “The perfect match: Optical bypass and SDN partitioning,” in
2015 IEEE 16th International Conference on High Performance Switching and Routing
(HPSR), 2015, pp. 1–6.

[88] J. Nunez-Martinez, J. Baranda, and J. Mangues-Bafalluy, “A service-based model for
the hybrid software defined wireless mesh backhaul of small cells,” in 2015 11th
International Conference on Network and Service Management (CNSM), 2015, pp. 390–
393.

[89] L. He, X. Zhang, Z. Cheng, and Y. Jiang, “Design and implementation of SDN/IP hybrid
space information network prototype,” in 2016 IEEE/CIC International Conference on
Communications in China (ICCC Workshops), 2016, pp. 1–6.

[90] D. J. Casey and B. E. Mullins, “SDN shim: Controlling legacy devices,” in 2015 IEEE
40th Conference on Local Computer Networks (LCN), 2015, pp. 169–172.

[91] T. Das, M. Caria, A. Jukan, and M. Hoffmann, “Insights on SDN migration trajectory,”
in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 5348–
5353.

[92] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match! near-optimal and incremental
middlebox deployment,” ACM SIGCOMM Comput. Commun. Rev., vol. 46, no. 1, pp.
30–36, 2016.

[93] M. Caria, T. Das, A. Jukan, and M. Hoffmann, “Divide and conquer: Partitioning OSPF
networks with SDN,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2015, pp. 467–474.

[94] M. Caria, A. Jukan, and M. Hoffmann, “SDN partitioning: A centralized control plane
for distributed routing protocols,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 3, pp.
381–393, 2016.

[95] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental deployment of SDN in
hybrid enterprise and ISP networks,” in Proceedings of the Symposium on SDN Research,
2016, pp. 1–7.

[96] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang, “Incremental deployment
and throughput maximization routing for a hybrid SDN,” IEEE/ACM Trans. Netw., vol.

 203

25, no. 3, pp. 1861–1875, 2017.

[97] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang, “Hybnet: Network
manager for a hybrid network infrastructure,” in Proceedings of the Industrial Track of
the 13th ACM/IFIP/USENIX International Middleware Conference, 2013, pp. 1–6.

[98] V. D. Chemalamarri, P. Nanda, and K. F. Navarro, “SYMPHONY-A controller
architecture for hybrid software defined networks,” in 2015 Fourth European Workshop
on Software Defined Networks, 2015, pp. 55–60.

[99] M. Markovitch and S. Schmid, “SHEAR: A highly available and flexible network
architecture marrying distributed and logically centralized control planes,” in 2015 IEEE
23rd International Conference on Network Protocols (ICNP), 2015, pp. 78–89.

[100] J. Stringer et al., “Cardigan: SDN distributed routing fabric going live at an Internet
exchange,” in 2014 IEEE Symposium on Computers and Communications (ISCC), 2014,
pp. 1–7.

[101] R. Hand and E. Keller, “Closedflow: Openflow-like control over proprietary devices,”
in Proceedings of the third workshop on Hot topics in software defined networking, 2014,
pp. 7–12.

[102] T. Nelson, A. D. Ferguson, D. Yu, R. Fonseca, and S. Krishnamurthi, “Exodus: Toward
automatic migration of enterprise network configurations to SDNs,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, 2015,
pp. 1–7.

[103] F. Farias, J. Salvatti, P. Victor, and A. Abelem, “Integrating legacy forwarding
environment to OpenFlow/SDN control plane,” in 2013 15th Asia-Pacific Network
Operations and Management Symposium (APNOMS), 2013, pp. 1–3.

[104] M. A. S. Santos, B. T. De Oliveira, C. B. Margi, B. A. A. Nunes, T. Turletti, and K.
Obraczka, “Software-defined networking based capacity sharing in hybrid networks,”
in 2013 21st IEEE international conference on network protocols (ICNP), 2013, pp. 1–
6.

[105] T. Choi, S. Kang, S. Yoon, S. Yang, S. Song, and H. Park, “SuVMF: Software-defined
unified virtual monitoring function for SDN-based large-scale networks,” in
Proceedings of The Ninth International Conference on Future Internet Technologies,
2014, pp. 1–6.

[106] A. N. Katov, A. Mihovska, and N. R. Prasad, “Hybrid SDN architecture for resource
consolidation in MPLS networks,” in 2015 Wireless Telecommunications Symposium
(WTS), 2015, pp. 1–8.

[107] C. Sieber et al., “Network configuration with quality of service abstractions for SDN

 204

and legacy networks,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2015, pp. 1135–1136.

[108] C. Sieber, A. Blenk, A. Basta, D. Hock, and W. Kellerer, “Towards a programmable
management plane for SDN and legacy networks,” in 2016 IEEE NetSoft Conference
and Workshops (NetSoft), 2016, pp. 319–327.

[109] R. Katiyar, P. Pawar, A. Gupta, and K. Kataoka, “Auto-configuration of sdn switches in
sdn/non-sdn hybrid network,” in Proceedings of the Asian Internet Engineering
Conference, 2015, pp. 48–53.

[110] A. Martinez, M. Yannuzzi, J. E. L. de Vergara, R. Serral-Gracià, and W. Ram\’\irez, “An
ontology-based information extraction system for bridging the configuration gap in
hybrid sdn environments,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2015, pp. 441–449.

[111] A. Mishra, D. Bansod, and K. Haribabu, “A Framework for OpenFlow-like Policy-based
Routing in Hybrid Software Defined Networks.,” in INC, 2016, pp. 97–102.

[112] W. Fan, X. Wang, and Y. Wu, “Incremental graph pattern matching,” ACM Trans.
Database Syst., vol. 38, no. 3, pp. 1–47, 2013.

[113] R. Amin, N. Shah, B. Shah, and O. Alfandi, “Auto-configuration of ACL policy in case
of topology change in hybrid SDN,” IEEE Access, vol. 4, pp. 9437–9450, 2016.

[114] C. Sieber, R. Durner, and W. Kellerer, “How fast can you reconfigure your partially
deployed SDN network?,” in 2017 IFIP Networking Conference (IFIP Networking) and
Workshops, 2017, pp. 1–9.

[115] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A Survey of Machine Learning
Techniques Applied to Software Defined Networking (SDN): Research Issues and
Challenges,” IEEE Communications Surveys and Tutorials, 2018.

[116] F. Tang, B. Mao, Y. Kawamoto, and N. Kato, “Survey on Machine Learning for
Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to
Traffic Control and Streaming Adaption,” IEEE Commun. Surv. Tutorials, vol. 23, no.
3, pp. 1578–1598, 2021, doi: 10.1109/COMST.2021.3073009.

[117] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and J. M. Arco, “A Survey
on Machine Learning Techniques for Routing Optimization in SDN,” IEEE Access, vol.
9, pp. 104582–104611, 2021, doi: 10.1109/ACCESS.2021.3099092.

[118] M. Lin and Y. Zhao, “Artificial intelligence-empowered resource management for future
wireless communications: A survey,” China Commun., vol. 17, no. 3, pp. 58–77, 2020,
doi: 10.23919/JCC.2020.03.006.

[119] F. O. Olowononi, D. B. Rawat, and C. Liu, “Resilient Machine Learning for Networked

 205

Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine
Learning for CPS,” IEEE Commun. Surv. Tutorials, vol. 23, no. 1, pp. 524–552, 2021,
doi: 10.1109/COMST.2020.3036778.

[120] L. Yanjun, L. Xiaobo, and Y. Osamu, “Traffic engineering framework with machine
learning based meta-layer in software-defined networks,” in 2014 4th IEEE
International Conference on Network Infrastructure and Digital Content, 2014, pp. 121–
125.

[121] A. Azzouni, R. Boutaba, and G. Pujolle, “NeuRoute: Predictive dynamic routing for
software-defined networks,” in 2017 13th International Conference on Network and
Service Management, CNSM 2017, 2018, vol. 2018-Janua, pp. 1–6, doi:
10.23919/CNSM.2017.8256059.

[122] S. Sendra, A. Rego, J. Lloret, J. M. Jimenez, and O. Romero, “Including artificial
intelligence in a routing protocol using Software Defined Networks,” in 2017 IEEE
International Conference on Communications Workshops, ICC Workshops 2017, 2017,
pp. 670–674, doi: 10.1109/ICCW.2017.7962735.

[123] F. Francois and E. Gelenbe, “Optimizing Secure SDN-Enabled Inter-Data Centre
Overlay Networks through Cognitive Routing,” in 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2016, pp. 283–288.

[124] F. Francois and E. Gelenbe, “Towards a cognitive routing engine for software defined
networks,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp.
1–6.

[125] S. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “QoS-Aware Adaptive Routing in Multi-
layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach,”
in 2016 IEEE International Conference on Services Computing (SCC), 2016, pp. 25–33.

[126] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntes-Mulero, and A. Cabellos, “A
Deep-Reinforcement Learning Approach for Software-Defined Networking Routing
Optimization.” 2017.

[127] Á. López-Raventós, F. Wilhelmi, S. Barrachina-Muñoz, and B. Bellalta, “Machine
learning and software defined networks for high-density wlans,” arXiv preprint
arXiv:1804.05534, vol. 16. Apr, 2018.

[128] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic with machine-learning-
based prediction for software-defined mobile metro-core networks,” J. Opt. Commun.
Netw., vol. 9, no. 9, pp. D19--D30, 2017.

[129] C. Chen-Xiao and X. Ya-Bin, “Research on load balance method in SDN,” Int. J. Grid
Distrib. Comput., vol. 9, no. 1, pp. 25–36, 2016.

 206

[130] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based framework for traffic
matrix prediction in SDN,” in NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium, 2018, pp. 1–5.

[131] J. Buvat and S. Basu, “Quest for margins: Operational cost strategies for mobile
operators in europe,” Capgemini, vol. 42, 2009.

[132] P. Donegan, “Mobile Network Outages \& Service Degradations: A Heavy Reading
Survey Analysis,” Firmenschrift. Heavy Read., 2013.

[133] L. Jorguseski, A. Pais, F. Gunnarsson, A. Centonza, and C. Willcock, “Self-organizing
networks in 3GPP: standardization and future trends,” IEEE Commun. Mag., vol. 52, no.
12, pp. 28–34, 2014.

[134] Z. Zhang, K. Long, and J. Wang, “Self-organization paradigms and optimization
approaches for cognitive radio technologies: a survey,” IEEE Wirel. Commun., vol. 20,
no. 2, pp. 36–42, 2013.

[135] R. Barco, P. Lazaro, and P. Munoz, “A unified framework for self-healing in wireless
networks,” IEEE Commun. Mag., vol. 50, no. 12, pp. 134–142, 2012.

[136] B. Tian, S. Han, S. Parvin, J. Hu, and S. Das, “Self-Healing Key Distribution Schemes
for Wireless Networks: A Survey,” Comput. J., vol. 54, no. 4, pp. 549–569, 2011, doi:
10.1093/comjnl/bxr022.

[137] S.-I. Yang, D. M. Frangopol, and L. C. Neves, “Service life prediction of structural
systems using lifetime functions with emphasis on bridges,” Reliab. Eng. \& Syst. Saf.,
vol. 86, no. 1, pp. 39–51, 2004.

[138] A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: how to empower SON with
big data for enabling 5G,” IEEE Netw., vol. 28, no. 6, pp. 27–33, 2014.

[139] M. M. S. Marwangi et al., “Challenges and practical implementation of self-organizing
networks in LTE/LTE-Advanced systems,” in ICIMU 2011: Proceedings of the 5th
international Conference on Information Technology \& Multimedia, 2011, pp. 1–5.

[140] P. Stuckmann et al., “The EUREKA Gandalf project: monitoring and self-tuning
techniques for heterogeneous radio access networks,” in 2005 IEEE 61st Vehicular
Technology Conference, 2005, vol. 4, pp. 2570–2574.

[141] L. C. Schmelz et al., “Self-organisation in wireless networks use cases and their
interrelation,” in Wireless World Res. Forum Meeting, 2009, vol. 22, pp. 1–5.

[142] www.qson.org, “Quality of Service Aware Energy Efficient Self Organizing Future
Cellular Networks.”

[143] R. Litjens et al., “Self-management for unified heterogeneous radio access networks,”

 207

in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1–5.

[144] K. Ha et al., “Adaptive VM handoff across cloudlets,” Tech. Rep. C., 2015.

[145] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Migrating running
applications across mobile edge clouds: poster,” in Proceedings of the 22nd Annual
International Conference on Mobile Computing and Networking, 2016, pp. 435–436.

[146] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-time provisioning
for cyber foraging,” in Proceeding of the 11th annual international conference on
Mobile systems, applications, and services, 2013, pp. 153–166.

[147] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A Survey on Service Migration in Mobile Edge
Computing,” IEEE Access, vol. 6, pp. 23511–23528, 2018, doi:
10.1109/ACCESS.2018.2828102.

[148] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When cloud services
follow mobile users,” IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 369–382, 2016.

[149] T. Taleb and A. Ksentini, “An analytical model for follow me cloud,” in 2013 IEEE
Global Communications Conference (GLOBECOM), 2013, pp. 1291–1296.

[150] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated clouds and
distributed mobile networks,” IEEE Netw., vol. 27, no. 5, pp. 12–19, 2013.

[151] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-based service
migration procedure for follow me cloud,” in 2014 IEEE International Conference on
Communications (ICC), 2014, pp. 1350–1354.

[152] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung, “Mobility-induced
service migration in mobile micro-clouds,” in 2014 IEEE military communications
conference, 2014, pp. 835–840.

[153] K.-H. Chiang and N. Shenoy, “A 2-D random-walk mobility model for location-
management studies in wireless networks,” IEEE Trans. Veh. Technol., vol. 53, no. 2,
pp. 413–424, 2004.

[154] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, “Dynamic service
placement for mobile micro-clouds with predicted future costs,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 4, pp. 1002–1016, 2016.

[155] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic service
migration in mobile edge-clouds,” in 2015 IFIP Networking Conference (IFIP
Networking), 2015, pp. 1–9.

[156] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing in 5G:
Survey and challenges,” IEEE Commun. Mag., vol. 55, no. 5, pp. 94–100, 2017.

 208

[157] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”
IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, 2018.

[158] M. B. Yassein, S. Aljawarneh, M. Al-Rousan, W. Mardini, and W. Al-Rashdan,
“Combined software-defined network (SDN) and Internet of Things (IoT),” in Electrical
and Computing Technologies and Applications (ICECTA), 2017 International
Conference on, 2017, pp. 1–6.

[159] Y. C. Tay, K. Gaurav, and P. Karkun, “A Performance Comparison of Containers and
Virtual Machines in Workload Migration Context,” in Distributed Computing Systems
Workshops (ICDCSW), 2017 IEEE 37th International Conference on, 2017, pp. 61–66.

[160] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “LXC container migration in cloudlets
under multipath TCP,” in Computer Software and Applications Conference (COMPSAC),
2017 IEEE 41st Annual, 2017, vol. 2, pp. 31–36.

[161] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: complete container state
migration,” in Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on, 2017, pp. 2137–2142.

[162] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in IoT context: horizontal and
vertical Linux container migration,” Glob. Internet Things Summit (GIoTS). IEEE, 2017.

[163] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[164] P. Tasatanattakool and C. Techapanupreeda, “Blockchain: Challenges and applications,”
in Information Networking (ICOIN), 2018 International Conference on, 2018, pp. 473–
475.

[165] H. Halpin and M. Piekarska, “Introduction to Security and Privacy on the Blockchain,”
in Security and Privacy Workshops (EuroS\&PW), 2017 IEEE European Symposium on,
2017, pp. 1–3.

[166] P.-H. Kuo, A. Mourad, and J. Ahn, “Potential Applicability of Distributed Ledger to
Wireless Networking Technologies,” IEEE Wirel. Commun., vol. 25, no. 4, pp. 4–6, 2018.

[167] J. Backman, S. Yrjölä, K. Valtanen, and O. Mämmelä, “Blockchain network slice broker
in 5G: Slice leasing in factory of the future use case,” in Internet of Things Business
Models, Users, and Networks, 2017, 2017, pp. 1–8.

[168] E. Di Pascale, J. McMenamy, I. Macaluso, and L. Doyle, “Smart Contract SLAs for
Dense Small-Cell-as-a-Service,” arXiv Prepr. arXiv1703.04502, 2017.

[169] E. J. Scheid and B. Stiller, “Automatic SLA Compensation based on Smart Contracts,”
2018.

[170] R. V. Rosa and C. E. Rothenberg, “Blockchain-based Decentralized Applications for

 209

Multiple Administrative Domain Networking,” IEEE Com. Mag, 2018.

[171] M. Matinmikko-Blue, S. Yrjoelae, and M. Latva-aho, “Micro Operators for Ultra-Dense
Network Deployment with Network Slicing and Spectrum Micro Licensing,” in 2018
IEEE 87th Vehicular Technology Conference (VTC Spring), 2018, pp. 1–6.

[172] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Joint computation offloading
and content caching for wireless blockchain networks,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp.
517–522.

[173] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G
Networks: Use Cases and Technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–
61, 2020.

[174] G. S. Malkin, “RIP Version 2,” no. 2453. RFC Editor, Nov. 1998, doi:
10.17487/RFC2453.

[175] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Center
Network Architecture,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 63–74,
Aug. 2008, doi: 10.1145/1402946.1402967.

[176] “Archives - Open Networking Foundation.” https://www.opennetworking.org/ng-sdn/
(accessed Aug. 31, 2020).

[177] “Design Zone for Campus - Cisco SD-Access Solution Design Guide (CVD) - Cisco.”
https://www.cisco.com/c/en/us/td/docs/solutions/CVD/Campus/cisco-sda-design-
guide.html (accessed Aug. 31, 2020).

[178] VMware, “VMware vSphere Documentation,” vmware.com, 2020.
https://docs.vmware.com/en/VMware-vSphere/index.html (accessed Aug. 31, 2020).

[179] 5GPPP, “View on 5G Architecture, Version 3.0, February 2020,” 2020. doi:
10.5281/zenodo.3265031.

[180] “Overview — Open Network Install Environment documentation.”
https://opencomputeproject.github.io/onie/overview/index.html#onie-overview
(accessed Aug. 31, 2020).

[181] “ONLP APIs for Applications | OpenNetworkLinux.”
http://opencomputeproject.github.io/OpenNetworkLinux/onlp/applications/ (accessed
Aug. 31, 2020).

[182] “GitHub - opencomputeproject/SAI: Switch Abstraction Interface.”
https://github.com/opencomputeproject/SAI (accessed Aug. 31, 2020).

[183] “SONiC.” https://azure.github.io/SONiC/ (accessed Aug. 31, 2020).

 210

[184] Z. N. Abdullah, I. Ahmad, and I. Hussain, “Segment Routing in Software Defined
Networks: A Survey,” IEEE Communications Surveys and Tutorials, 2018.

[185] A. Viswanathan, E. C. Rosen, and R. Callon, “Multiprotocol Label Switching
Architecture,” no. 3031. RFC Editor, Jan. 2001, doi: 10.17487/RFC3031.

[186] B. Thomas, L. Andersson, and I. Minei, “LDP Specification,” no. 5036. RFC Editor, Oct.
2007, doi: 10.17487/RFC5036.

[187] D. O. Awduche, L. Berger, D.-H. Gan, T. Li, D. V. Srinivasan, and G. Swallow, “RSVP-
TE: Extensions to RSVP for LSP Tunnels,” no. 3209. RFC Editor, Dec. 2001, doi:
10.17487/RFC3209.

[188] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, A Survey of Machine Learning
Techniques Applied to Self-Organizing Cellular Networks, vol. 19, no. 4. 2017, pp.
2392–2431.

[189] ORAN, No Title. 2020.

[190] ONF, No Title. .

[191] J. Strassner, M. O’Foghlu, W. Donnelly, and N. Agoulmine, “Beyond the Knowledge
Plane: An Inference Plane to Support the Next Generation Internet,” in 2007 First
International Global Information Infrastructure Symposium, 2007, pp. 112–119.

[192] Z. M. Fadlullah et al., “State-of-the-Art Deep Learning: Evolving Machine Intelligence
Toward Tomorrow’s Intelligent Network Traffic Control Systems,” IEEE Commun. Surv.
Tutorials, vol. 19, no. 4, pp. 2432–2455, Oct. 2017, doi: 10.1109/COMST.2017.2707140.

[193] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial Neural Networks-
Based Machine Learning for Wireless Networks: A Tutorial,” IEEE Commun. Surv.
Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

[194] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A Survey of Networking
Applications Applying the Software Defined Networking Concept Based on Machine
Learning,” IEEE Access, vol. 7, pp. 95397–95417, 2019.

[195] A. Azzouni, R. Boutaba, and G. Pujolle, “NeuRoute: Predictive dynamic routing for
software-defined networks,” in 2017 13th International Conference on Network and
Service Management (CNSM), 2017, pp. 1–6.

[196] S. Sendra, A. Rego, J. Lloret, J. M. Jimenez, and O. Romero, “Including artificial
intelligence in a routing protocol using Software Defined Networks,” in 2017 IEEE
International Conference on Communications Workshops (ICC Workshops), 2017, pp.
670–674.

[197] A. Gosavi, “Queuing Formulas.” Department of Engineering Management and Systems

 211

Engineering.

[198] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-Defined Wide Area Network (SD-
WAN): Architecture, Advances and Opportunities,” in 2019 28th International
Conference on Computer Communication and Networks (ICCCN), 2019, pp. 1–9, doi:
10.1109/ICCCN.2019.8847124.

[199] R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot, “Address
Allocation for Private Internets,” no. 1918. RFC Editor, Feb. 1996, doi:
10.17487/RFC1918.

[200] W. F. Sharpe, “The Sharpe Ratio,” J. Portf. Manag., vol. 21, no. 1, pp. 49–58, 1994, doi:
10.3905/jpm.1994.409501.

[201] T. Bodnar and T. Zabolotskyy, “How risky is the optimal portfolio which maximizes the
Sharpe ratio?,” AStA Adv. Stat. Anal., vol. 101, no. 1, pp. 1–28, 2017.

[202] J. S. Turner and D. E. Taylor, “Diversifying the internet,” in GLOBECOM’05. IEEE
Global Telecommunications Conference, 2005., 2005, vol. 2, pp. 6--pp.

[203] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling for ATM, internet
and mobile networks (OPENSIG’98),” ACM SIGCOMM Comput. Commun. Rev., vol.
29, no. 1, pp. 97–108, 1999.

[204] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A
survey of active network research,” IEEE Commun. Mag., vol. 35, no. 1, pp. 80–86,
1997.

[205] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane:
Taking control of the enterprise,” ACM SIGCOMM Comput. Commun. Rev., vol. 37, no.
4, pp. 1–12, 2007.

[206] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[207] N. Kim and J. Kim, “Building netopen networking services over openflow-based
programmable networks,” in The International Conference on Information Networking
2011 (ICOIN2011), 2011, pp. 525–529.

[208] A. I. Frunz\ua, C. I. R\^\incu, and A. Jâtaru, “Remote Network Monitoring Using SDN
Based Solutions,” in 2018 International Conference on Communications (COMM),
2018, pp. 301–304.

[209] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a future-
proof forwarding plane,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013, pp. 127–132.

 212

[210] J. M. Halpern et al., “Forwarding and Control Element Separation (ForCES) Protocol
Specification,” no. 5810. RFC Editor, Mar. 2010, doi: 10.17487/RFC5810.

[211] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Interfaces, attributes,
and use cases: A compass for SDN,” IEEE Commun. Mag., vol. 52, no. 6, pp. 210–217,
2014.

[212] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using openflow: A
survey,” IEEE Commun. Surv. \& tutorials, vol. 16, no. 1, pp. 493–512, 2013.

[213] A. Autenrieth, J.-P. Elbers, P. Kaczmarek, and P. Kostecki, “Cloud orchestration with
SDN/OpenFlow in carrier transport networks,” in 2013 15th International Conference
on Transparent Optical Networks (ICTON), 2013, pp. 1–4.

[214] “(No Title).” https://sdwan-
docs.cisco.com/@api/deki/pages/11355/pdf/Unicast%2BOverlay%2BRouting%2BOve
rview.pdf?stylesheet=default (accessed Jun. 10, 2020).

[215] P. H. Isolani, J. A. Wickboldt, C. B. Both, J. Rochol, and L. Z. Granville, “Interactive
monitoring, visualization, and configuration of OpenFlow-based SDN,” in 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM), 2015,
pp. 207–215.

[216] N. Foster et al., “Frenetic: A network programming language,” ACM Sigplan Not., vol.
46, no. 9, pp. 279–291, 2011.

[217] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative fault tolerance for
software-defined networks,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, 2013, pp. 109–114.

[218] N. Gude et al., “NOX: towards an operating system for networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[219] H. Nilsson, A. Courtney, and J. Peterson, “Functional reactive programming, continued,”
in Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, 2002, pp. 51–64.

[220] C. Elliott and P. Hudak, “Functional reactive animation,” in Proceedings of the second
ACM SIGPLAN international conference on Functional programming, 1997, pp. 263–
273.

[221] D. M. Jones, “Forms of language specification examples from commonly used computer
languages,” 2008.

[222] M. K. Shin, K. H. Nam, M. Kang, and others, “Formal specification framework for
software-defined networks (SDN),” IETF Draft., 2013.

[223] A. Guha, M. Reitblatt, and N. Foster, “Formal foundations for software defined

 213

networks,” Open Net Summit, 2013.

[224] M. Satpathy, R. Harrison, C. Snook, and M. Butler, “A comparative study of formal and
informal specifications through an industrial case study,” 2001.

[225] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[226] M. Strembeck and U. Zdun, “An approach for the systematic development of domain-
specific languages,” Softw. Pract. Exp., vol. 39, no. 15, pp. 1253–1292, 2009.

[227] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-level reactive
network control,” in Proceedings of the first workshop on Hot topics in software defined
networks, 2012, pp. 43–48.

[228] T. Stahl, M. Völter, and K. Czarnecki, Model-driven software development: technology,
engineering, management. John Wiley \& Sons, Inc., 2006.

[229] A. Barišić, V. Amaral, M. Goulao, and B. Barroca, “Quality in use of domain-specific
languages: a case study,” in Proceedings of the 3rd ACM SIGPLAN Workshop on
Evaluation and Usability of Programming Languages and Tools, 2011, pp. 65–72.

[230] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An annotated
bibliography,” ACM Sigplan Not., vol. 35, no. 6, pp. 26–36, 2000.

[231] D. S. Frankel, “Model driven architecture: applying MDA to enterprise computing.
2003,” Google Sch. Google Sch. Digit. Libr. Digit. Libr.

[232] F. A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, “A Software Engineering
Perspective on SDN Programmability,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2,
pp. 1255–1272, 2016, doi: 10.1109/COMST.2015.2501026.

[233] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker, “Practical
declarative network management,” in Proceedings of the 1st ACM workshop on
Research on enterprise networking, 2009, pp. 1–10.

[234] A. Voellmy, A. Agarwal, and P. Hudak, “Nettle: Functional reactive programming for
openflow networks,” 2010.

[235] N. P. Katta, J. Rexford, and D. Walker, “Logic programming for software-defined
networks,” in Workshop on Cross-Model Design and Validation (XLDI), 2012, vol. 412,
p. 332.

[236] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and run-time system
for network programming languages,” Acm sigplan Not., vol. 47, no. 1, pp. 217–230,
2012.

[237] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing software

 214

defined networks,” in 10th $\{$USENIX$\}$ Symposium on Networked Systems Design
and Implementation ($\{$NSDI$\}$ 13), 2013, pp. 1–13.

[238] T. Koponen et al., “Network virtualization in multi-tenant datacenters,” in 11th
$\{$USENIX$\}$ Symposium on Networked Systems Design and Implementation
($\{$NSDI$\}$ 14), 2014, pp. 203–216.

[239] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi, “Tierless
programming and reasoning for software-defined networks,” in 11th
$\{$USENIX$\}$ Symposium on Networked Systems Design and Implementation
($\{$NSDI$\}$ 14), 2014, pp. 519–531.

[240] R. Soulé et al., “Merlin: A language for provisioning network resources,” in Proceedings
of the 10th ACM International on Conference on emerging Networking Experiments and
Technologies, 2014, pp. 213–226.

[241] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark, “Kinetic: Verifiable
dynamic network control,” in 12th $\{$USENIX$\}$ Symposium on Networked Systems
Design and Implementation ($\{$NSDI$\}$ 15), 2015, pp. 59–72.

[242] P. Bosshart et al., “P4: Programming protocol-independent packet processors,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[243] B. O’Connor et al., “Using P4 on fixed-pipeline and programmable Stratum switches,”
in 2019 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 2019, pp. 1–2.

[244] M. Rupp, S. Schwarz, and M. Taranetz, The Vienna LTE-Advanced Simulators: Up and
Downlink, Link and System Level Simulation, 1st ed. Springer Singapore, 2016.

[245] S. A. Busari, K. M. S. Huq, S. Mumtaz, and J. Rodriguez, “Impact of 3D Channel
Modeling for Ultra-High Speed Beyond-5G Networks,” in 2018 IEEE Globecom
Workshops (GC Wkshps), Dec. 2018, pp. 1–6.

[246] M. Xiao et al., “Millimeter Wave Communications for Future Mobile Networks,” IEEE
J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1935, 2017, doi:
10.1109/JSAC.2017.2719924.

[247] M. Mezzavilla et al., “End-to-End Simulation of 5G mmWave Networks,” IEEE
Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2237–2263, 2018.

[248] L. Zhang, J. Liu, M. Xiao, G. Wu, Y. Liang, and S. Li, “Performance Analysis and
Optimization in Downlink NOMA Systems With Cooperative Full-Duplex Relaying,”
IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2398–2412, Oct. 2017, doi:
10.1109/JSAC.2017.2724678.

[249] G. Yang, M. Xiao, M. Alam, and Y. Huang, “Low-Latency Heterogeneous Networks

 215

with Millimeter-Wave Communications,” IEEE Commun. Mag., vol. 56, no. 6, pp. 124–
129, Jun. 2018, doi: 10.1109/MCOM.2018.1700874.

[250] 5GPPP, “View on 5G Architecture (Version 2 . 0),” no. July, 2017.

[251] Y. Wang, J. Xu, and L. Jiang, “Challenges of System-Level Simulations and
Performance Evaluation for 5G Wireless Networks,” IEEE Access, vol. 2, pp. 1553–
1561, 2014.

[252] M. Fedor, M. L. Schoffstall, J. R. Davin, and D. J. D. Case, “Simple Network
Management Protocol (SNMP),” no. 1157. RFC Editor, May 1990, doi:
10.17487/RFC1157.

[253] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” no. 3954. RFC Editor,
Oct. 2004, doi: 10.17487/RFC3954.

[254] “RPC: Remote Procedure Call Protocol specification: Version 2,” no. 1057. RFC Editor,
Jun. 1988, doi: 10.17487/RFC1057.

[255] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration
Protocol (NETCONF),” no. 6241. RFC Editor, Jun. 2011, doi: 10.17487/RFC6241.

[256] M. Bjorklund, “RESTCONF Protocol,” 2017, Accessed: Oct. 04, 2021. [Online].
Available: http://www.rfc-editor.org/info/rfc8040.

[257] M. Bjorklund, “Internet Engineering Task Force (IETF) The YANG 1.1 Data Modeling
Language,” 2016, Accessed: Oct. 04, 2021. [Online]. Available:
http://trustee.ietf.org/license-info.

[258] D. M. T. Rose, S. Hollenbeck, and L. M. Masinter, “Guidelines for the Use of Extensible
Markup Language (XML) within IETF Protocols,” no. 3470. RFC Editor, Jan. 2003,
doi: 10.17487/RFC3470.

[259] “The MongoDB 5.0 Manual — MongoDB Manual.”
https://docs.mongodb.com/manual/ (accessed Oct. 04, 2021).

[260] V. D. Philip, Y. Gourhant, and D. Zeghlache, “Preliminary analysis of 4G-lte mobile
network sharing for improving resiliency and operator differentiation,” in E-
Technologies and networks for Development, Springer, 2011, pp. 73–93.

[261] N. Promwongsa et al., “A Comprehensive Survey of the Tactile Internet: State-of-the-
Art and Research Directions,” IEEE Commun. Surv. Tutorials, vol. 23, no. 1, pp. 472–
523, 2021, doi: 10.1109/COMST.2020.3025995.

[262] R. Neisse, G. Steri, and I. Nai-Fovino, “A blockchain-based approach for data
accountability and provenance tracking,” in Proceedings of the 12th International
Conference on Availability, Reliability and Security, 2017, p. 14.

 216

[263] M. Pilkington, “11 Blockchain technology: principles and applications,” Res. Handb.
Digit. Transform., p. 225, 2016.

[264] L. Gavrilovska, V. Rakovic, and D. Denkovski, “From Cloud RAN to Open RAN.,”
Wirel. Pers. Commun., vol. 113, no. 3, pp. 1523–1539, 2020.

	Dedication
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Contribution to Knowledge
	Major Publications
	Patent
	Book Chapter

	Chapter 1: A Preamble to Network Intelligence
	1.1. Towards the Industry 5.0 paradigm
	1.2. Software-Defined Networking and SD-WAN
	1.2.1. Content Distributed Networking over SD-WAN, a use-case
	1.2.2. Contribution to Knowledge

	1.3. System-Level Simulation for 5G and Hybrid-SDN Integration
	1.3.1. SDN integration, a Vehicular Networking perspective
	1.3.2. Contribution to Knowledge

	1.4. Efficient IP Routing for SDN
	1.4.1. Energy-aware SDN Routing
	1.4.2. Contribution to the Knowledge

	1.5. Cognitive Routing, an Industry 5.0 perspective
	1.5.1. Self-Organized Knowledge-Defined Networking (SO-KDN)

	1.6. Motivation and Problem Statement
	1.6.1. Motivation
	1.6.2. Research Questions

	Chapter Summary

	Chapter 2 Related work
	2.1. QoS aware routing
	2.1.1. The architecture of the QoS Routing framework
	2.1.2. Fundamental QoS Routing problem
	2.1.3. Summary of QoS Routing algorithms

	2.2. Hybrid SDN Architectures
	2.2.1. Deployment strategies
	2.2.2. Classification of Hybrid SDN controllers
	2.2.3. Network management strategies
	2.2.4. Summary

	2.3. Application of Machine Learning in Routing
	2.3.1. Optimizing routes using state-prediction
	2.3.2. Optimizing routes using traffic-matrix prediction
	2.3.3. Lessons Learned

	2.4. Self-Healing Technologies
	2.4.1. Self-Healing in Cellular Networks
	2.4.2. Service Migration based Self-Healing for MEC
	2.4.3. Contemporary Service Migration using Distributed Ledge Technologies

	2.5. Self-Organization, a beyond 5G perspective
	2.5.1. Towards industry 5.0 architecture and beyond 5G compliance
	2.5.2. State of the art in KDN

	2.6. Chapter Summary

	Chapter 3: Self Optimization
	3.1. Modeling a novel Policy-Based-Routing (PBR) model
	3.2. Stochastic Temporal Edge Normalization (STEN)
	3.2.1. Problem Formulation
	3.2.2. Relationship between energy consumption and Routing
	3.2.2. The Queuing model of a Stochastic Network
	3.2.4. Numerical Example of STEN
	3.2.5. Experimental Validation

	3.3. Rapid Convergence in Multi-Path Routing (MRoute)
	3.3.1. System modelling
	3.3.2. Computing all-possible paths
	3.3.3 Route Tree
	3.3.4. Topology Synchronization
	3.3.5. Benchmarking
	3.3.6. Comparative Parameters
	3.3.6. Experimental Setup
	3.3.7. Experimental Results

	3.4. Most Reliable Route First (MRRF)
	3.4.1. Problem formulation of Cognitive Routing
	3.4.2. Metric formulation
	3.4.3. Analysis and Optimization of MRoute algorithm
	3.4.4. Estimation of the Reliability using Recurrent Neural Networks (RNN)
	3.4.5. Implementation

	Chapter Summary

	Chapter 4: Self Configuration
	4.1. Introduction
	4.1.1. SDN use cases
	4.1.2. The programming language taxonomy and SDN adaptability
	4.1.3 State of the Art in SDN programming languages

	4.2. System-Level Simulator integration with SDN (SDN-SIM)
	4.2.1. Preliminaries
	4.2.2. System Architecture and Implementation
	4.2.3. Experiments and Results

	4.3. ShellMon: Intelligent Telemetry System Architecture
	4.3.1. Architecture
	4.3.2. Features

	Chapter Summary

	Chapter 5: Self-Healing
	5.1. Introduction
	5.2. Cell Breathing: An enabler for Tactile Internet
	5.2.1. Evolution of Internet-based communication
	5.2.2. Classification of Small Cells
	5.2.3. Cell Breathing and its Importance for Tactile Internet

	5.3. CellChain: An enabler for Reliable Multi-Operator Cell-Breathing
	5.3.1. Blockchain for Reliable Multi-Operator Cell Breathing
	5.3.2. Blockchain for Reliable Rewarding System
	5.3.3. Execution flow of Blockchain-based CellChain

	5.4. Design and Implementation of CellChain
	5.4.1. System Architecture
	5.4.2. Implementation of the CellChain RAN
	5.4.3. Monitoring & Containerization with Docker
	5.4.4. Configuration for Internal Communication
	5.4.5. The Cell Rank Algorithm
	5.4.6. The Cell Breathing Algorithm
	5.4.7. Time Series Prediction of 𝐙_𝐯𝐚𝐥𝐮𝐞

	5.5. Implementation of the Migration Framework
	5.5.1. Migration Process
	5.5.2. Communication Modes
	5.5.3. Blockchain Integration

	5.6. Experimental results
	Chapter Summary

	Chapter 6: Conclusion & Future Directions
	6.1. Conclusion
	6.2. Future Directions
	6.3. Concluding remarks

	Bibliography

