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Abstract: COPD is a progressive disease that may lead to death if not diagnosed and treated at
an early stage. The examination of vital signs such as respiration rate is a promising approach
for the detection of COPD. However, simultaneous consideration of the demographic and medical
characteristics of patients is very important for better results. The objective of this research is to
investigate the capability of UWB radar as a non-invasive approach to discriminate COPD patients
from healthy subjects. The non-invasive approach is beneficial in pandemics such as the ongoing
COVID-19 pandemic, where a safe distance between people needs to be maintained. The raw data are
collected in a real environment (a hospital) non-invasively from a distance of 1.5 m. Respiration data
are then extracted from the collected raw data using signal processing techniques. It was observed
that the respiration rate of COPD patients alone is not enough for COPD patient detection. However,
incorporating additional features such as age, gender, and smoking history with the respiration rate
lead to robust performance. Different machine-learning classifiers, including Naïve Bayes, support
vector machine, random forest, k nearest neighbor (KNN), Adaboost, and two deep-learning models—
a convolutional neural network and a long short-term memory (LSTM) network—were utilized for
COPD detection. Experimental results indicate that LSTM outperforms all employed models and
obtained 93% accuracy. Performance comparison with existing studies corroborates the superior
performance of the proposed approach.

Keywords: chronic obstructive pulmonary disease; impulse radio radar; non-invasive disease
prediction; respiration rate; machine learning

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive life-threatening pul-
monary disease that causes breathlessness and leads to death if not diagnosed and treated
at early stages. COPD is ranked as the third leading cause of death in the world, with an
extremely high global mortality rate [1–3]. COPD is not treatable, but can be managed with
adequate treatment during the early stages [3,4]. Approximately 3.17 million people have
lost their lives to it, as per the World Health Organization (WHO) [3,4]. COPD impacts
breathing function and reduces the breathing capacity of the lungs, leading to respiration
problems. Chronic bronchitis and emphysema are elements of COPD [5]. Chronic bronchi-
tis is a chronic inflammatory bronchial condition characterized by excessive coughing and
mucus production in the respiratory tract. Emphysema is a chronic systemic pulmonary
condition in which tissues supporting the function of the lungs are damaged. Cough,
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shortness of breath, and wheezing are common symptoms of COPD. Symptoms of very
severe COPD include weight loss, coronary heart disease, obesity, anorexia, cognitive
dysfunction, and lung cancer [6]. Airbags and airways are elastic by nature, and the lungs
have stretching capacities. While breathing, the lungs expand and contract during air pas-
sage. This elasticity is gradually depreciated in people with COPD, airways are obstructed,
and mucus production in the lungs increases [7,8].

Diagnosis of COPD is based on the patient’s symptoms and signs, history of exposure
to pulmonary irritants (such as smoking), and family history. A thorough physical examina-
tion is performed by a clinician to diagnose COPD. A doctor can employ normal methods
such as a stethoscope to listen to a patient’s heart and lung sounds, subsequently prescrib-
ing more of these tests, including spirometry, blood gas test, chest X-ray, or a computed
tomography (CT) scan, and genetic tests. The spirometry examination plays an important
part in the diagnosis and treatment of COPD [9]. The interpretation of spirometry is not
limited to the determination of physiological patterns, but also pretest procedures and test
accuracies. The patient must inhale to full lung capacity and, with the utmost effort, blow
air out of the lungs as quickly as possible. No air from the chest must be obstructed by
the laryngeal arrangement of the tongue [10]. Until the volume of the lung is close to the
residual volume, this operation must be maintained by the patient. Forced exhalation must
last for at least 6 s in adults and 3 s in infants [11]. Several values extracted from equivalent
non-smoking, disease-free subjects are used to generate the comparison equation and are
compared to recorded values. If the information collected from normal subjects is normally
distributed, the results are displayed along the bell curve [10]. The quality of spirometry
raised questions about its efficiency [12,13]. The primary reasons for low-quality spirometry
results are improperly trained staff and inadequate testing. Testing personnel must be
professionally qualified [13,14].

The amount of oxygen and carbon dioxide in the patient’s blood can be measured
via an arterial blood gas examination. This is an indication of how well the lungs are
performing. It also shows how severe the patient’s COPD is and whether oxygen treatment
may be required. Some individuals have no issues with blood checks. A CT scan is a type
of X-ray that produces a very high-resolution image. An illustration of the structures within
the chest, including the heart, lungs, and blood vessels, can be provided by any form of
X-ray that doctor chooses. In the case of a CT scan, the radiation used is greater than that
needed for a normal X-ray scan. While radiation doses are comparatively low for each test,
they result in a cumulative build-up of the radiation exposure a human should experience
in a lifetime, marginally raising their cancer risk [15]. Analysis of the sputum can help
identify the cause of difficulties in breathing and can help detect certain lung cancers. It
can also be detected and treated when the patient has a bacterial infection [15].

Recently, the importance of continuous vital sign monitoring technology has been
recognized for different medical purposes. Heart rate, breathing and pulse rate, etc. have
been regarded as vital signs. Respiration monitoring is an important sign when it comes to
the diagnosis of pulmonary disease. The rate of breathing is typically defined as the time of
breathing (in breaths per minute, or bpm) observed in a minute. Although respiration rate
is a clinically strong predictor of serious events, the calculation of respiration rate is still
usually performed manually by counting breaths, which provides unreliable results [16].

Ultra-wide band (UWB) radar is an emerging technology, initially used in the 1970s by
the US army and advertised in the late 1990s by Time Domain and Xtreme Spectrum compa-
nies [17,18]. The US federal communication commission (FCC) reserved UWB signals with
a bandwidth of 7.5 GHz [17]. A frequency of 3.1–10.6 GHz is covered by this bandwidth,
and a signal is called UWB if it has a bandwidth of more than 500 MHz [17]. UWB signals
have high data rates and low levels of transferring power. Due to the exceptionally low
power spectral density (PSD) of UWB transmissions, narrowband technology and UWB
systems can coexist in the same spectrum without experiencing undue interference [19].
UWB is more resistant to multipath propagation and has less path loss [20]. Due to its
non-intrusive, non-tackling capabilities and its ability to penetrate various materials or
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obstacles, IR-UWB radar has advantages over other tools [21,22]. Various experiments
have been carried out on wireless sensing systems based on UWB to identify vital signs for
healthcare applications [22–24].

UWB is a technology with unique characteristics because of its incredibly wide band-
width. The transmission and reception of sub-nanosecond pulses without carriers or
modulated short pulses with carriers are usually based on UWB wireless systems [25].
Such wireless systems claim to provide low system complexity, low cost, low use of energy,
and high data rates [20,26]. For biomedical applications, UWB coexists well with other
instruments because it radiates and absorbs little electricity. IR is a UWB signaling type
that uses short pulses of the baseband, usually in the order of nanoseconds, and has been
proposed in applications for health, such as those introduced in [27]. Breathing and heart
rate calculated by UWB were studied in [28]. The microwave Doppler radar is a suitable
option for non-invasive monitoring of vital signs [29].

The research presented in this manuscript uses a respiration rate acquired non-
invasively from a safe distance without physical contact using IR-UWB radar for the
classification of COPD and healthy subjects. This non-invasive method is especially useful
in pandemics such as COVID-19, when a safe distance must be maintained. This study
uses the IR-UWB radar for COPD detection and makes the following contributions.

• A dataset of COPD patients was collected from hospitalized patients in Sheikh Zayed
medical college and hospital (SZMC&H), Rahim Yar Khan, Pakistan under the su-
pervision of a pulmonologist. The dataset was maintained with important attributes
related to COPD, including respiration rate, age, gender, and smoking history for
healthy subjects and COPD patients.

• The dataset was collected using a non-invasive IR UWB radar following the safe
distance protocol defined for COVID-19, and is the first of its kind.

• COPD detection was carried out using several experiments with both machine-
learning and deep-learning models, such as support vector machine (SVM), random
forest (RF), k nearest neighbor (KNN), Naive Bayes (NB), AdaBoost (ADA), long short
term memory (LSTM), and convolutional neural network (CNN) models.

• Experiments were performed to analyze the validity of the IR UWB radar usage for
COPD detection and results were analyzed for models’ accuracy. In addition, results
compared with state-of-the-art models.

This paper is organized into five sections. Related work is described in Section 2.
The proposed methodology and experiment setup are presented in Section 3 while the
results are discussed in Section 4. Finally, the conclusion and future work are provided.

2. Literature Review

Many research works present different methods for detecting COPD in patients. For ex-
ample, ref. [30] investigated the efficacy of electrocardiography (ECG)-derived respiration
(EDR) to distinguish between COPD patients and healthy people. ECG and respiratory
signals of 30 were gathered using the MP45 Biopac device. For each subject, three statistical
features—area, time, and skewness ratio—were derived after analyzing the morphological
pattern changes in the respiration and EDR signals. To determine how closely the original
respiration and the EDR signal resembled one another, error calculation and statistical anal-
ysis were conducted. Different classifiers were used for classification, including decision
tree (DT), linear discriminant analysis (LDA), SVM, and KNN. Both DT and KNN showed
accuracies of 98.33% for respiration and EDR-derived features simultaneously.

A model was presented in [31] to compute forced vital capacity (FVC) and forced expi-
ratory volume (FEV) of human exhalation collected by a mobile microphone. The data were
analyzed using regression, and the quadratic regression approach was chosen. The sug-
gested model was evaluated on 25 people, including 10 COPD patients, 5 smokers,
and 10 healthy people. The results demonstrated that the proposed models’ FVC, FEV1,
and FEV1/FVC values are comparable to those obtained using a clinical spirometer with
an accuracy of 96%.
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The study [32] used a deep-learning-based risk stratification method for automated
COPD identification using the respiration rate. Different feature combinations were used
to classify COPD and non-COPD using logistic regression (LR), DT, LDA, KNN, SVM,
and quadratic discriminant classifiers. The classification was based on spirometry measure-
ments as well as respiratory sound parameters. The SVM classifier achieved a maximum
classification accuracy of 83.6% when employing the most significant lung sound param-
eters, namely median frequency and linear predictive parameters. Further, SVM and
LR achieved 100% accuracy when using median frequency, linear predictive coefficient,
and spirometry data. A cross-sectional study of 294 people was carried out to discriminate
between COPD caused by smoking (COPD-S), COPD caused by household air pollution
(COPD-HAP), and normal patients by [33]. SVM, canonical discriminant analysis (CDA),
and principal component analysis (PCA) were used for classification. The results showed
that the breath print of COPD patients differs from that of healthy subjects, explaining
a 93.8% variability with a correct prediction of 97.8% and correct classification of 100%,
as well as positive and negative predictive values of 96.5% and 100%, respectively.

The authors presented an IoT-based respiratory monitoring system for COPD detection
in [34]. The study used only the rate of respiration estimated using the Fast Fourier
transform (FFT). The rate of respiration was shown on a smartphone and also transmitted
to a hospital through an internet connection. Findings showed that PPG signals perform
better at estimating the respiration rate that is to be used to detect COPD.

Heart rate variability (HRV) spectrum analysis was employed in [35] with and without
the impact of respiratory signals in healthy and COPD participants. The Welch Periodogram
technique was used for signal spectrum analysis. There was no difference in HRV spectral
analysis between COPD and stable participants with and without the respiration effect.
The results demonstrated that low-frequency respiration rates increased the low frequency
and reduced high-frequency spectrum analysis, indicating an inaccuracy in HRV analysis.
The possibility of detecting the difference between COPD and normal tidal breathing with
a structured light plethysmograph (SLP) was investigated by [36]. The study presented
ten SLP-measured parameters that vary between COPD and healthy people. The findings
suggest that COPD and healthy people vary in their breathing patterns, as measured
by SLP.

WheezeD is a computer model developed by Chatterjee et al. to detect wheezing
from audio recordings of respiration [37]. The model first used an algorithm to recog-
nize respiratory phases (inhalation and exhalation) from one-dimensional acoustic data.
The audio was converted into a 2D Spectro-temporal image using a convolutional neural
network (CNN)-based wheeze detection algorithm in the second stage. Audio data of
respiration were gathered from the R.A.L.E repository (a repository that contains respi-
ration sounds) [38], with Google repository [7] as a positive class, and audio recording
with Samsung gear S3 smartwatch (16 kHz) used as negative class. A respiratory phases
(inhalation and exhalation) detection algorithm [39] was applied to detect inhalation and
exhalation of each respiratory cycle. The sampling rate normalization algorithm [40] was
applied to the spectrogram images of sound data used as the primary input. Subsequently,
the image was segmented with short-time Fourier transformation (STFT). An accuracy of
96.99% was achieved by CNN for detecting Wheezing from audio data.

The study [41] investigated the difference in respiration resistance (Rrs) between mild
and moderate COPD patients during tidal breathing in the inhalation and exhalation phases.
Results revealed that Rrs varied dynamically in COPD patients during tidal breathing.
Similarly, the mean Rrs value was substantially higher in moderate COPD than in mild
COPD, and in the respiratory cycle, moderate COPD had higher maximal and minimum Rrs
at high frequency than mild COPD. Results also showed that in an inhalation–exhalation
study, moderate COPD patients had higher maximal and minimum Rrs at 20 to 35 Hz.
The work [42] presented an ECG and ECG-derived respiration (EDR)-based method for
identifying unobtrusive and restrictive respiratory disease. Biopac system MP45 was
used to gather ECG signals. Each subject’s ECG was captured for 300 s at a sampling
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rate of 1000 Hz. To derive distinguishing features, temporal information was taken from
the morphological variations seen in both ECG and EDR signals. The participants were
then classified into normal, obstructive, and restrictive groups using various supervised
classifiers. On 90 subjects (both healthy and ill), the classifier’s performance was evaluated
and the SVM shows classification accuracy of more than 98%.

Using a variety of respiratory rate estimation approaches, several studies classified
COPD patients and healthy subjects. The sensors employed by the studies estimated respi-
ration per minute (RPM) invasively, and thus inherited all the limitations associated with
on-body sensors such as privacy and safety concerns, frequent components’ replacement,
need for a qualified technician, etc. Meanwhile, the proposed approach exploits UWB radar
for the estimation of respiration rate at safe distance without any physical contact with
the patient and with minimum human intervention. In addition, the data can be collected
without the need for a resident medical expert.

3. Methodology
3.1. Preliminary Procedure

Data collection was performed on real patients in SZMC&H, Rahim yar khan, Pakistan.
A demo of non-invasive respiration detection using the IR-UWB radar was given to the
participants, and consent forms were signed by each participant.

3.2. Proposed Methodology

The schematic methodology diagram is shown in Figure 1. The approach is divided
into three major steps. The raw radar data collection is performed in the first step. This
is followed by data cleaning and preparation while RPM extraction is in step 2. Finally,
machine-learning classifiers are devised for the classification of subjects into COPD and
healthy subjects in step 3.

IR- UWB RadarPatient

Preprocessed  
Data

Data Splitting

Testing Set

Training Set

Raw Signal Respiration Signal 

COPD

Healthy

Prediction

Performance 
Evaluation

ML Model Model Training

Model Testing

Figure 1. Architecture of the proposed methodology.

The first step in the proposed methodology is to obtain data from both patients and
healthy subjects regarding COPD. For this purpose, IR-UWB radar is used, which is immune
to dust, smoke, wetness, and darkness. It is non-intrusive and is highly advantageous
when data gathering in a non-contact fashion is needed. The UWB radar provides raw
signals from the subjects, which are later preprocessed using signal processing approaches
to acquire respiration signals. Respiration signals are stored in the databases for healthy
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and COPD subjects. For model training and testing, the dataset is divided into training
and testing sets, respectively. Trained models are tested on the unseen data of COPD
and healthy subjects, and the performance is evaluated using accuracy, precision, recall,
and F1 score.

3.3. Data Collection

This work employs an X4m300 IR-UWB radar, as shown in Figure 2, to collect physio-
logical data. It comes with an adjustable frame size, a detection time of 1.5 to 3.5 s, and a
detection zone of up to 9.4 m [43,44]. The X4 chip architecture (SoC) powers the UWB radar,
which is highly sensitive. It has integrated antennas that offer unlicensed core frequencies
of 7.29 GHz or 8.748 GHz and 1.4/1.5 GHz (-10 dB) bandwidth [45]. It is powered by a
highly sensitive XeThru X4 UWB chip that detects minimal motion and has the highest
signal-to-noise ratio. It has an ARM Cortex-M7 MCU signal processing algorithm. It has a
very high resolution rate due to nanosecond pulse transmission [46]. Additionally, the tech-
nology is immune to environmental issues such as dust, smoke, dampness, and darkness,
and operates reliably in non-clinical, difficult, and remote situations. When the board’s
default configurations are used, the integrated firmware yields a 9.4 m-long baseband signal
that starts at 0.18 cm. This distance is split into 181 bins, with bin lengths of 0.0514 cm.
The effective range for this radar is between 0.2 m and 1.6 m.

Figure 2. X4m300 UWB radar.

The inhalation process supplies oxygen to the lungs, expanding the chest and reducing
the distance between the radar and the chest, whereas the expiration process has the
opposite effect. Figure 3 shows this behavior by increasing (inhaling) and decreasing
(exhaling) the amplitude at a certain distance corresponding to the target position relative
to the radar. The area under the curve seen in Figure 3 is calculated as performed in
previous studies [47,48] to determine the number of chest expansions and contractions
caused by breathing. This behavior is shown in Figure 3 by the raising (inhaling) and
lowering (exhaling) of the amplitude at a certain distance corresponding to the target
location (subject) location relative to the radar. The area under the curve shown in Figure 3
is retrieved to count the number of chest expansions and contractions caused by breathing.
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Figure 3. Radar signal during chest scanning.

A test bed was set up in the consultation room at the outpatient department (OPD)
of the pulmonology ward of SZMC&H. Seventy subjects between the ages of thirty-five
and seventy years participated in this process. The subjects were then classified into
two groups: thirty-five COPD patients that have received a clinical diagnosis from the
hospital, and the other thirty-five subjects who were healthy subjects with no clinical
diagnosis of respiratory disease. An ethical approval statement was designed according
to the guidelines of the Helsinki Declaration and approved by the Khwaja Fareed Uni-
versity of Engineering and Information Technology (KFUEIT) ethical committee, with a
consent form signed by each subject. Participants were instructed to sit comfortably facing
the UWB radar, as shown in Figure 4. Demographic data of the subjects, such as age,
whether they were a smoker/non-smoker, and gender were gathered before recording
the chest movement. The chest movement of each subject was recorded for five minutes.
The recorded chest movement was saved in comma-separated files (CSV) in separate di-
rectories (COPD/Healthy). The resulting CSV files comprise 27 columns and 6000 frames
(20 rows per second). The column represents the distance of radar from participants.

Figure 4. Data collection with the subject sitting in front of the radar.

3.4. Data Cleansing and Preparation

Respiration, pulse, and noise, including heartbeat, belly movement, eye blinking,
eyeball movement, and other ambient movements, are all included in the data obtained
for area values under the curve, as the radar system has a viewing field greater than the
chest area alone. The technique only requires the breathing patterns for which respiration
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signals are derived from the collected data. The person is asked to sit in a normal posture
and breathe regularly, and the radar obtains data regarding heart rate, respiration, eyebrow
movement, eye movement, and limb movement. Since these movements lie in different
frequency ranges, the respiration rate can be viewed using Fourier transform and the target
signal can be extracted.

The frequency spectrum of the raw signal is produced using the Fourier transform.
An adult’s respiration rate has a maximum frequency of 0.4 Hz [47,49–52]. A filter with a
cut-off frequency of 0.4 Hz is required to obtain the respiration signal. In the proposed case,
the cut-off frequency of 0.4 Hz shifts to 0.04 when the normalized frequency is employed.
To eliminate higher-frequency noise, a tenth-order low-pass Butterworth filter with a cut-off
frequency of 0.04 is used to obtain the respiration signal. The Butterworth filter is a digital
filter with a highly smooth frequency response curve in the passband. The filter’s square
amplitude response function is

|H(iw)|2 =
1

1 + ( w
wc
)2K (1)

where K denotes the filter’s order, which is a positive integer, and wc is the low-pass filter’s
cut-off frequency. In this study, K = 10 and wc = 0.04 are used for experiments.

3.5. RPM Extraction from IR-UWB Data

RPM extraction entails various aspects of the data processing process. FFT is used
to transform data from the trapezoidal rule into the frequency domain. Following that,
the Butterworth filter is used to extract only the data related to respiration. The inhaling
process is represented by the peaks found in the Butterworth filtered data. To find peaks,
high movement places in the data must be located. Each round of inhalation and exhalation
is considered one respiration. Finally, RPM can be calculated using:

RPM =
ap

T
(2)

where ap refers to peaks, while T shows the time in minutes.

3.6. Data Splitting

The dataset is split into two subsets: the training set and the testing set. An 80:20 ratio
is used for data splitting, where 80% of the dataset is used for model training and 20% of
the data are used for model testing. Table 1 shows the count for training and testing sets.
In addition to these, 10-fold cross-validation is also employed to show the significance of
machine-learning models.

Table 1. Training and testing count.

Dataset COPD Healthy

Training set 29 27

Testing set 6 8

Total 35 35

3.7. Machine-Learning Models

Different ML models are trained on the dataset, including SVM, NB, RF, KNN,
and ADA. These models are selected for experiments because of their significant per-
formance in the literature on similar dataset types. These models, along with their best
hyperparameters settings, are shown in Table 2. The hyperparameter setting is obtained
using the grid search method, as the models were tuned between a specific range of
parameter values.
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Table 2. Hyperparameter settings and performance of machine-learning models for COPD classification.

Model Parameters

SVM Kernel ’Poly’, C ’1.0’, degree ’3’, gamma ’scale’

RF 200 estimators witht̃he ’Gini’ criterion, each tree with a max depth of 20

KNN Neighbor = 5

NB Used with default parameters

ADA 200 estimators with a learning rate of 0.2

SVM is used with a ’poly’ kernel which can be appropriate for learning from non-linear
data. RF is used with 200 n_estimators, meaning that 200 decision trees are combined for
prediction and with the 20 max depth value, each tree is restricted to grow to a maximum
20-level depth. KNN is used with one hyperparameter name n_neighbor with a value of
five, which means that KNN will consider five points to find the distance. NB is used with
its default setting with 200 estimators, which means that 200 decision trees will be included
in the decision process. A learning rate of 0.2 is also used to control the loss and calculate
the weight for base models.

3.8. Performance Evaluation

Four evaluation parameters are employed to measure machine-learning models’ per-
formance in areas such as accuracy, precision, recall, and F1 score. These evaluation
parameters are mostly used for binary classification algorithms performance measures.
These evaluation parameters are mathematically defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where

• TP is true positive, which means the actual label of the sample is healthy and the
model also predicts it as healthy.

• TN is true negative, which means the actual label of the sample is COPD, and the
model also predicts it as COPD.

• FP is false positive, which means the actual label for the sample is COPD, but the
model predicts it as healthy.

• FN is false negative, which means the actual label for the sample is healthy, but the
model predicts it as COPD.

Thus,

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

4. Results and Discussions
4.1. Results of RPM Extraction Experiments

Because training and prediction are based on RPM, precise RPM estimation is pivotal.
The raw respiration data are processed to remove noise for this purpose. Figure 5 shows
the noisy and cleaned data for RPM estimation. It can be observed that the cleaned data
have smoother peaks than the noisy data, and peak estimation is easy with the cleaned
data. Peaks are identified and counted using the cleaned data. Matlab function findpeaks is
employed for this purpose, which returns the vector for the local maximum of the input
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signal. A local maximum is found concerning adjacent points, and shows a data sample
that is greater than or equal to two adjacent samples.

Experiments with different participants were carried out to validate the performance
and level of accuracy for RPM. For this purpose, 10 subjects participated in the experiment.
The experiment was repeated multiple times and the average RPM was estimated to
analyze its performance against the oximeter. The estimated RPM was validated against a
commercial pulse oximeter.

The validation experiment included ten subjects, including six males and four females
with ages ranging from 35 to 60 years. Individuals were instructed to sit comfortably facing
the radar, with the pulse oximeter attached to their left index finger. The radar operator
alerted the subjects and activated the radar, while the subject simultaneously activated the
pulse oximeter. This hand movement did not affect the data collection, since the respiration
frequency range does not coincide with the subject’s hand movement while activating the
pulse oximeter. The chest movements of each individual were recorded twice, for 1 min
each time. The above-described approach was used to determine RPM using IR-UWB
data. The findings of the computed RPM were validated by an accuracy of 100% by the
commercially available pulse oximeter.

4.2. Results of COPD Classification

A dataset was created based on the RPM, age, whether they were a smoker/non-
smoker, gender, and labels (COPD/Healthy). Dataset analysis indicated that healthy
subjects’ respiration rates ranged from 16 to 24, whereas COPD patients’ respiration rates
ranged from 16 to 27. This indicates that using the respiration rate alone is not sufficient
to discriminate COPD patients from healthy subjects. Consequently, other features are
required which are more discriminate in this context. The discrimination capability is
strengthened by adding other features in the dataset such as age, gender, and smoking/non-
smoking status. Figure 6 shows 3D scatter plots of different combinations of features. In the
3D representation of data, Figure 6d illustrates the target classes using all features and four
features (RPM, Gender, Smoker, Age) converted into three dimensions (X, Y, and Z) using
the PCA technique. It shows that using RPM, gender, and age, COPD patients and healthy
subjects can be classified. A scatter plot of the original dataset based on age and RPM is
shown in Figure 7. Two critical issues related to machine-learning models are overfitting
and underfitting. In overfitting, models learn small noise present in data as a sample and
do not generalize on the unknown data. Meanwhile, the underfitting model does not learn
well from the training data. To avoid these issues, the data were preprocessed and cleaned
and models optimized by fine-tuning different hyperparameters. The dataset was divided
into 80% for training and 20% for the testing of models.

Figure 5. Data preprocessed for RPM estimation.
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Figure 6. Features Visualization (0) represent Healthy, (1) represent COPD (a) RPM, Smoker, Age,
(b) RPM, Gender, Age (c) RPM, Gender, Smoker, and (d) PCA(RPM, Gender, Smoker, Age) = X, Y, Z.

Figure 7. RPM distribution for healthy persons and COPD patients concerning age.

4.3. Results of COPD Classification Using Machine-Learning Models

After successful training, these models were evaluated on the previously split data
for testing. The average accuracy of these models is shown in Table 3. Results indicate
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that SVM, RF, NB, and ADA showed better training accuracy, but had fluctuations in per
class performance, as these models showed different scores for COPD class. For better
performance, these models require a large feature set for an appropriate fit. KNN showed
better testing accuracy, and also showed significant results for each class, because KNN
is a simple model based on the matching criteria and does not need a large feature set for
significant performance. KNN can perform well on a small dataset, as the experimental
results in the current study prove.

Table 3. Performance of machine-learning models for COPD classification.

Model Accuracy Class Precision Recall F1 Score

SVM 0.79

Healthy 0.75 0.86 0.80

COPD 0.83 0.71 0.77

Average 0.79 0.79 0.78

RF 0.79

Healthy 0.75 0.86 0.80

COPD 0.83 0.71 0.77

Average 0.79 0.79 0.78

KNN 0.86

Healthy 0.86 0.86 0.86

COPD 0.86 0.86 0.86

Average 0.86 0.86 0.86

NB 0.79

Healthy 0.75 0.86 0.80

COPD 0.83 0.71 0.77

Average 0.79 0.79 0.78

ADA 0.79

Healthy 0.70 1.00 0.82

COPD 1.00 0.57 0.73

Average 0.85 0.79 0.78

4.4. Results of COPD Classification Using Deep-Learning Models

This study makes use of state-of-the-art deep-learning models in comparison with
machine learning. For this purpose, convolutional neural network (CNN) and long short
terms memory (LSTM) models are used. The architecture of LSTM and CNN shown is
provided in Table 4. The LSTM model consists of five layers: an embedding layer, two
dropout layers, an LSTM layer, and a dense layer. The embedding layer is used with
1000 vocabulary size, 20 output dimension size, and 4 input length. The dropout layer is
used with a 0.2 dropout rate, which helps to reduce the complexity of learning neurons to
reduce the model’s overfitting probability.

Table 4. Architecture of deep-learning models.

Model Structure

LSTM Embedding(1000, 20, 4), Dropout(0.2), LSTM(100), Dropout(0.2), Dense(2, activa-
tion = ’softmax’)

CNN Embedding(1000, 20, 4), Dropout(0.2), Conv1D(128, 2, activation = ’relu’), Max-
Pooling1D(pool_size = 2), Flatten(),Dense(2, activation = ’softmax’)

loss = ’binary_crossentropy’, optimizer = ’adam’, epochs = 100

LSTM is used with 100 units, and binary_crossentropy loss function is used due to
the binary classification problem. The model is compiled using the ’Adam’ optimizer and
fitted with 100 epochs. For the CNN model, we use the same embedding layer, one dropout
layer with 0.2 dropout rate, a 1D convolutional layer with 128 filters, and 2 × 2 kernel and
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ReLU activation function. The ReLU function is used to break linearity in learning data.
After the 1D convolutional layer, a max pooling layer is used with 2 × 2 pool size. A flatten
layer is used to convert three-dimensional data into one dimension and, in the end, a dense
layer softmax activation function is used.

Results suggest that LSTM outperforms all machine-learning models, as well as the
CNN model, with the highest 0.93 accuracy score, as shown in Table 5. However, the
results from CNN are not very good due to the fact that CNN requires a large feature set for
computation. The large size of the kernel is not appropriate to learn from a small feature set.
Consequently, the model was trained properly due to a small feature set, which resulted in
poor performance of the CNN model with a 0.79 accuracy score.

Table 5. COPD classification results using deep-learning models.

Model Accuracy Class Precision Recall F1 Score

LSTM 0.93

Healthy 1.00 0.80 0.89

COPD 0.90 1.00 0.95

Average 0.95 0.90 0.92

CNN 0.79

Healthy 0.71 1.00 0.83

COPD 1.00 0.78 0.88

Average 0.86 0.89 0.85

4.5. Results Using K-Fold Cross Validation

This study also used the K-fold cross-validation approach to show the significance of
the models, and the results are presented in Table 6. The results of all learning models are
also good, with 10-fold cross-validation. LSTM is at the top, with 0.84 mean accuracy and
0.17 standard deviation.

Table 6. Results of K-fold cross-validation.

Model Accuracy Std. Dev.

SVM 0.80 +/− 0.12

RF 0.77 +/− 0.18

KNN 0.81 +/− 0.22

NB 0.81 +/− 0.22

ADA 0.76 +/− 0.13

CNN 0.79 +/− 0.03

LSTM 0.84 +/− 0.17

4.6. Comparison with Existing Studies

Performance analysis was carried out with state-of-the-art approaches that present
COPD prediction techniques. For this purpose, the models proposed in other studies were
also applied to the current dataset, and the results were compared. The study [47] used
the SVM model with the data collected from the UWB radar. Similarly, study [22] used a
multi-class(MC)-SVM model for remote vital signs recognition. The authors performed
experiments on the UWB dataset. Another study [53] used 1D CNN for the recognition of
five respiration patterns (Eupnea, Bradypnea, Tachypnea, Apnea, and Motion). They also
used the same UWB radar for dataset collection. An additional study [54] worked on pul-
monary disease using data for obstructive and non-obstructive classification. The authors
used a multi-layer perceptron to achieve a significant accuracy score. For performance
comparison, the proposed MLP was trained on the current dataset. Similarly, ref. [55]
investigated the prediction of asthma and COPD classification using sound-based features.
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The best performance was achieved using the decision tree (DT) model. Performance
comparison results are given in Table 7.

Table 7. Comparison results with other studies.

Ref. Year Model Accuracy

[22] 2018 MC-SVM 0.78

[53] 2019 CNN 0.84

[47] 2021 SVM 0.79

[54] 2022 MLP 0.82

[55] 2022 DT 0.79

This study 2022 LSTM 0.93

4.7. Discussions

COPD is a life-threatening disease that can lead to premature death if it is not diag-
nosed and treated during its early stages. It mainly affects the lungs, causing significant
breathing problems, mobility, and quality of life issues, introducing other health complica-
tions as it progresses. As a result, the detection of COPD is a task of significant importance.
Several tests can be used to diagnose COPD, including spirometry, blood test, chest X-ray,
CT scans, and genetic testing. Such tests are expensive, time consuming, and require a
medical expert for test performance and subsequent diagnosis. Such tests require contact
(invasive), which has created complications during the current pandemic. This study
proposes a solution for COPD detection where physical contact with the patient is not
needed and, advantageously, a medical professional is not required to perform the test,
leaving time for improved diagnosis outcomes for clinicians. The study utilizes an IR-UWB
radar to detect respiration rates from healthy subjects and COPD patients, as described
in Section 3.2. UWB radar is a non-intrusive device and can penetrate through different
materials, making it advantageous over several other technologies. Breathing and heart
rate measurements can be performed using the UWB, which are further used for disease
prediction. However, one of the main challenges is data gathering from COPD patients and
healthy subjects, which requires already diagnosed patients and healthy subject inclusion.
In this regard, collaborative work was carried out with Sheikh Zayed Hospital, Pakistan,
where COPD patients are treated. The data from 70 subjects were gathered for this study
using the setup described in Section 3.3.

The efficacy of respiration rate measurement was verified using a commercial pulse
oximeter on the preprocessed signal from IR-UWB, as described in Section 4.1. COPD
prediction experiments were performed using machine-learning and deep-learning models.
Data analysis revealed that using the respiration rate alone was not sufficient to classify
the subjects into healthy and COPD patients, because the respiration rate may overlap for
COPD patients and healthy subjects. As a result, the study investigated other features such
as age, gender, and smoking history. PCA-based analysis indicates that using four features
(RPM, age, gender, and smoking history) produced the best performance. So, four features
were used for experiments using machine-learning and deep-learning models.

Experimental results given in Table 3 indicate that the KNN model performed better
with a 0.86 accuracy score than other models, including SVM, RF, NB, and ADA. Class-wide
accuracy varies concerning the model, but models show better accuracy for COPD class pre-
diction than for that of the healthy class. Table 5 shows that deep-learning models obtained
the highest accuracy of 0.93 with the LSTM model for COPD detection. It indicates that
the performance of deep-learning models is better than machine-learning models. The per-
formance of the LSTM model is important from two perspectives. First, the results were
obtained non-invasively, which can be fruitful when diagnosing patients with infectious
diseases. Secondly, the prediction accuracy of LSTM proposed in this study is better than
existing approaches, as shown in Table 7. The highest accuracy of 0.84 for COPD reported
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in previous studies was obtained by [53]. The results obtained in the current study are
much better than [53].

The results reported in the current study are promising for COPD detection, consider-
ing the fact that the proposed approach is non-invasive. However, further investigation
is required for several improvements. First, the dataset size is comparatively low, and a
large dataset involving more subjects is desirable for generalization. Second, the IR-UWB
is tolerant to noise and the algorithm is immune to small subject movements, providing
robust results. However, real-time testing is also desired to include remote health care
and live but remote doctor consultations. With its contactless signal measurement, this
approach can be adopted for data gathering where there is a risk of infectious disease
when touching the patient. Third, transfer learning can be adopted in the case of the larger
dataset to reduce the computational complexity of models.

5. Conclusions

Chronic obstructive pulmonary disease is a progressive lung disease that causes short-
ness of breath and other breathing complications. COPD causes hundreds of thousands
of deaths, and if it is not diagnosed and treated at early stages, leads to premature death.
Although several invasive approaches are available to diagnose COPD, they require pulmo-
nologists for prediction. This study proposes the use of a non-invasive approach utilizing
the IR UWB radar, which is used to measure vital signs such as breathing patterns. Experi-
ments were carried out on hospitalized COPD patients to validate the performance of the
proposed approach with 35 COPD patients and 35 healthy subjects under the supervision of
pulmonologists. For this purpose, age, gender, RPM, and smoking history were considered.
Machine-learning models, as well as, LSTM and CNN deep-learning models, were utilized
for COPD prediction. Results suggest that LSTM yields the best results, with an accuracy
of 93%. The IR-UWB shows the potential for non-invasive COPD prediction and can be
highly beneficial, especially during COVID-19 pandemics, for patients with susceptible
immune systems, for infants, and others when the observation of non-tactile or remote
testing provides benefits, such as observing distancing restrictions. In the health care center,
the proposed system has the potential to monitor and diagnose COPD patients from a safe
distance. Multiple patient screening and patient flow in a non-stationary environment are
also intended for future work.
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