
E: Sources & exposure 
E.2. Exposure reduction 
 
Ventilation effectiveness and contaminant distribution in an occupied space 
conditioned with low exergy ventilation technologies in the tropics  
 
Esmail M. Saber1, 2 *, Matthias Mast2, Kwok Wai Tham1, and Hansjürg Leibundgut3 
 
1Department of Building, School of Design and Environment, National University of 
Singapore, Singapore 
2Future Cities Laboratory, Singapore, Department of Architecture, ETH Zurich, 8092 
Zurich, Switzerland  
3Institute of Technology in Architecture, Department of Architecture, ETH Zurich, 
8092 Zurich, Switzerland 
 
*Corresponding email: emsaber@nus.edu.sg  
 
Keywords: Ventilation effectiveness, Low exergy, Decentralized dedicated outdoor 
air system, Radiant cooling system 
 
SUMMARY  
 
Low exergy concept can be implemented in air conditioning system of the tropical 
buildings through a reduction of the difference between operational temperature of 
cooling system and indoor space whilst meeting thermal comfort requirements. 
Decentralized dedicated outdoor air system (DDOAS) coupled with radiant cooling 
system (RCS) are low exergy designs which can potentially reduce exergy 
destruction in cooling system of buildings while providing adequate air quality for 
occupants. In this study, ventilation effectiveness of a DDOAS-RCS design with floor 
supply – ceiling exhaust (FS-CE) and radiant ceiling panel has been investigated in 
an experimental setup located in Singapore. Air change efficiency (ACE) and 
contaminant removal effectiveness (CRE) of the designed system have been 
determined using tracer gas step down test under various ventilation rates. The 
results showed that ACE of DDOAS-RCS design with FS-CE distribution is close to 
that of mixing strategy and there is no significant difference for five considered 
ventilation rates in the range of 0.44-0.92 lit/s/m2. It was also found that each change 
in occupancy for the space with 70 m3 volume at ventilation rate of 0.62 lit/s/m2 takes 
about two hours to reach a steady state CO2 concentration and this change happens 
gradually throughout the space. 
 
INTRODUCTION 
 
The main goal of sustainable healthy buildings is to achieve healthy, comfortable and 
productive indoor spaces with least amount of exergy consumption and 
environmental impacts. Low exergy designs incorporating decentralized dedicated 
outdoor air system coupled with radiant cooling could be effective in achieving this for 
the tropical climate (Meggers et al., 2013). For conventional means of mechanical 
dehumidification, a design prerogative is to minimize ventilation rates, since 
dehumidification entails exergy destruction due to the required low temperatures. 
With improved ventilation effectiveness of the design, the minimum required 



ventilation rate can be lowered without compromising the indoor air quality. 
Depending on the location of air supply outlets, and exhaust grilles as well as 
ventilation rate and supplied air condition, air flow pattern could be close to the ideal 
scenarios of fully mixed (air change efficiency (ACE)=50%) or piston (ACE=100%) 
strategies. An indoor air pattern with ACE between 50-100 % is categorized as 
displacement flow and with ACE below 50%, it is called a short-circuit flow (REHVA 
Guidebooks No. 2, 2004).  
 
Ventilation effectiveness indices including air change efficiency and contaminant 
removal effectiveness (CRE) are used to quantify the ability of air flow patterns to 
exchange air and remove air-borne contaminants, respectively. Several standards 
and handbooks provide guidelines on the procedure of calculating these values 
based on data from experiments or numerical modeling (ASHRAE 129, 2002; 
REHVA Guidebooks No. 2, 2004; REHVA Guidebooks No. 10, 2007). While it was 
shown by some studies (Awbi, 1998; Gan, 1995) that displacement ventilation is 
more effective, Simon and Waters (1998) and Lin et al. (2006) concluded that in 
operation, indoor air pattern with near floor supply diffusers is more complicated than 
expected. Depending on the location of heat sources and diffusers, near floor supply 
of air may not necessarily improve the air quality near occupants. Tomasi et al. 
(2013) investigated the ventilation effectiveness of residential rooms with mixing 
ventilation and floor heating and cooling and they found that ACE and CRE could 
give contradictory information on the effectiveness of air distribution. They 
recommended considering both values in the design process and accompanying 
experiments with computational fluid dynamics (CFD) simulations.   
 
This study aimed to measure the ventilation effectiveness indices of a low exergy 
ventilation design depicted as decentralized dedicated outdoor system (DDOAS) 
combined with radiant cooling system (RCS) in the tropical context. These 
technologies have been installed in a freestanding test bed (called BubbleZERO) 
located outdoors in Singapore (Bruelisauer et al., 2013). In previous works, the 
performance of this setup has been investigated in terms of thermal comfort and 
indoor air quality under various system and space related parameters (Saber et al., 
2013, 2014). In this paper, the evaluation criteria of these low exergy technologies 
have been extended by including ventilation effectiveness to reveal the ability of this 
combination for contaminant removal.    
  
METHODOLOGIES  
 
The ventilation effectiveness can be measured with different methods through 
injection of a tracer gas in the space. A step down tracer gas method has been used 
in this study and SF6 was selected as the tracer gas. The experiments have been 
conducted in the freestanding test bed (BubbleZERO) located in outdoor space 
whose exterior is subjected to the ambient air but the interior is conditioned. The 
setup for the experiments including system components and location of sample 
points are shown in Fig. 1. Decentralized air supply units (green components) located 
within the floor take fresh air directly from the façade, condition it and distribute it 
through underfloor ducts and floor diffusers. Radiant cooling panels are installed at 
the ceiling and air exhaust flaps are located in the middle of panels where air leaves 
the space through exhaust ducts. During the test, two persons were seated in the 
center of the room and working with their laptops. Tracer gas has been injected in the 
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