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Abstract 

     Laser nitriding, a high-precision surface modification process, enhances the hardness, wear 

resistance and corrosion resistance of the materials. However, laser nitriding process is prone to 

appearance of cracks when the process is performed at high laser energy levels. Traditional techniques 

to detect the cracks are time consuming, costly and lack standardization. Thus, this research aims to put 

forth deep learning-based crack recognition for the laser nitriding of Ti-6Al-4V alloy. The process of 

laser nitriding has been performed by varying duty cycles, and other process parameters. The laser 

nitrided sample has then been processed through optical 3D surface measurements (Alicona Infinite 

Focus G5), creating high resolution images. The images were then pre-processed which included 2D 

conversion, patchification, image augmentation and subsequent removal of anomalies. After 

preprocessing, the investigation focused on employing robust binary classification method based on 

CNN models and its variants, including ResNet-50, VGG-19, VGG-16, GoogLeNet (Inception V3), 

and DenseNet-121, to recognize surface cracks. The performance of these models has been optimized 

by fine tuning different hyper parameters and it is found that CNN base model along with models having 

less trainable parameters like VGG-19, VGG-16 exhibit better performance with accuracy of more than 

98% to recognize cracks. Through the achieved results, it is found that VGG-19 is the most preferable 

model for this crack recognition problem to effectively recognize the surface cracks  on laser nitrided 

Ti-6Al-4V material, owing to its best accuracy and lesser parameters compared to complex models like 

ResNet-50 and Inception-V3.  

Keywords: Laser Nitriding, Crack recognition, Deep Learning, Transfer Learning, Anomalies, Binary 

classification 

 

1. Introduction  

      Surface-coated components and structures find extensive application in various industries, including 

medical equipment manufacturing, medical implants, optical device production, precision cutting tool 

fabrication, molding can production, and aesthetic gear manufacturing[1], [2], [3], [4], [5]. Detecting 

surface defects becomes crucial as they can provide valuable insights into the quality of the surface 

coating technique employed and the superiority of the raw materials used for both the coating and the 

base[6]. The development of reliable and efficient crack recognition techniques for coated surfaces have 

been a subject of extensive research in the past such as eddy current testing, ultrasonic testing, laser 
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testing and microwave testing [7], [8], [9], [10]. Such techniques are time consuming, costly and require 

human expertise to interpret the results which can lead to variability and errors.  

    To overcome the limitations of the noted traditional techniques, advancements in image processing 

and computer vision techniques have provided new opportunities for crack recognition on metal 

surfaces and coatings. By analysing digital images or optical profiles of surfaces through machine 

vision, it becomes possible to recognize the presence of cracks with high accuracy and efficiency[11], 

[12], [13], [14]. In computer vision, convolutional neural networks (CNN) have emerged as a focal 

point of research for metal surface defect recognition [15], [16], [17], [18]. CNNs are one of the 

foundational and most used models in computer vision domain and can automatically perform end-to-

end learning by integrating feature extraction and classification into a single framework with minimum 

number of parameters compared to the complex DL models.  A number of authors have directed their 

efforts to use CNN and its variants for surface defect recognition. For instance, Nguyen et al[19] 

employed a CNN-based multi class classification algorithm to classify surface defects in cast products, 

including blow hole, chipping, crack and wash defects. The developed CNN model achieved accuracy 

of more than 95% for all of the studied defects. Yang et al.[20] applied transfer learning using AlexNet 

as the proposed model on a small data set to detect damage on the surface of wind turbine blades. The 

authors used a combination of different data set arrangements varying in ratios between training, 

validation and testing, and compared the model’s results in different modes of transfer earning and 

without transfer learning. Transferred learnt models achieved accuracy of 92% in all data arrangements.  

Comparison of different CNN models is a proven technique to find the optimum model for defect 

classification. In this direction, Gao et al.[21] developed a semi-supervised model using CNN variants 

such as ResNet-50, DenseNet-201, VGG-19 and EfficientNet-b0 to detect steel surface defects by 

incorporating pseudo labels to utilize unlabelled samples. His results demonstrated that EfficientNet-b0 

was the most accurate and the fastest model with 100% accuracy to detect steel surface defects.  Cheng 

et al. [22] proposed a CNN based Microcrack-Net model to improve the feature detection of noisy 

images of microcracks on the terminal electrode of tantalum capacitors. The proposed model gave 

superior performance in comparison to the more advanced variants of CNN like Resnet-50, resNext50, 

VGG16, SegDecNet and Racki-Net to detect micro cracks. 

       Similar kind of efforts have been made to detect defects in surface coatings, for instance, Lu et 

al.[23] trained different variants of CNN using transfer learning to classify the accuracy of thermal 

barrier coatings using high resolution SEM images. Zhang et al. [24] used multi-scale faster R-CNN to 

detect cracks in thermal barrier coatings of turbine blades. Xiao et al.[25] employed the deep CNN 

using 2D SEM images to detect the cracks in air plasma sprayed thermal barrier coatings with 98% 

accuracy. Li et al. [26]detected cracks during a laser cladding process by using a combination of signal 

processing of acoustic emission signals and deep neural networks. Signal processing was used to extract 

different features from acoustic emission signals and CNN was used to identify the cracks based on the 

extracted feature vector. Zhao et al. [27] proposed a CNN based classification method for detecting 

coating surface defects. Experimental results show that the CNN models, particularly ResNet-50, 

achieve high precision and accuracy of more than 90% in classifying various coating defects. These 

studies show that Deep Learning (DL) is an efficient technique to recognize defects in surface coatings.  

Laser nitriding is one of the most efficient surface modification techniques for the improvement of 

surface performance [28], [29]. During this process, a metal surface is irradiated by sufficient laser 

energy in nitrogen containing atmosphere. Laser nitriding results in the formation of a titanium nitride 

(TiN) layer on the metal surface. This layer enhances the surface properties, increasing its hardness and 

resistance to both corrosion and wear[30]. However, a problem associated with laser nitriding process 

is the appearance of cracks on the surface which can initiate the process of mechanical and corrosion 

failures. These cracks often arise due to rapid thermal expansion and contraction during the laser 

nitriding process, creating stress within the Ti material [31]. The formation of cracks in nitrided layers 

of Ti materials is primarily attributed to the introduction of excessive residual stress during the laser 
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nitriding process. As outlined by Holmberg et al.[32], there are two primary mechanisms through which 

residual stress leads to crack formation. The first involves the generation of excessively high lateral 

tensile residual stresses in the semi-brittle layer. Such stresses can result in the formation of tensile 

cracks, which typically develop perpendicular to the interface. The second mechanism pertains to the 

occurrence of critically high compressive stresses, leading to a regular pattern of shear cracks. It is 

important to note that the spatial distribution of these stresses within the material layers plays a pivotal 

role in determining the likelihood and nature of crack formation. Recent research conducted by Shirazi 

et al. [33] indicates the impact of tensile stress within the nitrided layer as a direct contributor to crack 

formation. When the tensile stress surpasses the material threshold for withstanding elongation, cracks 

begin to emerge. In contrast, the compressive stress present in the Ti substrate acts as a counterbalancing 

force to the tensile stress in the nitrided layer. While compressive stress typically inhibits crack 

formation, the differential in stress types and intensities between the nitrided layer and the Ti substrate 

can induce instability at their interface. It is this interplay of tensile stress in the nitrided layer and 

compressive stress in the Ti substrate that influences the formation and propagation of cracks. 

 

Ti-6Al-4V is a titanium alloy widely employed across diverse industries, including aerospace, medical, 

and automotive, owing to its exceptional combination of strength, lightweight characteristics, and 

superior corrosion resistance[34]. The selection of Ti-6Al-4V for the laser nitriding process is grounded 

in its prevalence in applications where a balance of robust mechanical properties and reduced weight is 

paramount[35], [36]. The urgency of addressing crack formation in Ti-6Al-4V surfaces, particularly 

laser nitriding,  is underscored by the critical applications of this material in key industries. For instance, 

in aerospace engineering, the structural integrity of components made from Ti-6Al-4V is paramount for 

ensuring the safety and reliability of aircraft[37]. 

    However, no significant effort has been made in the recent past to recognize the surface defects on 

laser intruded Ti-6Al-4V using DL. To bridge this gap, the present study aims to put forth a robust DL 

based crack recognition process for laser nitride surfaces, which has not been attempted before.   

     In this study, state of the art laboratory equipment has been used to perform the laser nitriding of  Ti-

6Al-4V, and for high resolution image collection. Convolutional neural network (CNN) and its different 

variants have then been employed using transfer learning for binary classification between the cracked 

and no crack images. Further, comparative analysis of CNN and its variants have enabled deep insight 

on the accuracy and speed of the approach.  

Compared to existing research, the main scientific contribution of this work is as follows: 

• Development of consistently high-quality nitrided surfaces, specially tailored for accurate crack 

detection 

• Robust binary classification method to recognize cracks on the surface of Ti-6Al4V 

• Development of better image acquisition and pre-processing techniques for complex laser 

nitrided images 

• Comparative assessment of CNN and its variants to select the best model for surface crack 

recognition with best possible accuracy.  

     Furthermore, the paper is organized into sections, section 2 provides a brief overview of the 

methodology, data collection, and image-processing. Section 3 details the architecture description of 

the transfer learning models used for the crack recognition and performance evaluation metrics. Section 

4 presents and discusses the achieved results. In section 5 and 6, the conclusions and recommendations 

for future improvement are provided. 
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2. Overview of the methodology 

      To perform the crack recognition using DL, data has been collected and processed in different stages 

as shown in Fig 1.  

 

 

 

 

 

 

Figure 1 Overview of the methodology 

 

      In the first stage, state of the art equipment has been used to perform the laser nitride coating process 

on the material, which has been prepared through machining and grinding process. Then high-resolution 

image data, of about 500 times magnification, of the laser nitrided sample has been collected, across a 

range of nitriding energy levels. The image data is then pre-processed to convert the images into a form 

readable by algorithms, and is cleaned to remove unwanted anomalies.  CNN model and its variants 

including ResNet-50, DenseNet-121, and Google Net (Inception V3) have been employed as transfer 

learning approaches, to recognize the presence of cracks. These models are trained, validated and tested 

with a data division of 60%, 20% and 20%, respectively. Then the accuracy of these models has been 

calculated and analysed using: confusion matrix, metrics of precision, recall and F1 score. 

                                           

2.1 Material preparation for experimentation  

     The material employed in this study is Ti-6Al-4V alloy was provided by American elements in plate 

form having dimensions of 250mmx250mmx2mm. To prepare the sample for the laser nitriding process, 
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spark cutting was performed using Electric Discharging Machining (EDM) to cut the material in to 

smaller sizes of 125mmx30mmx2mm. To improve the surface quality of the samples, polishing and 

grinding was performed with silicon carbide (SiC) sandpapers ranging from 120grit to 1000 grit. 

Subsequently, the polished samples were meticulously cleaned and degreased by immersing them in an 

ultrasonic water bath containing acetone for 10 minutes. After the cleaning process, the samples were 

rinsed with deionized water and dried thoroughly using a stream of cool air.   

 

2.2 Experimentation  

      The laser nitriding process was performed on the polished and cleaned samples using a SPI 200 W 

fiber laser machine in open air with local gas purging. The experimental setup of the laser nitriding 

process has been shown in Fig 2.  

 

 

Figure 2 Experimentation of laser nitriding[38] 

     The laser machine was the integration of two components, Micro Laser systems BV (Driel, 

Gelderland, the Netherlands) and a fiber laser system having 1064 nm in wavelength which is 

manufactured by SPI Lasers UK Ltd. (South Hampton, Hampshire, UK). The laser machine offered 

working in both continuous wave (CW) and modulated modes, with modulation capabilities up to 100 

kHz and modulated pulses less than 5 μs. The specific laser processing parameters were determined 

based on a series of preliminary experiments. They were set as follows: laser power of 45 W, duty cycle 

(DC) ranging from 40% to 100%, laser scanning speed of 25 mm/s, stand-off distance (SD) of 1.5 mm 

(referring to the distance between the laser nozzle and the sample surface) and purging with pure N2 

gas at a pressure of 6 bar, which was delivered coaxially with the laser beam. The calculated laser spot 

size at the SD of 1.5 mm was approximately 100 μm. In the laser nitriding experiments, only the DC 

parameter was varied, while the other parameters remained constant. 

     The duty cycle (DC) is defined as the ratio of the ON time to the total time (ON + OFF). In the 

context of these experiments, a DC of 40% indicates that the laser was in the ON state for 40% of the 

total time, while a DC of 100% corresponds to continuous wave (CW) mode where the laser remained 

continuously ON. The samples were labelled as DC40, DC60, DC80, and DC100, indicating the 

nitriding at DC values of 40%, 60%, 80%, and 100%, respectively. The nitrided areas on the samples 
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measured 10 × 10 mm², encompassing approximately 100 laser tracks. To ensure repeatability, each DC 

condition was repeated six times. 

 

2.3 Image data Acquisition 

     As the probability of cracks are greatest at the highest energy level, i.e. DC 100; and can be logically 

expected to be smallest at the lowest energy level, i.e. DC40, these two process areas were considered 

for image data collection. Fig 3 elaborates the employed image data acquisition process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The image data has been collected using Alicona Infinite Focus G5, which is a 3D coordinate 

measurement optical instrument based on Focus-Variation optical technology. 2x10mm2 areas were 

captured at DC 40 and DC 100 as shown in Fig3. To get high resolution images of the area, extra-large 

image field datasets were collected using the x50 objective lens. This approach provided surface 

magnification up to level of 50X.  Measurement areas of 10 mm2 were divided into 11 separate image 

fields and 396 million surface data points were captured per image field. To get appropriate images of 

any cracks, several arrangements were tried for exposure and contrast adjustment to get the right 

combination. About 25 high resolution images were collected for each small square of these 11 areas in 

a single nitride square. A total of 600 high resolution images of 5117x3491 pixels were collected for 

DC40 and DC100 energy levels. 

 

 

 

Figure 3 Image Data Acquisition 
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2.4 Image Pre-processing 

     The images have been pre processed in three stages, as presented in fig 4. In the first stage, images 

have been pre processed using different images settings within Alicona. First of all,  3D profile of the 

laser nitrided surface has been captured. As the adopted models of CNNs have been inherently designed 

to work with 2D images, and working with 2D images reduces the complexity of neural network model 

and computational resources required, so using these 3D images or surface profiles are further converted 

in to 2D coloured images .In the next step, background noise of these images is reduced, which is termed 

as form removal. As shown in Fig 4, step2, cracks are not discernible in the coloured images, 

highlighting the height contrast of features in the nitrided surfaces, so images were converted into gray 

scale images which show the clear cracked lines. 

  

                                               Figure 4 Image Pre-processing 

     The size of  images is very large as shown in step 3, which makes it difficult for the model to process 

these images. so these images were further patchified (cropped) in to small number of images. This 

second step of the image pre processing has been completed using python library named as patchify.  

Cropping the images in to smaller sizes did not alter the crack features such as  shape and orientation. 

So, image of size 5117x3491 was patchified into 25 number of smaller images, which increased the 

data set size to almost 3000 for cracked images. The image dataset was cleaned to remove images at 

the boundary line containing both the nitride surface and base metal. Images containing the surface 

analyser spots where it could not take measurement were also removed from the dataset.  

 

1 

2 

3 
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3. Model Architecture 

3.1 CNN 

     Like other neural network models, CNNs utilize layers of interconnected neurons that enable them 

to learn hierarchical representations. These layers are connected via weights and biases. The input layer  

receives the  image data as the initial layer, while the output layer provides predictions, such as 

classifying between cracks and no-cracks. Between these layers, there are hidden layers that transform 

the input's feature space to align with the desired output [39]. 

 

 

 

 

    The standard CNN architecture adopted for this research has been shown in Fig 5. It consists of three 

components, convolutional layer, pooling layer and classification layer. Crack features are extracted 

using the convolutional and pooling layers. The classification layer is usually connected to the last layer 

to recognize the presence of cracks. 16 kernels or filters of size(3x3) has been used in the first 

convolution layer and 32 kernels or filters of size(3x3) have been used in the 2nd convolution layer. For 

the convolution layer, ReLU is chosen as the activation function due to higher computation efficiency. 

After the convolution layer, the pooling layer is added to perform subsampling of the feature extracted 

by the convolutional layer and activated through ReLU. In this model, max pooling has been used to its 

ability of fast convergence and robustness. Max pooling is represented in Equation (2), where R is 

receptive field representing the local area within the input image, and (um,n) shows the value of node 

location (m,n) on the receptive field[21]. 

                                       𝑦𝑚𝑎𝑥 = maxm,nϵR (um,n)                                (2)  

        

      The classification layer consists of Global average pooling layer, dense layer and sigmoid layer. For 

this study, global average pooling layer (GAP) has been preferred over the fully connected layer in 

similar kind of studies [28], [30]. After, Global average pooling dense layer has been used. The purpose 

of the used dense layer is to map the learned feature to the desired output. The dense layer functions as 

the final stage of feature extraction and mapping. After the dense layer, sigmoid activation function is 

used for binary classification, which shows the probability score for crack and no crack class.  

 

 

Figure 5  CNN Architecture 
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3.2 Transfer Learning Models 

     In this research work, five pre trained CNN models (VGG19, VGG16, Densenet-121, Inception V3 

and Resnet-50) have been used through transfer learning. All of these networks have been pretrained 

on ImageNet data set[40].  

VGG-19 (Visual Geometry Group network), a widely known CNN architecture, was developed by 

Simonyan and Zisserman for image recognition tasks[41]. Due to an optimum number of layers in the 

network, VGG-19 has demonstrated proficiency in handling complex functions. The first five blocks of 

the architecture have been focused, in which each block has four CONV layer of 3x3 filters and a max 

pooling layer of 2x2 filters. At the end of the blocks, a global average pooling layer of 512 units has 

been used. For binary classification, the last two dense layers have 64 and 1 units respectively.  

VGG-16. The architecture of the VGG-16 only differs from VGG-19 in terms of number of 

convolutional layers in each block. The first two blocks have two, and last three blocks have four CONV 

layer of 3x3 filters. The convolutional layer is followed by max pooling layer of 2x2 filters at the end 

of each block. For classification two dense layers of 64 units and 1unit have been used. 

GoogLeNet In the same year, Szegedy et al.[42] introduced the twenty-two layers deep CNN 

GoogLeNet, it was the best performing network at the image net large scale visual recognition challenge 

(ILSVRC) in 2014. 

ResNet-50 was developed by He et al.[43]. Its unique architecture of skipping connections enhanced 

its accuracy, with reasonable convergence rates. At the (ILSVRC) 2015, ResNet emerged as the best 

network during the Common Objects in Context (COCO) challenge. The adopted model in this project 

uses 7x7 initial convolution layers to extract fundamental features, which is followed by a batch 

normalization and ReLU activation. After that a max pooling layer is applied to reduce the dimensions. 

A key part of ResNet-50 are the residual blocks which contain multiple convolutional layers with batch 

normalization and ReLU activation. After the residual blocks, global average pooling is applied to 

average out the feature maps. After that a single-unit fully connected layer is used for binary decision 

making.   

DenseNet-121 Huang et al. [44] developed the densely connected layers deep CNN DenseNet, which 

stands out as it has fewer parameters, along with feature propagation and feature reuse. In this model, 

the initial convolutional layers are followed by dense blocks consisting of multiple densely connected 

layers. Within the dense blocks, the transition blocks control feature dimensions.  Following the dense 

blocks, global average pooling is applied to extract the feature map, and then a fully connected layer 

Figure 6 Transfer Learning Architecture 
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with one unit is followed by a sigmoid activation function. Among the different DenseNet 

architectures(DenseNet-201, DenseNet-160, DenseNet-121), this study used DenseNet-121.  

     These five pre trained CNN models (VGG-19, VGG-16, Densenet-121, GoogleNet and Resnet-50) 

have been used as the feature extractors in this study. The base layers are frozen and custom 

classification layers are added on top of the base layers as shown in Fig 7. The input images of the 

surface are provided to the classification layers to recognize the presence of cracks. Models size, depth 

and parameters are given in Table 1. 

Network       Depth     Size               Total Parameters    Trainable Parameters      

 VGG-19           19       574MB                20,057,281                      32,897                              

 VGG-16           16       533MB                14,747,585                      32,897 

 Densent-121    121       33MB                  7,103,169                       65,665 

 GoogLeNet      22        40MB                 22, 065,185                    262,401 

 ResNet-50        50      167MB                23, 718, 913                    131,201 

  

                                                                                       Table 1 Models Specifications 

3.3 Experimental Setup and Assessment Criteria  

After image preprocessing, the dataset was meticulously curated, leveraging domain expert knowledge, 

and cracked and non-cracked images were systematically organized into separate folders, labelled as 0 

for non-cracked and 1 for cracked images, for precise binary classification during the model training 

process. These images were further augmented to increase the data set.  In image augmentation, a 

combination of rotation, flipping, scaling, zooming and shearing was applied to enhance the image data 

set. As the probability of no cracks in the two image sets (DC40, and DC100) are low, the number of 

no cracked images was lower than the number of cracked images and thus the data set  was unbalanced. 

The total number of images after augmentation were 6,944 and 12,761 for cracked and no cracked 

conditions respectively. The images were further divided in to 60% training, 20% for validation and 

20% for testing.  

 

Descriptor                                                             Crack                   No-Crack                   

     Total Number of images                                           6,944                 12,761                                                     

     Images for training(60% of total images)                 4166                   7656 

     Images for validation(20% of total images)             1328                   1740 

     Images for testing     (20% of total images)             1328                   1740 

     Image size                                                             128x128x3         128x128x3 

Table 2 Dataset Generation 

    The process of binary classification of the coated surface images was performed by running the 

models on an Alienware 13th Gen Intel@Core-i9 Windows11 computer. A GPU of NVIDIA GeForce 

RTX 4080 with 12 GB DDR6 Ram was used to accelerate the model training and achieve faster 

calculations. To access the performance of the binary classification of the defects, a confusion matrix is 

used, which provides the comparison of the actual and the predicted classes of the input images[45]. To 
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evaluate the accuracy of the model, different terms are used in the confusion matrix. True positive (TP), 

the number of instances correctly predicted as positives (Belong to the positive class). True Negative 

(TN) the number of instances that are correctly predicted as negative (belonging to the negative class). 

Here Cracked images have been defined as the positive class and no cracked images have been defined 

as the negative class. The false positives (FP) indicated here that number of actual non cracked images 

turned out to be cracked images. The false negatives (FN) indicates the number of cracked images 

incorrectly predicted as non-cracked images. The confusion matrix shows the detailed classification 

reports through performance metrics of: accuracy, precision, Recall and F measure.  

    The term Accuracy represents the overall performance of the model in terms of the number of correct 

predictions out of the total number of test cases, Equation 3. 

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
   (3) 

     Precision shows the correctly predicted positive cases from all the positive predictions. For instance, 

it will show how many of the images where correctly predicted to be cracked images out of the total 

number of true positive and false positive images, Equation 4.   

Precision =
TP

(TP+FP)
                            (4) 

     Recall calculates how many of the actual positive (cracked images) where predicted correctly from 

the true positive and the true negative cases, Equation 5.  

 

Recall =
TP

(TP+TN)
    (5) 

    F1 score is the harmonic mean of precision and recall, it provides the mutual view of precision and 

recall. 

 

 

4. Results and Discussion 

    The formation of cracks during laser nitriding can be attributed to various factors including: Heat 

accumulation,  thermal cycling effects,  melt pool dynamics, residual stresses, microstructural evolution, 

depth of the nitrided layer, dendritic growth and rapid solidification, and  micro segregation in dendritic 

regions. 

     Firstly, in continuous wave (CW) mode, lasers perform at a consistently high power(DC100), leading 

to an immediate temperature increase and subsequent heat accumulation. This rapid temperature change 

can introduce thermal stresses in materials, potentially causing cracks. Conversely, in modulated mode, 

lasers work intermittently, allowing materials periodic cooling periods, which can reduce these stresses. 

Secondly, using modulated mode, especially with duty cycles (DC) ranging from 40% to 60%, 

introduces thermal cycling. This periodic heating and cooling can foster a more consistent grain growth 

and mitigate residual stresses in the nitrided layer, reducing the likelihood of crack formation. The rapid 

cooling characteristic of CW mode can result in pronounced residual stresses. When the residual stress 

surpasses the yield strength of the material, it can lead to cracking. Yet, in modulated mode, the periodic 

heating can facilitate stress relaxation, decreasing the chances of crack formation[46], [47]. 

      The presence of cracks or no crack on the laser nitrided surface has been investigated using binary 

classification. The performance of the 5 models (Table 1) to recognize the cracks on the surface of laser 

nitrided Ti-6Al-4V have been analysed using testing and validation accuracy, confusion matrix and 
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classification report. The results show the comparative outlook for binary classification of surface 

cracks on laser nitride surfaces using deep learning model of CNN, and its variants of Densenet-121, 

GooLeNet, Resnet50, VGG16 and VGG19, which have been applied through transfer learning. These 

models have been optimized by fine tuning their hyper parameters to achieve the best possible 

performance. These models provide the robust binary classification to recognize the surface cracks of 

laser nitride coating on Ti-6Al-4V.  The purpose to include the baseline model of CNN in comparison 

to its variants is to gauge the trade-off between complexity and performance for this data set. It also 

helped to benchmark the performance of CNN in comparison to its variants for this dataset.  

     Fig. 7 shows the comparison of the validation and testing accuracy of the applied models. Overall, 

all of the applied models show a testing and validation accuracy of more than 92%, which indicates that 

all of the models achieve good performance to classify cracks in laser nitrided surface coatings. The 

best validation and testing accuracy of 99% is achieved by the VGG16 and VGG19 models through 

transfer learning. Following closely, the DenseNet-121 demonstrates very good performance with an 

accuracy of 98%. The base model, CNN, demonstrated good performance with validation and testing 

accuracy of 96%. However, the transfer learnt models, GoogLeNet (Inception V3) and Resnet-50, 

showed lower accuracies of 95% and 92% respectively. 

    Looking at the number of total parameters and trainable parameters in Table 1, and the performance 

of the models in Fig. 7, it is important to note that models with less training parameters like VGG-19, 

VGG-16, and DenseNet-121 have better validation and testing accuracy. On the other hand, models like     

GoogLeNet and ResNet-50 with more trainable parameters have lower validation and testing accuracy. 

In comparison the base model of CNN with significantly fewer training parameters performed much 

better than the ResNet-50 and GoogLeNet (InceptionV3). For this data set, the network architecture of 

VGG16, and VGG19 were found to be more suitable and provided the testing and validation accuracy 

of 99% to recognize the cracks on the surface of laser nitrided Ti-6Al-4V. 

 

 

Figure 7 Comparison of testing and validation accuracy 

Fig. 8 and table 3 show the classification report of the models along with accuracy and testing time in 

milliseconds. In terms of testing time and accuracy,  VGG-19 along with base model CNN provided the 

most optimum results, with accuracies of 99 and 97% and testing times of 12300 milliseconds and 

11145 milliseconds respectively. VGG-16 and DenseNet-121  also exhibited very good accuracies of 

99 and 98% but are slow in comparison to the CNN and VGG-19, with testing times of 13696 

milliseconds  and 14250 milli seconds respectively. The DenseNet-121 model achieved accuracy of 
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98% with slightly more training time than the VGG models. ResNet-50 displayed lowest testing 

accuracy of 92%, but has a fast testing time. GoogleNet(Inception-V3) also has the low accuracy of 

95%with very slow testing time of 13828 milliseconds.  

 

Figure 8 Performance evaluation of the models based on their Accuracy and testing time 

The CNN base model along VGG19 have turned out to be more accurate and fast, while inception V3 

and  have lower accuracy is slow in testing. The highest accuracy and faster speed of the models is 

attributed to the less training parameters used in the architecture of VGG19, VGG16 and CNN. The 

high accuracy of these models along with the lowest training times also indicate that the data set is more 

suitable for simpler networks with less trainable parameters.  

 

                                                    Table3.  Classification report and testing time 

The confusion matrix along with the classification report results indicate that the unbalanced data set 

did not influence the models to become biased. As, the present models are designed for recognition of 

cracks, so precision is the most decisive parameter. Among the trained models VGG16, VGG19, 

      Network Precision Recall F1 Score Support Accuracy Testing Time

Crack 0.97 0.98 0.97 1328

No-Crack 0.97 0.96 0.96 1740

Crack 0.99 0.99 0.99 1328

No-Crack 0.99 0.99 0.99 1740

Crack 0.91 0.93 0.92 1328

No-Crack 0.93 0.94 0.94 1740

Crack 0.99 0.99 0.99 1328

No-Crack 0.99 0.99 0.99 1740

Crack 0.96 0.93 0.94 1328

No-Crack 0.95 0.97 0.96 1740

Crack 0.98 0.99 0.98 1328

No-Crack 0.98 0.97 0.98 1740

Resnet-50

0.99

11145ms

0.99 12300ms

0.98 14250ms

0.97

VGG16

VGG19

Densenet

CNN

Googlenet
0.95 13828ms

0.93 12482ms

13696ms



14 
 

Densenet-121 and CNN gave the same precision values to recognize the surface images with cracks 

and no cracks. However, a marginal difference in accuracy is seen in the case of GoogLeNet (Inception-

V3) and Resnet-50, as shown in Table 3. 

 

 

Figure 9. Confusion Matrixes 

   

     Except VGG19 and VGG16 models, all of the other models have marginal difference in their 

Recall Values for cracks and no cracks images.  



15 
 

 

Figure 10  Loss curve with number of epochs 

 

Figure11  Accuracy curve with number of epochs 

    Considering the testing and validation accuracy, and classification report, it appears that this data set 

was efficient to recognize the cracks on laser nitrided surface of Ti-6Al4V. Comparing the base model 

of CNN with its variants, it can deduced that simpler models with less trainable parameters were more 

accurate to recognize cracks in less time.  Based on this, best model for this kind of data set is VGG19 

to recognize and classify cracks.  

     Figs 10 and 11 show that training, and validation loss and accuracy of the proposed model along 

with the number of epochs. The VGG 19 model was so accurate for this data set that it achieved the 

98% accuracy at the 10th epoch and reached to the minimum loss of 0.05, at 99% accuracy at the 60th 

epoch.  
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This study is limited to recognizing the presence of surface cracks through image processing and the 

application of deep learning-based models. To comprehensively understand the evolution of cracks, 

including crack initiation, propagation, and growth, additional data collection is necessary. This 

involves new experimentation and conducting different material tests, such as XRD (X-ray diffraction) 

and SEM (Scanning Electron Microscopy). 

 

5. Conclusion 

    The research demonstrated the DL based binary classification method to recognize the surface cracks 

on laser nitrided samples of Ti-6Al-4. A state-of-the-art experimental data set and data acquisition 

system has been deployed to process high resolution surface images of laser nitrided samples of Ti-

6Al4V. The images were pre-processed and a base model of a CNN along with its five variants have 

been applied through transfer learning to recognize the surface cracks. Model testing and validation 

accuracy, confusion matrix and classification report has been used as the assessment criteria. All of the 

models exhibited very good accuracy of more than 90% to recognize surface cracks. The CNN variants 

used with the transfer learning approach, with the smallest number of training parameters, were found 

to be fast and more accurate to make the predictions with an accuracy of 98%. Moreover, VGG-19 

provides best crack recognition accuracy of 99%.  For this kind of data set, the future work is to localize 

the cracks within the image. For this purpose, object detection using combination of Yolo variants and 

faster RCNN could be applied. The other method to detect cracks could be the image segmentation 

using the different variants of UNET models. 

 

 

Funding 

All authors gratefully acknowledge the support provided by UKRI via Grants No.: EP/T024607/1 & 

EP/S036180/1. 

 

References 

[1] Y. Zhang, W. Li, C. Zhang, H. Liao, Y. Zhang, and S. Deng, ‘A spherical surface coating thickness 

model for a robotized thermal spray system’, Robot Comput Integr Manuf, vol. 59, pp. 297–

304, Oct. 2019, doi: 10.1016/J.RCIM.2019.05.003. 

[2] G. Liu et al., ‘Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing 

Materials’, Engineering, vol. 6, no. 11, pp. 1232–1243, Nov. 2020, doi: 

10.1016/J.ENG.2020.04.015. 

[3] G. Hu, K. Guan, L. Lu, J. Zhang, N. Lu, and Y. Guan, ‘Engineered Functional Surfaces by Laser 

Microprocessing for Biomedical Applications’, Engineering, vol. 4, no. 6, pp. 822–830, Dec. 

2018, doi: 10.1016/J.ENG.2018.09.009. 

[4] Y. Wang et al., ‘Challenges and Solutions for the Additive Manufacturing of Biodegradable 

Magnesium Implants’, Engineering, vol. 6, no. 11, pp. 1267–1275, Nov. 2020, doi: 

10.1016/J.ENG.2020.02.015. 

[5] H. Khatun, M. Rahman, S. Mahmud, M. O. Ali, and M. Akter, ‘Current advancements of hybrid 

coating on Mg alloys for medical applications’, Results in Engineering, vol. 18, p. 101162, Jun. 

2023, doi: 10.1016/J.RINENG.2023.101162. 



17 
 

[6] Y. Aslam, N. Santhi, N. Ramasamy, and K. Ramar, ‘Localization and segmentation of metal 

cracks using deep learning’, J Ambient Intell Humaniz Comput, vol. 12, no. 3, pp. 4205–4213, 

Mar. 2021, doi: 10.1007/S12652-020-01803-8/TABLES/4. 

[7] J. García-Martín, J. Gómez-Gil, E. V.-S.- Sensors, and undefined 2011, ‘Non-destructive 

techniques based on eddy current testing’, mdpi.comJ García-Martín, J Gómez-Gil, E Vázquez-

SánchezSensors, 2011•mdpi.com, vol. 11, pp. 2525–2565, 2011, doi: 10.3390/s110302525. 

[8] S. Dixon, S. Burrows, B. Dutton, Y. F.- Ultrasonics, and undefined 2011, ‘Detection of cracks in 

metal sheets using pulsed laser generated ultrasound and EMAT detection’, Elsevier, 

Accessed: Jun. 26, 2023. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S0041624X10000818 

[9] C. Yeh, R. Z.-I. T. on I. and, and undefined 1994, ‘A novel microwave method for detection of 

long surface cracks in metals’, ieeexplore.ieee.org, Accessed: Jun. 26, 2023. [Online]. Available: 

https://ieeexplore.ieee.org/abstract/document/328896/ 

[10] N. Wang and R. Zoughi, ‘Moment method solution for modeling the interaction of open 

ended coaxial probes and surface cracks in metals’, 2002, Accessed: Jun. 26, 2023. [Online]. 

Available: https://scholarsmine.mst.edu/ele_comeng_facwork/588/ 

[11] Y. Gao, L. Gao, and X. Li, ‘A hierarchical training-convolutional neural network with feature 

alignment for steel surface defect recognition’, Robot Comput Integr Manuf, vol. 81, p. 

102507, Jun. 2023, doi: 10.1016/J.RCIM.2022.102507. 

[12] L. Lu, J. Hou, S. Yuan, X. Yao, Y. Li, and J. Zhu, ‘Deep learning-assisted real-time defect 

detection and closed-loop adjustment for additive manufacturing of continuous fiber-

reinforced polymer composites’, Robot Comput Integr Manuf, vol. 79, p. 102431, Feb. 2023, 

doi: 10.1016/J.RCIM.2022.102431. 

[13] H. Golnabi and A. Asadpour, ‘Design and application of industrial machine vision systems’, 

Robot Comput Integr Manuf, vol. 23, no. 6, pp. 630–637, Dec. 2007, doi: 

10.1016/J.RCIM.2007.02.005. 

[14] X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, ‘Applying Neural-Network-Based Machine Learning to 

Additive Manufacturing: Current Applications, Challenges, and Future Perspectives’, 

Engineering, vol. 5, no. 4, pp. 721–729, Aug. 2019, doi: 10.1016/J.ENG.2019.04.012. 

[15] R. Tian and M. Jia, ‘DCC-CenterNet: A rapid detection method for steel surface defects’, 

Measurement, vol. 187, p. 110211, Jan. 2022, doi: 10.1016/J.MEASUREMENT.2021.110211. 

[16] T. Wang, Y. Chen, M. Qiao, H. S.-T. I. J. of, and undefined 2018, ‘A fast and robust convolutional 

neural network-based defect detection model in product quality control’, Springer, vol. 94, no. 

9–12, pp. 3465–3471, Feb. 2018, doi: 10.1007/s00170-017-0882-0. 

[17] M. Marei, S. El Zaatari, W. L.-R. and Computer-Integrated, and undefined 2021, ‘Transfer 

learning enabled convolutional neural networks for estimating health state of cutting tools’, 

Elsevier, Accessed: Jun. 27, 2023. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S0736584521000302 

[18] Z. Pan, S. L. H. Lau, X. Yang, N. Guo, and X. Wang, ‘Automatic pavement crack segmentation 

using a generative adversarial network (GAN)-based convolutional neural network’, Results in 

Engineering, vol. 19, p. 101267, Sep. 2023, doi: 10.1016/J.RINENG.2023.101267. 



18 
 

[19] T. P. Nguyen, S. Choi, S. J. Park, S. H. Park, and J. Yoon, ‘Inspecting Method for Defective 

Casting Products with Convolutional Neural Network (CNN)’, International Journal of Precision 

Engineering and Manufacturing - Green Technology, vol. 8, no. 2, pp. 583–594, Mar. 2021, 

doi: 10.1007/S40684-020-00197-4. 

[20] X. Yang, Y. Zhang, W. Lv, and D. Wang, ‘Image recognition of wind turbine blade damage based 

on a deep learning model with transfer learning and an ensemble learning classifier’, Renew 

Energy, vol. 163, pp. 386–397, Jan. 2021, doi: 10.1016/J.RENENE.2020.08.125. 

[21] Y. Gao, L. Gao, X. Li, and X. Yan, ‘A semi-supervised convolutional neural network-based 

method for steel surface defect recognition’, Robot Comput Integr Manuf, vol. 61, p. 101825, 

Feb. 2020, doi: 10.1016/J.RCIM.2019.101825. 

[22] M. Cheng, C. Xu, J. Wang, W. Zhang, Y. Zhou, and J. Zhang, ‘MicroCrack-Net: A Deep Neural 

Network with Outline Profile-Guided Feature Augmentation and Attention-Based Multiscale 

Fusion for MicroCrack Detection of Tantalum Capacitors’, IEEE Trans Aerosp Electron Syst, vol. 

58, no. 6, pp. 5141–5152, Dec. 2022, doi: 10.1109/TAES.2022.3181117. 

[23] Y. Lu et al., ‘Deep Learning-Based Models for Porosity Measurement in Thermal Barrier 

Coating Images’, International Journal of Multimedia Data Engineering and Management 

(IJMDEM), vol. 11, no. 3, pp. 20–35, Oct. 2020, doi: 10.4018/IJMDEM.2020070102. 

[24] C. Zhang et al., ‘Evaluation of Internal Cracks in Turbine Blade Thermal Barrier Coating Using 

Enhanced Multi-Scale Faster R-CNN Model’, Applied Sciences 2022, Vol. 12, Page 6446, vol. 

12, no. 13, p. 6446, Jun. 2022, doi: 10.3390/APP12136446. 

[25] X. Shan et al., ‘Automatic Recognition of Microstructures of Air-Plasma-Sprayed Thermal 

Barrier Coatings Using a Deep Convolutional Neural Network’, Coatings 2023, Vol. 13, Page 

29, vol. 13, no. 1, p. 29, Dec. 2022, doi: 10.3390/COATINGS13010029. 

[26] K. Li, T. Li, M. Ma, D. Wang, W. Deng, and H. Lu, ‘Laser cladding state recognition and crack 

defect diagnosis by acoustic emission signal and neural network’, Opt Laser Technol, vol. 142, 

p. 107161, Oct. 2021, doi: 10.1016/J.OPTLASTEC.2021.107161. 

[27] H. Zhao, Y. Lv, J. Sha, R. Peng, Z. Chen, and G. Wang, ‘Research on Detection Method of 

Coating Defects Based on Machine Vision’, 2021 IEEE International Conference on Artificial 

Intelligence and Computer Applications, ICAICA 2021, pp. 519–524, Jun. 2021, doi: 

10.1109/ICAICA52286.2021.9498238. 

[28] C. W. Chan, X. Chang, M. A. Bozorgzadeh, G. C. Smith, and S. Lee, ‘A single parameter 

approach to enhance the microstructural and mechanical properties of beta Ti-Nb alloy via 

open-air fiber laser nitriding’, Surf Coat Technol, vol. 383, p. 125269, Feb. 2020, doi: 

10.1016/J.SURFCOAT.2019.125269. 

[29] Y. Yu, S. Bai, S. Wang, and A. Hu, ‘Ultra-Short Pulsed Laser Manufacturing and Surface 

Processing of Microdevices’, Engineering, vol. 4, no. 6, pp. 779–786, Dec. 2018, doi: 

10.1016/J.ENG.2018.10.004. 

[30] P. Schaaf, ‘Laser nitriding of metals’, Prog Mater Sci, vol. 47, no. 1, pp. 1–161, Jan. 2002, doi: 

10.1016/S0079-6425(00)00003-7. 



19 
 

[31] A. M. Kamat, S. M. Copley, A. E. Segall, and J. A. Todd, ‘Laser-Sustained Plasma (LSP) Nitriding 

of Titanium: A Review’, Coatings 2019, Vol. 9, Page 283, vol. 9, no. 5, p. 283, Apr. 2019, doi: 

10.3390/COATINGS9050283. 

[32] K. Holmberg et al., ‘Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to 

their tribological fracture behaviour’, Wear, vol. 267, no. 12, pp. 2142–2156, Dec. 2009, doi: 

10.1016/J.WEAR.2009.01.004. 

[33] H. A. Shirazi, C. W. Chan, and S. Lee, ‘Elastic-plastic properties of titanium and its alloys 

modified by fibre laser surface nitriding for orthopaedic implant applications’, J Mech Behav 

Biomed Mater, vol. 124, p. 104802, Dec. 2021, doi: 10.1016/J.JMBBM.2021.104802. 

[34] R. Bammidi, D. Sreeramulu, H. Madivada, P. K. Rejeti, and M. Venkatesh, ‘Towards an 

understanding of Ti-6Al-4V machining and machinability’, Mater Today Proc, Sep. 2023, doi: 

10.1016/J.MATPR.2023.09.094. 

[35] A. N. Aufa, M. Z. Hassan, Z. Ismail, N. Harun, J. Ren, and M. F. Sadali, ‘Surface enhancement of 

Ti–6Al–4V fabricated by selective laser melting on bone-like apatite formation’, Journal of 

Materials Research and Technology, vol. 19, pp. 4018–4030, Jul. 2022, doi: 

10.1016/J.JMRT.2022.06.135. 

[36] G. Miranda et al., ‘Design of Ti6Al4V-HA composites produced by hot pressing for biomedical 

applications’, Mater Des, vol. 108, pp. 488–493, Oct. 2016, doi: 

10.1016/J.MATDES.2016.07.023. 

[37] R. Jones, R. K. S. Raman, A. P. Iliopoulos, J. G. Michopoulos, N. Phan, and D. Peng, ‘Additively 

manufactured Ti-6Al-4V replacement parts for military aircraft’, Int J Fatigue, vol. 124, pp. 

227–235, Jul. 2019, doi: 10.1016/J.IJFATIGUE.2019.02.041. 

[38] C. W. Chan, S. Lee, G. C. Smith, and C. Donaghy, ‘Fibre laser nitriding of titanium and its alloy 

in open atmosphere for orthopaedic implant applications: Investigations on surface quality, 

microstructure and tribological properties’, Surf Coat Technol, vol. 309, pp. 628–640, Jan. 

2017, doi: 10.1016/J.SURFCOAT.2016.12.036. 

[39] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, ‘Review on Convolutional Neural Networks 

(CNN) in vegetation remote sensing’, ISPRS Journal of Photogrammetry and Remote Sensing, 

vol. 173, pp. 24–49, Mar. 2021, doi: 10.1016/J.ISPRSJPRS.2020.12.010. 

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, ‘ImageNet: A large-scale hierarchical 

image database’, pp. 248–255, Mar. 2010, doi: 10.1109/CVPR.2009.5206848. 

[41] K. Simonyan and A. Zisserman, ‘Very Deep Convolutional Networks for Large-Scale Image 

Recognition’, 3rd International Conference on Learning Representations, ICLR 2015 - 

Conference Track Proceedings, Sep. 2014, Accessed: Oct. 03, 2023. [Online]. Available: 

https://arxiv.org/abs/1409.1556v6 

[42] C. Szegedy et al., ‘Going Deeper With Convolutions’, 2015, pp. 1–9. 

[43] K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep residual learning for image recognition’, in 

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 

770–778. 



20 
 

[44] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘Densely connected convolutional 

networks’, in Proceedings of the IEEE conference on computer vision and pattern recognition, 

2017, pp. 4700–4708. 

[45] S. A. Singh, A. S. Kumar, and K. A. Desai, ‘Comparative assessment of common pre-trained 

CNNs for vision-based surface defect detection of machined components’, Expert Syst Appl, 

vol. 218, p. 119623, May 2023, doi: 10.1016/J.ESWA.2023.119623. 

[46] H. A. Shirazi, C. W. Chan, and S. Lee, ‘Elastic-plastic properties of titanium and its alloys 

modified by fibre laser surface nitriding for orthopaedic implant applications’, J Mech Behav 

Biomed Mater, vol. 124, p. 104802, Dec. 2021, doi: 10.1016/J.JMBBM.2021.104802. 

[47] C. W. Chan, X. Chang, M. A. Bozorgzadeh, G. C. Smith, and S. Lee, ‘A single parameter 

approach to enhance the microstructural and mechanical properties of beta Ti-Nb alloy via 

open-air fiber laser nitriding’, Surf Coat Technol, vol. 383, p. 125269, Feb. 2020, doi: 

10.1016/J.SURFCOAT.2019.125269. 

  

 

 

 

 

 

 

 

 


